51
|
Li J, Antonecchia E, Camerlenghi M, Chiaravalloti A, Chu Q, Costanzo AD, Li Z, Wan L, Zhang X, D'Ascenzo N, Schillaci O, Xie Q. Correlation of [ 18F]florbetaben textural features and age of onset of Alzheimer's disease: a principal components analysis approach. EJNMMI Res 2021; 11:40. [PMID: 33881633 PMCID: PMC8060386 DOI: 10.1186/s13550-021-00774-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/15/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND When Alzheimer's disease (AD) is occurring at an early onset before 65 years old, its clinical course is generally more aggressive than in the case of a late onset. We aim at identifying [[Formula: see text]F]florbetaben PET biomarkers sensitive to differences between early-onset Alzheimer's disease (EOAD) and late-onset Alzheimer's disease (LOAD). We conducted [[Formula: see text]F]florbetaben PET/CT scans of 43 newly diagnosed AD subjects. We calculated 93 textural parameters for each of the 83 Hammers areas. We identified 41 independent principal components for each brain region, and we studied their Spearman correlation with the age of AD onset, by taking into account multiple comparison corrections. Finally, we calculated the probability that EOAD and LOAD patients have different amyloid-[Formula: see text] ([Formula: see text]) deposition by comparing the mean and the variance of the significant principal components obtained in the two groups with a 2-tailed Student's t-test. RESULTS We found that four principal components exhibit a significant correlation at a 95% confidence level with the age of onset in the left lateral part of the anterior temporal lobe, the right anterior orbital gyrus of the frontal lobe, the right lateral orbital gyrus of the frontal lobe and the left anterior part of the superior temporal gyrus. The data are consistent with the hypothesis that EOAD patients have a significantly different [[Formula: see text]F]florbetaben uptake than LOAD patients in those four brain regions. CONCLUSIONS Early-onset AD implies a very irregular pattern of [Formula: see text] deposition. The authors suggest that the identified textural features can be used as quantitative biomarkers for the diagnosis and characterization of EOAD patients.
Collapse
Affiliation(s)
- Jing Li
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Luoyu Road, Wuhan, 430074, China
| | - Emanuele Antonecchia
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Luoyu Road, Wuhan, 430074, China.,Department of Medical Physics and Engineering, Istituto Neurologico Mediterraneo NEUROMED I.R.C.C.S, Via Dell'Elettronica, 83008, Pozzilli, Italy
| | - Marco Camerlenghi
- NIM Competence Center for Digital Healthcare GmbH, Potsdamerplatz, 10, 10785, Berlin, Germany
| | - Agostino Chiaravalloti
- Department of Medical Physics and Engineering, Istituto Neurologico Mediterraneo NEUROMED I.R.C.C.S, Via Dell'Elettronica, 83008, Pozzilli, Italy. .,Department of Biomedicine and Prevention, University of Tor Vergata, 86100, Rome, Italy.
| | - Qian Chu
- Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road, Wuhan, 430030, China.,Department of Oncology, Tongji Hospital, Jiefang Avenue, Wuhan, 430030, China
| | - Alfonso Di Costanzo
- Universita degli Studi del Molise, Via Francesco de Sanctis, 1, 10115, Campobasso, Italy
| | - Zhen Li
- Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road, Wuhan, 430030, China.,Department of Radiology, Tongji Hospital, Jiefang Avenue, Wuhan, 430030, China
| | - Lin Wan
- Department of Software Engineering, Huazhong University of Science and Technology, Luoyu Road, Wuhan, 430074, China
| | - Xiangsong Zhang
- The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Nicola D'Ascenzo
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Luoyu Road, Wuhan, 430074, China. .,Department of Medical Physics and Engineering, Istituto Neurologico Mediterraneo NEUROMED I.R.C.C.S, Via Dell'Elettronica, 83008, Pozzilli, Italy.
| | - Orazio Schillaci
- Department of Medical Physics and Engineering, Istituto Neurologico Mediterraneo NEUROMED I.R.C.C.S, Via Dell'Elettronica, 83008, Pozzilli, Italy.,Department of Biomedicine and Prevention, University of Tor Vergata, 86100, Rome, Italy
| | - Qingguo Xie
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Luoyu Road, Wuhan, 430074, China. .,Department of Medical Physics and Engineering, Istituto Neurologico Mediterraneo NEUROMED I.R.C.C.S, Via Dell'Elettronica, 83008, Pozzilli, Italy.
| |
Collapse
|
52
|
Kim JP, Kim J, Jang H, Kim J, Kang SH, Kim JS, Lee J, Na DL, Kim HJ, Seo SW, Park H. Predicting amyloid positivity in patients with mild cognitive impairment using a radiomics approach. Sci Rep 2021; 11:6954. [PMID: 33772041 PMCID: PMC7997887 DOI: 10.1038/s41598-021-86114-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/23/2021] [Indexed: 02/01/2023] Open
Abstract
Predicting amyloid positivity in patients with mild cognitive impairment (MCI) is crucial. In the present study, we predicted amyloid positivity with structural MRI using a radiomics approach. From MR images (including T1, T2 FLAIR, and DTI sequences) of 440 MCI patients, we extracted radiomics features composed of histogram and texture features. These features were used alone or in combination with baseline non-imaging predictors such as age, sex, and ApoE genotype to predict amyloid positivity. We used a regularized regression method for feature selection and prediction. The performance of the baseline non-imaging model was at a fair level (AUC = 0.71). Among single MR-sequence models, T1 and T2 FLAIR radiomics models also showed fair performances (AUC for test = 0.71-0.74, AUC for validation = 0.68-0.70) in predicting amyloid positivity. When T1 and T2 FLAIR radiomics features were combined, the AUC for test was 0.75 and AUC for validation was 0.72 (p vs. baseline model < 0.001). The model performed best when baseline features were combined with a T1 and T2 FLAIR radiomics model (AUC for test = 0.79, AUC for validation = 0.76), which was significantly better than those of the baseline model (p < 0.001) and the T1 + T2 FLAIR radiomics model (p < 0.001). In conclusion, radiomics features showed predictive value for amyloid positivity. It can be used in combination with other predictive features and possibly improve the prediction performance.
Collapse
Affiliation(s)
- Jun Pyo Kim
- Department of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
- Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Jonghoon Kim
- Department of Electronic and Computer Engineering, Sungkyunkwan University, Suwon, Korea
| | - Hyemin Jang
- Department of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
- Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Jaeho Kim
- Department of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
- Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
- Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - Sung Hoon Kang
- Department of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
- Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Ji Sun Kim
- Department of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
- Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Jongmin Lee
- Department of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
- Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
- Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
- Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea.
- Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Korea.
- Neuroscience Center, Samsung Medical Center, Seoul, Korea.
- Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Korea.
- Center for Clinical Epidemiology, Samsung Medical Center, Seoul, Korea.
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon-si, Korea.
| | - Hyunjin Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea.
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon-si, Republic of Korea.
| |
Collapse
|
53
|
Comprehensive classification models based on amygdala radiomic features for Alzheimer's disease and mild cognitive impairment. Brain Imaging Behav 2021; 15:2377-2386. [PMID: 33537928 DOI: 10.1007/s11682-020-00434-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/21/2020] [Accepted: 12/17/2020] [Indexed: 11/26/2022]
Abstract
The amygdala is an important part of the medial temporal lobe and plays a pivotal role in the emotional and cognitive function. The aim of this study was to build and validate comprehensive classification models based on amygdala radiomic features for Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI). For the amygdala, 3360 radiomic features were extracted from 97 AD patients, 53 aMCI patients and 45 normal controls (NCs) on the three-dimensional T1-weighted magnetization-prepared rapid gradient echo (MPRAGE) images. We used maximum relevance and minimum redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO) to select the features. Multivariable logistic regression analysis was performed to build three classification models (AD-NC group, AD-aMCI group, and aMCI-NC group). Finally, internal validation was assessed. After two steps of feature selection, there were 5 radiomic features remained in the AD-NC group, 16 features remained in the AD-aMCI group and the aMCI-NC group, respectively. The proposed logistic classification analysis based on amygdala radiomic features achieves an accuracy of 0.90 and an area under the ROC curve (AUC) of 0.93 for AD vs. NC classification, an accuracy of 0.81 and an AUC of 0.84 for AD vs. aMCI classification, and an accuracy of 0.75 and an AUC of 0.80 for aMCI vs. NC classification. Amygdala radiomic features might be early biomarkers for detecting microstructural brain tissue changes during the AD and aMCI course. Logistic classification analysis demonstrated the promising classification performances for clinical applications among AD, aMCI and NC groups.
Collapse
|
54
|
Luo S, Zhou Z, Guo D, Li C, Liu H, Wu X, Liang S, Zhao X, Chen T, Sun D, Shi X, Zhong W, Zhang W. Radiomics-based classification models for HBV-related cirrhotic patients with covert hepatic encephalopathy. Brain Behav 2021; 11:e01970. [PMID: 33236529 PMCID: PMC7882152 DOI: 10.1002/brb3.1970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION The significant abnormalities of precuneus (PC), which are associated with brain dysfunction, have been identified in cirrhotic patients with covert hepatic encephalopathy (CHE). The present study aimed to apply radiomics analysis to identify the significant radiomic features in PC and their subregions, combine with clinical risk factors, then build and evaluate the classification models for CHE diagnosis. METHODS 106 HBV-related cirrhotic patients (54 had current CHE and 52 had non-CHE) underwent the three-dimensional T1-weighted imaging. For each participant, PC and their subregions were segmented and extracted a large number of radiomic features and then identified the features with significant discriminative power as the radiomics signature. The logistic regression analysis was employed to develop and evaluate the classification models, which are constructed using the radiomics signature and clinical risk factors. RESULTS The classification model (R-C model) achieved best diagnostic performance, which incorporated radiomics signature (4 radiomic features from right PC), venous blood ammonia, and the Child-Pugh stage. And the area under the receiver operating characteristic curve values (AUC), sensitivity, specificity, and accuracy values were 0.926, 1.000, 0.765, and 0.848, in the testing set. Application of the radiomics nomogram in the testing set still showed a good predictive accuracy. CONCLUSIONS This study presented the radiomic features of the right PC, as a potential image marker of CHE. The radiomics nomogram that incorporates the radiomics signature and clinical risk factors may facilitate the individualized prediction of CHE.
Collapse
Affiliation(s)
- Sha Luo
- Department of RadiologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Zhi‐Ming Zhou
- Department of RadiologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Da‐Jing Guo
- Department of RadiologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Chuan‐Ming Li
- Department of RadiologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Huan Liu
- GE Healthcare Life SciencesShanghaiChina
| | - Xiao‐Jia Wu
- Department of RadiologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Shuang Liang
- Department of RadiologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xiao‐yan Zhao
- Department of RadiologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Ting Chen
- Department of RadiologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Dong Sun
- Department of RadiologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xin‐Lin Shi
- Department of RadiologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Wei‐Jia Zhong
- Department of RadiologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Wei Zhang
- Department of RadiologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
55
|
Park YW, Choi D, Park M, Ahn SJ, Ahn SS, Suh SH, Lee SK. Predicting Amyloid Pathology in Mild Cognitive Impairment Using Radiomics Analysis of Magnetic Resonance Imaging. J Alzheimers Dis 2021; 79:483-491. [PMID: 33337361 DOI: 10.3233/jad-200734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Noninvasive identification of amyloid-β (Aβ) is important for better clinical management of mild cognitive impairment (MCI) patients. OBJECTIVE To investigate whether radiomics features in the hippocampus in MCI improve the prediction of cerebrospinal fluid (CSF) Aβ42 status when integrated with clinical profiles. METHODS A total of 407 MCI subjects from the Alzheimer's Disease Neuroimaging Initiative were allocated to training (n = 324) and test (n = 83) sets. Radiomics features (n = 214) from the bilateral hippocampus were extracted from magnetic resonance imaging (MRI). A cut-off of <192 pg/mL was applied to define CSF Aβ42 status. After feature selection, random forest with subsampling methods were utilized to develop three models with which to predict CSF Aβ42: 1) a radiomics model; 2) a clinical model based on clinical profiles; and 3) a combined model based on radiomics and clinical profiles. The prediction performances thereof were validated in the test set. A prediction model using hippocampus volume was also developed and validated. RESULTS The best-performing radiomics model showed an area under the curve (AUC) of 0.674 in the test set. The best-performing clinical model showed an AUC of 0.758 in the test set. The best-performing combined model showed an AUC of 0.823 in the test set. The hippocampal volume model showed a lower performance, with an AUC of 0.543 in the test set. CONCLUSION Radiomics models from MRI can help predict CSF Aβ42 status in MCI patients and potentially triage the patients for invasive and costly Aβ tests.
Collapse
Affiliation(s)
- Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Dongmin Choi
- Department of Computer Science, Yonsei University, Seoul, Korea
| | - Mina Park
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Jun Ahn
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Hyun Suh
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | | |
Collapse
|
56
|
Li TR, Wu Y, Jiang JJ, Lin H, Han CL, Jiang JH, Han Y. Radiomics Analysis of Magnetic Resonance Imaging Facilitates the Identification of Preclinical Alzheimer's Disease: An Exploratory Study. Front Cell Dev Biol 2020; 8:605734. [PMID: 33344457 PMCID: PMC7744815 DOI: 10.3389/fcell.2020.605734] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Diagnosing Alzheimer's disease (AD) in the preclinical stage offers opportunities for early intervention; however, there is currently a lack of convenient biomarkers to facilitate the diagnosis. Using radiomics analysis, we aimed to determine whether the features extracted from multiparametric magnetic resonance imaging (MRI) can be used as potential biomarkers. This study was part of the Sino Longitudinal Study on Cognitive Decline project (NCT03370744), a prospective cohort study. All participants were cognitively healthy at baseline. Cohort 1 (n = 183) was divided into individuals with preclinical AD (n = 78) and controls (n = 105) using amyloid-positron emission tomography, and this cohort was used as the training dataset (80%) and validation dataset (the remaining 20%); cohort 2 (n = 51) was selected retrospectively and divided into "converters" and "nonconverters" according to individuals' future cognitive status, and this cohort was used as a separate test dataset; cohort three included 37 converters (13 from the Alzheimer's Disease Neuroimaging Initiative) and was used as another test set for independent longitudinal research. We extracted radiomics features from multiparametric MRI scans from each participant, using t-tests, autocorrelation tests, and three independent selection algorithms. We then established two classification models (support vector machine [SVM] and random forest [RF]) to verify the efficiency of the retained features. Five-fold cross-validation and 100 repetitions were carried out for the above process. Furthermore, the acquired stable high-frequency features were tested in cohort three by paired two-sample t-tests and survival analyses to identify whether their levels changed with cognitive decline and impact conversion time. The SVM and RF models both showed excellent classification efficiency, with an average accuracy of 89.7-95.9% and 87.1-90.8% in the validation set and 81.9-89.1% and 83.2-83.7% in the test set, respectively. Three stable high-frequency features were identified, all based on the structural MRI modality: the large zone high-gray-level emphasis feature of the right posterior cingulate gyrus, the variance feature of the left superior parietal gyrus, and the coarseness feature of the left posterior cingulate gyrus; their levels were correlated with amyloid-β deposition and predicted future cognitive decline (areas under the curve 0.649-0.761). In addition, levels of the variance feature at baseline decreased with cognitive decline and could affect the conversion time (p < 0.05). In conclusion, this exploratory study shows that the radiomics features of multiparametric MRI scans could represent potential biomarkers of preclinical AD.
Collapse
Affiliation(s)
- Tao-Ran Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yue Wu
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, School of Information and Communication Engineering, Shanghai University, Shanghai, China
| | - Juan-Juan Jiang
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, School of Information and Communication Engineering, Shanghai University, Shanghai, China
| | - Hua Lin
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Chun-Lei Han
- Turku PET Centre and Turku University Hospital, Turku, Finland
| | - Jie-Hui Jiang
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, School of Information and Communication Engineering, Shanghai University, Shanghai, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Center of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| |
Collapse
|
57
|
Cai JH, He Y, Zhong XL, Lei H, Wang F, Luo GH, Zhao H, Liu JC. Magnetic Resonance Texture Analysis in Alzheimer's disease. Acad Radiol 2020; 27:1774-1783. [PMID: 32057617 DOI: 10.1016/j.acra.2020.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 12/11/2022]
Abstract
Texture analysis is an emerging field that allows mathematical detection of changes in MRI signals that are not visible among image pixels. Alzheimer's disease, a progressive neurodegenerative disease, is the most common cause of dementia. Recently, multiple texture analysis studies in patients with Alzheimer's disease have been performed. This review summarizes the main contributors to Alzheimer's disease-associated cognitive decline, presents a brief overview of texture analysis, followed by review of various MR imaging texture analysis applications in Alzheimer's disease. We also discuss the current challenges for widespread clinical utilization. MR texture analysis could potentially be applied to develop neuroimaging biomarkers for use in Alzheimer's disease clinical trials and diagnosis.
Collapse
Affiliation(s)
- Jia-Hui Cai
- Department of Radiology, The First Affiliated Hospital of University of South China, Chuanshan Road No. 69, Hengyang 421000, Hunan, China
| | - Yuan He
- Department of Radiology, The First Affiliated Hospital of University of South China, Chuanshan Road No. 69, Hengyang 421000, Hunan, China
| | - Xiao-Lin Zhong
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Hao Lei
- Department of Radiology, The First Affiliated Hospital of University of South China, Chuanshan Road No. 69, Hengyang 421000, Hunan, China
| | - Fang Wang
- Department of Radiology, The First Affiliated Hospital of University of South China, Chuanshan Road No. 69, Hengyang 421000, Hunan, China
| | - Guang-Hua Luo
- Department of Radiology, The First Affiliated Hospital of University of South China, Chuanshan Road No. 69, Hengyang 421000, Hunan, China
| | - Heng Zhao
- Department of Radiology, The First Affiliated Hospital of University of South China, Chuanshan Road No. 69, Hengyang 421000, Hunan, China; Department of Radiology, Shengjing Hospital of China Medical University, Sanhao Street No. 36, Heping District, Shenyang 110004, China.
| | - Jin-Cai Liu
- Department of Radiology, The First Affiliated Hospital of University of South China, Chuanshan Road No. 69, Hengyang 421000, Hunan, China
| |
Collapse
|
58
|
Lee S, Kim KW. Associations between texture of T1-weighted magnetic resonance imaging and radiographic pathologies in Alzheimer's disease. Eur J Neurol 2020; 28:735-744. [PMID: 33098172 DOI: 10.1111/ene.14609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND PURPOSE Texture analysis of magnetic resonance imaging (MRI) brain scans have been proposed as a promising tool in the early diagnosis of Alzheimer's disease (AD), but its biological correlates remain unknown. In this study, we examined the relationship between MRI texture features and AD pathology. METHODS The study included 150 participants who had a 3.0T T1-weighted image, amyloid-β positron emission tomography (PET), and tau PET within 3 months of each other. In each of six brain regions (hippocampus, precuneus, and entorhinal, middle temporal, posterior cingulate and superior frontal cortices), linear regression analyses adjusting for age and sex was performed to examine the effects of regional amyloid-β and tau burden on regional texture features. We also compared neuroimaging measures based on pathological severity using ANOVA. RESULTS In all regions, tau burden (p < 0.05), but not amyloid-β burden, were associated with a certain texture feature that varied with the region's cytoarchitecture. Specifically, autocorrelation and cluster shade were associated with tau burden in allocortical and periallocortical regions, whereas entropy and contrast were associated with tau burden in neocortical regions. Mean signal intensity of each region did not show any associations with AD pathology. The values of the region-specific textures also varied across groups of varying pathological severity. CONCLUSIONS Our results suggest that textures of T1-weighted MRI reflect changes in the brain that are associated with regional tau burden and the local cytoarchitecture. This study provides insight into how MRI texture can be used for detection of microstructural changes in AD.
Collapse
Affiliation(s)
- Subin Lee
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Ki Woong Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea.,Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
| | | |
Collapse
|
59
|
Zhu W, Huang H, Yang S, Luo X, Zhu W, Xu S, Meng Q, Zuo C, Zhao K, Liu H, Liu Y, Wang W. Dysfunctional Architecture Underlies White Matter Hyperintensities with and without Cognitive Impairment. J Alzheimers Dis 2020; 71:461-476. [PMID: 31403946 DOI: 10.3233/jad-190174] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND White matter hyperintensities (WMH) are common in older adults and are associated with cognitive decline. However, little is known about the functional changes underlying cognitive decline in WMH subjects. OBJECTIVES To investigate whole-brain functional connectivity (FC) underpinnings of cognitive decline in WMH subjects using univariate and multivariate analyses. METHODS Twenty-three WMH subjects with mild cognitive impairment (WMH-MCI), 43 WMH subjects with no cognitive impairment (WMH-nCI), and 55 healthy controls underwent resting-state functional MRI scans. Whole-brain FC was calculated using the fine-grained human Brainnetome Atlas, followed by performance of between-group comparisons and FC-cognition correlation analysis. A multivariate analysis using support vector machine (SVM) was performed to classify WMH-MCI and WMH-nCI subjects based on FC. RESULTS Both the WMH-MCI and WMH-nCI subjects exhibited characteristic impaired FC patterns. Markedly reduced FC involving subcortical nuclei and cortical hub regions of cognitive networks, especially the cingulate cortex, was identified in the WMH-MCI patients. In the WMH-MCI group, several connections involving the cingulate cortex were associated with cognitive decline. The exploratory mediation analyses indicated that FC alterations could partially explain the association between WMH and cognition. Furthermore, an SVM classifier based on FC distinguished WMH-MCI and WMH-nCI subjects with 78.8% accuracy. Connections that contributed most to the classification showed a similar distribution as the connections identified in the univariate analysis. CONCLUSIONS This study provides a new window into the pathophysiology of cognitive impairment in WMH subjects and offer a novel and potential approach for early detection of the cognitive impairment in WMH subjects at the individual level.
Collapse
Affiliation(s)
- Wenhao Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiqi Yang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Luo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shabei Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Meng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengchao Zuo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Zhao
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Information Science and Engineering, Shandong Normal University, Ji'nan, China
| | - Hesheng Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yong Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
60
|
Won SY, Park YW, Park M, Ahn SS, Kim J, Lee SK. Quality Reporting of Radiomics Analysis in Mild Cognitive Impairment and Alzheimer's Disease: A Roadmap for Moving Forward. Korean J Radiol 2020; 21:1345-1354. [PMID: 33169553 PMCID: PMC7689149 DOI: 10.3348/kjr.2020.0715] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/23/2020] [Accepted: 08/15/2020] [Indexed: 12/15/2022] Open
Abstract
Objective To evaluate radiomics analysis in studies on mild cognitive impairment (MCI) and Alzheimer's disease (AD) using a radiomics quality score (RQS) system to establish a roadmap for further improvement in clinical use. Materials and Methods PubMed MEDLINE and EMBASE were searched using the terms ‘cognitive impairment’ or ‘Alzheimer’ or ‘dementia’ and ‘radiomic’ or ‘texture’ or ‘radiogenomic’ for articles published until March 2020. From 258 articles, 26 relevant original research articles were selected. Two neuroradiologists assessed the quality of the methodology according to the RQS. Adherence rates for the following six key domains were evaluated: image protocol and reproducibility, feature reduction and validation, biologic/clinical utility, performance index, high level of evidence, and open science. Results The hippocampus was the most frequently analyzed (46.2%) anatomical structure. Of the 26 studies, 16 (61.5%) used an open source database (14 from Alzheimer's Disease Neuroimaging Initiative and 2 from Open Access Series of Imaging Studies). The mean RQS was 3.6 out of 36 (9.9%), and the basic adherence rate was 27.6%. Only one study (3.8%) performed external validation. The adherence rate was relatively high for reporting the imaging protocol (96.2%), multiple segmentation (76.9%), discrimination statistics (69.2%), and open science and data (65.4%) but low for conducting test-retest analysis (7.7%) and biologic correlation (3.8%). None of the studies stated potential clinical utility, conducted a phantom study, performed cut-off analysis or calibration statistics, was a prospective study, or conducted cost-effectiveness analysis, resulting in a low level of evidence. Conclusion The quality of radiomics reporting in MCI and AD studies is suboptimal. Validation is necessary using external dataset, and improvements need to be made to feature reproducibility, feature selection, clinical utility, model performance index, and pursuits of a higher level of evidence.
Collapse
Affiliation(s)
- So Yeon Won
- Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Yae Won Park
- Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea.
| | - Mina Park
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Soo Ahn
- Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jinna Kim
- Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Koo Lee
- Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
61
|
Wu Y, Li T, Han Y, Jiang J. Use of radiomic features and support vector machine to discriminate subjective cognitive decline and healthy controls .. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:1762-1765. [PMID: 33018339 DOI: 10.1109/embc44109.2020.9175840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Subjective cognitive decline (SCD) is a high-risk preclinical stage in the progress of Alzheimer's disease (AD). Its timely diagnosis is of great significance for older adults. Though multi-parameter magnetic resonance imaging (MPMRI) is a noninvasive neuroimaging technique to detect SCD, the lack of biomarkers and computed aided diagnosis (CAD) tools is a major concern for its application. Radiomics, a high-dimensional imaging feature extraction method, has been widely used for identifying biomarkers and developing CAD tools in oncological studies. Therefore, in this study, we aimed to investigate whether the radiomic approach could be used for the diagnosis of SCD. In the proposed radiomic approach, we mainly performed four steps: image preprocessing, feature extraction and screening, and classification. The dataset from Xuanwu Hospital, Beijing, China, was used in this study, including 105 healthy controls (HC) and 130 SCD subjects. All subjects were divided into one training & validation group and one test group. We extracted 30128 radiomic features from MPMRI of each subject. The t-test, autocorrelation, and Fisher score were performed for feature selection, and we deployed the support vector machine (SVM) for classification. The above process was performed 100 times with 5-fold cross-validation. The results showed that the accuracy, sensitivity, and specificity of classification was 89.03%±5.37%, 85.44%±9.28% and 91.97%±6.38% in the validation set and 84.70%±4.68%, 86.98%±10.49% and 82.59%±7.07% in the test set. In conclusion, this study has shown that the radiomic approach could be used to discriminate SCD and HC with high accuracy and sensitivity effectively.
Collapse
|
62
|
Differentiating patients with schizophrenia from healthy controls by hippocampal subfields using radiomics. Schizophr Res 2020; 223:337-344. [PMID: 32988740 DOI: 10.1016/j.schres.2020.09.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/11/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Accurately diagnosing schizophrenia is still challenging due to the lack of validated biomarkers. Here, we aimed to investigate whether radiomic features in bilateral hippocampal subfields from magnetic resonance images (MRIs) can differentiate patients with schizophrenia from healthy controls (HCs). METHODS A total of 152 participants with MRI (86 schizophrenia and 66 HCs) were allocated to training (n = 106) and test (n = 46) sets. Radiomic features (n = 642) from the bilateral hippocampal subfields processed with automatic segmentation techniques were extracted from T1-weighted MRIs. After feature selection, various combinations of classifiers (logistic regression, extra-trees, AdaBoost, XGBoost, or support vector machine) and subsampling were trained. The performance of the classifier was validated in the test set by determining the area under the curve (AUC). Furthermore, the association between selected radiomic features and clinical symptoms in schizophrenia was assessed. RESULTS Thirty radiomic features were identified to differentiate participants with schizophrenia from HCs. In the training set, the AUC exhibited poor to good performance (range: 0.683-0.861). The best performing radiomics model in the test set was achieved by the mutual information feature selection and logistic regression with an AUC, accuracy, sensitivity, and specificity of 0.821 (95% confidence interval 0.681-0.961), 82.1%, 76.9%, and 70%, respectively. Greater maximum values in the left cornu ammonis 1-3 subfield were associated with a higher severity of positive symptoms and general psychopathology in participants with schizophrenia. CONCLUSION Radiomic features from hippocampal subfields may be useful biomarkers for identifying schizophrenia.
Collapse
|
63
|
Pandey U, Saini J, Kumar M, Gupta R, Ingalhalikar M. Normative Baseline for Radiomics in Brain MRI: Evaluating the Robustness, Regional Variations, and Reproducibility on FLAIR Images. J Magn Reson Imaging 2020; 53:394-407. [PMID: 32864820 DOI: 10.1002/jmri.27349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Radiomics in neuroimaging has gained momentum as a noninvasive prediction tool not only to differentiate between types of brain tumors, but also to create phenotypic signatures in neurological and neuropsychiatric disorders. However, there is currently little understating about the robustness and reproducibility of radiomic features in a baseline normative population. PURPOSE To investigate the intra- and interscanner reproducibility, spatial robustness, and sensitivity of radiomics on fluid attenuation inversion recovery (FLAIR) images, which are widely used in neuro-oncology investigations. STUDY TYPE Retrospective. POPULATION Three separate datasets of healthy controls: 1) 87 subjects (age range 12-64 years), 2) intrascanner three timepoints, four subjects, and 3) interscanner, eight subjects at three different sites. FIELD STRENGTH/SEQUENCE T2 -weighted FLAIR at 1.5T and 3.0T. ASSESSMENT Spatial variance across lobes, and their relation with age/gender, intra- and inter-scanner reproducibility (with and without site harmonization) of radiomics. STATISTICAL TESTS Analysis of variance (ANOVA), interclass correlation (ICC), coefficient of variation (CoV), Bland-Altman analysis. RESULTS Analysis of data revealed no differences between genders; however, multiple radiomic features were highly associated with age (P < 0.05). Spatial variability was also evaluated where only 29.04% gray matter and 38.7% white matter features demonstrated an ICC >0.5. Furthermore, the results demonstrated intra-scanner reliability (ICC >0.5); however, inter-scanner reproducibility was poor, with ICC < 0.5 for 82% gray matter and 78.5% white matter features. The inter-scanner reliability improved (ICC < 0.5 for 39.67% gray matter and 38% white matter features) using site-harmonization techniques. DATA CONCLUSION These findings suggest that, accounting for age, spatial locations in radiomics-based analysis and use of intersite radiomics harmonization is crucial before interpreting these features for pathological inference. Level of Evidence 3. Technical Efficacy Stage 1. J. MAGN. RESON. IMAGING 2021;53:394-407.
Collapse
Affiliation(s)
- Umang Pandey
- Symbiosis Center for Medical Image Analysis, Symbiosis International University, Pune, India
| | - Jitender Saini
- Department of Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Manoj Kumar
- Department of Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Rakesh Gupta
- Department of Radiology, Fortis Hospital, Gurgaon, India
| | - Madhura Ingalhalikar
- Symbiosis Center for Medical Image Analysis, Symbiosis International University, Pune, India
| |
Collapse
|
64
|
Jin D, Wang P, Zalesky A, Liu B, Song C, Wang D, Xu K, Yang H, Zhang Z, Yao H, Zhou B, Han T, Zuo N, Han Y, Lu J, Wang Q, Yu C, Zhang X, Zhang X, Jiang T, Zhou Y, Liu Y. Grab-AD: Generalizability and reproducibility of altered brain activity and diagnostic classification in Alzheimer's Disease. Hum Brain Mapp 2020; 41:3379-3391. [PMID: 32364666 PMCID: PMC7375114 DOI: 10.1002/hbm.25023] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/26/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is associated with disruptions in brain activity and networks. However, there is substantial inconsistency among studies that have investigated functional brain alterations in AD; such contradictions have hindered efforts to elucidate the core disease mechanisms. In this study, we aim to comprehensively characterize AD-associated functional brain alterations using one of the world's largest resting-state functional MRI (fMRI) biobank for the disorder. The biobank includes fMRI data from six neuroimaging centers, with a total of 252 AD patients, 221 mild cognitive impairment (MCI) patients and 215 healthy comparison individuals. Meta-analytic techniques were used to unveil reliable differences in brain function among the three groups. Relative to the healthy comparison group, AD was associated with significantly reduced functional connectivity and local activity in the default-mode network, basal ganglia and cingulate gyrus, along with increased connectivity or local activity in the prefrontal lobe and hippocampus (p < .05, Bonferroni corrected). Moreover, these functional alterations were significantly correlated with the degree of cognitive impairment (AD and MCI groups) and amyloid-β burden. Machine learning models were trained to recognize key fMRI features to predict individual diagnostic status and clinical score. Leave-one-site-out cross-validation established that diagnostic status (mean area under the receiver operating characteristic curve: 0.85) and clinical score (mean correlation coefficient between predicted and actual Mini-Mental State Examination scores: 0.56, p < .0001) could be predicted with high accuracy. Collectively, our findings highlight the potential for a reproducible and generalizable functional brain imaging biomarker to aid the early diagnosis of AD and track its progression.
Collapse
Affiliation(s)
- Dan Jin
- Brainnetome Center & National Laboratory of Pattern RecognitionInstitute of Automation, Chinese Academy of SciencesBeijingChina
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijingChina
| | - Pan Wang
- Department of NeurologyTianjin Huanhu Hospital, Tianjin UniversityTianjinChina
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of PsychiatryUniversity of Melbourne and Melbourne HealthMelbourneVictoriaAustralia
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneVictoriaAustralia
| | - Bing Liu
- Brainnetome Center & National Laboratory of Pattern RecognitionInstitute of Automation, Chinese Academy of SciencesBeijingChina
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijingChina
- Center for Excellence in Brain Science and Intelligence TechnologyInstitute of Automation, Chinese Academy of SciencesBeijingChina
| | - Chengyuan Song
- Department of NeurologyQilu Hospital of Shandong UniversityJi'nanChina
| | - Dawei Wang
- Department of RadiologyQilu Hospital of Shandong UniversityJi'nanChina
| | - Kaibin Xu
- Brainnetome Center & National Laboratory of Pattern RecognitionInstitute of Automation, Chinese Academy of SciencesBeijingChina
| | - Hongwei Yang
- Department of RadiologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | | | - Hongxiang Yao
- Department of Radiology, the Second Medical Centre, National Clinical Research Centre for Geriatric DiseasesChinese PLA General HospitalBeijingChina
| | - Bo Zhou
- Department of Neurology, the Second Medical Centre, National Clinical Research Centre for Geriatric DiseasesChinese PLA General HospitalBeijingChina
| | - Tong Han
- Department of RadiologyTianjin Huanhu HospitalTianjinChina
| | - Nianming Zuo
- Brainnetome Center & National Laboratory of Pattern RecognitionInstitute of Automation, Chinese Academy of SciencesBeijingChina
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijingChina
| | - Ying Han
- Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Beijing Institute of GeriatricsBeijingChina
- National Clinical Research Center for Geriatric DisordersBeijingChina
- Center of Alzheimer's DiseaseBeijing Institute for Brain DisordersBeijingChina
| | - Jie Lu
- Department of RadiologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Qing Wang
- Department of RadiologyQilu Hospital of Shandong UniversityJi'nanChina
| | - Chunshui Yu
- Department of RadiologyTianjin Medical University General HospitalTianjinChina
| | - Xinqing Zhang
- Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Xi Zhang
- Department of Neurology, the Second Medical Centre, National Clinical Research Centre for Geriatric DiseasesChinese PLA General HospitalBeijingChina
| | - Tianzi Jiang
- Brainnetome Center & National Laboratory of Pattern RecognitionInstitute of Automation, Chinese Academy of SciencesBeijingChina
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijingChina
- Center for Excellence in Brain Science and Intelligence TechnologyInstitute of Automation, Chinese Academy of SciencesBeijingChina
| | - Yuying Zhou
- Department of NeurologyTianjin Huanhu Hospital, Tianjin UniversityTianjinChina
| | - Yong Liu
- Brainnetome Center & National Laboratory of Pattern RecognitionInstitute of Automation, Chinese Academy of SciencesBeijingChina
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijingChina
- Center for Excellence in Brain Science and Intelligence TechnologyInstitute of Automation, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
65
|
Zhao K, Ding Y, Han Y, Fan Y, Alexander-Bloch AF, Han T, Jin D, Liu B, Lu J, Song C, Wang P, Wang D, Wang Q, Xu K, Yang H, Yao H, Zheng Y, Yu C, Zhou B, Zhang X, Zhou Y, Jiang T, Zhang X, Liu Y. Independent and reproducible hippocampal radiomic biomarkers for multisite Alzheimer's disease: diagnosis, longitudinal progress and biological basis. Sci Bull (Beijing) 2020; 65:1103-1113. [PMID: 36659162 DOI: 10.1016/j.scib.2020.04.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/31/2020] [Accepted: 03/17/2020] [Indexed: 01/21/2023]
Abstract
Hippocampal morphological change is one of the main hallmarks of Alzheimer's disease (AD). However, whether hippocampal radiomic features are robust as predictors of progression from mild cognitive impairment (MCI) to AD dementia and whether these features provide any neurobiological foundation remains unclear. The primary aim of this study was to verify whether hippocampal radiomic features can serve as robust magnetic resonance imaging (MRI) markers for AD. Multivariate classifier-based support vector machine (SVM) analysis provided individual-level predictions for distinguishing AD patients (n = 261) from normal controls (NCs; n = 231) with an accuracy of 88.21% and intersite cross-validation. Further analyses of a large, independent the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset (n = 1228) reinforced these findings. In MCI groups, a systemic analysis demonstrated that the identified features were significantly associated with clinical features (e.g., apolipoprotein E (APOE) genotype, polygenic risk scores, cerebrospinal fluid (CSF) Aβ, CSF Tau), and longitudinal changes in cognition ability; more importantly, the radiomic features had a consistently altered pattern with changes in the MMSE scores over 5 years of follow-up. These comprehensive results suggest that hippocampal radiomic features can serve as robust biomarkers for clinical application in AD/MCI, and further provide evidence for predicting whether an MCI subject would convert to AD based on the radiomics of the hippocampus. The results of this study are expected to have a substantial impact on the early diagnosis of AD/MCI.
Collapse
Affiliation(s)
- Kun Zhao
- Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; School of Information Science and Engineering, Shandong Normal University, Ji'nan 250358, China
| | - Yanhui Ding
- School of Information Science and Engineering, Shandong Normal University, Ji'nan 250358, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing 100069, China; Beijing Institute of Geriatrics, Beijing 100053, China; National Clinical Research Center for Geriatric Disorders, Beijing 100053, China
| | - Yong Fan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Tong Han
- Department of Radiology, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Dan Jin
- Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Liu
- Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Chengyuan Song
- Department of Neurology, Qilu Hospital of Shandong University, Ji'nan 250012, China
| | - Pan Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin University, Tianjin 300350, China; Department of Neurology, The Secondary Medical Center, National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing 100853, China
| | - Dawei Wang
- Department of Radiology, Qilu Hospital of Shandong University, Ji'nan 250012, China
| | - Qing Wang
- Department of Radiology, Qilu Hospital of Shandong University, Ji'nan 250012, China
| | - Kaibin Xu
- Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongwei Yang
- Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Hongxiang Yao
- Department of Radiology, The Secondary Medical Center, National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing 100853, China
| | - Yuanjie Zheng
- School of Information Science and Engineering, Shandong Normal University, Ji'nan 250358, China
| | - Chunshui Yu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Bo Zhou
- Department of Neurology, The Secondary Medical Center, National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing 100853, China
| | - Xinqing Zhang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yuying Zhou
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin University, Tianjin 300350, China
| | - Tianzi Jiang
- Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Xi Zhang
- Department of Neurology, The Secondary Medical Center, National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing 100853, China.
| | - Yong Liu
- Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
66
|
Dou X, Yao H, Feng F, Wang P, Zhou B, Jin D, Yang Z, Li J, Zhao C, Wang L, An N, Liu B, Zhang X, Liu Y. Characterizing white matter connectivity in Alzheimer's disease and mild cognitive impairment: An automated fiber quantification analysis with two independent datasets. Cortex 2020; 129:390-405. [PMID: 32574842 DOI: 10.1016/j.cortex.2020.03.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 12/13/2019] [Accepted: 03/31/2020] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by progressive dementia. Diffusion tensor imaging (DTI) has been widely used to show structural integrity and delineate white matter (WM) degeneration in AD. The automated fiber quantification (AFQ) method is a fully automated approach that can rapidly and reliably identify major WM fiber tracts and evaluate WM properties. The main aim of this study was to assess WM integrity and abnormities in a cohort of patients with amnestic mild cognitive impairment (aMCI) and AD as well as normal controls (NCs). For this purpose, we first used AFQ to identify 20 major WM tracts and assessed WM integrity and abnormalities in a cohort of 120 subjects (39 NCs, 34 aMCI patients and 47 AD patients) in a discovery dataset and 122 subjects (43 NCs, 37 aMCI patients and 42 AD patients) in a replicated dataset. Pointwise differences along WM tracts were identified in the discovery dataset and simultaneously confirmed in the replicated dataset. Next, we investigated the utility of DTI measures along WM tracts as features to distinguish patients with AD from NCs via multilevel cross validation using a support vector machine. Correlation analysis revealed the identified microstructural WM alterations and classification output to be highly associated with cognitive ability in the patient groups, suggesting that they may be a robust biomarker of AD. This systematic study provides a pipeline to examine WM integrity and its potential clinical application in AD and may be useful for studying other neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Xuejiao Dou
- Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, China
| | - Hongxiang Yao
- Department of Radiology, The Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, China
| | - Feng Feng
- Department of Neurology, The Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, China
| | - Pan Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, 300350, China; Department of Neurology, Nankai University Huanhu Hospital, Tianjin, China
| | - Bo Zhou
- Department of Neurology, The Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, China
| | - Dan Jin
- Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, China
| | - Zhengyi Yang
- Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jin Li
- Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Cui Zhao
- Department of Neurology, The Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, China
| | - Luning Wang
- Department of Neurology, The Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, China
| | - Ningyu An
- Department of Radiology, The Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, China
| | - Bing Liu
- Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Xi Zhang
- Department of Neurology, The Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, China.
| | - Yong Liu
- Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
67
|
Feng W, Halm-Lutterodt NV, Tang H, Mecum A, Mesregah MK, Ma Y, Li H, Zhang F, Wu Z, Yao E, Guo X. Automated MRI-Based Deep Learning Model for Detection of Alzheimer’s Disease Process. Int J Neural Syst 2020; 30:2050032. [DOI: 10.1142/s012906572050032x] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the context of neuro-pathological disorders, neuroimaging has been widely accepted as a clinical tool for diagnosing patients with Alzheimer’s disease (AD) and mild cognitive impairment (MCI). The advanced deep learning method, a novel brain imaging technique, was applied in this study to evaluate its contribution to improving the diagnostic accuracy of AD. Three-dimensional convolutional neural networks (3D-CNNs) were applied with magnetic resonance imaging (MRI) to execute binary and ternary disease classification models. The dataset from the Alzheimer’s disease neuroimaging initiative (ADNI) was used to compare the deep learning performances across 3D-CNN, 3D-CNN-support vector machine (SVM) and two-dimensional (2D)-CNN models. The outcomes of accuracy with ternary classification for 2D-CNN, 3D-CNN and 3D-CNN-SVM were [Formula: see text]%, [Formula: see text]% and [Formula: see text]% respectively. The 3D-CNN-SVM yielded a ternary classification accuracy of 93.71%, 96.82% and 96.73% for NC, MCI and AD diagnoses, respectively. Furthermore, 3D-CNN-SVM showed the best performance for binary classification. Our study indicated that ‘NC versus MCI’ showed accuracy, sensitivity and specificity of 98.90%, 98.90% and 98.80%; ‘NC versus AD’ showed accuracy, sensitivity and specificity of 99.10%, 99.80% and 98.40%; and ‘MCI versus AD’ showed accuracy, sensitivity and specificity of 89.40%, 86.70% and 84.00%, respectively. This study clearly demonstrates that 3D-CNN-SVM yields better performance with MRI compared to currently utilized deep learning methods. In addition, 3D-CNN-SVM proved to be efficient without having to manually perform any prior feature extraction and is totally independent of the variability of imaging protocols and scanners. This suggests that it can potentially be exploited by untrained operators and extended to virtual patient imaging data. Furthermore, owing to the safety, noninvasiveness and nonirradiative properties of the MRI modality, 3D-CNN-SMV may serve as an effective screening option for AD in the general population. This study holds value in distinguishing AD and MCI subjects from normal controls and to improve value-based care of patients in clinical practice.
Collapse
Affiliation(s)
- Wei Feng
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, You’anmenwai, Xitoutiao No.10, Beijing, P. R. China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, P. R. China
| | - Nicholas Van Halm-Lutterodt
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, P. R. China
- Department of Orthopaedics and Neurosurgery, Keck Medical Center of USC, Los Angeles, CA, USA
| | - Hao Tang
- School of Computer Science and Technology, University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Andrew Mecum
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Mohamed Kamal Mesregah
- Department of Orthopaedics and Neurosurgery, Keck Medical Center of USC, Los Angeles, CA, USA
| | - Yuan Ma
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, You’anmenwai, Xitoutiao No.10, Beijing, P. R. China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, P. R. China
| | - Haibin Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, You’anmenwai, Xitoutiao No.10, Beijing, P. R. China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, P. R. China
| | - Feng Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, You’anmenwai, Xitoutiao No.10, Beijing, P. R. China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, P. R. China
| | - Zhiyuan Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, You’anmenwai, Xitoutiao No.10, Beijing, P. R. China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, P. R. China
| | - Erlin Yao
- School of Computer Science and Technology, University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiuhua Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, You’anmenwai, Xitoutiao No.10, Beijing, P. R. China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, P. R. China
| |
Collapse
|
68
|
Liu P, Wang H, Zheng S, Zhang F, Zhang X. Parkinson's Disease Diagnosis Using Neostriatum Radiomic Features Based on T2-Weighted Magnetic Resonance Imaging. Front Neurol 2020; 11:248. [PMID: 32322236 PMCID: PMC7156586 DOI: 10.3389/fneur.2020.00248] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/13/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Parkinson's disease (PD) is a neurodegenerative disease in which the neostriatum, including the caudate nucleus (CN) and putamen (PU), has an important role in the pathophysiology. However, conventional magnetic resonance imaging (MRI) lacks sufficient specificity to diagnose PD. Therefore, the study's aim was to investigate the feasibility of using a radiomics approach to distinguish PD patients from healthy controls on T2-weighted images of the neostriatum and provide a basis for the clinical diagnosis of PD. Methods: T2-weighted images from 69 PD patients and 69 age- and sex-matched healthy controls were obtained on the same 3.0T MRI scanner. Regions of interest (ROIs) were manually placed at the CN and PU on the slices showing the largest respective sizes of the CN and PU. We extracted 274 texture features from each ROI and then used the least absolute shrinkage and selection operator regression to perform feature selection and radiomics signature building to identify the CN and PU radiomics signatures consisting of optimal features. We used a receiver operating characteristic curve analysis to assess the diagnostic performance of two radiomics signatures in a training group and estimate the generalization performance in the test group. Results: There were no significant differences in the demographic and clinical characteristics between the PD patients and healthy controls. The CN and PU radiomics signatures were built using 12 and 7 optimal features, respectively. The performance of the two radiomics signatures to distinguish PD patients from healthy controls was good. In the training and test groups, the AUCs of the CN radiomics signatures were 0.9410 (95% confidence interval [CI]: 0.8986–0.9833) and 0.7732 (95% CI: 0.6292–0.9173), respectively, and the AUCs of the PU radiomics signature were 0.8767 (95% CI: 0.8066–0.9469) and 0.7143 (95% CI: 0.5540–0.8746), respectively. Vertl_GlevNonU_R appeared simultaneously in both the CN and PU radiomics signatures as an optimal feature. A t-test analysis revealed significantly higher levels of texture values of the CN and PU in the PD patients than healthy controls (P < 0.05). Conclusion: Neostriatum radiomics signatures achieved good diagnostic performance for PD and potentially could serve as a basis for the clinical diagnosis of PD.
Collapse
Affiliation(s)
- Panshi Liu
- Department of Radiology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Han Wang
- Medical Imaging Center, Taian Central Hospital, Taian, China
| | - Shilei Zheng
- Department of Radiology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Fan Zhang
- Department of Neurology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xianglin Zhang
- Department of Radiology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
69
|
Wu Y, Jiang JH, Chen L, Lu JY, Ge JJ, Liu FT, Yu JT, Lin W, Zuo CT, Wang J. Use of radiomic features and support vector machine to distinguish Parkinson's disease cases from normal controls. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:773. [PMID: 32042789 DOI: 10.21037/atm.2019.11.26] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Parkinson's disease (PD) is an irreversible neurodegenerative disease. The diagnosis of PD based on neuroimaging is usually with low-level or deep learning features, which results in difficulties in achieving precision classification or interpreting the clinical significance. Herein, we aimed to extract high-order features by using radiomics approach and achieve acceptable diagnosis accuracy in PD. Methods In this retrospective multicohort study, we collected 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) images and clinical scale [the Unified Parkinson's Disease Rating Scale (UPDRS) and Hoehn & Yahr scale (H&Y)] from two cohorts. One cohort from Huashan Hospital had 91 normal controls (NC) and 91 PD patients (UPDRS: 22.7±11.7, H&Y: 1.8±0.8), and the other cohort from Wuxi 904 Hospital had 26 NC and 22 PD patients (UPDRS: 20.9±11.6, H&Y: 1.7±0.9). The Huashan cohort was used as the training and test sets by 5-fold cross-validation and the Wuxi cohort was used as another separate test set. After identifying regions of interests (ROIs) based on the atlas-based method, radiomic features were extracted and selected by using autocorrelation and fisher score algorithm. A support vector machine (SVM) was trained to classify PD and NC based on selected radiomic features. In the comparative experiment, we compared our method with the traditional voxel values method. To guarantee the robustness, above processes were repeated in 500 times. Results Twenty-six brain ROIs were identified. Six thousand one hundred and ten radiomic features were extracted in total. Among them 30 features were remained after feature selection. The accuracies of the proposed method achieved 90.97%±4.66% and 88.08%±5.27% in Huashan and Wuxi test sets, respectively. Conclusions This study showed that radiomic features and SVM could be used to distinguish between PD and NC based on 18F-FDG PET images.
Collapse
Affiliation(s)
- Yue Wu
- Department of Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai 200444, China
| | - Jie-Hui Jiang
- Department of Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai 200444, China
| | - Li Chen
- Department of Medical Ultrasound, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jia-Ying Lu
- Department of PET Center, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jing-Jie Ge
- Department of PET Center, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Feng-Tao Liu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jin-Tai Yu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wei Lin
- Department of Neurosurgery, 904 Hospital of PLA, Anhui Medical University, Wuxi 214000, China
| | - Chuan-Tao Zuo
- Department of PET Center, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jian Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
70
|
Mo J, Liu Z, Sun K, Ma Y, Hu W, Zhang C, Wang Y, Wang X, Liu C, Zhao B, Zhang K, Zhang J, Tian J. Automated detection of hippocampal sclerosis using clinically empirical and radiomics features. Epilepsia 2019; 60:2519-2529. [PMID: 31769021 DOI: 10.1111/epi.16392] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Temporal lobe epilepsy is a common form of epilepsy that might be amenable to surgery. However, magnetic resonance imaging (MRI)-negative hippocampal sclerosis (HS) can hamper early diagnosis and surgical intervention for patients in clinical practice, resulting in disease progression. Our aim was to automatically detect and evaluate the structural alterations of HS. METHODS Eighty patients with pharmacoresistant epilepsy and histologically proven HS and 80 healthy controls were included in the study. Two automated classifiers relying on clinically empirical and radiomics features were developed to detect HS. Cross-validation was implemented on all participants, and specificity was assessed in the 80 controls. The performance, robustness, and clinical utility of the model were also evaluated. Structural analysis was performed to investigate the morphological abnormalities of HS. RESULTS The computational model based on clinical empirical features showed excellent performance, with an area under the curve (AUC) of 0.981 in the primary cohort and 0.993 in the validation cohort. One of the features, gray-white matter boundary blurring in the temporal pole, exhibited the highest weight in model performance. Another model based on radiomics features also showed satisfactory performance, with AUC of 0.997 in the primary cohort and 0.978 in the validation cohort. In particular, the model improved the detection rate of MRI-negative HS to 96.0%. The novel feature of cortical folding complexity of the temporal pole not only played a crucial role in the classifier but also had significant correlation with disease duration. SIGNIFICANCE Machine learning with quantitative clinical and radiomics features is shown to improve HS detection. HS-related structural alterations were similar in the MRI-positive and MRI-negative HS patient groups, indicating that misdiagnosis originates mainly from empirical interpretation. The cortical folding complexity of the temporal pole is a potentially valuable feature for exploring the nature of HS.
Collapse
Affiliation(s)
- Jiajie Mo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhenyu Liu
- CAS, Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, China
| | - Kai Sun
- CAS, Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, China.,Engineering Research Center of Molecular and Neuroimaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Yanshan Ma
- Epilepsy Center, Peking University First Hospital Fengtai Hospital, Beijing, China
| | - Wenhan Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yao Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Chang Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Baotian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jie Tian
- CAS, Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, China
| |
Collapse
|
71
|
Cattell R, Chen S, Huang C. Robustness of radiomic features in magnetic resonance imaging: review and a phantom study. Vis Comput Ind Biomed Art 2019; 2:19. [PMID: 32240418 PMCID: PMC7099536 DOI: 10.1186/s42492-019-0025-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023] Open
Abstract
Radiomic analysis has exponentially increased the amount of quantitative data that can be extracted from a single image. These imaging biomarkers can aid in the generation of prediction models aimed to further personalized medicine. However, the generalizability of the model is dependent on the robustness of these features. The purpose of this study is to review the current literature regarding robustness of radiomic features on magnetic resonance imaging. Additionally, a phantom study is performed to systematically evaluate the behavior of radiomic features under various conditions (signal to noise ratio, region of interest delineation, voxel size change and normalization methods) using intraclass correlation coefficients. The features extracted in this phantom study include first order, shape, gray level cooccurrence matrix and gray level run length matrix. Many features are found to be non-robust to changing parameters. Feature robustness assessment prior to feature selection, especially in the case of combining multi-institutional data, may be warranted. Further investigation is needed in this area of research.
Collapse
Affiliation(s)
- Renee Cattell
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Shenglan Chen
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Chuan Huang
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA. .,Department of Radiology, Stony Brook Medicine, Stony Brook, NY, 11794, USA. .,Department of Psychiatry, Stony Brook Medicine, Stony Brook, NY, 11794, USA.
| |
Collapse
|
72
|
Li J, Jin D, Li A, Liu B, Song C, Wang P, Wang D, Xu K, Yang H, Yao H, Zhou B, Bejanin A, Chetelat G, Han T, Lu J, Wang Q, Yu C, Zhang X, Zhou Y, Zhang X, Jiang T, Liu Y, Han Y. ASAF: altered spontaneous activity fingerprinting in Alzheimer's disease based on multisite fMRI. Sci Bull (Beijing) 2019; 64:998-1010. [PMID: 36659811 DOI: 10.1016/j.scib.2019.04.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 01/21/2023]
Abstract
Several monocentric studies have noted alterations in spontaneous brain activity in Alzheimer's disease (AD), although there is no consensus on the altered amplitude of low-frequency fluctuations in AD patients. The main aim of the present study was to identify a reliable and reproducible abnormal brain activity pattern in AD. The amplitude of local brain activity (AM), which can provide fast mapping of spontaneous brain activity across the whole brain, was evaluated based on multisite rs-fMRI data for 688 subjects (215 normal controls (NCs), 221 amnestic mild cognitive impairment (aMCI) 252 AD). Two-sample t-tests were used to detect group differences between AD patients and NCs from the same site. Differences in the AM maps were statistically analyzed via the Stouffer's meta-analysis. Consistent regions of lower spontaneous brain activity in the default mode network and increased activity in the bilateral hippocampus/parahippocampus, thalamus, caudate nucleus, orbital part of the middle frontal gyrus and left fusiform were observed in the AD patients compared with those in NCs. Significant correlations (P < 0.05, Bonferroni corrected) between the normalized amplitude index and Mini-Mental State Examination scores were found in the identified brain regions, which indicates that the altered brain activity was associated with cognitive decline in the patients. Multivariate analysis and leave-one-site-out cross-validation led to a 78.49% prediction accuracy for single-patient classification. The altered activity patterns of the identified brain regions were largely correlated with the FDG-PET results from another independent study. These results emphasized the impaired brain activity to provide a robust and reproducible imaging signature of AD.
Collapse
Affiliation(s)
- Jiachen Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Dan Jin
- Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ang Li
- Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Liu
- Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Chengyuan Song
- Department of Neurology, Qilu Hospital of Shandong University, Ji'nan 250012, China
| | - Pan Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin 300350, China; Institute of Geriatrics and Gerontology, Chinese PLA General Hospital, Beijing 100853, China
| | - Dawei Wang
- Department of Radiology, Qilu Hospital, Ji'nan 250012, China
| | - Kaibin Xu
- Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongwei Yang
- Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Hongxiang Yao
- Department of Radiology, Chinese PLA General Hospital, Beijing 100853, China
| | - Bo Zhou
- Institute of Geriatrics and Gerontology, Chinese PLA General Hospital, Beijing 100853, China
| | - Alexandre Bejanin
- Université Normandie, Inserm, Université de Caen-Normandie, Inserm UMR-S U1237, GIP Cyceron, Caen 14000, France
| | - Gael Chetelat
- Université Normandie, Inserm, Université de Caen-Normandie, Inserm UMR-S U1237, GIP Cyceron, Caen 14000, France
| | - Tong Han
- Department of Radiology, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Qing Wang
- Department of Radiology, Qilu Hospital, Ji'nan 250012, China
| | - Chunshui Yu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xinqing Zhang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yuying Zhou
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Xi Zhang
- Institute of Geriatrics and Gerontology, Chinese PLA General Hospital, Beijing 100853, China
| | - Tianzi Jiang
- Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yong Liu
- Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing 100053, China; Beijing Institute of Geriatrics, Beijing 100053, China; National Clinical Research Center for Geriatric Disorders, Beijing 100053, China.
| |
Collapse
|
73
|
Rohini P, Sundar S, Ramakrishnan S. Characterization of Alzheimer conditions in MR images using volumetric and sagittal brainstem texture features. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 173:147-155. [PMID: 31046989 DOI: 10.1016/j.cmpb.2019.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/17/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND AND OBJECTIVE Brainstem analysis in Magnetic Resonance Images is essential to detect Alzheimer's condition in the preclinical stages. In this work, an attempt has been made to segment the brainstem in sagittal (2D) and volumetric (3D) images and evaluate texture changes to differentiate Alzheimer's disease (AD) stages. METHOD The images obtained from a public access database are spatial normalized, skull stripped and contrast enhanced. Morphological Reconstruction based Fast and Robust Fuzzy 'C' Means technique is used to cluster the brain tissue in preprocessed images into three groups namely cerebrospinal fluid, grey matter and white matter. Brainstem is segmented from the white matter tissue using connected component labelling. Texture features from volumetric and sagittal brainstem slices are extracted and its statistical significance is evaluated. RESULTS Results show that the proposed approach is able to segment the brainstem from all the considered images. Variation in texture is observed to be less than 2% among sagittal brainstem slices. Additionally, midsagittal and volumetric features are correlated, suggesting that midsagittal brainstem structure gives an estimate of brainstem volume. Texture features extracted from midsagittal slice shows significant variation (p < 0.05) and is able to differentiate AD classes. CONCLUSION Midsagittal brainstem texture features are able to capture the changes occurring in the early stages of disease condition. As the distinction of AD in preclinical stage is complex and clinically significant, this approach could be useful for early diagnosis of the disease.
Collapse
Affiliation(s)
- P Rohini
- Non-Invasive Imaging and Diagnostic Laboratory, Biomedical Engineering Group, Department of Applied Mechanics, Indian Institute of Technology Madras, 600036, India.
| | - S Sundar
- Department of Mathematics, Indian Institute of Technology Madras, 600036, India.
| | - S Ramakrishnan
- Non-Invasive Imaging and Diagnostic Laboratory, Biomedical Engineering Group, Department of Applied Mechanics, Indian Institute of Technology Madras, 600036, India.
| |
Collapse
|
74
|
Zhou H, Jiang J, Lu J, Wang M, Zhang H, Zuo C. Dual-Model Radiomic Biomarkers Predict Development of Mild Cognitive Impairment Progression to Alzheimer's Disease. Front Neurosci 2019; 12:1045. [PMID: 30686995 PMCID: PMC6338093 DOI: 10.3389/fnins.2018.01045] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/24/2018] [Indexed: 01/13/2023] Open
Abstract
Predicting progression of mild cognitive impairment (MCI) to Alzheimer’s disease (AD) is clinically important. In this study, we propose a dual-model radiomic analysis with multivariate Cox proportional hazards regression models to investigate promising risk factors associated with MCI conversion to AD. T1 structural magnetic resonance imaging (MRI) and 18F-Fluorodeoxyglucose (FDG) positron emission tomography (PET) data, from the AD Neuroimaging Initiative database, were collected from 131 patients with MCI who converted to AD within 3 years and 132 patients with MCI without conversion within 3 years. These subjects were randomly partition into 70% training dataset and 30% test dataset with multiple times. We fused MRI and PET images by wavelet method. In a subset of subjects, a group comparison was performed using a two-sample t-test to determine regions of interest (ROIs) associated with MCI conversion. 172 radiomic features from ROIs for each individual were established using a published radiomics tool. Finally, L1-penalized Cox model was constructed and Harrell’s C index (C-index) was used to evaluate prediction accuracy of the model. To evaluate the efficacy of our proposed method, we used a same analysis framework to evaluate MRI and PET data separately. We constructed prognostic Cox models with: clinical data, MRI images, PET images, fused MRI/PET images, and clinical variables and fused MRI/PET images in combination. The experimental results showed that captured ROIs significantly associated with conversion to AD, such as gray matter atrophy in the bilateral hippocampus and hypometabolism in the temporoparietal cortex. Imaging model (MRI/PET/fused) provided significant enhancement in prediction of conversion compared to clinical models, especially the fused-modality Cox model. Moreover, the combination of fused-modality imaging and clinical variables resulted in the greatest accuracy of prediction. The average C-index for the clinical/MRI/PET/fused/combined model in the test dataset was 0.69, 0.73, 0.73 and 0.75, and 0.78, respectively. These results suggested that a combination of radiomic analysis and Cox model analyses could be used successfully in survival analysis and may be powerful tools for personalized precision medicine patients with potential to undergo conversion from MCI to AD.
Collapse
Affiliation(s)
- Hucheng Zhou
- Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China
| | - Jiehui Jiang
- Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China
| | - Jiaying Lu
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Wang
- Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China
| | - Huiwei Zhang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuantao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | | |
Collapse
|