51
|
Kim HS, Kim S, Shin SJ, Park YH, Nam Y, Kim CW, Lee KW, Kim SM, Jung ID, Yang HD, Park YM, Moon M. Gram-negative bacteria and their lipopolysaccharides in Alzheimer's disease: pathologic roles and therapeutic implications. Transl Neurodegener 2021; 10:49. [PMID: 34876226 PMCID: PMC8650380 DOI: 10.1186/s40035-021-00273-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is the most serious age-related neurodegenerative disease and causes destructive and irreversible cognitive decline. Failures in the development of therapeutics targeting amyloid-β (Aβ) and tau, principal proteins inducing pathology in AD, suggest a paradigm shift towards the development of new therapeutic targets. The gram-negative bacteria and lipopolysaccharides (LPS) are attractive new targets for AD treatment. Surprisingly, an altered distribution of gram-negative bacteria and their LPS has been reported in AD patients. Moreover, gram-negative bacteria and their LPS have been shown to affect a variety of AD-related pathologies, such as Aβ homeostasis, tau pathology, neuroinflammation, and neurodegeneration. Moreover, therapeutic approaches targeting gram-negative bacteria or gram-negative bacterial molecules have significantly alleviated AD-related pathology and cognitive dysfunction. Despite multiple evidence showing that the gram-negative bacteria and their LPS play a crucial role in AD pathogenesis, the pathogenic mechanisms of gram-negative bacteria and their LPS have not been clarified. Here, we summarize the roles and pathomechanisms of gram-negative bacteria and LPS in AD. Furthermore, we discuss the possibility of using gram-negative bacteria and gram-negative bacterial molecules as novel therapeutic targets and new pathological characteristics for AD.
Collapse
Affiliation(s)
- Hyeon Soo Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
- Research Institute for Dementia Science, Konyang University, Daejeon, 35365, Republic of Korea
| | - Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Yong Ho Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Chae Won Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Kang Won Lee
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Sung-Min Kim
- Dandi Bioscience Inc, 6th Floor of Real Company Building, 66, Achasan-ro, Sungdong-gu, Seoul, Republic of Korea
| | - In Duk Jung
- Dandi Bioscience Inc, 6th Floor of Real Company Building, 66, Achasan-ro, Sungdong-gu, Seoul, Republic of Korea
| | - Hyun Duk Yang
- Harvard Neurology Clinic, 294 Gwanggyojungang-ro, Suji-gu, Yongin, 16943, Republic of Korea.
| | - Yeong-Min Park
- Dandi Bioscience Inc, 6th Floor of Real Company Building, 66, Achasan-ro, Sungdong-gu, Seoul, Republic of Korea.
- Department of Immunology, School of Medicine, Konkuk University, 268, Chungwondaero, Chungju-si, Chungcheongbuk-do, Republic of Korea.
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea.
- Research Institute for Dementia Science, Konyang University, Daejeon, 35365, Republic of Korea.
| |
Collapse
|
52
|
Lee DY, Shin YJ, Kim JK, Jang HM, Joo MK, Kim DH. Alleviation of cognitive impairment by gut microbiota lipopolysaccharide production-suppressing Lactobacillus plantarum and Bifidobacterium longum in mice. Food Funct 2021; 12:10750-10763. [PMID: 34608923 DOI: 10.1039/d1fo02167b] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bacterial lipopolysaccharide (LPS) is a risk factor for the outbreak of Alzheimer's disease. Therefore, we isolated Lactobacillus plantarum NK151 and Bifidobacterium longum NK173 from a human fecal bacteria collection, which inhibited Escherichia coli LPS production, and examined their effects on the Escherichia coli K1- or LPS-induced cognitive impairment in mice. Oral gavage of NK151, NK173, or their (4 : 1) mixture (NKm) significantly alleviated Escherichia coli K1-induced cognitive impairment-like behaviors in the Y-maze and novel object recognition tasks. Their treatments decreased IL-1β, IL-6, and TNF-α expression and NF-κB+/Iba1+ and LPS+/Iba1+ cell populations in the hippocampus, while the brain-derived neurotrophic factor (BDNF)+/neuronal nuclei (NeuN)+ cell population and BDNF to proBNDF expression increased. They suppressed LPS-induced cognition impairment-like behaviors and neuroinflammation marker levels in the hippocampus. Treatment with them reduced Escherichia coli K1- or LPS-induced LPS and apolipoprotein E levels in the blood and inflammatory marker levels in the colon. Furthermore, treatment with them modulated fecal Proteobacteria, Bacteroidetes, and Verrucomicrobia populations. Of these gut bacteria, Bacteroidaceae, Odoribacteraceae, Lactobacillaceae, Bifidobacteriaceae, Rikenellaceae, Helicobacteraceae, and Deferribacteraceae are correlated with cognitive function and blood and fecal LPS levels. These findings suggest that NK151 and NK173 may alleviate cognitive impairment with colitis by upregulating NF-κB-mediated BDNF expression through the suppression of fecal and blood bacterial LPS levels.
Collapse
Affiliation(s)
- Dong-Yun Lee
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Yoon-Jung Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Jeon-Kyung Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Hyo-Min Jang
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Min-Kyung Joo
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| |
Collapse
|
53
|
The Role of Gut Microbiota and Gut-Brain Interplay in Selected Diseases of the Central Nervous System. Int J Mol Sci 2021; 22:ijms221810028. [PMID: 34576191 PMCID: PMC8471822 DOI: 10.3390/ijms221810028] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
The gut microbiome has attracted increasing attention from researchers in recent years. The microbiota can have a specific and complex cross-talk with the host, particularly with the central nervous system (CNS), creating the so-called “gut–brain axis”. Communication between the gut, intestinal microbiota, and the brain involves the secretion of various metabolites such as short-chain fatty acids (SCFAs), structural components of bacteria, and signaling molecules. Moreover, an imbalance in the gut microbiota composition modulates the immune system and function of tissue barriers such as the blood–brain barrier (BBB). Therefore, the aim of this literature review is to describe how the gut–brain interplay may contribute to the development of various neurological disorders, combining the fields of gastroenterology and neuroscience. We present recent findings concerning the effect of the altered microbiota on neurodegeneration and neuroinflammation, including Alzheimer’s and Parkinson’s diseases, as well as multiple sclerosis. Moreover, the impact of the pathological shift in the microbiome on selected neuropsychological disorders, i.e., major depressive disorders (MDD) and autism spectrum disorder (ASD), is also discussed. Future research on the effect of balanced gut microbiota composition on the gut–brain axis would help to identify new potential opportunities for therapeutic interventions in the presented diseases.
Collapse
|
54
|
Chidambaram SB, Essa MM, Rathipriya AG, Bishir M, Ray B, Mahalakshmi AM, Tousif AH, Sakharkar MK, Kashyap RS, Friedland RP, Monaghan TM. Gut dysbiosis, defective autophagy and altered immune responses in neurodegenerative diseases: Tales of a vicious cycle. Pharmacol Ther 2021; 231:107988. [PMID: 34536490 DOI: 10.1016/j.pharmthera.2021.107988] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023]
Abstract
The human microbiota comprises trillions of symbiotic microorganisms and is involved in regulating gastrointestinal (GI), immune, nervous system and metabolic homeostasis. Recent observations suggest a bidirectional communication between the gut microbiota and the brain via immune, circulatory and neural pathways, termed the Gut-Brain Axis (GBA). Alterations in gut microbiota composition, such as seen with an increased number of pathobionts and a decreased number of symbionts, termed gut dysbiosis or microbial intestinal dysbiosis, plays a prominent role in the pathogenesis of central nervous system (CNS)-related disorders. Clinical reports confirm that GI symptoms often precede neurological symptoms several years before the development of neurodegenerative diseases (NDDs). Pathologically, gut dysbiosis disrupts the integrity of the intestinal barrier leading to ingress of pathobionts and toxic metabolites into the systemic circulation causing GBA dysregulation. Subsequently, chronic neuroinflammation via dysregulated immune activation triggers the accumulation of neurotoxic misfolded proteins in and around CNS cells resulting in neuronal death. Emerging evidence links gut dysbiosis to the aggravation and/or spread of proteinopathies from the peripheral nervous system to the CNS and defective autophagy-mediated proteinopathies. This review summarizes the current understanding of the role of gut microbiota in NDDs, and highlights a vicious cycle of gut dysbiosis, immune-mediated chronic neuroinflammation, impaired autophagy and proteinopathies, which contributes to the development of neurodegeneration in Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, amyotrophic lateral sclerosis and frontotemporal lobar degeneration. We also discuss novel therapeutic strategies targeting the modulation of gut dysbiosis through prebiotics, probiotics, synbiotics or dietary interventions, and faecal microbial transplantation (FMT) in the management of NDDs.
Collapse
Affiliation(s)
- Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India; Centre for Experimental Pharmacology and Toxicology (CPT), JSS Academy of Higher Education & Research, Mysuru 570015, KA, India.
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat 123, Oman; Ageing and Dementia Research Group, Sultan Qaboos University, Muscat 123, Oman; Biomedical Sciences Department, University of Pacific, Sacramento, CA, USA.
| | - A G Rathipriya
- Food and Brain Research Foundation, Chennai 600 094, Tamil Nadu, India
| | - Muhammed Bishir
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India; Centre for Experimental Pharmacology and Toxicology (CPT), JSS Academy of Higher Education & Research, Mysuru 570015, KA, India
| | - Arehally M Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India
| | - A H Tousif
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India; Centre for Experimental Pharmacology and Toxicology (CPT), JSS Academy of Higher Education & Research, Mysuru 570015, KA, India
| | - Meena K Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| | - Rajpal Singh Kashyap
- Research Centre, Dr G. M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur, Maharashtra, India
| | - Robert P Friedland
- Department of Neurology, University of Louisville, Louisville, KY 40292, USA
| | - Tanya M Monaghan
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham NG7 2UH, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
55
|
Mathis SP, Bodduluri SR, Haribabu B. Interrelationship between the 5-lipoxygenase pathway and microbial dysbiosis in the progression of Alzheimer's disease. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158982. [PMID: 34062254 PMCID: PMC11522975 DOI: 10.1016/j.bbalip.2021.158982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder involving neurofibrillary tangles and amyloid plaques. The tau phosphorylation responsible for neurofibrillary tangles and amyloid deposition which causes plaques are both accelerated through the activity of 5-lipoxygenase (5-LO). In addition to these pathological pathways, 5-LO has also been linked to the neuro-inflammation associated with disease progression as well as to dysbiosis in the gut. Interestingly, gut dysbiosis itself has been correlated to AD development. Not only do gut metabolites have direct effects on the brain, but pro-inflammatory mediators such as LPS, BMAA and bacterial amyloids produced in the gut due to dysbiosis reach the brain causing increased neuro-inflammation. While microbial dysbiosis and 5-LO exert detrimental effects in the brain, the cause/effect relationship between these factors remain unknown. These issues may be addressed using mouse models of AD in the context of different knockout mice in the 5-LO pathway in specific pathogen-free, germ-free as well as gnotobiotic conditions.
Collapse
Affiliation(s)
- Steven P Mathis
- Department of Microbiology and Immunology, James Graham Brown Cancer Center and Center for Microbiomics, Inflammation and Pathogenicity, Louisville, KY 40202, United States of America; University of Louisville Health Sciences Center, Louisville, KY 40202, United States of America
| | - Sobha R Bodduluri
- Department of Microbiology and Immunology, James Graham Brown Cancer Center and Center for Microbiomics, Inflammation and Pathogenicity, Louisville, KY 40202, United States of America; University of Louisville Health Sciences Center, Louisville, KY 40202, United States of America
| | - Bodduluri Haribabu
- Department of Microbiology and Immunology, James Graham Brown Cancer Center and Center for Microbiomics, Inflammation and Pathogenicity, Louisville, KY 40202, United States of America; University of Louisville Health Sciences Center, Louisville, KY 40202, United States of America.
| |
Collapse
|
56
|
Białecka-Dębek A, Granda D, Szmidt MK, Zielińska D. Gut Microbiota, Probiotic Interventions, and Cognitive Function in the Elderly: A Review of Current Knowledge. Nutrients 2021; 13:2514. [PMID: 34444674 PMCID: PMC8401879 DOI: 10.3390/nu13082514] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/18/2021] [Accepted: 07/18/2021] [Indexed: 12/23/2022] Open
Abstract
Changes in the composition and proportions of the gut microbiota may be associated with numerous diseases, including cognitive impairment. Over the recent years, the growing interest in this relation is observed, but there are still many unknowns, especially in the elderly. To the best of our knowledge, this is the first work that synthesizes and critically evaluates existing evidence on the possible association between human gut microbiota and cognitive function in the elderly. For this purpose, comprehensive literature searches were conducted using the electronic databases PubMed, Google Scholar, and ScienceDirect. The gut microbiota of cognitively healthy and impaired elderly people may differ in the diversity and abundance of individual taxes, but specific taxes cannot be identified. However, some tendencies to changing the Firmicutes/Bacteroidetes ratio can be identified. Currently, clinical trials involving probiotics, prebiotics, and synbiotics supplementation have shown that there are premises for the claim that these factors can improve cognitive functions, however there is no single intervention beneficial to the elderly population. More reliable evidence from large-scale, long-period RCT is needed. Despite proposing several potential mechanisms of the gut microbiota's influence on the cognitive function impairment, prospective research on this topic is extremely difficult to conduct due to numerous confounding factors that may affect the gut microbiota. Heterogeneity of research outcomes impairs insight into these relations.
Collapse
Affiliation(s)
- Agata Białecka-Dębek
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland; (D.G.); (M.K.S.)
| | - Dominika Granda
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland; (D.G.); (M.K.S.)
| | - Maria Karolina Szmidt
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland; (D.G.); (M.K.S.)
| | - Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland;
| |
Collapse
|
57
|
El Sayed NS, Kandil EA, Ghoneum MH. Probiotics Fermentation Technology, a Novel Kefir Product, Ameliorates Cognitive Impairment in Streptozotocin-Induced Sporadic Alzheimer's Disease in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5525306. [PMID: 34306309 PMCID: PMC8282381 DOI: 10.1155/2021/5525306] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/28/2021] [Accepted: 06/04/2021] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive impairment. Gut microbiota dysfunction (dysbiosis) is implicated in the pathology of AD and is associated with several detrimental consequences, including neurotransmitter depletion, oxidative stress, inflammation, apoptosis, and insulin resistance, which all contribute to the onset of AD. The objective of this study was to assess the effectiveness of Probiotics Fermentation Technology (PFT), a kefir product, in alleviating AD symptoms via regulation of the gut microbiota using a streptozotocin- (STZ-) induced AD mouse model and to compare its activity with simvastatin, which has been proven to effectively treat AD. Mice received one intracerebroventricular injection of STZ (3 mg/kg). PFT (100, 300, 600 mg/kg) and simvastatin (20 mg/kg) were administered orally for 3 weeks. PFT supplementation mitigated STZ-induced neuronal degeneration in the cortex and hippocampus, restored hippocampal acetylcholine levels, and improved cognition in a dose-dependent manner. These effects were accompanied by reductions in oxidative damage, proinflammatory cytokine expression, apoptosis, and tau hyperphosphorylation. Moreover, PFT hindered amyloid plaque accumulation via the enhancement of insulin-degrading enzyme. These beneficial effects were comparable to those produced by simvastatin. The results suggest that PFT can alleviate AD symptoms by regulating the gut microbiota and by inhibiting AD-related pathological events.
Collapse
Affiliation(s)
- Nesrine S. El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Esraa A. Kandil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mamdooh H. Ghoneum
- Department of Surgery, Charles R. Drew University of Medicine and Science, Los Angeles, California, USA
| |
Collapse
|
58
|
Qian XH, Song XX, Liu XL, Chen SD, Tang HD. Inflammatory pathways in Alzheimer's disease mediated by gut microbiota. Ageing Res Rev 2021; 68:101317. [PMID: 33711509 DOI: 10.1016/j.arr.2021.101317] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022]
Abstract
In the past decade, numerous studies have demonstrated the close relationship between gut microbiota and the occurrence and development of Alzheimer's disease (AD). However, the specific mechanism is still unclear. Both the neuroinflammation and systemic inflammation serve as the key hubs to accelerate the process of AD by promoting pathology and damaging neuron. What's more, the gut microbiota is also crucial for the regulation of inflammation. Therefore, this review focused on the role of gut microbiota in AD through inflammatory pathways. Firstly, this review summarized the relationship and interaction among gut microbiota, inflammation, and AD. Secondly, the direct and indirect regulatory effects of gut microbiota on AD through inflammatory pathways were described. These effects were mainly mediated by the component of the gut microbiota (lipopolysaccharides (LPS) and amyloid peptides), the metabolites of bacteria (short-chain fatty acids, branched amino acids, and neurotransmitters) and functional by-products (bile acids). In addition, potential treatments (fecal microbiota transplantation, antibiotics, probiotics, prebiotics, and dietary interventions) for AD were also discussed through these mechanisms. Finally, according to the current research status, the key problems to be solved in the future studies were proposed.
Collapse
Affiliation(s)
- Xiao-Hang Qian
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xiao-Xuan Song
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xiao-Li Liu
- Department of Neurology, Shanghai Fengxian District Central Hospital, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, 201406, China.
| | - Sheng-di Chen
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hui-Dong Tang
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
59
|
Li H, Ni J, Qing H. Gut Microbiota: Critical Controller and Intervention Target in Brain Aging and Cognitive Impairment. Front Aging Neurosci 2021; 13:671142. [PMID: 34248602 PMCID: PMC8267942 DOI: 10.3389/fnagi.2021.671142] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022] Open
Abstract
The current trend for the rapid growth of the global aging population poses substantial challenges for society. The human aging process has been demonstrated to be closely associated with changes in gut microbiota composition, diversity, and functional features. During the first 2 years of life, the gut microbiota undergoes dramatic changes in composition and metabolic functions as it colonizes and develops in the body. Although the gut microbiota is nearly established by the age of three, it continues to mature until adulthood, when it comprises more stable and diverse microbial species. Meanwhile, as the physiological functions of the human body deteriorated with age, which may be a result of immunosenescence and "inflammaging," the guts of elderly people are generally characterized by an enrichment of pro-inflammatory microbes and a reduced abundance of beneficial species. The gut microbiota affects the development of the brain through a bidirectional communication system, called the brain-gut-microbiota (BGM) axis, and dysregulation of this communication is pivotal in aging-related cognitive impairment. Microbiota-targeted dietary interventions and the intake of probiotics/prebiotics can increase the abundance of beneficial species, boost host immunity, and prevent gut-related diseases. This review summarizes the age-related changes in the human gut microbiota based on recent research developments. Understanding these changes will likely facilitate the design of novel therapeutic strategies to achieve healthy aging.
Collapse
Affiliation(s)
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
60
|
Wu S, Liu X, Jiang R, Yan X, Ling Z. Roles and Mechanisms of Gut Microbiota in Patients With Alzheimer's Disease. Front Aging Neurosci 2021; 13:650047. [PMID: 34122039 PMCID: PMC8193064 DOI: 10.3389/fnagi.2021.650047] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the most common age-related progressive neurodegenerative disease, characterized by a decline in cognitive function and neuronal loss, and is caused by several factors. Numerous clinical and experimental studies have suggested the involvement of gut microbiota dysbiosis in patients with AD. The altered gut microbiota can influence brain function and behavior through the microbiota-gut-brain axis via various pathways such as increased amyloid-β deposits and tau phosphorylation, neuroinflammation, metabolic dysfunctions, and chronic oxidative stress. With no current effective therapy to cure AD, gut microbiota modulation may be a promising therapeutic option to prevent or delay the onset of AD or counteract its progression. Our present review summarizes the alterations in the gut microbiota in patients with AD, the pathogenetic roles and mechanisms of gut microbiota in AD, and gut microbiota-targeted therapies for AD. Understanding the roles and mechanisms between gut microbiota and AD will help decipher the pathogenesis of AD from novel perspectives and shed light on novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Shaochang Wu
- Department of Geriatrics, Lishui Second People’s Hospital, Lishui, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ruilai Jiang
- Department of Geriatrics, Lishui Second People’s Hospital, Lishui, China
| | - Xiumei Yan
- Department of Geriatrics, Lishui Second People’s Hospital, Lishui, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Microbe & Host Health, Linyi University, Linyi, China
| |
Collapse
|
61
|
Zhou Y, Wang Y, Quan M, Zhao H, Jia J. Gut Microbiota Changes and Their Correlation with Cognitive and Neuropsychiatric Symptoms in Alzheimer's Disease. J Alzheimers Dis 2021; 81:583-595. [PMID: 33814442 DOI: 10.3233/jad-201497] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Gut microbiota can influence human brain function and behavior. Recent studies showed that gut microbiota might play an important role in the pathogenesis of Alzheimer's disease (AD). OBJECTIVE To investigate the composition of gut microbiota in AD patients and their association with cognitive function and neuropsychiatric symptoms (NPS). METHODS The fecal samples from 60 AD patients (30 with NPS and 30 without NPS) and 32 healthy control subjects (HC) were collected and analyzed by 16S ribosomal RNA sequencing. The functional variations of gut microbiota were predicted using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States. The correlation between different bacterial taxa and cognitive (Mini-Mental State Examination (MMSE), Clinical Dementia Rating (CDR)), and NPS measures were analyzed. RESULTS The fecal microbial composition of AD patients was quite distinct from HC. Bifidobacterium, Sphingomonas, Lactobacillus, and Blautia were enriched, while Odoribacter, Anaerobacterium, and Papillibacter were reduced. AD patients with NPS showed decreased Chitinophagaceae, Taibaiella, and Anaerobacterium compared with those without NPS. Functional pathways were different between AD and HC, and between AD patients with and without NPS. Correlation analysis showed that Sphingomonas correlated negatively with MMSE; Anaerobacterium and Papillibacter correlated positively with MMSE and negatively with CDR. Cytophagia, Rhodospirillaceae, and Cellvibrio correlated positively with NPS, while Chitinophagaceae, Taibaiella, and Anaerobacterium correlated negatively with NPS. CONCLUSION AD patients have gut microbiota alterations related to cognition, and differential taxa between AD patients with and without NPS associated differently with NPS domains, which helps further understand the pathogenesis of AD and explore potential therapeutic targets.
Collapse
Affiliation(s)
- Yunzhe Zhou
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China
| | - Yan Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China
| | - Meina Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China
| | - Huiying Zhao
- Department of Geriatrics, Shijiazhuang First Hospital, Shijiazhuang, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, P.R. China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, P.R. China.,Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
62
|
Marine Natural Products: Promising Candidates in the Modulation of Gut-Brain Axis towards Neuroprotection. Mar Drugs 2021; 19:md19030165. [PMID: 33808737 PMCID: PMC8003567 DOI: 10.3390/md19030165] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
In recent decades, several neuroprotective agents have been provided in combating neuronal dysfunctions; however, no effective treatment has been found towards the complete eradication of neurodegenerative diseases. From the pathophysiological point of view, growing studies are indicating a bidirectional relationship between gut and brain termed gut-brain axis in the context of health/disease. Revealing the gut-brain axis has survived new hopes in the prevention, management, and treatment of neurodegenerative diseases. Accordingly, introducing novel alternative therapies in regulating the gut-brain axis seems to be an emerging concept to pave the road in fighting neurodegenerative diseases. Growing studies have developed marine-derived natural products as hopeful candidates in a simultaneous targeting of gut-brain dysregulated mediators towards neuroprotection. Of marine natural products, carotenoids (e.g., fucoxanthin, and astaxanthin), phytosterols (e.g., fucosterol), polysaccharides (e.g., fucoidan, chitosan, alginate, and laminarin), macrolactins (e.g., macrolactin A), diterpenes (e.g., lobocrasol, excavatolide B, and crassumol E) and sesquiterpenes (e.g., zonarol) have shown to be promising candidates in modulating gut-brain axis. The aforementioned marine natural products are potential regulators of inflammatory, apoptotic, and oxidative stress mediators towards a bidirectional regulation of the gut-brain axis. The present study aims at describing the gut-brain axis, the importance of gut microbiota in neurological diseases, as well as the modulatory role of marine natural products towards neuroprotection.
Collapse
|
63
|
Leblhuber F, Ehrlich D, Steiner K, Geisler S, Fuchs D, Lanser L, Kurz K. The Immunopathogenesis of Alzheimer's Disease Is Related to the Composition of Gut Microbiota. Nutrients 2021; 13:361. [PMID: 33504065 PMCID: PMC7912578 DOI: 10.3390/nu13020361] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/11/2022] Open
Abstract
The microbiota-gut-brain axis plays an important role in the development of neurodegenerative diseases. Commensal and pathogenic enteric bacteria can influence brain and immune system function by the production of lipopolysaccharides and amyloid. Dysbiosis of the intestinal microbiome induces local and consecutively systemic immune-mediated inflammation. Proinflammatory cytokines then trigger neuroinflammation and finally neurodegeneration. Immune-mediated oxidative stress can lead to a deficiency of vitamins and essential micronutrients. Furthermore, the wrong composition of gut microbiota might impair the intake and metabolization of nutrients. In patients with Alzheimer's disease (AD) significant alterations of the gut microbiota have been demonstrated. Standard Western diet, infections, decreased physical activity and chronic stress impact the composition and diversity of gut microbiota. A higher abundancy of "pro-inflammatory" gut microbiota goes along with enhanced systemic inflammation and neuroinflammatory processes. Thus, AD beginning in the gut is closely related to the imbalance of gut microbiota. Modulation of gut microbiota by Mediterranean diet, probiotics and curcumin can slow down cognitive decline and alter the gut microbiome significantly. A multi-domain intervention approach addressing underlying causes of AD (inflammation, infections, metabolic alterations like insulin resistance and nutrient deficiency, stress) appears very promising to reduce or even reverse cognitive decline by exerting positive effects on the gut microbiota.
Collapse
Affiliation(s)
- Friedrich Leblhuber
- Department of Gerontology, Neuromed Campus, Kepler University Clinic, Linz A-4020, Austria; (F.L.); (D.E.); (K.S.)
| | - Daniela Ehrlich
- Department of Gerontology, Neuromed Campus, Kepler University Clinic, Linz A-4020, Austria; (F.L.); (D.E.); (K.S.)
| | - Kostja Steiner
- Department of Gerontology, Neuromed Campus, Kepler University Clinic, Linz A-4020, Austria; (F.L.); (D.E.); (K.S.)
| | - Simon Geisler
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck A-6020, Austria; (S.G.); (D.F.)
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck A-6020, Austria; (S.G.); (D.F.)
| | - Lukas Lanser
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck A-6020, Austria;
| | - Katharina Kurz
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck A-6020, Austria;
| |
Collapse
|
64
|
Lukiw WJ, Arceneaux L, Li W, Bond T, Zhao Y. Gastrointestinal (GI)-Tract Microbiome Derived Neurotoxins and their Potential Contribution to Inflammatory Neurodegeneration in Alzheimer's Disease (AD). JOURNAL OF ALZHEIMER'S DISEASE & PARKINSONISM 2021; 11:525. [PMID: 34457996 PMCID: PMC8395586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The human gastrointestinal (GI)-tract microbiome is a rich, complex and dynamic source of microorganisms that possess a staggering diversity and complexity. Importantly there is a significant variability in microbial complexity even amongst healthy individuals-this has made it difficult to link specific microbial abundance patterns with age-related neurological disease. GI-tract commensal microorganisms are generally beneficial to human metabolism and immunity, however enterotoxigenic forms of microbes possess significant potential to secrete what are amongst the most neurotoxic and pro-inflammatory biopolymers known. These include toxic glycolipids such as lipopolysaccharide (LPS), enterotoxins, microbial-derived amyloids and small non-coding RNA. One major microbial species of the GI-tract microbiome, about ~100-fold more abundant than Escherichia coli in deep GI-tract regions is Bacteroides fragilis, an anaerobic, rod-shaped Gram-negative bacterium. B. fragilis can secrete: (i) a particularly potent, pro-inflammatory and unique LPS subtype (BF-LPS); and (ii) a zinc-metalloproteinase known as B. fragilis-toxin (BFT) or fragilysin. Ongoing studies indicate that BF-LPS and/or BFT disrupt paracellular-and transcellular-barriers by cleavage of intercellular-proteins resulting in 'leaky' barriers. These barriers: (i) become defective and more penetrable with aging and disease; and (ii) permit entry of microbiome-derived neurotoxins into the systemic-circulation from which they next transit the blood-brain barrier and gain access to the CNS. Here LPS accumulates and significantly alters homeostatic patterns of gene expression. The affinity of LPS for neuronal nuclei is significantly enhanced in the presence of amyloid beta 42 (Aβ42) peptides. Recent research on the appearance of the brain thanatomicrobiome at the time of death and the increasing likelihood of a complex brain microbiome are reviewed and discussed. This paper will also highlight some recent advances in this extraordinary research area that links the pro-inflammatory exudates of the GI-tract microbiome with innate-immune disturbances and inflammatory-signaling within the CNS with reference to Alzheimer's disease (AD) wherever possible.
Collapse
Affiliation(s)
- Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans, LA, United States,Department of Ophthalmology, LSU Health Sciences Center,
New Orleans, LA, United States,Department of Neurology, Louisiana State University Health
Sciences Center, New Orleans, LA, United States,Corresponding author: Dr. Walter J. Lukiw, LSU
Neuroscience Center, Louisiana State University Health Sciences Center, New
Orleans, LA, United States,
| | - Lisa Arceneaux
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans, LA, United States
| | - Wenhong Li
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans, LA, United States,Department of Pharmacology, School of Pharmacy, Jiangxi
University of Traditional Chinese Medicine (TCM), Nanchang, China
| | - Taylor Bond
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans, LA, United States
| | - Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans, LA, United States,Department of Anatomy and Cell Biology, Louisiana State
University, New Orleans, LA, United States
| |
Collapse
|
65
|
Holmes A, Finger C, Morales-Scheihing D, Lee J, McCullough LD. Gut dysbiosis and age-related neurological diseases; an innovative approach for therapeutic interventions. Transl Res 2020; 226:39-56. [PMID: 32755639 PMCID: PMC7590960 DOI: 10.1016/j.trsl.2020.07.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/14/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
The gut microbiota is a complex ecosystem of bacteria, fungi, and viruses that acts as a critical regulator in microbial, metabolic, and immune responses in the host organism. Imbalances in the gut microbiota, termed "dysbiosis," often induce aberrant immune responses, which in turn disrupt the local and systemic homeostasis of the host. Emerging evidence has highlighted the importance of gut microbiota in intestinal diseases, and more recently, in age-related central nervous systems diseases, for example, stroke and Alzheimer's disease. It is now generally recognized that gut microbiota significantly influences host behaviors and modulates the interaction between microbiota, gut, and brain, via the "microbiota-gut-brain axis." Several approaches have been utilized to reduce age-related dysbiosis in experimental models and in clinical studies. These include strategies to manipulate the microbiome via fecal microbiota transplantation, administration of prebiotics and probiotics, and dietary interventions. In this review, we explore both clinical and preclinical therapies for treating age-related dysbiosis.
Collapse
Affiliation(s)
- Aleah Holmes
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Carson Finger
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Diego Morales-Scheihing
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Juneyoung Lee
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.
| |
Collapse
|
66
|
Emerging Roles of Functional Bacterial Amyloids in Gene Regulation, Toxicity, and Immunomodulation. Microbiol Mol Biol Rev 2020; 85:85/1/e00062-20. [PMID: 33239434 DOI: 10.1128/mmbr.00062-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacteria often reside in multicellular communities, called biofilms, held together by an extracellular matrix. In many bacteria, the major proteinaceous component of the biofilm are amyloid fibers. Amyloids are highly stable and structured protein aggregates which were known mostly to be associated with neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases. In recent years, microbial amyloids were identified also in other species and shown to play major roles in microbial physiology and virulence. For example, amyloid fibers assemble on the bacterial cell surface as a part of the extracellular matrix and are extremely important to the scaffolding and structural integrity of biofilms, which contribute to microbial resilience and resistance. Furthermore, microbial amyloids play fundamental nonscaffold roles that contribute to the development of biofilms underlying numerous persistent infections. Here, we review several nonscaffold roles of bacterial amyloid proteins, including bridging cells during collective migration, acting as regulators of cell fate, as toxins against other bacteria or against host immune cells, and as modulators of the hosts' immune system. These overall points on the complexity of the amyloid fold in encoding numerous activities, which offer approaches for the development of a novel repertoire of antivirulence therapeutics.
Collapse
|
67
|
Age-related cerebral small vessel disease and inflammaging. Cell Death Dis 2020; 11:932. [PMID: 33127878 PMCID: PMC7603301 DOI: 10.1038/s41419-020-03137-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
The continued increase in global life expectancy predicts a rising prevalence of age-related cerebral small vessel diseases (CSVD), which requires a better understanding of the underlying molecular mechanisms. In recent years, the concept of "inflammaging" has attracted increasing attention. It refers to the chronic sterile low-grade inflammation in elderly organisms and is involved in the development of a variety of age-related chronic diseases. Inflammaging is a long-term result of chronic physiological stimulation of the immune system, and various cellular and molecular mechanisms (e.g., cellular senescence, immunosenescence, mitochondrial dysfunction, defective autophagy, metaflammation, gut microbiota dysbiosis) are involved. With the deepening understanding of the etiological basis of age-related CSVD, inflammaging is considered to play an important role in its occurrence and development. One of the most critical pathophysiological mechanisms of CSVD is endothelium dysfunction and subsequent blood-brain barrier (BBB) leakage, which gives a clue in the identification of the disease by detecting circulating biological markers of BBB disruption. The regional analysis showed blood markers of vascular inflammation are often associated with deep perforating arteriopathy (DPA), while blood markers of systemic inflammation appear to be associated with cerebral amyloid angiopathy (CAA). Here, we discuss recent findings in the pathophysiology of inflammaging and their effects on the development of age-related CSVD. Furthermore, we speculate the inflammaging as a potential target for future therapeutic interventions to delay or prevent the progression of the age-related CSVD.
Collapse
|
68
|
Perioperative neurocognitive dysfunction: thinking from the gut? Aging (Albany NY) 2020; 12:15797-15817. [PMID: 32805716 PMCID: PMC7467368 DOI: 10.18632/aging.103738] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
With the aging of the world population, and improvements in medical and health technologies, there are increasing numbers of elderly patients undergoing anaesthesia and surgery. Perioperative neurocognitive dysfunction has gradually attracted increasing attention from academics. Very recently, 6 well-known journals jointly recommended that the term perioperative neurocognitive dysfunction (defined according to the Diagnostic and Statistical Manual of Mental Disorders, fifth edition) should be adopted to improve the quality and consistency of academic communications. Perioperative neurocognitive dysfunction currently includes preoperatively diagnosed cognitive decline, postoperative delirium, delayed neurocognitive recovery, and postoperative cognitive dysfunction. Increasing evidence shows that the gut microbiota plays a pivotal role in neuropsychiatric diseases, and in central nervous system functions via the microbiota-gut-brain axis. We recently reported that abnormalities in the composition of the gut microbiota might underlie the mechanisms of postoperative cognitive dysfunction and postoperative delirium, suggesting a critical role for the gut microbiota in perioperative neurocognitive dysfunction. This article therefore reviewed recent findings on the linkage between the gut microbiota and the underlying mechanisms of perioperative neurocognitive dysfunction.
Collapse
|
69
|
Ou Z, Deng L, Lu Z, Wu F, Liu W, Huang D, Peng Y. Protective effects of Akkermansia muciniphila on cognitive deficits and amyloid pathology in a mouse model of Alzheimer's disease. Nutr Diabetes 2020; 10:12. [PMID: 32321934 PMCID: PMC7176648 DOI: 10.1038/s41387-020-0115-8] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 03/07/2020] [Accepted: 03/18/2020] [Indexed: 12/17/2022] Open
Abstract
Objective Alzheimer’s disease (AD) is a global health problem without effective methods to alleviate the disease progression. Amyloid β-protein (Aβ) is widely accepted as a key biomarker for AD. Metabolic syndromes, including obesity and insulin resistance, are key high risk factors for AD. Akkermansia muciniphila (Akk), the only representative human gut microbe in the genus Verrucomicrobia, can prevent the weight gain caused by a high-fat diet, repair the damaged integrity of the intestinal epithelium barrier, reduce endotoxin levels in blood and improve insulin resistance. The aim of this study is to explore the impact of Akk administration in AD model mice in different diets. Methods APP/PS1 mice were fed either a normal chow diet or a high-fat diet and were treated with Akk by gavage each day for 6 months. The impacts of Akk on glucose metabolism, intestinal barrier and lipid metabolism in the mouse model of AD were determined. Changes in brain pathology and neuroethology were also analyzed. Results Akk effectively reduced the fasting blood glucose and serum diamine oxidase levels, and alleviated the reduction of colonic mucus cells in APP/PS1 mice. After treatment with Akk, the APP/PS1 mice showed obviously reduced blood lipid levels, improved hepatic steatosis and scapular brown fat whitening. Moreover, Akk promoted the reduction of Aβ 40–42 levels in the cerebral cortex of APP/PS1 mice, shortened the study time and improved the completion rate in Y-maze tests. Conclusion Akk effectively improved glucose tolerance, intestine barrier dysfunction and dyslipidemia in AD model mice. Our study results suggested that Akk could delay the pathological changes in the brain and relieve impairment of spatial learning and memory in AD model mice, which provides a new strategy for prevention and treatment of AD. APP/PS1 mice display alterations in physiological processes after treated with Akk. It is showed that the damaged integrity of the intestinal epithelium barrier is repaired, leading to obviously reduced blood glucose and lipid levels, improved hepatic steatosis, insulin resistance and scapular brown fat whitening, which are beneficial to reduce Aβ 40–42 levels in the brain of APP/PS1 mice. ![]()
Collapse
Affiliation(s)
- Zihao Ou
- Department of Laboratory Medicine, Zhu Jiang Hospital, Southern Medical University, 510282, Guangzhou, Guangdong, China
| | - Lulu Deng
- Department of Laboratory Medicine, Zhu Jiang Hospital, Southern Medical University, 510282, Guangzhou, Guangdong, China
| | - Zhi Lu
- Department of Laboratory Medicine, Zhu Jiang Hospital, Southern Medical University, 510282, Guangzhou, Guangdong, China
| | - Feifan Wu
- Department of Laboratory Medicine, Zhu Jiang Hospital, Southern Medical University, 510282, Guangzhou, Guangdong, China.,Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, 529000, Jangmen, Guangdong, China
| | - Wanting Liu
- Department of Laboratory Medicine, Zhu Jiang Hospital, Southern Medical University, 510282, Guangzhou, Guangdong, China
| | - Dongquan Huang
- Department of Laboratory Medicine, Zhu Jiang Hospital, Southern Medical University, 510282, Guangzhou, Guangdong, China
| | - Yongzheng Peng
- Department of Laboratory Medicine, Zhu Jiang Hospital, Southern Medical University, 510282, Guangzhou, Guangdong, China. .,Transfusion Medicine, Zhu Jiang Hospital, Southern Medical University, 510282, Guangzhou, Guangdong, China.
| |
Collapse
|
70
|
Lukiw WJ. Human gastrointestinal (GI) tract microbiome-derived pro-inflammatory neurotoxins from Bacteroides fragilis: Effects of low fiber diets and environmental and lifestyle factors. INTEGRATIVE FOOD, NUTRITION AND METABOLISM 2020; 7:277. [PMID: 33381303 PMCID: PMC7771874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans LA 70112 USA
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans LA 70112 USA
- Department of Neurology, Louisiana State University Health Sciences Center, New Orleans LA 70112 USA
| |
Collapse
|
71
|
Lukiw WJ. Gastrointestinal (GI) Tract Microbiome-Derived Neurotoxins-Potent Neuro-Inflammatory Signals From the GI Tract via the Systemic Circulation Into the Brain. Front Cell Infect Microbiol 2020; 10:22. [PMID: 32117799 PMCID: PMC7028696 DOI: 10.3389/fcimb.2020.00022] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/15/2020] [Indexed: 12/17/2022] Open
Abstract
The microbiome of the human gastrointestinal (GI)-tract is a rich and dynamic source of microorganisms that together possess a staggering complexity and diversity. Collectively these microbes are capable of secreting what are amongst the most neurotoxic and pro-inflammatory biopolymers known. These include lipopolysaccharide (LPS), enterotoxins, microbial-derived amyloids and small non-coding RNA (sncRNA). One of the major microbial species in the human GI-tract microbiome, about ~100-fold more abundant than Escherichia coli, is Bacteroides fragilis, an anaerobic, rod-shaped Gram-negative bacterium that secretes: (i) a particularly potent, pro-inflammatory LPS glycolipid subtype (BF-LPS); and (ii) a hydrolytic, extracellular zinc metalloproteinase known as B. fragilis toxin (BFT) or fragilysin. Ongoing studies support multiple observations that BF-LPS and BFT (fragilysin) disrupt paracellular barriers by cleavage of intercellular proteins, such as E-cadherin, between epithelial cells, resulting in 'leaky' barriers. These defective barriers, which also become more penetrable with age, in turn permit entry of microbiome-derived neurotoxic biopolymers into the systemic circulation from which they can next transit the blood-brain barrier (BBB) and gain access into the brain. This short communication will highlight some recent advances in this extraordinary research area that links the pro-inflammatory exudates of the GI-tract microbiome with innate-immune disturbances and inflammatory signaling within the human central nervous system (CNS) with reference to Alzheimer's disease (AD) wherever possible.
Collapse
Affiliation(s)
- Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Neurology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
72
|
Zhu S, Jiang Y, Xu K, Cui M, Ye W, Zhao G, Jin L, Chen X. The progress of gut microbiome research related to brain disorders. J Neuroinflammation 2020; 17:25. [PMID: 31952509 PMCID: PMC6969442 DOI: 10.1186/s12974-020-1705-z] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
There is increasing evidence showing that the dynamic changes in the gut microbiota can alter brain physiology and behavior. Cognition was originally thought to be regulated only by the central nervous system. However, it is now becoming clear that many non-nervous system factors, including the gut-resident bacteria of the gastrointestinal tract, regulate and influence cognitive dysfunction as well as the process of neurodegeneration and cerebrovascular diseases. Extrinsic and intrinsic factors including dietary habits can regulate the composition of the microbiota. Microbes release metabolites and microbiota-derived molecules to further trigger host-derived cytokines and inflammation in the central nervous system, which contribute greatly to the pathogenesis of host brain disorders such as pain, depression, anxiety, autism, Alzheimer’s diseases, Parkinson’s disease, and stroke. Change of blood–brain barrier permeability, brain vascular physiology, and brain structure are among the most critical causes of the development of downstream neurological dysfunction. In this review, we will discuss the following parts:
Overview of technical approaches used in gut microbiome studies Microbiota and immunity Gut microbiota and metabolites Microbiota-induced blood–brain barrier dysfunction Neuropsychiatric diseases
■ Stress and depression ■ Pain and migraine ■ Autism spectrum disorders
Neurodegenerative diseases
■ Parkinson’s disease ■ Alzheimer’s disease ■ Amyotrophic lateral sclerosis ■ Multiple sclerosis
Cerebrovascular disease
■ Atherosclerosis ■ Stroke ■ Arteriovenous malformation
Conclusions and perspectives
Collapse
Affiliation(s)
- Sibo Zhu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Yanfeng Jiang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Kelin Xu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,School of Data Science, Fudan University, Shanghai, China
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Weimin Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Genming Zhao
- School of Data Science, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai, 201203, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China. .,Fudan University Taizhou Institute of Health Sciences, Taizhou, China. .,Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai, 201203, China.
| |
Collapse
|
73
|
Avsar B, Zhao Y, Li W, Lukiw WJ. Atropa belladonna Expresses a microRNA (aba-miRNA-9497) Highly Homologous to Homo sapiens miRNA-378 (hsa-miRNA-378); both miRNAs target the 3'-Untranslated Region (3'-UTR) of the mRNA Encoding the Neurologically Relevant, Zinc-Finger Transcription Factor ZNF-691. Cell Mol Neurobiol 2020; 40:179-188. [PMID: 31456135 PMCID: PMC11448814 DOI: 10.1007/s10571-019-00729-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
Abstract
Recent advances in ethnobotanical and neurological research indicate that ingested plants from our diet may not only be a source of nutrition but also a source of biologically relevant nucleic-acid-encoded genetic information. A major source of RNA-encoded information from plants has been shown to be derived from small non-coding RNAs (sncRNAs) such as microRNAs (miRNAs) that can transfer information horizontally between plants and humans. In human hosts, the 3'-untranslated region (3'-UTR) of messenger RNAs (mRNAs) is targeted by these miRNAs to effectively down-regulate expression of that mRNA target in the host CNS. In this paper, we provide evidence that the Atropa belladonna aba-miRNA-9497 (miRBase conserved ID: bdi-miRNA-9497) is highly homologous to the CNS-abundant Homo sapiens miRNA-378 (hsa-miRNA-378) and both target the zinc-finger transcription factor ZNF-691 mRNA 3'-UTR to down-regulate ZNF-691 mRNA abundance. We speculate that the potent neurotoxic actions of the multiple tropane alkaloids of Atropa belladonna may be supplemented by the neuroregulatory actions of aba-miRNA-9497 on ZNF-691, and this may be followed by the modulation in the expression of ZNF-691-sensitive genes. This is the first example of a human brain-enriched transcription factor, ZNF-691, targeted and down-regulated by a naturally occurring plant microRNA, with potential to modulate gene expression in the human CNS and thus contribute to the neurotoxicological-and-psychoactive properties of the Atropa belladonna species of the deadly nightshade Solanaceae family.
Collapse
Affiliation(s)
- Bihter Avsar
- Sabanci University SUNUM Nanotechnology Research Centre, Orhanlı, Tuzla, 34956, Istanbul, Turkey
- Faculty of Arts & Science, Department of Molecular Biology and Genetics, Uludag University, 16059, Bursa, Turkey
| | - Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA, 70112, USA
- Departments of Anatomy and Cell Biology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Wenhong Li
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA, 70112, USA
- Department of Pharmacology, School of Pharmacy, Jiangxi University of TCM, Nanchang, 330004, Jiangxi, China
| | - Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA, 70112, USA.
- Department of Neurology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
74
|
Lukiw WJ, Li W, Bond T, Zhao Y. Facilitation of Gastrointestinal (GI) Tract Microbiome-Derived Lipopolysaccharide (LPS) Entry Into Human Neurons by Amyloid Beta-42 (Aβ42) Peptide. Front Cell Neurosci 2019; 13:545. [PMID: 31866832 PMCID: PMC6908466 DOI: 10.3389/fncel.2019.00545] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/22/2019] [Indexed: 01/01/2023] Open
Abstract
Human gastrointestinal (GI)-tract microbiome-derived lipopolysaccharide (LPS): (i) has been recently shown to target, accumulate within, and eventually encapsulate neuronal nuclei of the human central nervous system (CNS) in Alzheimer's disease (AD) brain; and (ii) this action appears to impede and restrict the outward flow of genetic information from neuronal nuclei. It has previously been shown that in LPS-encased neuronal nuclei in AD brain there is a specific disruption in the output and expression of two AD-relevant, neuron-specific markers encoding the cytoskeletal neurofilament light (NF-L) chain protein and the synaptic phosphoprotein synapsin-1 (SYN1) involved in the regulation of neurotransmitter release. The biophysical mechanisms involved in the facilitation of the targeting of LPS to neuronal cells and nuclei and eventual nuclear envelopment and functional disruption are not entirely clear. In this "Perspectives article" we discuss current advances, and consider future directions in this research area, and provide novel evidence in human neuronal-glial (HNG) cells in primary culture that the co-incubation of LPS with amyloid-beta 42 (Aβ42) peptide facilitates the association of LPS with neuronal cells. These findings: (i) support a novel pathogenic role for Aβ42 peptides in neurons via the formation of pores across the nuclear membrane and/or a significant biophysical disruption of the neuronal nuclear envelope; and (ii) advance the concept that the Aβ42 peptide-facilitated entry of LPS into brain neurons, accession of neuronal nuclei, and down-regulation of neuron-specific components such as NF-L and SYN1 may contribute significantly to neuropathological deficits as are characteristically observed in AD-affected brain.
Collapse
Affiliation(s)
- Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Neurology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Wenhong Li
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Pharmacology, School of Pharmacy, Jiangxi University of Traditional Chinese Medicine (TCM), Nanchang, China
| | - Taylor Bond
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Anatomy and Cell Biology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
75
|
Grochowska M, Laskus T, Radkowski M. Gut Microbiota in Neurological Disorders. Arch Immunol Ther Exp (Warsz) 2019; 67:375-383. [PMID: 31578596 PMCID: PMC6805802 DOI: 10.1007/s00005-019-00561-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022]
Abstract
The incidence of neurological disorders such as multiple sclerosis (MS), Alzheimer's disease (AD) and Parkinson's disease (PD) is increasing throughout the world, but their pathogenesis remains unclear and successful treatment remains elusive. Bidirectional communications between the central nervous system and gut microbiota may play some role in the pathogenesis of the above disorders. Up to a thousand bacterial species reside in human intestine; they colonize the gut shortly after birth and remain for life. Numerous studies point to the role of microbiota composition in the development, course and treatment of MS, AD and PD.
Collapse
Affiliation(s)
- Marta Grochowska
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland.
| | - Tomasz Laskus
- Department of Adult Infectious Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Marek Radkowski
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
76
|
Vasefi M, Hudson M, Ghaboolian-Zare E. Diet Associated with Inflammation and Alzheimer's Disease. J Alzheimers Dis Rep 2019; 3:299-309. [PMID: 31867568 PMCID: PMC6918878 DOI: 10.3233/adr-190152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neurocognitive disorders, such as Alzheimer's disease (AD), affect millions of people worldwide and are characterized by cognitive decline. Human and animal studies have shown that chronic immune response and inflammation are important factors in the pathogenesis of AD. Chronic inflammation can accelerate the aggregation of amyloid-β peptides and later hyperphosphorylation of tau proteins. The exact etiology of AD is not clear, but genetics and environmental factors, such as age, family history, and lifestyle are linked to neurodegenerative diseases. Lifestyle habits, such as poor diet, are associated with inflammation and could accelerate or slow down the progression of neurodegenerative diseases. Here we provide a review of the potential conditions and factors that stimulate the inflammatory processes in AD. An understanding of inflammatory mechanisms influencing the development of AD may help to protect against dementia and AD.
Collapse
Affiliation(s)
- Maryam Vasefi
- Department of Biology, Lamar University, Beaumont, TX, USA
| | | | | |
Collapse
|
77
|
Bathini P, Brai E, Auber LA. Olfactory dysfunction in the pathophysiological continuum of dementia. Ageing Res Rev 2019; 55:100956. [PMID: 31479764 DOI: 10.1016/j.arr.2019.100956] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/29/2019] [Accepted: 08/26/2019] [Indexed: 12/21/2022]
Abstract
Sensory capacities like smell, taste, hearing, vision decline with aging, but increasing evidence show that sensory dysfunctions are one of the early signs diagnosing the conversion from physiological to pathological brain state. Smell loss represents the best characterized sense in clinical practice and is considered as one of the first preclinical signs of Alzheimer's and Parkinson's disease, occurring a decade or more before the onset of cognitive and motor symptoms. Despite the numerous scientific reports and the adoption in clinical practice, the etiology of sensory damage as prodromal of dementia remains largely unexplored and more studies are needed to resolve the mechanisms underlying sensory network dysfunction. Although both cognitive and sensory domains are progressively affected, loss of sensory experience in early stages plays a major role in reducing the autonomy of demented people in their daily tasks or even possibly contributing to their cognitive decline. Interestingly, the chemosensory circuitry is devoid of a blood brain barrier, representing a vulnerable port of entry for neurotoxic species that can spread to the brain. Furthermore, the exposure of the olfactory system to the external environment make it more susceptible to mechanical injury and trauma, which can cause degenerative neuroinflammation. In this review, we will summarize several findings about chemosensory impairment signing the conversion from healthy to pathological brain aging and we will try to connect those observations to the promising research linking environmental influences to sporadic dementia. The scientific body of knowledge will support the use of chemosensory diagnostics in the presymptomatic stages of AD and other biomarkers with the scope of finding treatment strategies before the onset of the disease.
Collapse
Affiliation(s)
- Praveen Bathini
- Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Emanuele Brai
- VIB-KU Leuven Center for Brain & Disease Research, Laboratory for the Research of Neurodegenerative Diseases, Leuven, Belgium
| | - Lavinia Alberi Auber
- Department of Medicine, University of Fribourg, Fribourg, Switzerland; Swiss Integrative Center of Human Health, Fribourg, Switzerland.
| |
Collapse
|
78
|
Schlegel P, Novotny M, Klimova B, Valis M. “Muscle-Gut-Brain Axis”: Can Physical Activity Help Patients with Alzheimer’s Disease Due to Microbiome Modulation? J Alzheimers Dis 2019; 71:861-878. [DOI: 10.3233/jad-190460] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Petr Schlegel
- Department of Physical Education and Sports, Faculty of Education, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Michal Novotny
- Biomedical Research Centrum, University Hospital Hradec Králové, Hradec Králové, Czech Republic
- Department of Neurology, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Blanka Klimova
- Department of Neurology, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- Department of Applied Linguistics, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Martin Valis
- Department of Neurology, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
79
|
Structural Insights into Curli CsgA Cross-β Fibril Architecture Inspire Repurposing of Anti-amyloid Compounds as Anti-biofilm Agents. PLoS Pathog 2019; 15:e1007978. [PMID: 31469892 PMCID: PMC6748439 DOI: 10.1371/journal.ppat.1007978] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 09/17/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022] Open
Abstract
Curli amyloid fibrils secreted by Enterobacteriaceae mediate host cell adhesion and contribute to biofilm formation, thereby promoting bacterial resistance to environmental stressors. Here, we present crystal structures of amyloid-forming segments from the major curli subunit, CsgA, revealing steric zipper fibrils of tightly mated β-sheets, demonstrating a structural link between curli and human pathological amyloids. D-enantiomeric peptides, originally developed to interfere with Alzheimer's disease-associated amyloid-β, inhibited CsgA fibrillation and reduced biofilm formation in Salmonella typhimurium. Moreover, as previously shown, CsgA fibrils cross-seeded fibrillation of amyloid-β, providing support for the proposed structural resemblance and potential for cross-species amyloid interactions. The presented findings provide structural insights into amyloidogenic regions important for curli formation, suggest a novel strategy for disrupting amyloid-structured biofilms, and hypothesize on the formation of self-propagating prion-like species originating from a microbial source that could influence neurodegenerative diseases.
Collapse
|
80
|
Li B, He Y, Ma J, Huang P, Du J, Cao L, Wang Y, Xiao Q, Tang H, Chen S. Mild cognitive impairment has similar alterations as Alzheimer's disease in gut microbiota. Alzheimers Dement 2019; 15:1357-1366. [PMID: 31434623 DOI: 10.1016/j.jalz.2019.07.002] [Citation(s) in RCA: 293] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/03/2019] [Accepted: 07/01/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Gut microbiota changes before the onset of Alzheimer's disease (AD) and the alterations could be detected in the stage of mild cognitive impairment (MCI). The findings might offer diagnostic biomarkers before the onset of dementia. BACKGROUND AD is the most common cause of dementia, and MCI is the predementia state. Recent studies suggest the alterations in the gut microbial communities associated with AD, whereas the microbiota in MCI before the onset of dementia has not been discovered and characterized in humans. NEW/UPDATED HYPOTHESIS We hypothesize that the dysbiosis happens in the MCI stage. Patients with AD and MCI have decreased microbial diversity, and changes in gut microbiota could be detected for early detection of AD. In our preliminary study, we identified differences between AD and normal controls in 11 genera from the feces and 11 genera from the blood. No difference in genera between AD and MCI was detected. Using the diagnostic model from fecal samples with all different genera input, 93% (28 in 30) of patients with MCI could be identified correctly. MAJOR CHALLENGES FOR THE HYPOTHESIS The diagnosis of MCI and AD in the study was based on symptoms and neuroimaging, and AD biomarkers should be included for precise diagnosis in further validating studies. Besides, as the microbiota changes longitudinally, their relationship with the progress of dementia needs to be studied in the prospective studies. LINKAGE TO OTHER MAJOR THEORIES Escherichia was observed increased at genus level in both fecal and blood samples from AD and MCI. For AD biomarker, postmortem brain tissue from patients with AD showed lipopolysaccharides and gram-negative Escherichia coli fragments colocalize with amyloid plaque. In this way, the amyloid pathogenesis for AD would be triggered during MCI by gut microbiota shifting. Besides, systemic inflammatory reactions caused by compounds secreted by bacteria may impair the blood-brain barrier and promote neuroinflammation and/or neurodegeneration. Furthermore, abnormal metabolites caused by microbial gene functions have an impact on neurodegeneration.
Collapse
Affiliation(s)
- Binyin Li
- Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yixi He
- Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Jianfang Ma
- Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Pei Huang
- Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Juanjuan Du
- Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Li Cao
- Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yan Wang
- Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Qin Xiao
- Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Huidong Tang
- Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.
| | - Shengdi Chen
- Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.
| |
Collapse
|
81
|
Castillo X, Castro-Obregón S, Gutiérrez-Becker B, Gutiérrez-Ospina G, Karalis N, Khalil AA, Lopez-Noguerola JS, Rodríguez LL, Martínez-Martínez E, Perez-Cruz C, Pérez-Velázquez J, Piña AL, Rubio K, García HPS, Syeda T, Vanoye-Carlo A, Villringer A, Winek K, Zille M. Re-thinking the Etiological Framework of Neurodegeneration. Front Neurosci 2019; 13:728. [PMID: 31396030 PMCID: PMC6667555 DOI: 10.3389/fnins.2019.00728] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases are among the leading causes of disability and death worldwide. The disease-related socioeconomic burden is expected to increase with the steadily increasing life expectancy. In spite of decades of clinical and basic research, most strategies designed to manage degenerative brain diseases are palliative. This is not surprising as neurodegeneration progresses "silently" for decades before symptoms are noticed. Importantly, conceptual models with heuristic value used to study neurodegeneration have been constructed retrospectively, based on signs and symptoms already present in affected patients; a circumstance that may confound causes and consequences. Hence, innovative, paradigm-shifting views of the etiology of these diseases are necessary to enable their timely prevention and treatment. Here, we outline four alternative views, not mutually exclusive, on different etiological paths toward neurodegeneration. First, we propose neurodegeneration as being a secondary outcome of a primary cardiovascular cause with vascular pathology disrupting the vital homeostatic interactions between the vasculature and the brain, resulting in cognitive impairment, dementia, and cerebrovascular events such as stroke. Second, we suggest that the persistence of senescent cells in neuronal circuits may favor, together with systemic metabolic diseases, neurodegeneration to occur. Third, we argue that neurodegeneration may start in response to altered body and brain trophic interactions established via the hardwire that connects peripheral targets with central neuronal structures or by means of extracellular vesicle (EV)-mediated communication. Lastly, we elaborate on how lifespan body dysbiosis may be linked to the origin of neurodegeneration. We highlight the existence of bacterial products that modulate the gut-brain axis causing neuroinflammation and neuronal dysfunction. As a concluding section, we end by recommending research avenues to investigate these etiological paths in the future. We think that this requires an integrated, interdisciplinary conceptual research approach based on the investigation of the multimodal aspects of physiology and pathophysiology. It involves utilizing proper conceptual models, experimental animal units, and identifying currently unused opportunities derived from human data. Overall, the proposed etiological paths and experimental recommendations will be important guidelines for future cross-discipline research to overcome the translational roadblock and to develop causative treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ximena Castillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Institute of Neurobiology, University of Puerto Rico, San Juan, PR, United States
| | - Susana Castro-Obregón
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Benjamin Gutiérrez-Becker
- Artificial Intelligence in Medical Imaging KJP, Ludwig Maximilian University of Munich, Munich, Germany
| | - Gabriel Gutiérrez-Ospina
- Laboratorio de Biología de Sistemas, Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas y Coordinación de Psicobiología y Neurociencias, Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Nikolaos Karalis
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Ahmed A. Khalil
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - Liliana Lozano Rodríguez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Eduardo Martínez-Martínez
- Cell Communication & Extracellular Vesicles Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Claudia Perez-Cruz
- National Polytechnic Institute, Center of Research in Advanced Studies, Mexico City, Mexico
| | - Judith Pérez-Velázquez
- Departamento de Matemáticas y Mecánica, Instituto de Investigaciones en Matemáticas Aplicadas y Sistemas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Mathematische Modellierung Biologischer Systeme, Fakultät für Mathematik, Technische Universität München, Munich, Germany
| | - Ana Luisa Piña
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Karla Rubio
- Lung Cancer Epigenetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | - Tauqeerunnisa Syeda
- National Polytechnic Institute, Center of Research in Advanced Studies, Mexico City, Mexico
| | - America Vanoye-Carlo
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | - Arno Villringer
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Katarzyna Winek
- The Shimon Peres Postdoctoral Fellow at the Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marietta Zille
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- Institute for Medical and Marine Biotechnology, University of Lübeck, Lübeck, Germany
- Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Lübeck, Germany
| |
Collapse
|
82
|
Zhao Y, Sharfman NM, Jaber VR, Lukiw WJ. Down-Regulation of Essential Synaptic Components by GI-Tract Microbiome-Derived Lipopolysaccharide (LPS) in LPS-Treated Human Neuronal-Glial (HNG) Cells in Primary Culture: Relevance to Alzheimer's Disease (AD). Front Cell Neurosci 2019; 13:314. [PMID: 31354434 PMCID: PMC6635554 DOI: 10.3389/fncel.2019.00314] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/26/2019] [Indexed: 12/19/2022] Open
Abstract
Trans-synaptic neurotransmission of both electrical and neurochemical information in the central nervous system (CNS) is achieved through a highly interactive network of neuron-specific synaptic proteins that include pre-synaptic and post-synaptic elements. These elements include a family of several well-characterized integral- and trans-membrane synaptic core proteins necessary for the efficient operation of this complex signaling network, and include the pre-synaptic proteins: (i) neurexin-1 (NRXN-1); (ii) the synaptosomal-associated phosphoprotein-25 (SNAP-25); (iii) the phosphoprotein synapsin-2 (SYN-2); and the post-synaptic elements: (iv) neuroligin (NLGN), a critical cell adhesion protein; and (v) the SH3-ankyrin repeat domain, proline-rich cytoskeletal scaffolding protein SHANK3. All five of these pre- and post-synaptic proteins have been found to be significantly down-regulated in primary human neuronal-glial (HNG) cell co-cultures after exposure to Bacteroides fragilis lipopolysaccharide (BF-LPS). Interestingly, LPS has also been reported to be abundant in Alzheimer's disease (AD) affected brain cells where there are significant deficits in this same family of synaptic components. This "Perspectives" paper will review current research progress and discuss the latest findings in this research area. Overall these experimental results provide evidence (i) that gastrointestinal (GI) tract-derived Gram-negative bacterial exudates such as BF-LPS express their neurotoxicity in the CNS in part through the directed down-regulation of neuron-specific neurofilaments and synaptic signaling proteins; and (ii) that this may explain the significant alterations in immune-responses and cognitive deficits observed after bacterial-derived LPS exposure to the human CNS.
Collapse
Affiliation(s)
- Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Anatomy and Cell Biology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Nathan M. Sharfman
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Vivian R. Jaber
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Neurology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
83
|
Zhao H, Gao D, Gao X. Rhubarb ameliorates cognitive dysfunction in a rat model of Alzheimer's disease through regulation of the intestinal microbiome. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2019. [DOI: 10.1016/j.jtcms.2019.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
84
|
Vojdani A, Vojdani E, Saidara E, Kharrazian D. Reaction of Amyloid-β Peptide Antibody with Different Infectious Agents Involved in Alzheimer's Disease. J Alzheimers Dis 2019; 63:847-860. [PMID: 29689721 DOI: 10.3233/jad-170961] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As early as the 1980s, molecular virologist Ruth Itzhaki began to investigate if there was a causal connection between infections and neurodegenerative disorder. Although the theory has yet to be universally embraced, in 2016 Itzhaki and 33 other scientists from all over the world published a review article in this very journal presenting evidence for the causal role of pathogens in Alzheimer's disease (AD). Exactly how and in what way pathogens affect the induction of AD has yet to be determined, but one possible answer may involve the cross-reactivity of different pathogens with amyloid-β (Aβ). Aβ autoantibodies have been detected in the serum and cerebrospinal fluid of AD patients and in some healthy individuals. In the present study our major goal was to investigate whether antibodies made against Aβ would react both with other brain proteins as well as pathogens associated with AD as a result of molecular mimicry or the binding of bacterial toxins to Aβ42. Our study used a specific monoclonal antibody made against Aβ42, which not only reacted strongly with Aβ42, tau protein, and α-synuclein, but also had from weak to strong reactions with 25 different pathogens or their molecules, some of which have been associated with AD. The homology between peptide stretches of microbial origin and proteins involved in AD could be a mechanism by which antibodies to homologous peptides mount attacks against autoantigens in AD. We concluded that bacterial molecules bind to Aβ protein, forming small oligomers, then encasing pathogens and their molecules to form amyloid plaques, the tell-tale markers of AD. Conversely, these same Aβ peptides induce the production of antibodies to both Aβ42 and bacterial molecules, which may inhibit bacterial pathogenesis, but in the process may promote amyloid plaque formation.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Lab., Inc., Los Angeles, CA, USA.,Department of Preventive Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | | | - Evan Saidara
- University of California Riverside, Riverside, CA, USA
| | - Datis Kharrazian
- Department of Preventive Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
85
|
Herbal Formula Fo Shou San Attenuates Alzheimer's Disease-Related Pathologies via the Gut-Liver-Brain Axis in APP/PS1 Mouse Model of Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:8302950. [PMID: 31316576 PMCID: PMC6601474 DOI: 10.1155/2019/8302950] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/20/2019] [Indexed: 02/07/2023]
Abstract
Fo Shou San (FSS) is an ancient paired-herb decoction, used in China to treat blood deficiency, blood stasis, stroke, and ischemic cerebral vascular disease for about one thousand years. The mechanisms associated with these properties, however, are not completely understood. Gut bacteria, gut bacterial lipopolysaccharides (LPS), alkaline phosphatase (AP), and lipid peroxidation are common biochemical signaling that takes place on gut-liver-brain axis. Growing evidences have revealed that gut bacterial lipopolysaccharides (LPS) enter the systemic circulation via the portal vein, and finally entering the brain tissue is an important cause of inflammatory degeneration of Alzheimer's disease (AD). Alkaline phosphatase (AP) dephosphorylates LPS forming a nontoxic LPS and reduces systemic inflammation via gut-liver-brain axis. In this study, to identify the differentially gut-liver-brain axis among APP/PS1 mice, FSS-treated APP/PS1 mice, and control mice, behavioral tests were performed to assess the cognitive ability and hematoxylin-eosin staining was used to assess neuronal damage in the hippocampus; immunohistochemistry, western blotting, a quantitative chromogenic end-point Tachypleus amebocyte lysate (TAL) assay kit, Malondialdehyde (MDA) assay kit, AP Assay Kit, and real-time quantitative PCR (qPCR) were used to assess the level of LPS, MDA, AP, and gut bacteria. We found that FSS regulates gut-liver-brain axis to regulate AP and gut bacteria and attenuate the LPS-related systemic inflammation, oxidative stress (MDA), and thereby AD-related pathology in APP/PS1 mice. This is the first study to provide a reference for FSS-treated AD mice to aid in understanding the underlying mechanisms of FSS. FSS may also improve gastrointestinal tract barrier and blood-brain barrier and thus ameliorates the symptoms of AD; this is subject to our further study.
Collapse
|
86
|
Kaur D, Sharma V, Deshmukh R. Activation of microglia and astrocytes: a roadway to neuroinflammation and Alzheimer's disease. Inflammopharmacology 2019; 27:663-677. [PMID: 30874945 DOI: 10.1007/s10787-019-00580-x] [Citation(s) in RCA: 300] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 03/06/2019] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is of high importance to the neuroscience world, yet the complex pathogenicity is not fully understood. Inflammation is usually observed in AD and could implicate both beneficial or detrimental effects depending on the severity of the disease. During initial AD pathology, microglia and astrocyte activation is beneficial since they are involved in amyloid-beta clearance. However, with the progression of the disease, activated microglia elicit detrimental effects by the overexpression of pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) bringing forth neurodegeneration in the surrounding brain regions. This results in decline in Aβ clearance by microglia; Aβ accumulation thus increases in the brain resulting in neuroinflammation. Thus, Aβ accumulation is the effect of increased release of pro-inflammatory molecules. Reactive astrocytes acquire gain of toxic function and exhibits neurotoxic effects with loss of neurotrophic functions. Astrocyte dysfunctioning results in increased release of cytokines and inflammatory mediators, neurodegeneration, decreased glutamate uptake, loss of neuronal synapses, and ultimately cognitive deficits in AD. We discuss the role of intracellular signaling pathways in the inflammatory responses produced by astrocytes and microglial activation, including the glycogen synthase kinase-3β, nuclear factor kappa B cascade, mitogen-activated protein kinase pathways and c-Jun N-terminal kinase. In this review, we describe the role of neuroinflammation in the chronicity of AD pathogenesis and an overview of the recent research towards the development of new therapies to treat this disorder.
Collapse
Affiliation(s)
- Darshpreet Kaur
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, 151001, India
| | - Vivek Sharma
- Government College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India
| | - Rahul Deshmukh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, 151001, India.
| |
Collapse
|
87
|
|
88
|
Butnaru D, Chapman J. The impact of self-replicating proteins on inflammation, autoimmunity and neurodegeneration-An untraveled path. Autoimmun Rev 2019; 18:231-240. [PMID: 30639644 DOI: 10.1016/j.autrev.2018.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/12/2018] [Indexed: 02/08/2023]
Abstract
The central nervous system (CNS) in neurodegenerative diseases is a battlefield in which microglia fight a highly atypical battle. During the inflammatory process microglia themselves become dysfunctional and even with all the available immune arsenal including cytokine or/and antibody production, the battle is eventually lost. A closer look into the picture will reveal the fact that this is mainly due to the atypical characteristics of the infectious agent. The supramolecular assemblies of misfolded proteins carry unique features not encountered in any of the common pathogens. Through misfolding, proteins undergo conformational changes which make them become immunogenic, neurotoxic and highly infective. The immunogenicity appears to be triggered by the exposure of previously hidden hydrophobic portions in proteins which act as damage-associated molecular patters (DAMPs) for the immune system. The neurotoxicity and infectivity are promoted by the small oligomeric forms of misfolded proteins/peptides. Oligomers adopt conformations such as tubular-like, beta-barrel-like, etc., that penetrate cell membranes through their hydrophobic surfaces, thus destabilizing ionic homeostasis. At the same time, oligomers act as a seed for protein misfolding through a prion/prion-like mechanism. Here, we propose the hypothesis that oligomers have catalytic surfaces and exercise their capacity to infect native proteins through specific characteristics such as hydrophobic, electrostatic and π-π stacking interactions as well as the specific surface area (SSA), surface curvature and surface chemistry of their nanoscale supramolecular assemblies. All these are the key elements for prion/prion-like mechanism of self-replication and disease spreading within the CNS. Thus, understanding the mechanism of prion's templating activity may help us in the prevention and development of novel therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Dana Butnaru
- The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Israel.
| | - Joab Chapman
- Sheba Medical Center, Israel; Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv University, Israel
| |
Collapse
|
89
|
Posautz A, Loncaric I, Westermark P. Is there a connection between the microbiome and AA amyloidosis? First hints from the European brown hare ( Lepus europaeus). Amyloid 2019; 26:119-120. [PMID: 31343352 DOI: 10.1080/13506129.2019.1593130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Annika Posautz
- a Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna , Vienna , Austria
| | - Igor Loncaric
- b Institute of Microbiology, University of Veterinary Medicine Vienna , Vienna , Austria
| | - Per Westermark
- c Department of Immunology, Genetics and Pathology, Uppsala University , Uppsala , Sweden
| |
Collapse
|
90
|
Giau VV, Wu SY, Jamerlan A, An SSA, Kim SY, Hulme J. Gut Microbiota and Their Neuroinflammatory Implications in Alzheimer's Disease. Nutrients 2018; 10:nu10111765. [PMID: 30441866 PMCID: PMC6266223 DOI: 10.3390/nu10111765] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/08/2018] [Accepted: 11/10/2018] [Indexed: 12/12/2022] Open
Abstract
The bidirectional communication between the central nervous system (CNS) and the gut microbiota plays a pivotal role in human health. Increasing numbers of studies suggest that the gut microbiota can influence the brain and behavior of patients. Various metabolites secreted by the gut microbiota can affect the cognitive ability of patients diagnosed with neurodegenerative diseases. Nearly one in every ten Korean senior citizens suffers from Alzheimer’s disease (AD), the most common form of dementia. This review highlights the impact of metabolites from the gut microbiota on communication pathways between the brain and gut, as well as the neuroinflammatory roles they may have in AD patients. The objectives of this review are as follows: (1) to examine the role of the intestinal microbiota in homeostatic communication between the gut microbiota and the brain, termed the microbiota–gut–brain (MGB) axis; (2) to determine the underlying mechanisms of signal dysfunction; and (3) to assess the impact of signal dysfunction induced by the microbiota on AD. This review will aid in understanding the microbiota of elderly people and the neuroinflammatory roles they may have in AD.
Collapse
Affiliation(s)
- Vo Van Giau
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Sungnam-daero, Seongnam-si, Gyeonggi-do 461-701, Korea.
| | - Si Ying Wu
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Sungnam-daero, Seongnam-si, Gyeonggi-do 461-701, Korea.
| | - Angelo Jamerlan
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Sungnam-daero, Seongnam-si, Gyeonggi-do 461-701, Korea.
| | - Seong Soo A An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Sungnam-daero, Seongnam-si, Gyeonggi-do 461-701, Korea.
| | - Sang Yun Kim
- Department of Neurology, Seoul National University College of Medicine & Neurocognitive Behavior Center, Seoul National University Bundang Hospital, Seoul 100-011, Korea.
| | - John Hulme
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Sungnam-daero, Seongnam-si, Gyeonggi-do 461-701, Korea.
| |
Collapse
|
91
|
Wang Y, Wang Z, Wang Y, Li F, Jia J, Song X, Qin S, Wang R, Jin F, Kitazato K, Wang Y. The Gut-Microglia Connection: Implications for Central Nervous System Diseases. Front Immunol 2018; 9:2325. [PMID: 30344525 PMCID: PMC6182051 DOI: 10.3389/fimmu.2018.02325] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/18/2018] [Indexed: 12/17/2022] Open
Abstract
The importance of the gut microbiome in central nervous system (CNS) diseases has long been recognized; however, research into this connection is limited, in part, owing to a lack of convincing mechanisms because the brain is a distant target of the gut. Previous studies on the brain revealed that most of the CNS diseases affected by the gut microbiome are closely associated with microglial dysfunction. Microglia, the major CNS-resident macrophages, are crucial for the immune response of the CNS against infection and injury, as well as for brain development and function. However, the current understanding of the mechanisms controlling the maturation and function of microglia is obscure, especially regarding the extrinsic factors affecting microglial function during the developmental process. The gut microflora has been shown to significantly influence microglia from before birth until adulthood, and the metabolites generated by the microbiota regulate the inflammation response mediated by microglia in the CNS; this inspired our hypothesis that microglia act as a critical mediator between the gut microbiome and CNS diseases. Herein, we highlight and discuss current findings that show the influence of host microbiome, as a crucial extrinsic factor, on microglia within the CNS. In addition, we summarize the CNS diseases associated with both the host microbiome and microglia and explore the potential pathways by which the gut bacteria influence the pathogenesis of CNS diseases. Our work is thus a comprehensive theoretical foundation for studies on the gut-microglia connection in the development of CNS diseases; and provides great potential for researchers to target pathways associated with the gut-microglia connection and overcome CNS diseases.
Collapse
Affiliation(s)
- Yiliang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Zhaoyang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Yun Wang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Department of Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Feng Li
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Jiaoyan Jia
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Xiaowei Song
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Shurong Qin
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Rongze Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Fujun Jin
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Kaio Kitazato
- Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| |
Collapse
|
92
|
Zhang T, Han Y, Wang J, Hou D, Deng H, Deng YL, Song Z. Comparative Epidemiological Investigation of Alzheimer's Disease and Colorectal Cancer: The Possible Role of Gastrointestinal Conditions in the Pathogenesis of AD. Front Aging Neurosci 2018; 10:176. [PMID: 30323761 PMCID: PMC6172982 DOI: 10.3389/fnagi.2018.00176] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that affects approximately 35 million people worldwide, and diet has been reported to influence the prevalence/incidence of AD. Colorectal cancer is among the most common cancers in Western populations, and the correlation between constipation and the occurrence of colorectal cancer has been identified in a number of studies, which show that a Westernized diet is a mutual risk factor. Constipation is a growing health problem, particularly in middle-aged and older adults. As the most common gastrointestinal disorder in adults, constipation affects 2-20% of the world population, and it is associated with several diseases, such as diabetes, Parkinson's disease, and others. Comparing the epidemiological data on colorectal cancer and AD, we find that colorectal cancer and AD have similar epidemiologic feature, which is both disease correlate with high prevalence of constipation. Therefore, we hypothesized that constipation may influence Alzheimer's disease in a similar way that it contributes to colorectal cancer. This review aimed to systemically elucidate the evidence that constipation contributes to Alzheimer's disease progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhi Song
- Department of Neurology, Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
93
|
|
94
|
Larroya-García A, Navas-Carrillo D, Orenes-Piñero E. Impact of gut microbiota on neurological diseases: Diet composition and novel treatments. Crit Rev Food Sci Nutr 2018; 59:3102-3116. [PMID: 29870270 DOI: 10.1080/10408398.2018.1484340] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gut microbiota has significant effects on the structure and function of the enteric and central nervous system including human behaviour and brain regulation. Herein, we analyze the role of this intestinal ecosystem, the effects of dietary changes and the administration of nutritional supplements, such as probiotics, prebiotics, or fecal transplantation in neuropsychiatric disorders. Numerous factors have been highlighted to influence gut microbiota composition, including genetics, health status, mode of birth delivery and environment. However, diet composition and nutritional status has been repeatedly shown to be one of the most critical modifiable factors of this ecosystem. A comprehensively analysis of the microbiome-intestine-brain axis has been performed, including the impact of intestinal bacteria in alterations in the nervous, immune and endocrine systems and their metabolites. Finally, we discuss the latest literature examining the effects of diet composition, nutritional status and microbiota alterations in several neuropsychiatric disorders, such as autism, anxiety, depression, Alzheimer's disease and anorexia nervosa.
Collapse
Affiliation(s)
- Ana Larroya-García
- Department of Biochemistry and Molecular Biology-A, University of Murcia, Murcia, Spain
| | - Diana Navas-Carrillo
- Department of Surgery, Hospital de la Vega Lorenzo Guirao, University of Murcia, Murcia, Spain
| | - Esteban Orenes-Piñero
- Department of Biochemistry and Molecular Biology-A, University of Murcia, Murcia, Spain
| |
Collapse
|
95
|
Sochocka M, Donskow-Łysoniewska K, Diniz BS, Kurpas D, Brzozowska E, Leszek J. The Gut Microbiome Alterations and Inflammation-Driven Pathogenesis of Alzheimer's Disease-a Critical Review. Mol Neurobiol 2018; 56:1841-1851. [PMID: 29936690 PMCID: PMC6394610 DOI: 10.1007/s12035-018-1188-4] [Citation(s) in RCA: 387] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/07/2018] [Indexed: 02/06/2023]
Abstract
One of the most important scientific discoveries of recent years was the disclosure that the intestinal microflora takes part in bidirectional communication between the gut and the brain. Scientists suggest that human gut microflora may even act as the “second brain” and be responsible for neurodegenerative disorders like Alzheimer’s disease (AD). Although human-associated microbial communities are generally stable, they can be altered by common human actions and experiences. Enteric bacteria, commensal, and pathogenic microorganisms, may have a major impact on immune system, brain development, and behavior, as they are able to produce several neurotransmitters and neuromodulators like serotonin, kynurenine, catecholamine, etc., as well as amyloids. However, brain destructive mechanisms, that can lead to dementia and AD, start with the intestinal microbiome dysbiosis, development of local and systemic inflammation, and dysregulation of the gut-brain axis. Increased permeability of the gut epithelial barrier results in invasion of different bacteria, viruses, and their neuroactive products that support neuroinflammatory reactions in the brain. It seems that, inflammatory-infectious hypothesis of AD, with the great role of the gut microbiome, starts to gently push into the shadow the amyloid cascade hypothesis that has dominated for decades. It is strongly postulated that AD may begin in the gut, and is closely related to the imbalance of gut microbiota. This is promising area for therapeutic intervention. Modulation of gut microbiota through personalized diet or beneficial microbiota intervention, alter microbial partners and their products including amyloid protein, will probably become a new treatment for AD.
Collapse
Affiliation(s)
- Marta Sochocka
- Laboratory of Virology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | | | - Breno Satler Diniz
- Department of Psychiatry and Behavioral Sciences, and The Consortium on Aging, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Donata Kurpas
- Department of Family Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Ewa Brzozowska
- Laboratory of Medical Microbiology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Jerzy Leszek
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland.
| |
Collapse
|
96
|
Abstract
PURPOSE OF REVIEW Despite the extensive research carried out in the past decades, the current pathophysiological notions of neurodegenerative disease as well as effective treatments to reduce their progression are largely unknown. Alterations of the human microbiota, the plethora of different microscopic organisms that our body hosts, have been linked to neurodegenerative disease risk, onset and progression. This review summarizes the current knowledge on the possible role of microbiota in neurodegenerative disorders and briefly discusses strategies to restore microbiota homeostasis. RECENT FINDINGS Preclinical evidences and human cross-sectional studies posit the gut microbiota as a key actor in the Parkinson's disease onset and progression, reporting the presence of a specific gut microbiota profile in association with the modulation of disease and symptoms. Gut microbiota alterations have been correlated with brain disease and peripheral inflammation also in Alzheimer's patients. SUMMARY The interaction between the microbiota and the host is promising to answer clinical questions that have so far escaped clarification with the current pathophysiological notions of health and disease. However, human longitudinal studies starting in the earlier disease phases are needed to understand the causative relation between microbiota and the hallmarks of these neurodegenerative disorders and to develop innovative treatments aimed at preventing or slowing brain damages.
Collapse
|
97
|
Zhao Y, Lukiw WJ. Bacteroidetes Neurotoxins and Inflammatory Neurodegeneration. Mol Neurobiol 2018; 55:9100-9107. [PMID: 29637444 DOI: 10.1007/s12035-018-1015-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/16/2018] [Indexed: 12/31/2022]
Abstract
The gram-negative facultative anaerobe Bacteroides fragilis (B. fragilis) constitutes an appreciable proportion of the human gastrointestinal (GI)-tract microbiome. As is typical of most gram-negative bacilli, B. fragilis secretes an unusually complex mixture of neurotoxins including the extremely pro-inflammatory lipopolysaccharide BF-LPS. LPS (i) has recently been shown to associate with the periphery of neuronal nuclei in sporadic Alzheimer's disease (AD) brain and (ii) promotes the generation of the inflammatory transcription factor NF-kB (p50/p65 complex) in human neuronal-glial cells in primary-culture. In turn, the NF-kB (p50/p65 complex) strongly induces the transcription of a small family of pro-inflammatory microRNAs (miRNAs) including miRNA-9, miRNA-34a, miRNA-125b, miRNA-146a, and miRNA-155. These ultimately bind with the 3'-untranslated region (3'-UTR) of several target messenger RNAs (mRNAs) and thereby reduce their expression. Down-regulated mRNAs include those encoding complement factor-H (CFH), an SH3-proline-rich multi-domain-scaffolding protein of the postsynaptic density (SHANK3), and the triggering receptor expressed in myeloid/microglial cells (TREM2), as is observed in sporadic AD brain. Hence, a LPS normally confined to the GI tract is capable of driving a NF-kB-miRNA-mediated deficiency in gene expression that contributes to alterations in synaptic-architecture and synaptic-deficits, amyloidogenesis, innate-immune defects, and progressive inflammatory signaling, all of which are characteristics of AD-type neurodegeneration. This article will review the most recent research which supports the idea that bacterial components of the GI tract microbiome such as BF-LPS can transverse biophysical barriers and contribute to AD-type change. For the first-time, these results indicate that specific GI tract microbiome-derived neurotoxins have a strong pathogenic role in eliciting alterations in NF-kB-miRNA-directed gene expression that drives the AD process.
Collapse
Affiliation(s)
- Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA, 70112, USA.,Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA, 70112, USA
| | - Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA, 70112, USA. .,Department of Neurology, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA, 70112, USA. .,Departments of Ophthalmology, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA, 70112, USA.
| |
Collapse
|
98
|
Andreadou E, Pantazaki AA, Daniilidou M, Tsolaki M. Rhamnolipids, Microbial Virulence Factors, in Alzheimer's Disease. J Alzheimers Dis 2018; 59:209-222. [PMID: 28598837 DOI: 10.3233/jad-161020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) has been attributed to chronic bacterial infections. The recognition of human microbiota as a substantial contributor to health and disease is relatively recent and growing. During evolution, mammals live in a symbiotic state with myriads of microorganisms that survive at a diversity of tissue micro-surroundings. Microbes produce a plethora of secretory products [amyloids, lipopolysaccharides, virulence factors rhamnolipids (RLs), toxins, and a great number of neuroactive compounds]. The contribution of infectious microbial components to the pathophysiology of the human central nervous system including AD is considered potentially substantial, but the involvement of the RLs has never been reported. Here, RLs were isolated from serum and identified through various conventional methods including the colorimetric orcinol method, thin-layer chromatography, attenuated total reflection Fourier transform infrared (ATR-FTIR), and dot blot using antibodies against RLs. Dot blot demonstrated elevated RL levels in sera of AD patients compared to controls (p = 0.014). Moreover, ELISA showed similarly elevated RL levels in cerebrospinal fluid of both AD (0.188 versus 0.080) (p = 0.04) and mild cognitive impairment (0.188 versus 0.129) (p = 0.088) patients compared to healthy, and are well-correlated with the AD stages severity assessed using the Mini-Mental State Examination. These results provide conclusive evidence for the newly-reported implication of RLs in AD, adding it to the list of bacterial components, opening new avenues for AD investigation. Moreover, they strengthen and vindicate the divergence of research toward the exploration of bacterial involvement in AD generation and progression.
Collapse
Affiliation(s)
- Eleni Andreadou
- Department of Chemistry, Laboratory of Biochemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastasia A Pantazaki
- Department of Chemistry, Laboratory of Biochemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Makrina Daniilidou
- Department of Chemistry, Laboratory of Biochemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Magda Tsolaki
- 3rd Department of Neurology, "G. Papanikolaou" General Hospital of Thessaloniki, Aristotle University of Thessaloniki, Greece
| |
Collapse
|
99
|
Zhao Y, Lukiw WJ. Microbiome-Mediated Upregulation of MicroRNA-146a in Sporadic Alzheimer's Disease. Front Neurol 2018; 9:145. [PMID: 29615954 PMCID: PMC5867462 DOI: 10.3389/fneur.2018.00145] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/27/2018] [Indexed: 12/13/2022] Open
Abstract
The first indication of a potential mechanistic link between the pathobiology of the human gastrointestinal (GI)-tract microbiome and its contribution to the pathogenetic mechanisms of sporadic Alzheimer's disease (AD) came a scant 4 years ago (1). Ongoing research continues to strengthen the hypothesis that neurotoxic microbial-derived components of the GI tract microbiome can cross aging GI tract and blood-brain barriers and contribute to progressive proinflammatory neurodegeneration, as exemplified by the AD-process. Of central interest in these recent investigations are the pathological roles played by human GI tract resident Gram-negative anaerobic bacteria and neurotropic viruses-two prominent divisions of GI tract microbiome-derived microbiota-which harbor considerable pathogenic potential. It is noteworthy that the first two well-studied microbiota-the GI tract abundant Gram-negative bacteria Bacteroides fragilis and the neurotropic herpes simplex virus-1 both share a final common pathway of NF-κB (p50/p65) activation and microRNA-146a induction with ensuing pathogenic stimulation of innate-immune and neuroinflammatory pathways. These appear to strongly contribute to the inflammation-mediated amyloidogenic neuropathology of AD. This communication: (i) will review recent research contributions that have expanded our understanding of the nature of the translocation of microbiome-derived neurotoxins-across biophysiological barriers; (ii) will assess multiple-recent investigations of the induction of the proinflammatory pathogenic microRNA-146a by these two prominent classes of human microbiota; and (iii) will discuss the role of molecular neurobiology and mechanistic contribution of polymicrobial infections to AD-type neuropathological change.
Collapse
Affiliation(s)
- Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
- Department of Anatomy and Cell Biology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
- Department of Ophthalmology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
- Department of Neurology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
| |
Collapse
|
100
|
Calvani R, Picca A, Lo Monaco MR, Landi F, Bernabei R, Marzetti E. Of Microbes and Minds: A Narrative Review on the Second Brain Aging. Front Med (Lausanne) 2018; 5:53. [PMID: 29552561 PMCID: PMC5840854 DOI: 10.3389/fmed.2018.00053] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 02/15/2018] [Indexed: 12/21/2022] Open
Abstract
In recent years, an extensive body of literature focused on the gut-brain axis and the possible role played by the gut microbiota in modulating brain morphology and function from birth to old age. Gut microbiota has been proposed as a relevant player during the early phases of neurodevelopment, with possible long-standing effects in later life. The reduction in gut microbiota diversity has also become one of the hallmarks of aging, and disturbances in its composition are associated with several (age-related) neurological conditions, including depression, Alzheimer's disease, and Parkinson's disease. Several pathways have been evoked for gut microbiota-brain communication, including neural connections (vagus nerve), circulating mediators derived by host-bacteria cometabolism, as well as the influence exerted by gut microbiota on host gut function, metabolism, and immune system. Although the most provoking data emerged from animal studies and despite the huge debate around the possible epiphenomenal nature of those findings, the gut microbiota-brain axis still remains a fascinating target to be exploited to attenuate some of the most burdensome consequences of aging.
Collapse
Affiliation(s)
- Riccardo Calvani
- Department of Geriatrics, Neurosciences and Orthopedics, Agostino Gemelli University Polyclinic, Catholic University of the Sacred Heart, Rome, Italy
| | - Anna Picca
- Department of Geriatrics, Neurosciences and Orthopedics, Agostino Gemelli University Polyclinic, Catholic University of the Sacred Heart, Rome, Italy
| | - Maria Rita Lo Monaco
- Department of Geriatrics, Neurosciences and Orthopedics, Agostino Gemelli University Polyclinic, Catholic University of the Sacred Heart, Rome, Italy
| | - Francesco Landi
- Department of Geriatrics, Neurosciences and Orthopedics, Agostino Gemelli University Polyclinic, Catholic University of the Sacred Heart, Rome, Italy
| | - Roberto Bernabei
- Department of Geriatrics, Neurosciences and Orthopedics, Agostino Gemelli University Polyclinic, Catholic University of the Sacred Heart, Rome, Italy
| | - Emanuele Marzetti
- Department of Geriatrics, Neurosciences and Orthopedics, Agostino Gemelli University Polyclinic, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|