51
|
Bano S, Hassan N, Rafiq M, Hassan F, Rehman M, Iqbal N, Ali H, Hasan F, Kang YQ. Biofilms as Battlefield Armor for Bacteria against Antibiotics: Challenges and Combating Strategies. Microorganisms 2023; 11:2595. [PMID: 37894253 PMCID: PMC10609369 DOI: 10.3390/microorganisms11102595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 10/29/2023] Open
Abstract
Bacterial biofilms are formed by communities, which are encased in a matrix of extracellular polymeric substances (EPS). Notably, bacteria in biofilms display a set of 'emergent properties' that vary considerably from free-living bacterial cells. Biofilms help bacteria to survive under multiple stressful conditions such as providing immunity against antibiotics. Apart from the provision of multi-layered defense for enabling poor antibiotic absorption and adaptive persistor cells, biofilms utilize their extracellular components, e.g., extracellular DNA (eDNA), chemical-like catalase, various genes and their regulators to combat antibiotics. The response of biofilms depends on the type of antibiotic that comes into contact with biofilms. For example, excessive production of eDNA exerts resistance against cell wall and DNA targeting antibiotics and the release of antagonist chemicals neutralizes cell membrane inhibitors, whereas the induction of protein and folic acid antibiotics inside cells is lowered by mutating genes and their regulators. Here, we review the current state of knowledge of biofilm-based resistance to various antibiotic classes in bacteria and genes responsible for biofilm development, and the key role of quorum sensing in developing biofilms and antibiotic resistance is also discussed. In this review, we also highlight new and modified techniques such as CRISPR/Cas, nanotechnology and bacteriophage therapy. These technologies might be useful to eliminate pathogens residing in biofilms by combating biofilm-induced antibiotic resistance and making this world free of antibiotic resistance.
Collapse
Affiliation(s)
- Sara Bano
- Applied Environmental and Geomicrobiology Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Noor Hassan
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-College, Pakistan Institute of Engineering and Applied Sciences, Islamabad 44000, Pakistan
| | - Muhammad Rafiq
- Department of Microbiology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87300, Pakistan
| | - Farwa Hassan
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-College, Pakistan Institute of Engineering and Applied Sciences, Islamabad 44000, Pakistan
| | - Maliha Rehman
- Department of Microbiology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87300, Pakistan
| | - Naveed Iqbal
- Department of Biotechnology & Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87300, Pakistan
- The Department of Paediatrics and Child Health, Aga Khan University, Karachi 74800, Pakistan
| | - Hazrat Ali
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-College, Pakistan Institute of Engineering and Applied Sciences, Islamabad 44000, Pakistan
| | - Fariha Hasan
- Applied Environmental and Geomicrobiology Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ying-Qian Kang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou, Guiyang 550025, China
- Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
52
|
Karn SL, Gangwar M, Kumar R, Bhartiya SK, Nath G. Phage therapy: a revolutionary shift in the management of bacterial infections, pioneering new horizons in clinical practice, and reimagining the arsenal against microbial pathogens. Front Med (Lausanne) 2023; 10:1209782. [PMID: 37928478 PMCID: PMC10620811 DOI: 10.3389/fmed.2023.1209782] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
The recent approval of experimental phage therapies by the FDA and other regulatory bodies with expanded access in cases in the United States and other nations caught the attention of the media and the general public, generating enthusiasm for phage therapy. It started to alter the situation so that more medical professionals are willing to use phage therapies with conventional antibiotics. However, more study is required to fully comprehend phage therapy's potential advantages and restrictions, which is still a relatively new field in medicine. It shows promise, nevertheless, as a secure and prosperous substitute for antibiotics when treating bacterial illnesses in animals and humans. Because of their uniqueness, phage disinfection is excellent for ready-to-eat (RTE) foods like milk, vegetables, and meat products. The traditional farm-to-fork method can be used throughout the food chain to employ bacteriophages to prevent food infections at all production stages. Phage therapy improves clinical outcomes in animal models and lowers bacterial burdens in numerous preclinical investigations. The potential of phage resistance and the need to make sure that enough phages are delivered to the infection site are obstacles to employing phages in vivo. However, according to preclinical studies, phages appear to be a promising alternative to antibiotics for treating bacterial infections in vivo. Phage therapy used with compassion (a profound understanding of and empathy for another's suffering) has recently grown with many case reports of supposedly treated patients and clinical trials. This review summarizes the knowledge on the uses of phages in various fields, such as the food industry, preclinical research, and clinical settings. It also includes a list of FDA-approved bacteriophage-based products, commercial phage products, and a global list of companies that use phages for therapeutic purposes.
Collapse
Affiliation(s)
- Subhash Lal Karn
- Department of Microbiology, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Mayank Gangwar
- Department of Microbiology, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rajesh Kumar
- Department of Microbiology, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Satyanam Kumar Bhartiya
- Department of General Surgery, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Gopal Nath
- Department of Microbiology, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
53
|
Kim SH, Lee H, Park MK. Isolation, characterization, and application of a novel, lytic phage vB_SalA_KFSST3 with depolymerase for the control of Salmonella and its biofilm on cantaloupe under cold temperature. Food Res Int 2023; 172:113062. [PMID: 37689855 DOI: 10.1016/j.foodres.2023.113062] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 09/11/2023]
Abstract
This study investigated the efficacy of a novel Salmonella phage with depolymerase activity to control S. Typhimurium (ST) and its biofilm on cantaloupes, for the first time, under simulated cold temperature. vB_SalA_KFSST3 forming a halo zone was isolated and purified from a slaughterhouse with a final concentration of 12.1 ± 0.1 log PFU/mL. Based on the morphological and bioinformatics analyses, vB_SalA_KFSST3 was identified as a novel phage belonging to the family Ackermannviridae. Before employing the phage on cantaloupe, its genetic characteristics, specificity, stability, and bactericidal effect were investigated. Genetic analyses confirmed its safety and identified endolysin and two depolymerase domains possessing antibiofilm potential. In addition, the phage exhibited a broad specificity with great efficiencies toward five Salmonella strains at 4 °C, 22 °C, and 37 °C, as well as stable lytic activity over a wide range of pHs (3 to 11) and temperatures (-20 °C to 60 °C). The optimal multiplicity of infection (MOI) and exposure time of phage were determined to be 100 and 2 h, respectively, based on the highest bacterial reduction of ∼2.7 log CFU/mL. Following the formation of ST biofilm on cantaloupe at 4 °C and 22 °C, the cantaloupe was treated with phage at an MOI of 100 for 2 h. The antibiofilm efficacy of phage was evaluated via the plate count method, confocal laser scanning microscopy, and scanning electron microscopy (SEM). The initial biofilm population at 22 °C was significantly greater and more condensed than that at 4 °C. After phage treatment, biofilm population and the percentage of viable ST in biofilm were reduced by ∼4.6 log CFU/cm2 and ∼90% within 2 h, respectively, which were significantly greater than those at 22 °C (∼2.0 log CFU/cm2 and ∼45%) (P < 0.05). SEM images also confirmed more drastic destruction of the cohesive biofilm architecture at 4 °C than at 22 °C. As a result of its cold temperature-robust lytic activity and the contribution of endolysin and two depolymerases, vB_SalA_KFSST3 demonstrated excellent antibiofilm efficacy at cold temperature, highlighting its potential as a promising practical biocontrol agent for the control of ST and its biofilm.
Collapse
Affiliation(s)
- Su-Hyeon Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Heejeong Lee
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Mi-Kyung Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea; Food and Bio-Industry Institute, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
54
|
Kothari A, Kherdekar R, Mago V, Uniyal M, Mamgain G, Kalia RB, Kumar S, Jain N, Pandey A, Omar BJ. Age of Antibiotic Resistance in MDR/XDR Clinical Pathogen of Pseudomonas aeruginosa. Pharmaceuticals (Basel) 2023; 16:1230. [PMID: 37765038 PMCID: PMC10534605 DOI: 10.3390/ph16091230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Antibiotic resistance in Pseudomonas aeruginosa remains one of the most challenging phenomena of everyday medical science. The universal spread of high-risk clones of multidrug-resistant/extensively drug-resistant (MDR/XDR) clinical P. aeruginosa has become a public health threat. The P. aeruginosa bacteria exhibits remarkable genome plasticity that utilizes highly acquired and intrinsic resistance mechanisms to counter most antibiotic challenges. In addition, the adaptive antibiotic resistance of P. aeruginosa, including biofilm-mediated resistance and the formation of multidrug-tolerant persisted cells, are accountable for recalcitrance and relapse of infections. We highlighted the AMR mechanism considering the most common pathogen P. aeruginosa, its clinical impact, epidemiology, and save our souls (SOS)-mediated resistance. We further discussed the current therapeutic options against MDR/XDR P. aeruginosa infections, and described those treatment options in clinical practice. Finally, other therapeutic strategies, such as bacteriophage-based therapy and antimicrobial peptides, were described with clinical relevance.
Collapse
Affiliation(s)
- Ashish Kothari
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Radhika Kherdekar
- Department of Dentistry, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Vishal Mago
- Department of Burn and Plastic Surgery, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Madhur Uniyal
- Department of Trauma Surgery, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Garima Mamgain
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Roop Bhushan Kalia
- Department of Orthopaedics, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Sandeep Kumar
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA 30912, USA;
| | - Neeraj Jain
- Department of Medical Oncology, All India Institute of Medical Sciences, Rishikesh 249203, India
- Division of Cancer Biology, Central Drug Research Institute, Lucknow 226031, India
| | - Atul Pandey
- Department of Entomology, University of Kentucky, Lexington, KY 40503, USA
| | - Balram Ji Omar
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh 249203, India;
| |
Collapse
|
55
|
Kim J, Wang J, Ahn J. Combined antimicrobial effect of phage-derived endolysin and depolymerase against biofilm-forming Salmonella Typhimurium. BIOFOULING 2023; 39:763-774. [PMID: 37795651 DOI: 10.1080/08927014.2023.2265817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
This study was designed to evaluate the antimicrobial activity of phage-derived endolysin (LysPB32) and depolymerase (DpolP22) against planktonic and biofilm cells of Salmonella Typhimurium (STKCCM). Compared to the control, the numbers of STKCCM were reduced by 4.3 and 5.9 log, respectively, at LysPB32 and LysPB32 + DpolP22 in the presence of polymyxin B (PMB) after 48-h incubation at 37 °C. LysPB32 + DpolP22 decreased the relative fitness (0.8) and the cross-resistance of STKCCM to chloramphenicol (CHL), cephalothin (CEP), ciprofloxacin (CIP), and tetracycline (TET) in the presence of PMB. The MICtrt/MICcon ratios of CHL, CEP, CIP, PMB, and TET were between 0.25 and 0.50 for LysPB32 + DpolP22 in the presence of PMB. These results suggest that the application of phage-encoded enzymes with antibiotics can be a promising approach for controlling biofilm formation on medical and food-processing equipment. This is noteworthy in that the application of LysPB32 + DpolP22 could increase antibiotic susceptibility and decrease cross-resistance to other antibiotics.
Collapse
Affiliation(s)
- Junhwan Kim
- Department of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
56
|
Erol HB, Kaskatepe B, Yildiz S, Altanlar N. The effect of phage-antibiotic combination strategy on multidrug-resistant Acinetobacter baumannii biofilms. J Microbiol Methods 2023; 210:106752. [PMID: 37268109 DOI: 10.1016/j.mimet.2023.106752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/18/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
Acinetobacter baumannii (A. baumannii) is considered a critical human pathogen due to multi-drug resistance and increased infections. As a result of the resistance of A. baumannii biofilms to antimicrobial agents, it is necessary to develop new biofilm control strategies. In the present study, we evaluated the efficacy of two previously isolated bacteriophage C2 phage, K3 phage and phage cocktail (C2 + K3 phage) as a therapeutic agent in combination with antibiotic (colistin) against biofilm of multidrug-resistant A. baumannii strains (n = 24). The effects of phage and antibiotics on mature biofilm were investigated simultaneously and sequentially in 24 and 48 h. The combination protocol was more effective than antibiotics alone in 54.16% of the strains in 24 h. The sequential application was more effective than the simultaneous protocol compared with the 24 h single applications. When the application of antibiotics and phages alone was compared with their combined administration in 48 h. The sequential and simultaneous applications were more effective than single applications in all strains except two. We observed that combination of phage and antibiotics could increase biofilm eradication and provides new insights into the use of bacteriophages and antibiotics in the treatment of biofilm-associated infections caused by antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Hilal Basak Erol
- Department of Pharmaceutical Microbiology, Ankara University Faculty of Pharmacy, Ankara, Turkey.
| | - Banu Kaskatepe
- Department of Pharmaceutical Microbiology, Ankara University Faculty of Pharmacy, Ankara, Turkey.
| | - Sulhiye Yildiz
- Department of Pharmaceutical Microbiology, Lokman Hekim University Faculty of Pharmacy, Ankara, Turkey
| | - Nurten Altanlar
- Department of Pharmaceutical Microbiology, Ankara University Faculty of Pharmacy, Ankara, Turkey
| |
Collapse
|
57
|
Goswami AG, Basu S, Banerjee T, Shukla VK. Biofilm and wound healing: from bench to bedside. Eur J Med Res 2023; 28:157. [PMID: 37098583 PMCID: PMC10127443 DOI: 10.1186/s40001-023-01121-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/14/2023] [Indexed: 04/27/2023] Open
Abstract
The bubbling community of microorganisms, consisting of diverse colonies encased in a self-produced protective matrix and playing an essential role in the persistence of infection and antimicrobial resistance, is often referred to as a biofilm. Although apparently indolent, the biofilm involves not only inanimate surfaces but also living tissue, making it truly ubiquitous. The mechanism of biofilm formation, its growth, and the development of resistance are ever-intriguing subjects and are yet to be completely deciphered. Although an abundance of studies in recent years has focused on the various ways to create potential anti-biofilm and antimicrobial therapeutics, a dearth of a clear standard of clinical practice remains, and therefore, there is essentially a need for translating laboratory research to novel bedside anti-biofilm strategies that can provide a better clinical outcome. Of significance, biofilm is responsible for faulty wound healing and wound chronicity. The experimental studies report the prevalence of biofilm in chronic wounds anywhere between 20 and 100%, which makes it a topic of significant concern in wound healing. The ongoing scientific endeavor to comprehensively understand the mechanism of biofilm interaction with wounds and generate standardized anti-biofilm measures which are reproducible in the clinical setting is the challenge of the hour. In this context of "more needs to be done", we aim to explore various effective and clinically meaningful methods currently available for biofilm management and how these tools can be translated into safe clinical practice.
Collapse
Affiliation(s)
| | - Somprakas Basu
- All India Institute of Medical Sciences, Rishikesh, 249203, India.
| | | | | |
Collapse
|
58
|
Hitchcock NM, Devequi Gomes Nunes D, Shiach J, Valeria Saraiva Hodel K, Dantas Viana Barbosa J, Alencar Pereira Rodrigues L, Coler BS, Botelho Pereira Soares M, Badaró R. Current Clinical Landscape and Global Potential of Bacteriophage Therapy. Viruses 2023; 15:1020. [PMID: 37113000 PMCID: PMC10146840 DOI: 10.3390/v15041020] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
In response to the global spread of antimicrobial resistance, there is an increased demand for novel and innovative antimicrobials. Bacteriophages have been known for their potential clinical utility in lysing bacteria for almost a century. Social pressures and the concomitant introduction of antibiotics in the mid-1900s hindered the widespread adoption of these naturally occurring bactericides. Recently, however, phage therapy has re-emerged as a promising strategy for combatting antimicrobial resistance. A unique mechanism of action and cost-effective production promotes phages as an ideal solution for addressing antibiotic-resistant bacterial infections, particularly in lower- and middle-income countries. As the number of phage-related research labs worldwide continues to grow, it will be increasingly important to encourage the expansion of well-developed clinical trials, the standardization of the production and storage of phage cocktails, and the advancement of international collaboration. In this review, we discuss the history, benefits, and limitations of bacteriophage research and its current role in the setting of addressing antimicrobial resistance with a specific focus on active clinical trials and case reports of phage therapy administration.
Collapse
Affiliation(s)
| | - Danielle Devequi Gomes Nunes
- SENAI Institute of Innovation (ISI) in Health Advanced Systems, University Center SENAI/CIMATEC, Salvador 41650-010, BA, Brazil
- Gonçalo Moniz Institute, FIOCRUZ, Salvador 40291-710, BA, Brazil
| | - Job Shiach
- School of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Katharine Valeria Saraiva Hodel
- SENAI Institute of Innovation (ISI) in Health Advanced Systems, University Center SENAI/CIMATEC, Salvador 41650-010, BA, Brazil
| | - Josiane Dantas Viana Barbosa
- SENAI Institute of Innovation (ISI) in Health Advanced Systems, University Center SENAI/CIMATEC, Salvador 41650-010, BA, Brazil
| | | | - Brahm Seymour Coler
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Milena Botelho Pereira Soares
- SENAI Institute of Innovation (ISI) in Health Advanced Systems, University Center SENAI/CIMATEC, Salvador 41650-010, BA, Brazil
- Gonçalo Moniz Institute, FIOCRUZ, Salvador 40291-710, BA, Brazil
| | - Roberto Badaró
- SENAI Institute of Innovation (ISI) in Health Advanced Systems, University Center SENAI/CIMATEC, Salvador 41650-010, BA, Brazil
| |
Collapse
|
59
|
Manoharadas S, Ahmad N, Altaf M, Alrefaei AF, Al-Rayes BF. An Enzybiotic Cocktail Effectively Disrupts Preformed Dual Biofilm of Staphylococcus aureus and Enterococcus faecalis. Pharmaceuticals (Basel) 2023; 16:ph16040564. [PMID: 37111322 PMCID: PMC10145859 DOI: 10.3390/ph16040564] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Multidrug-resistant bacterial infections are on the rise around the world. Chronic infections caused by these pathogens through biofilm mediation often complicate the situation. In natural settings, biofilms are often formed with different species of bacteria existing synergistically or antagonistically. Biofilms on diabetic foot ulcers are formed predominantly by two opportunistic pathogens, Staphylococcus aureus and Enterococcus faecalis. Bacteriophages and phage-based proteins, including endolysins, have been found to be active against biofilms. In this study, we evaluated the activity of two engineered enzybiotics either by themselves or as a combination against a dual biofilm formed by S. aureus and E. faecalis in an inert glass surface. An additive effect in rapidly disrupting the preformed dual biofilm was observed with the cocktail of proteins, in comparison with mono treatment. The cocktail-treated biofilms were dispersed by more than 90% within 3 h of treatment. Apart from biofilm disruption, bacterial cells embedded in the biofilm matrix were also effectively reduced by more than 90% within 3 h of treatment. This is the first instance where a cocktail of engineered enzybiotics has been effectively used to impede the structural integrity of a dual biofilm.
Collapse
Affiliation(s)
- Salim Manoharadas
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia
- Central Laboratory RM 63AA, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia
| | - Naushad Ahmad
- Central Laboratory RM 63AA, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia
| | - Mohammad Altaf
- Central Laboratory RM 63AA, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia
| | - Basel F Al-Rayes
- Central Laboratory RM 63AA, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia
| |
Collapse
|
60
|
Letarov AV, Letarova MA. The Burden of Survivors: How Can Phage Infection Impact Non-Infected Bacteria? Int J Mol Sci 2023; 24:2733. [PMID: 36769055 PMCID: PMC9917116 DOI: 10.3390/ijms24032733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
The contemporary understanding of complex interactions in natural microbial communities and the numerous mechanisms of bacterial communication challenge the classical concept of bacteria as unicellular organisms. Microbial populations, especially those in densely populated habitats, appear to behave cooperatively, coordinating their reactions in response to different stimuli and behaving as a quasi-tissue. The reaction of such systems to viral infection is likely to go beyond each cell or species tackling the phage attack independently. Bacteriophage infection of a fraction of the microbial community may also exert an influence on the physiological state and/or phenotypic features of those cells that have not yet had direct contact with the virus or are even intrinsically unable to become infected by the particular virus. These effects may be mediated by sensing the chemical signals released by lysing or by infected cells as well as by more indirect mechanisms.
Collapse
Affiliation(s)
- Andrey V. Letarov
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, 119991 Moscow, Russia
| | | |
Collapse
|
61
|
Jean-Pierre V, Boudet A, Sorlin P, Menetrey Q, Chiron R, Lavigne JP, Marchandin H. Biofilm Formation by Staphylococcus aureus in the Specific Context of Cystic Fibrosis. Int J Mol Sci 2022; 24:ijms24010597. [PMID: 36614040 PMCID: PMC9820612 DOI: 10.3390/ijms24010597] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen whose characteristics support its success in various clinical settings including Cystic Fibrosis (CF). In CF, S. aureus is indeed the most commonly identified opportunistic pathogen in children and the overall population. S. aureus colonization/infection, either by methicillin-susceptible or methicillin-resistant strains, will become chronic in about one third of CF patients. The persistence of S. aureus in CF patients' lungs, despite various eradication strategies, is favored by several traits in both host and pathogen. Among the latter, living in biofilm is a highly protective way to survive despite deleterious environmental conditions, and is a common characteristic shared by the main pathogens identified in CF. This is why CF has earned the status of a biofilm-associated disease for several years now. Biofilm formation by S. aureus, and the molecular mechanisms governing and regulating it, have been extensively studied but have received less attention in the specific context of CF lungs. Here, we review the current knowledge on S. aureus biofilm in this very context, i.e., the importance, study methods, molecular data published on mono- and multi-species biofilm and anti-biofilm strategies. This focus on studies including clinical isolates from CF patients shows that they are still under-represented in the literature compared with studies based on reference strains, and underlines the need for such studies. Indeed, CF clinical strains display specific characteristics that may not be extrapolated from results obtained on laboratory strains.
Collapse
Affiliation(s)
- Vincent Jean-Pierre
- HSM—HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 34093 Montpellier, France
| | - Agathe Boudet
- VBIC—Virulence Bactérienne et Infections Chroniques, Université de Montpellier, INSERM U1047, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30900 Nîmes, France
| | - Pauline Sorlin
- HSM—HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, 34093 Montpellier, France
| | - Quentin Menetrey
- INFINITE—Institute for Translational Research in Inflammation, Université de Lille, INSERM U1286, CHU Lille, 59000 Lille, France
| | - Raphaël Chiron
- HSM—HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Centre de Ressources et de Compétences de la Mucoviscidose, CHU Montpellier, 34295 Montpellier, France
| | - Jean-Philippe Lavigne
- VBIC—Virulence Bactérienne et Infections Chroniques, Université de Montpellier, INSERM U1047, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30900 Nîmes, France
| | - Hélène Marchandin
- HSM—HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 34093 Montpellier, France
- Correspondence:
| |
Collapse
|
62
|
Wintachai P, Surachat K, Chaimaha G, Septama AW, Smith DR. Isolation and Characterization of a Phapecoctavirus Infecting Multidrug-Resistant Acinetobacter baumannii in A549 Alveolar Epithelial Cells. Viruses 2022; 14:v14112561. [PMID: 36423170 PMCID: PMC9695679 DOI: 10.3390/v14112561] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Multidrug-resistant Acinetobacter baumannii (MDR A. baumannii) is an emerging pathogen in the ESKAPE group. The global burden of antimicrobial resistance has led to renewed interest in alternative antimicrobial treatment strategies, including phage therapy. This study isolated and characterized a phage vB_AbaM_ ABPW7 (vABPW7) specific to MDR A. baumannii. Morphological analysis showed that phage vABPW7 belongs to the Myoviridae family. Genome analysis showed that the phage DNA genome consists of 148,647 bp and that the phage is a member of the Phapecoctavirus genus of the order Caudovirales. A short latent period and a large burst size indicated that phage vABPW7 was a lytic phage that could potentially be used in phage therapy. Phage vABPW7 is a high-stability phage that has high lytic activity. Phage vABPW7 could effectively reduce biofilm formation and remove preformed biofilm. The utility of phage vABPW7 was investigated in a human A549 alveolar epithelial cell culture model. Phage vABPW7 was not cytotoxic to A549 cells, and the phage could significantly reduce planktonic MDR A. baumannii and MDR A. baumannii adhesion on A549 cells without cytotoxicity. This study suggests that phage vABPW7 has the potential to be developed further as a new antimicrobial agent against MDR A. baumannii.
Collapse
Affiliation(s)
- Phitchayapak Wintachai
- School of Science, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand
- Functional Materials and Nanotechnology Center of Excellence, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand
- Correspondence:
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Ganyalak Chaimaha
- School of Science, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand
| | - Abdi Wira Septama
- Research Centre for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), South Tangerang 15314, Banten, Indonesia
| | - Duncan R. Smith
- Institute of Molecular Biosciences, Mahidol University, Phutthamonthon, Nakhon Pathom 73170, Thailand
| |
Collapse
|
63
|
Kosznik-Kwaśnicka K, Kaźmierczak N, Piechowicz L. Activity of Phage–Lactoferrin Mixture against Multi Drug Resistant Staphylococcus aureus Biofilms. Antibiotics (Basel) 2022; 11:antibiotics11091256. [PMID: 36140035 PMCID: PMC9495459 DOI: 10.3390/antibiotics11091256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Biofilms are complex bacterial structures composed of bacterial cells embedded in extracellular polymeric substances (EPS) consisting of polysaccharides, proteins and lipids. As a result, biofilms are difficult to eradicate using both mechanical methods, i.e., scraping, and chemical methods such as disinfectants or antibiotics. Bacteriophages are shown to be able to act as anti-biofilm agents, with the ability to penetrate through the matrix and reach the bacterial cells. However, they also seem to have their limitations. After several hours of treatment with phages, the biofilm tends to grow back and phage-resistant bacteria emerge. Therefore, it is now recommended to use a mixture of phages and other antibacterial agents in order to increase treatment efficiency. In our work we have paired staphylococcal phages with lactoferrin, a protein with proven anti-biofilm proprieties. By analyzing the biofilm biomass and metabolic activity, we have observed that the addition of lactoferrin to phage lysate accelerated the anti-biofilm effect of phages and also prevented biofilm re-growth. Therefore, this combination might have a potential use in biofilm eradication procedures in medical settings.
Collapse
Affiliation(s)
- Katarzyna Kosznik-Kwaśnicka
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdańsk, Dębowa 25, 80-204 Gdansk, Poland
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdansk, Poland
| | - Natalia Kaźmierczak
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdańsk, Dębowa 25, 80-204 Gdansk, Poland
| | - Lidia Piechowicz
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdańsk, Dębowa 25, 80-204 Gdansk, Poland
- Correspondence:
| |
Collapse
|
64
|
Characterization of Novel Bacteriophage vB_KpnP_ZX1 and Its Depolymerases with Therapeutic Potential for K57 Klebsiella pneumoniae Infection. Pharmaceutics 2022; 14:pharmaceutics14091916. [PMID: 36145665 PMCID: PMC9505181 DOI: 10.3390/pharmaceutics14091916] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
A novel temperate phage vB_KpnP_ZX1 was isolated from hospital sewage samples using the clinically derived K57-type Klebsiella pneumoniae as a host. Phage vB_KpnP_ZX1, encoding three lysogen genes, the repressor, anti-repressor, and integrase, is the fourth phage of the genus Uetakevirus, family Podoviridae, ever discovered. Phage vB_KpnP_ZX1 did not show ideal bactericidal effect on K. pneumoniae 111-2, but TEM showed that the depolymerase Dep_ZX1 encoded on the short tail fiber protein has efficient capsule degradation activity. In vitro antibacterial results show that purified recombinant Dep_ZX1 can significantly prevent the formation of biofilm, degrade the formed biofilm, and improve the sensitivity of the bacteria in the biofilm to the antibiotics kanamycin, gentamicin, and streptomycin. Furthermore, the results of animal experiments show that 50 µg Dep_ZX1 can protect all K. pneumoniae 111-2-infected mice from death, whereas the control mice infected with the same dose of K. pneumoniae 111-2 all died. The degradation activity of Dep_ZX1 on capsular polysaccharide makes the bacteria weaken their resistance to immune cells, such as complement-mediated serum killing and phagocytosis, which are the key factors for its therapeutic action. In conclusion, Dep_ZX1 is a promising anti-virulence agent for the K57-type K. pneumoniae infection or biofilm diseases.
Collapse
|
65
|
Korzeniowski P, Śliwka P, Kuczkowski M, Mišić D, Milcarz A, Kuźmińska-Bajor M. Bacteriophage Cocktail Can Effectively Control Salmonella Biofilm in Poultry Housing. Front Microbiol 2022; 13:901770. [PMID: 35847069 PMCID: PMC9277115 DOI: 10.3389/fmicb.2022.901770] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica serovar Enteritidis (S. Enteritidis) is the major contaminant of poultry products, and its ability to form biofilms on produced food and poultry farm processing surfaces contributes to Salmonella transmission to humans. Bacteriophages have come under increasing interest for anti-Salmonella biofilm control. In this study, we used the three previously sequenced and described phages UPWr_S1, UPWr_S3, and UPWr_S4 and a phage cocktail, UPWr_S134, containing these three phages to degrade biofilms formed by two S. Enteritidis strains, 327 lux and ATCC 13076, in vitro. It was found that treatment with bacteriophages significantly reduced biofilm on a 96-well microplate (32–69%) and a stainless steel surface (52–98%) formed by S. Enteritidis 327 lux. The reduction of biofilm formed by S. Enteritidis ATCC 13076 in the 96-well microplate and on a stainless steel surface for bacteriophage treatment was in the range of 73–87% and 60–97%, respectively. Under laboratory conditions, an experimental model utilizing poultry drinkers artificially contaminated with S. Enteritidis 327 lux and treated with UPWr_S134 phage cocktail was applied. In in vitro trials, the phage cocktail significantly decreased the number of Salmonella on the surface of poultry drinkers. Moreover, the phage cocktail completely eradicated Salmonella from the abundant bacterial load on poultry drinkers in an experimentally infected chickens. Therefore, the UPWr_S134 phage cocktail is a promising candidate for Salmonella biocontrol at the farm level.
Collapse
Affiliation(s)
- Paweł Korzeniowski
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Paulina Śliwka
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Maciej Kuczkowski
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Dušan Mišić
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Agata Milcarz
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Marta Kuźmińska-Bajor
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
- *Correspondence: Marta Kuźmińska-Bajor
| |
Collapse
|
66
|
Di Domenico EG, Oliva A, Guembe M. The Current Knowledge on the Pathogenesis of Tissue and Medical Device-Related Biofilm Infections. Microorganisms 2022; 10:microorganisms10071259. [PMID: 35888978 PMCID: PMC9322301 DOI: 10.3390/microorganisms10071259] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Biofilm is the trigger for the majority of infections caused by the ability of microorganisms to adhere to tissues and medical devices. Microbial cells embedded in the biofilm matrix are highly tolerant to antimicrobials and escape the host immune system. Thus, the refractory nature of biofilm-related infections (BRIs) still represents a great challenge for physicians and is a serious health threat worldwide. Despite its importance, the microbiological diagnosis of a BRI is still difficult and not routinely assessed in clinical microbiology. Moreover, biofilm bacteria are up to 100–1000 times less susceptible to antibiotics than their planktonic counterpart. Consequently, conventional antibiograms might not be representative of the bacterial drug susceptibility in vivo. The timely recognition of a BRI is a crucial step to directing the most appropriate biofilm-targeted antimicrobial strategy.
Collapse
Affiliation(s)
- Enea Gino Di Domenico
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy;
| | - María Guembe
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Correspondence: ; Tel.: +34-914-269-595
| |
Collapse
|