51
|
Hasani SA, Mayeli M, Salehi MA, Barzegar Parizi R. A Systematic Review of the Association between Amyloid-β and τ Pathology with Functional Connectivity Alterations in the Alzheimer Dementia Spectrum Utilizing PET Scan and rsfMRI. Dement Geriatr Cogn Dis Extra 2021; 11:78-90. [PMID: 34178011 PMCID: PMC8216015 DOI: 10.1159/000516164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 11/19/2022] Open
Abstract
The association between functional connectivity (FC) alterations with amyloid-β (Aβ) and τ protein depositions in Alzheimer dementia is a subject of debate in the current literature. Although many studies have suggested a declining FC accompanying increased Aβ and τ concentrations, some investigations have contradicted this hypothesis. Therefore, this systematic review was conducted to sum up the current literature in this regard. The PROSPERO guideline for systematic reviews was applied for development of a research protocol, and this study was initiated after getting the protocol approval. Studies were screened, and those investigating FC measured by resting-state functional MRI and Aβ and τ protein depositions using amyloid and τ positron emission tomography were included. We categorized the included studies into 3 groups methodologically, addressing the question using global connectivity analysis (examining all regions of interest across the brain based on a functional atlas), seed-based connectivity analysis, or within-networks connectivity analysis. The quality of the studies was assessed using the Newcastle-Ottawa Scale. Among 31 included studies, 14 found both positive and negative correlations depending on the brain region and stage of the investigated disease, while 7 showed an overall negative correlation, 8 indicated an overall positive correlation, and 2 found a nonsignificant association between protein deposition and FC. The investigated regions were illustrated using tables. The posterior default mode network, one of the first regions of amyloid accumulation, and the temporal lobe, the early τ deposition region, are the 2 most investigated regions where inconsistencies exist. In conclusion, our study indicates that transneuronal spreading of τ and the amyloid hypothesis can justify higher FC related to higher protein depositions when global connectivity analysis is applied. However, the discrepancies observed when investigating the brain locally could be due to the varying manifestations of the amyloid and τ overload compensatory mechanisms in the brain at different stages of the disease with hyper- and hypoconnectivity cycles that can occur repeatedly. Nevertheless, further studies investigating both amyloid and τ deposition simultaneously while considering the stage of Alzheimer dementia are required to assess the accuracy of this hypothesis.
Collapse
Affiliation(s)
- Seyede Anis Hasani
- NeuroTRACT Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Mayeli
- NeuroTRACT Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Salehi
- NeuroTRACT Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rezvan Barzegar Parizi
- NeuroTRACT Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
52
|
Ibrahim B, Suppiah S, Ibrahim N, Mohamad M, Hassan HA, Nasser NS, Saripan MI. Diagnostic power of resting-state fMRI for detection of network connectivity in Alzheimer's disease and mild cognitive impairment: A systematic review. Hum Brain Mapp 2021; 42:2941-2968. [PMID: 33942449 PMCID: PMC8127155 DOI: 10.1002/hbm.25369] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/20/2022] Open
Abstract
Resting‐state fMRI (rs‐fMRI) detects functional connectivity (FC) abnormalities that occur in the brains of patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI). FC of the default mode network (DMN) is commonly impaired in AD and MCI. We conducted a systematic review aimed at determining the diagnostic power of rs‐fMRI to identify FC abnormalities in the DMN of patients with AD or MCI compared with healthy controls (HCs) using machine learning (ML) methods. Multimodal support vector machine (SVM) algorithm was the commonest form of ML method utilized. Multiple kernel approach can be utilized to aid in the classification by incorporating various discriminating features, such as FC graphs based on “nodes” and “edges” together with structural MRI‐based regional cortical thickness and gray matter volume. Other multimodal features include neuropsychiatric testing scores, DTI features, and regional cerebral blood flow. Among AD patients, the posterior cingulate cortex (PCC)/Precuneus was noted to be a highly affected hub of the DMN that demonstrated overall reduced FC. Whereas reduced DMN FC between the PCC and anterior cingulate cortex (ACC) was observed in MCI patients. Evidence indicates that the nodes of the DMN can offer moderate to high diagnostic power to distinguish AD and MCI patients. Nevertheless, various concerns over the homogeneity of data based on patient selection, scanner effects, and the variable usage of classifiers and algorithms pose a challenge for ML‐based image interpretation of rs‐fMRI datasets to become a mainstream option for diagnosing AD and predicting the conversion of HC/MCI to AD.
Collapse
Affiliation(s)
- Buhari Ibrahim
- Department of Radiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Physiology, Faculty of Basic Medical Sciences, Bauchi State University Gadau, Gadau, Nigeria
| | - Subapriya Suppiah
- Department of Radiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Normala Ibrahim
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mazlyfarina Mohamad
- Centre for Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Hasyma Abu Hassan
- Department of Radiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nisha Syed Nasser
- Department of Radiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - M Iqbal Saripan
- Department of Computer and Communication System Engineering, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
53
|
Guzmán-Vélez E, Zetterberg H, Fox-Fuller JT, Vila-Castelar C, Sanchez JS, Baena A, Garcia-Ospina G, Aguillon D, Pardilla-Delgado E, Gatchel J, Sperling RA, Johnson K, Reiman EM, Blennow K, Lopera F, Quiroz YT. Associations between plasma neurofilament light, in vivo brain pathology, and cognition in non-demented individuals with autosomal-dominant Alzheimer's disease. Alzheimers Dement 2021; 17:813-821. [PMID: 33527648 PMCID: PMC8158654 DOI: 10.1002/alz.12248] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/20/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Neurofilament light (NfL) is a promising biomarker of early neurodegeneration in Alzheimer's disease (AD). We examined whether plasma NfL was associated with in vivo amyloid beta and tau, and cognitive performance in non-demented presenilin-1 (PSEN1) E280A mutation carriers. METHODS Twenty-five mutation carriers and 19 non-carriers (age range: 28 to 49 years) were included in this study. Participants underwent 11C Pittsburgh compound B (PiB)-PET (positron emission tomography), flortaucipir-PET, blood sampling, and cognitive testing. RESULTS Mutation carriers exhibited higher plasma NfL levels than non-carriers. In carriers, higher NfL levels were related to greater regional tau burden and worse cognition, but not amyloid beta load. When we adjusted for age, a proxy of disease progression, elevated plasma NfL levels were only correlated with worse memory recall. CONCLUSIONS Findings support an association between plasma NfL, cognition, and tau pathology in non-demented individuals at genetic risk for developing AD dementia. Plasma NfL may be useful for selecting individuals at increased risk and tracking disease progression in AD.
Collapse
Affiliation(s)
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal Campus, Sweden
- UK Dementia Research Institute at UCL, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Joshua T. Fox-Fuller
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | | | - Justin S. Sanchez
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana Baena
- Grupo de Neurociencias de Antioquia of Universidad de Antioquia, Medellin, Colombia
| | - Gloria Garcia-Ospina
- Grupo de Neurociencias de Antioquia of Universidad de Antioquia, Medellin, Colombia
| | - David Aguillon
- Grupo de Neurociencias de Antioquia of Universidad de Antioquia, Medellin, Colombia
| | | | - Jennifer Gatchel
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Geriatric Psychiatry and Psychiatric Neurotherapeutics, McLean Hospital, Belmont, MA, USA
| | - Reisa A. Sperling
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Keith Johnson
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eric M. Reiman
- Banner Alzheimer’s Institute, Phoenix, AZ, USA
- University of Arizona, Phoenix, AZ, USA
- Arizona State University, Phoenix, AZ, USA
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal Campus, Sweden
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia of Universidad de Antioquia, Medellin, Colombia
| | - Yakeel T. Quiroz
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Grupo de Neurociencias de Antioquia of Universidad de Antioquia, Medellin, Colombia
| |
Collapse
|
54
|
Yao W, Chen H, Luo C, Sheng X, Zhao H, Xu Y, Bai F. Hyperconnectivity of Self-Referential Network as a Predictive Biomarker of the Progression of Alzheimer's Disease. J Alzheimers Dis 2021; 80:577-590. [PMID: 33579849 DOI: 10.3233/jad-201376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Self-referential processing is associated with the progression of Alzheimer's disease (AD), and cerebrospinal fluid (CSF) proteins have become accepted biomarkers of AD. OBJECTIVE Our objective in this study was to focus on the relationships between the self-referential network (SRN) and CSF pathology in AD-spectrum patients. METHODS A total of 80 participants, including 20 cognitively normal, 20 early mild cognitive impairment (EMCI), 20 late MCI (LMCI), and 20 AD, were recruited for this study. Independent component analysis was used to explore the topological SRN patterns, and the abnormalities of this network were identified at different stages of AD. Finally, CSF pathological characteristics (i.e., CSF Aβ, t-tau, and p-tau) that affected the abnormalities of the SRN were further determined during the progression of AD. RESULTS Compared to cognitively normal subjects, AD-spectrum patients (i.e., EMCI, LMCI, and AD) showed a reversing trend toward an association between CSF pathological markers and the abnormal SRN occurring during the progression of AD. However, a certain disease state (i.e., the present LMCI) with a low concentration of CSF tau could evoke more hyperconnectivity of the SRN than other patients with progressively increasing concentrations of CSF tau (i.e., EMCI and AD), and this fluctuation of CSF tau was more sensitive to the hyperconnectivity of the SRN than the dynamic changes of CSF Aβ. CONCLUSION The integrity of the SRN was closely associated with CSF pathological characteristics, and these findings support the view that the hyperconnectivity of the SRN will play an important role in monitoring the progression of the pre-dementia state to AD.
Collapse
Affiliation(s)
- Weina Yao
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Haifeng Chen
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Caimei Luo
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Xiaoning Sheng
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Hui Zhao
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Feng Bai
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | | |
Collapse
|
55
|
Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol 2021; 17:157-172. [PMID: 33318676 DOI: 10.1038/s41582-020-00435-y] [Citation(s) in RCA: 1665] [Impact Index Per Article: 416.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 12/17/2022]
Abstract
Alzheimer disease (AD) is the most common form of neurodegenerative disease, estimated to contribute 60-70% of all cases of dementia worldwide. According to the prevailing amyloid cascade hypothesis, amyloid-β (Aβ) deposition in the brain is the initiating event in AD, although evidence is accumulating that this hypothesis is insufficient to explain many aspects of AD pathogenesis. The discovery of increased levels of inflammatory markers in patients with AD and the identification of AD risk genes associated with innate immune functions suggest that neuroinflammation has a prominent role in the pathogenesis of AD. In this Review, we discuss the interrelationships between neuroinflammation and amyloid and tau pathologies as well as the effect of neuroinflammation on the disease trajectory in AD. We specifically focus on microglia as major players in neuroinflammation and discuss the spatial and temporal variations in microglial phenotypes that are observed under different conditions. We also consider how these cells could be modulated as a therapeutic strategy for AD.
Collapse
Affiliation(s)
- Fangda Leng
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Paul Edison
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK.
| |
Collapse
|
56
|
Cognitive trajectories of patients with focal ß-amyloid deposition. ALZHEIMERS RESEARCH & THERAPY 2021; 13:48. [PMID: 33608041 PMCID: PMC7896397 DOI: 10.1186/s13195-021-00787-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 02/08/2021] [Indexed: 11/10/2022]
Abstract
Background The presence of ß-amyloid (Aß) in the brain can be identified using amyloid PET. In clinical practice, the amyloid PET is interpreted based on dichotomous visual rating, which renders focal Aß accumulation be read as positive for Aß. However, the prognosis of patients with focal Aß deposition is not well established. Thus, we investigated cognitive trajectories of patients with focal Aß deposition. Methods We followed up 240 participants (112 cognitively unimpaired [CU], 78 amnestic mild cognitive impairment [aMCI], and 50 Alzheimer’s disease (AD) dementia [ADD]) for 2 years from 9 referral centers in South Korea. Participants were assessed with neuropsychological tests and 18F-flutemetamol (FMM) positron emission tomography (PET). Ten regions (frontal, precuneus/posterior cingulate (PPC), lateral temporal, parietal, and striatum of each hemisphere) were visually examined in the FMM scan, and participants were divided into three groups: No-FMM, Focal-FMM (FMM uptake in 1–9 regions), and Diffuse-FMM. We used mixed-effects model to investigate the speed of cognitive decline in the Focal-FMM group according to the cognitive level, extent, and location of Aß involvement, in comparison with the No- or Diffuse-FMM group. Results Forty-five of 240 (18.8%) individuals were categorized as Focal-FMM. The rate of cognitive decline in the Focal-FMM group was faster than the No-FMM group (especially in the CU and aMCI stage) and slower than the Diffuse-FMM group (in particular in the CU stage). Within the Focal-FMM group, participants with FMM uptake to a larger extent (7–9 regions) showed faster cognitive decline compared to those with uptake to a smaller extent (1–3 or 4–6 regions). The Focal-FMM group was found to have faster cognitive decline in comparison with the No-FMM when there was uptake in the PPC, striatum, and frontal cortex. Conclusions When predicting cognitive decline of patients with focal Aß deposition, the patients’ cognitive level, extent, and location of the focal involvement are important. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00787-7.
Collapse
|
57
|
Lee WJ, Yoon CW, Kim SW, Jeong HJ, Seo S, Na DL, Noh Y, Seong JK. Effects of Alzheimer's and Vascular Pathologies on Structural Connectivity in Early- and Late-Onset Alzheimer's Disease. Front Neurosci 2021; 15:606600. [PMID: 33664644 PMCID: PMC7921324 DOI: 10.3389/fnins.2021.606600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Early- and late-onset Alzheimer's disease (AD) patients often exhibit distinct features. We sought to compare overall white matter connectivity and evaluate the pathological factors (amyloid, tau, and vascular pathologies) that affect the disruption of connectivity in these two groups. A total of 50 early- and 38 late-onset AD patients, as well as age-matched cognitively normal participants, were enrolled and underwent diffusion-weighted magnetic resonance imaging to construct fractional anisotropy-weighted white matter connectivity maps. [18F]-THK5351 PET, [18F]-Flutemetamol PET, and magnetic resonance imaging were used for the evaluation of tau and related astrogliosis, amyloid, and small vessel disease markers (lacunes and white matter hyperintensities). Cluster-based statistics was performed for connectivity comparisons and correlation analysis between connectivity disruption and the pathological markers. Both patient groups exhibited significantly disrupted connectivity compared to their control counterparts with distinct patterns. Only THK retention was related to connectivity disruption in early-onset AD patients, and this disruption showed correlations with most cognitive scores, while late-onset AD patients had disrupted connectivity correlated with amyloid deposition, white matter hyperintensities, and lacunes in which only a few cognitive scores showed associations. These findings suggest that the pathogenesis of connectivity disruption and its effects on cognition are distinct between EOAD and LOAD.
Collapse
Affiliation(s)
- Wha Jin Lee
- School of Biomedical Engineering, Korea University, Seoul, South Korea
| | - Cindy W Yoon
- Department of Neurology, School of Medicine, Inha University, Incheon, South Korea
| | - Sung-Woo Kim
- School of Biomedical Engineering, Korea University, Seoul, South Korea
| | - Hye Jin Jeong
- Neuroscience Research Institute, Gachon University, Incheon, South Korea
| | - Seongho Seo
- Department of Neuroscience, College of Medicine, Gachon University, Incheon, South Korea.,Department of Electronic Engineering, Pai Chai University, Daejeon, South Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea.,Neuroscience Center, Samsung Medical Center, Seoul, South Korea
| | - Young Noh
- Department of Neurology, Gil Medical Center, College of Medicine, Gachon University, Incheon, South Korea.,Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology (GAIHST), Gachon University, Incheon, South Korea
| | - Joon-Kyung Seong
- School of Biomedical Engineering, Korea University, Seoul, South Korea.,Department of Artificial Intelligence, Korea University, Seoul, South Korea.,Interdisciplinary Program in Precision Public Health, Korea University, Seoul, South Korea
| |
Collapse
|
58
|
Yuan LQ, Zeng Q, Wang D, Wen XY, Shi Y, Zhu F, Chen SJ, Huang GZ. Neuroimaging mechanisms of high-frequency repetitive transcranial magnetic stimulation for treatment of amnestic mild cognitive impairment: a double-blind randomized sham-controlled trial. Neural Regen Res 2021; 16:707-713. [PMID: 33063732 PMCID: PMC8067941 DOI: 10.4103/1673-5374.295345] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Individuals with amnestic mild cognitive impairment (aMCI) have a high risk of developing Alzheimer’s disease. Although repetitive transcranial magnetic stimulation (rTMS) is considered a potentially effective treatment for cognitive impairment in patients with aMCI, the neuroimaging mechanisms are poorly understood. Therefore, we performed a double-blind randomized sham-controlled trial in which rTMS was applied to the left dorsolateral prefrontal cortex of aMCI patients recruited from a community near the Third Hospital Affiliated to Sun Yat-sen University, China. Twenty-four patients with aMCI were randomly assigned to receive true rTMS (treatment group, n = 12, 6 men and 6 women; age 65.08 ± 4.89 years) or sham stimulation (sham group, n = 12, 5 men and 7 women; age 64.67 ± 4.77 years). rTMS parameters included a stimulation frequency of 10 Hz, stimulation duration of 2 seconds, stimulation interval of 8 seconds, 20 repetitions at 80% of the motor threshold, and 400 pulses per session. rTMS/sham stimulation was performed five times per week over a period of 4 consecutive weeks. Our results showed that compared with baseline, Montreal Cognitive Assessment scores were significantly increased and the value of the amplitude of low-frequency fluctuation (ALFF) was significantly increased at the end of treatment and 1 month after treatment. Compared with the sham group, the ALFF values in the right inferior frontal gyrus, triangular part of the inferior frontal gyrus, right precuneus, left angular gyrus, and right supramarginal gyrus were significantly increased, and the ALFF values in the right superior frontal gyrus were significantly decreased in the treatment group. These findings suggest that high-frequency rTMS can effectively improve cognitive function in aMCI patients and alter spontaneous brain activity in cognitive-related brain areas. This study was approved by the Ethics Committee of Shenzhen Baoan Hospital of Southern Medical University, China (approval No. BYL20190901) on September 3, 2019, and registered in the Chinese Clinical Trials Registry (registration No. ChiCTR1900028180) on December 14, 2019.
Collapse
Affiliation(s)
- Li-Qiong Yuan
- Department of Rehabilitation Medicine and Physiotherapy, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Qing Zeng
- Department of Rehabilitation Medicine and Physiotherapy, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Dan Wang
- Department of Rehabilitation Medicine and Physiotherapy, Shenzhen Baoan Hospital of Southern Medical University, Shenzhen, Guangdong Province, China
| | - Xiu-Yun Wen
- Department of Rehabilitation Medicine and Physiotherapy, Shenzhen Baoan Hospital of Southern Medical University, Shenzhen, Guangdong Province, China
| | - Yu Shi
- Department of Rehabilitation Medicine and Physiotherapy, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Fen Zhu
- Department of Rehabilitation Medicine and Physiotherapy, Shenzhen Baoan Hospital of Southern Medical University, Shenzhen, Guangdong Province, China
| | - Shang-Jie Chen
- Department of Rehabilitation Medicine and Physiotherapy, Shenzhen Baoan Hospital of Southern Medical University, Shenzhen, Guangdong Province, China
| | - Guo-Zhi Huang
- Department of Rehabilitation Medicine and Physiotherapy, Zhujiang Hospital of Southern Medical University; Rehabilitation School of Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
59
|
Bagarinao E, Watanabe H, Maesawa S, Mori D, Hara K, Kawabata K, Ohdake R, Masuda M, Ogura A, Kato T, Koyama S, Katsuno M, Wakabayashi T, Kuzuya M, Hoshiyama M, Isoda H, Naganawa S, Ozaki N, Sobue G. Identifying the brain's connector hubs at the voxel level using functional connectivity overlap ratio. Neuroimage 2020; 222:117241. [DOI: 10.1016/j.neuroimage.2020.117241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/07/2020] [Indexed: 01/06/2023] Open
|
60
|
Bagarinao E, Watanabe H, Maesawa S, Mori D, Hara K, Kawabata K, Yoneyama N, Ohdake R, Imai K, Masuda M, Yokoi T, Ogura A, Taoka T, Koyama S, Tanabe HC, Katsuno M, Wakabayashi T, Kuzuya M, Hoshiyama M, Isoda H, Naganawa S, Ozaki N, Sobue G. Aging Impacts the Overall Connectivity Strength of Regions Critical for Information Transfer Among Brain Networks. Front Aging Neurosci 2020; 12:592469. [PMID: 33192489 PMCID: PMC7655963 DOI: 10.3389/fnagi.2020.592469] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Recent studies have demonstrated that connector hubs, regions considered critical for the flow of information across neural systems, are mostly involved in neurodegenerative dementia. Considering that aging can significantly affect the brain’s intrinsic connectivity, identifying aging’s impact on these regions’ overall connection strength is important to differentiate changes associated with healthy aging from neurodegenerative disorders. Using resting state functional magnetic resonance imaging data from a carefully selected cohort of 175 healthy volunteers aging from 21 to 86 years old, we computed an intrinsic connectivity contrast (ICC) metric, which quantifies a region’s overall connectivity strength, for whole brain, short-range, and long-range connections and examined age-related changes of this metric over the adult lifespan. We have identified a limited number of hub regions with ICC values that showed significant negative relationship with age. These include the medial precentral/midcingulate gyri and insula with both their short-range and long-range (and thus whole-brain) ICC values negatively associated with age, and the angular, middle frontal, and posterior cingulate gyri with their long-range ICC values mainly involved. Seed-based connectivity analyses further confirmed that these regions are connector hubs with connectivity profile that strongly overlapped with multiple large-scale brain networks. General cognitive performance was not associated with these hubs’ ICC values. These findings suggest that even healthy aging could negatively impact the efficiency of regions critical for facilitating information transfer among different functional brain networks. The extent of the regions involved, however, was limited.
Collapse
Affiliation(s)
| | - Hirohisa Watanabe
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan.,Department of Neurology, Fujita Health University School of Medicine, Toyoake, Japan.,Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Maesawa
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan.,Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Mori
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Kazuhiro Hara
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuya Kawabata
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Noritaka Yoneyama
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Reiko Ohdake
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazunori Imai
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Michihito Masuda
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takamasa Yokoi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Aya Ogura
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshiaki Taoka
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shuji Koyama
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Hiroki C Tanabe
- Department of Cognitive and Psychological Sciences, Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshihiko Wakabayashi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masafumi Kuzuya
- Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
| | - Minoru Hoshiyama
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Haruo Isoda
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan.,Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gen Sobue
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| |
Collapse
|
61
|
Sampedro F, Marín-Lahoz J, Martínez-Horta S, Camacho V, Lopez-Mora DA, Pagonabarraga J, Kulisevsky J. Extrastriatal SPECT-DAT uptake correlates with clinical and biological features of de novo Parkinson's disease. Neurobiol Aging 2020; 97:120-128. [PMID: 33212336 DOI: 10.1016/j.neurobiolaging.2020.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 10/09/2020] [Accepted: 10/17/2020] [Indexed: 10/23/2022]
Abstract
Striatal dopamine transporter (DAT) uptake assessment through I123-Ioflupane Single-Pphoton Emission Computed Tomography (SPECT) provides valuable information about the dopaminergic denervation occurring in Parkinson's disease (PD). However, little is known about the clinical or biological relevance of extrastriatal DAT uptake in PD. Here, from the Parkinson's Progression Markers Initiative, we studied 623 participants (431 PD and 192 healthy controls) with available SPECT data. Even though striatal denervation was undoubtedly the imaging hallmark of PD, extrastriatal DAT uptake was also reduced in patients with PD. Topographically, widespread frontal but also temporal and posterior cortical regions showed lower DAT uptake in PD patients with respect to healthy controls. Importantly, a longitudinal voxelwise analysis confirmed an active one-year loss of extrastriatal DAT uptake within the PD group. Extrastriatal DAT uptake also correlated with the severity of motor symptoms, cognitive performance, and cerebrospinal fluid α-synuclein levels. In addition, we found an association between the Catechol-O-methyltransferase val158met genotype and extrastriatal DAT uptake. These results highlight the clinical and biological relevance of extrastriatal SPECT-DAT uptake in PD.
Collapse
Affiliation(s)
- Frederic Sampedro
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan Marín-Lahoz
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Saul Martínez-Horta
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Faculty of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Valle Camacho
- Nuclear Medicine Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Faculty of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Faculty of Medicine, Autonomous University of Barcelona, Barcelona, Spain.
| |
Collapse
|
62
|
Parker AF, Smart CM, Scarapicchia V, Gawryluk JR. Identification of Earlier Biomarkers for Alzheimer’s Disease: A Multimodal Neuroimaging Study of Individuals with Subjective Cognitive Decline. J Alzheimers Dis 2020; 77:1067-1076. [DOI: 10.3233/jad-200299] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: Individuals with subjective cognitive decline (SCD) are thought to be the earliest along the cognitive continuum between healthy aging and Alzheimer’s disease (AD). Objective: The current study used a multi-modal neuroimaging approach to examine differences in brain structure and function between individuals with SCD and healthy controls (HC). Methods: 3T high-resolution anatomical images and resting-state functional MRI scans were retrieved for 23 individuals with SCD and 23 HC from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Results: The SCD and HC groups were not significantly different in age or education level. Voxel-based morphometry results did not show significant differences in grey matter volume between the groups. Functional MRI results revealed significantly greater functional connectivity in the default mode network in regions including the bilateral precuneus cortex, bilateral thalamus, and right hippocampal regions in individuals with SCD relative to controls. Conversely, those with SCD showed decreased functional connectivity in the bilateral frontal pole, caudate, angular gyrus, and lingual gyrus, compared to HC. Conclusion: Findings revealed differences in brain function but not structure between individuals with SCD and HC. Overall, this study represents a crucial step in characterizing individuals with SCD, a group recognized to be at increased risk for AD. It is imperative to identify biomarkers of AD prior to significant decline on clinical assessment, so that disease-delaying interventions may be delivered at the earliest possible time point.
Collapse
Affiliation(s)
- Ashleigh F. Parker
- Department of Psychology, University of Victoria, BC, Canada
- Institute on Aging and Lifelong Health, University of Victoria, BC, Canada
| | - Colette M. Smart
- Department of Psychology, University of Victoria, BC, Canada
- Institute on Aging and Lifelong Health, University of Victoria, BC, Canada
| | - Vanessa Scarapicchia
- Department of Psychology, University of Victoria, BC, Canada
- Institute on Aging and Lifelong Health, University of Victoria, BC, Canada
| | - Jodie R. Gawryluk
- Department of Psychology, University of Victoria, BC, Canada
- Institute on Aging and Lifelong Health, University of Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, BC, Canada
| | | |
Collapse
|
63
|
Cavaliere C, Tramontano L, Fiorenza D, Alfano V, Aiello M, Salvatore M. Gliosis and Neurodegenerative Diseases: The Role of PET and MR Imaging. Front Cell Neurosci 2020; 14:75. [PMID: 32327973 PMCID: PMC7161920 DOI: 10.3389/fncel.2020.00075] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/13/2020] [Indexed: 12/16/2022] Open
Abstract
Glial activation characterizes most neurodegenerative and psychiatric diseases, often anticipating clinical manifestations and macroscopical brain alterations. Although imaging techniques have improved diagnostic accuracy in many neurological conditions, often supporting diagnosis, prognosis prediction and treatment outcome, very few molecular imaging probes, specifically focused on microglial and astrocytic activation, have been translated to a clinical setting. In this context, hybrid positron emission tomography (PET)/magnetic resonance (MR) scanners represent the most advanced tool for molecular imaging, combining the functional specificity of PET radiotracers (e.g., targeting metabolism, hypoxia, and inflammation) to both high-resolution and multiparametric information derived by MR in a single imaging acquisition session. This simultaneity of findings achievable by PET/MR, if useful for reciprocal technical adjustments regarding temporal and spatial cross-modal alignment/synchronization, opens still debated issues about its clinical value in neurological patients, possibly incompliant and highly variable from a clinical point of view. While several preclinical and clinical studies have investigated the sensitivity of PET tracers to track microglial (mainly TSPO ligands) and astrocytic (mainly MAOB ligands) activation, less studies have focused on MR specificity to this topic (e.g., through the assessment of diffusion properties and T2 relaxometry), and only few exploiting the integration of simultaneous hybrid acquisition. This review aims at summarizing and critically review the current state about PET and MR imaging for glial targets, as well as the potential added value of hybrid scanners for characterizing microglial and astrocytic activation.
Collapse
|
64
|
McCluskey SP, Plisson C, Rabiner EA, Howes O. Advances in CNS PET: the state-of-the-art for new imaging targets for pathophysiology and drug development. Eur J Nucl Med Mol Imaging 2020; 47:451-489. [PMID: 31541283 PMCID: PMC6974496 DOI: 10.1007/s00259-019-04488-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE A limit on developing new treatments for a number of central nervous system (CNS) disorders has been the inadequate understanding of the in vivo pathophysiology underlying neurological and psychiatric disorders and the lack of in vivo tools to determine brain penetrance, target engagement, and relevant molecular activity of novel drugs. Molecular neuroimaging provides the tools to address this. This article aims to provide a state-of-the-art review of new PET tracers for CNS targets, focusing on developments in the last 5 years for targets recently available for in-human imaging. METHODS We provide an overview of the criteria used to evaluate PET tracers. We then used the National Institute of Mental Health Research Priorities list to identify the key CNS targets. We conducted a PubMed search (search period 1st of January 2013 to 31st of December 2018), which yielded 40 new PET tracers across 16 CNS targets which met our selectivity criteria. For each tracer, we summarised the evidence of its properties and potential for use in studies of CNS pathophysiology and drug evaluation, including its target selectivity and affinity, inter and intra-subject variability, and pharmacokinetic parameters. We also consider its potential limitations and missing characterisation data, but not specific applications in drug development. Where multiple tracers were present for a target, we provide a comparison of their properties. RESULTS AND CONCLUSIONS Our review shows that multiple new tracers have been developed for proteinopathy targets, particularly tau, as well as the purinoceptor P2X7, phosphodiesterase enzyme PDE10A, and synaptic vesicle glycoprotein 2A (SV2A), amongst others. Some of the most promising of these include 18F-MK-6240 for tau imaging, 11C-UCB-J for imaging SV2A, 11C-CURB and 11C-MK-3168 for characterisation of fatty acid amide hydrolase, 18F-FIMX for metabotropic glutamate receptor 1, and 18F-MNI-444 for imaging adenosine 2A. Our review also identifies recurrent issues within the field. Many of the tracers discussed lack in vivo blocking data, reducing confidence in selectivity. Additionally, late-stage identification of substantial off-target sites for multiple tracers highlights incomplete pre-clinical characterisation prior to translation, as well as human disease state studies carried out without confirmation of test-retest reproducibility.
Collapse
Affiliation(s)
- Stuart P McCluskey
- Invicro LLC, A Konica Minolta Company, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK.
| | - Christophe Plisson
- Invicro LLC, A Konica Minolta Company, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Eugenii A Rabiner
- Invicro LLC, A Konica Minolta Company, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Oliver Howes
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
| |
Collapse
|
65
|
Takano Y, Mutoh T, Tatewaki Y, Seki T, Yamamoto S, Odagiri H, Arai H, Taki Y. Hypoperfusion in the posterior cingulate cortex is associated with lower bone mass density in elderly women with osteopenia and Alzheimer’s disease. Clin Exp Pharmacol Physiol 2019; 47:365-371. [DOI: 10.1111/1440-1681.13217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/05/2019] [Accepted: 11/21/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Yumi Takano
- Department of Nuclear Medicine and Radiology Institute of Development, Aging and Cancer Tohoku University Sendai Japan
- Department of Geriatric Medicine and Neuroimaging Tohoku University Hospital Sendai Japan
| | - Tatsushi Mutoh
- Department of Nuclear Medicine and Radiology Institute of Development, Aging and Cancer Tohoku University Sendai Japan
- Department of Geriatric Medicine and Neuroimaging Tohoku University Hospital Sendai Japan
| | - Yasuko Tatewaki
- Department of Nuclear Medicine and Radiology Institute of Development, Aging and Cancer Tohoku University Sendai Japan
- Department of Geriatric Medicine and Neuroimaging Tohoku University Hospital Sendai Japan
| | - Toshiki Seki
- Tohoku University Graduate School of Medicine Sendai Japan
| | - Shuzo Yamamoto
- Department of Nuclear Medicine and Radiology Institute of Development, Aging and Cancer Tohoku University Sendai Japan
- Department of Geriatric Medicine and Neuroimaging Tohoku University Hospital Sendai Japan
| | - Hayato Odagiri
- Department of Diagnostic Radiology Tohoku University Hospital Sendai Japan
| | - Hiroyuki Arai
- Department of Geriatric Medicine and Neuroimaging Tohoku University Hospital Sendai Japan
| | - Yasuyuki Taki
- Department of Nuclear Medicine and Radiology Institute of Development, Aging and Cancer Tohoku University Sendai Japan
- Department of Geriatric Medicine and Neuroimaging Tohoku University Hospital Sendai Japan
| |
Collapse
|
66
|
Zeng Q, Luo X, Li K, Wang S, Zhang R, Hong H, Huang P, Jiaerken Y, Xu X, Xu J, Wang C, Zhou J, Zhang M. Distinct Spontaneous Brain Activity Patterns in Different Biologically-Defined Alzheimer's Disease Cognitive Stage: A Preliminary Study. Front Aging Neurosci 2019; 11:350. [PMID: 32009939 PMCID: PMC6980867 DOI: 10.3389/fnagi.2019.00350] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 12/02/2019] [Indexed: 12/26/2022] Open
Abstract
Background: The National Institute on Aging-Alzheimer's Association (NIA-AA) has proposed a biological definition of Alzheimer's disease (AD): individuals with both abnormal amyloid and tau biomarkers (A+T+) would be defined as AD. It remains unclear why different cognitive status is present in subjects with biological AD. Resting-state functional magnetic resonance imaging (rsfMRI) has provided an opportunity to reveal the brain activity patterns in a biologically-defined AD cohort. Accordingly, we aimed to investigate distinct brain activity patterns in subjects with existed AD pathology but in the different cognitive stages. Method: We selected individuals with AD pathology (A+T+) and healthy controls (HC, A-T-) based on the cerebrospinal fluid (CSF) biomarkers. According to the cognitive stage, we divided the A+T+ cohort into three groups: (1) preclinical AD; (2) prodromal AD; and (3) AD with dementia (d-AD). We compared spontaneous brain activity measured by a fractional amplitude of low-frequency fluctuation (fALFF) approach among four groups. Results: The analysis of covariance (ANCOVA) results showed significant differences in fALFF in the posterior cingulate cortex/precuneus (PCC/PCu). Further, compared to HC, we found increased fALFF values in the right inferior frontal gyrus (IFG) in the preclinical AD stage, whereas prodromal AD patients showed reduced fALFF in the bilateral precuneus, right middle frontal gyrus (MFG), right precentral gyrus, and postcentral gyrus. Within the d-AD group, both hyperactivity (right fusiform gyrus, right parahippocampal gyrus (PHG)/hippocampus, and inferior temporal gyrus) and hypoactivity (bilateral precuneus, left posterior cingulate cortex, left cuneus and superior occipital gyrus) were detected. Conclusion: We found the distinct brain activity patterns in different cognitive stages among the subjects defined as AD biologically. Our findings may be helpful in understanding mechanisms leading to cognitive changes in the AD pathophysiological process.
Collapse
Affiliation(s)
- Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shuyue Wang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiting Zhang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Hong
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yeerfan Jiaerken
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Wang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jiong Zhou
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
67
|
Shukla D, Mandal PK, Tripathi M, Vishwakarma G, Mishra R, Sandal K. Quantitation of in vivo brain glutathione conformers in cingulate cortex among age-matched control, MCI, and AD patients using MEGA-PRESS. Hum Brain Mapp 2019; 41:194-217. [PMID: 31584232 PMCID: PMC7268069 DOI: 10.1002/hbm.24799] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/22/2019] [Accepted: 08/26/2019] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress (OS) plays an important role in Alzheimer's disease (AD) and glutathione (GSH) mitigates this effect by maintaining redox-imbalance and free-radical neutralization. Quantified brain GSH concentration provides distinct information about OS among age-matched normal control (NC), mild cognitive impairment (MCI) and AD patients. We report alterations of in vivo GSH conformers, along with the choline, creatine, and N-acetylaspartate levels in the cingulate cortex (CC) containing anterior (ACC) and posterior (PCC) regions of 64 (27 NC, 19 MCI, and 18 AD) participants using MEscher-GArwood-Point-RESolved spectroscopy sequence. Result indicated, tissue corrected GSH depletion in PCC among MCI (p = .001) and AD (p = .028) and in ACC among MCI (p = .194) and AD (p = .025) as compared to NC. Effects of the group, region, and group × region on GSH with age and gender as covariates were analyzed using a generalized linear model with Bonferroni correction for multiple comparisons. A significant effect of group with GSH depletion in AD and MCI was observed as compared to NC. Receiver operator characteristic (ROC) analysis of GSH level in CC differentiated between MCI and NC groups with an accuracy of 82.8% and 73.5% between AD and NC groups. Multivariate ROC analysis for the combined effect of the GSH alteration in both ACC and PCC regions provided improved diagnostic accuracy of 86.6% for NC to MCI conversion and 76.4% for NC to AD conversion. We conclude that only closed GSH conformer depletion in the ACC and PCC regions is critical and constitute a potential biomarker for AD.
Collapse
Affiliation(s)
- Deepika Shukla
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
| | - Pravat Kumar Mandal
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India.,Florey Institute of Neuroscience and Mental Health, Melbourne School of Medicine Campus, Melbourne, Australia
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Gayatri Vishwakarma
- Department of Biostatistics, Indian Spinal Injuries Centre, New Delhi, India
| | - Ritwick Mishra
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
| | - Kanika Sandal
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
| |
Collapse
|
68
|
Watabe T, Hatazawa J. Evaluation of Functional Connectivity in the Brain Using Positron Emission Tomography: A Mini-Review. Front Neurosci 2019; 13:775. [PMID: 31402852 PMCID: PMC6676772 DOI: 10.3389/fnins.2019.00775] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/10/2019] [Indexed: 11/13/2022] Open
Abstract
Resting-state networks (RSNs) exhibit spontaneous functional connectivity in the resting state. Previous studies have evaluated RSNs mainly based on spontaneous fluctuations in blood oxygenation level-dependent (BOLD) signals during functional magnetic resonance imaging (fMRI). However, separation between regional increases in cerebral blood flow (CBF) and oxygen consumption is theoretically difficult using BOLD-fMRI. Such separation can be achieved using quantitative 15O-gas and water positron emission tomography (PET). In addition, 18F-FDG PET can be used to investigate functional connectivity based on changes in glucose metabolism, which reflects local brain activity. Previous studies have highlighted the feasibility and clinical usefulness of 18F-FDG-PET for the analysis of RSNs, and recent studies have utilized simultaneous PET/fMRI for such analyses. While PET provides seed information regarding the focus of the abnormalities (e.g., hypometabolism and reduced target binding), fMRI is used for the analysis of functional connectivity. Thus, as PET and fMRI provide different types of information, integrating these modalities may aid in elucidating the pathological mechanisms underlying certain diseases, and in characterizing individual patients.
Collapse
Affiliation(s)
- Tadashi Watabe
- Department of Nuclear Medicine and Tracer Kinetics, Graduate School of Medicine, Osaka University, Osaka, Japan.,Institute for Radiation Sciences, Osaka University, Osaka, Japan
| | - Jun Hatazawa
- Department of Nuclear Medicine and Tracer Kinetics, Graduate School of Medicine, Osaka University, Osaka, Japan.,Institute for Radiation Sciences, Osaka University, Osaka, Japan
| |
Collapse
|
69
|
Benito-León J, Sanz-Morales E, Melero H, Louis ED, Romero JP, Rocon E, Malpica N. Graph theory analysis of resting-state functional magnetic resonance imaging in essential tremor. Hum Brain Mapp 2019; 40:4686-4702. [PMID: 31332912 DOI: 10.1002/hbm.24730] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 11/10/2022] Open
Abstract
Essential tremor (ET) is a neurological disease with both motor and nonmotor manifestations; however, little is known about its underlying brain basis. Furthermore, the overall organization of the brain network in ET remains largely unexplored. We investigated the topological properties of brain functional network, derived from resting-state functional magnetic resonance imaging (MRI) data, in 23 ET patients versus 23 healthy controls. Graph theory analysis was used to assess the functional network organization. At the global level, the functional network of ET patients was characterized by lower small-worldness values than healthy controls-less clustered functionality of the brain. At the regional level, compared with the healthy controls, ET patients showed significantly higher values of global efficiency, cost and degree, and a shorter average path length in the left inferior frontal gyrus (pars opercularis), right inferior temporal gyrus (posterior division and temporo-occipital part), right inferior lateral occipital cortex, left paracingulate, bilateral precuneus bilaterally, left lingual gyrus, right hippocampus, left amygdala, nucleus accumbens bilaterally, and left middle temporal gyrus (posterior part). In addition, ET patients showed significant higher local efficiency and clustering coefficient values in frontal medial cortex bilaterally, subcallosal cortex, posterior cingulate cortex, parahippocampal gyri bilaterally (posterior division), right lingual gyrus, right cerebellar flocculus, right postcentral gyrus, right inferior semilunar lobule of cerebellum and culmen of vermis. Finally, the right intracalcarine cortex and the left orbitofrontal cortex showed a shorter average path length in ET patients, while the left frontal operculum and the right planum polare showed a higher betweenness centrality in ET patients. In conclusion, the efficiency of the overall brain functional network in ET is disrupted. Further, our results support the concept that ET is a disorder that disrupts widespread brain regions, including those outside of the brain regions responsible for tremor.
Collapse
Affiliation(s)
- Julián Benito-León
- Department of Neurology, University Hospital 12 de Octubre, Madrid, Spain.,Center of Biomedical Network Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Medicine, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Emilio Sanz-Morales
- Medical Image Analysis Laboratory (LAIMBIO), Rey Juan Carlos University, Madrid, Spain
| | - Helena Melero
- Medical Image Analysis Laboratory (LAIMBIO), Rey Juan Carlos University, Madrid, Spain
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, Connecticut.,Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, Connecticut.,Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Juan P Romero
- Faculty of Biosanitary Sciences, Francisco de Vitoria University, Madrid, Spain.,Brain Damage Unit, Hospital Beata Maria Ana, Madrid, Spain
| | - Eduardo Rocon
- Neural and Cognitive Engineering group, Center for Automation and Robotics (CAR) CSIC-UPM, Arganda del Rey, Spain
| | - Norberto Malpica
- Medical Image Analysis Laboratory (LAIMBIO), Rey Juan Carlos University, Madrid, Spain
| |
Collapse
|
70
|
Association between Brain and Plasma Glutamine Levels in Healthy Young Subjects Investigated by MRS and LC/MS. Nutrients 2019; 11:nu11071649. [PMID: 31330962 PMCID: PMC6682979 DOI: 10.3390/nu11071649] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/09/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
Both glutamine (Gln) and glutamate (Glu) are known to exist in plasma and brain. However, despite the assumed relationship between brain and plasma, no studies have clarified the association between them. Proton magnetic resonance spectroscopy (MRS) was sequentially performed twice, with a 60-min interval, on 10 males and 10 females using a 3T scanner. Blood samples for liquid chromatography-mass spectrometry (LC/MS) to measure Gln and Glu concentrations in plasma were collected during the time interval between the two MRS sessions. MRS voxels of interest were localized at the posterior cingulate cortex (PCC) and cerebellum (Cbll) and measured by the SPECIAL sequence. Spearman's correlation coefficient was used to examine the association between brain and plasma metabolites. The Gln concentrations in PCC (mean of two measurements) were positively correlated with Gln concentrations in plasma (p < 0.01, r = 0.72). However, the Glu concentrations in the two regions were not correlated with those in plasma. Consideration of the different dynamics of Gln and Glu between plasma and brain is crucial when addressing the pathomechanism and therapeutic strategies for brain disorders such as Alzheimer's disease and hepatic encephalopathy.
Collapse
|
71
|
A 5-year longitudinal evaluation in patients with mild cognitive impairment by 11C-PIB PET/CT: a visual analysis. Nucl Med Commun 2019; 40:525-531. [PMID: 30973840 DOI: 10.1097/mnm.0000000000001004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the cerebral amyloid distribution in patients with mild cognitive impairment (MCI), assessed by carbon-11-Pittsburgh compound B (C-PIB) PET/CT, after 5 years of follow-up. PATIENTS AND METHODS Ten amnestic MCI (A-MCI) and four nonamnestic (NA-MCI) patients were studied by C-PIB PET/CT and re-evaluated 5 years later by a new C-PIB PET/CT. PET/CT scans were acquired 60-90 min after the administration of 555 MBq C-PIB and analyzed visually, to obtain a score of the cerebral cortical C-PIB retention in the frontal, basal ganglia (BG), temporoparietal (TP), occipital, posterior cingulate, and cerebellum areas. Initial and 5-year follow-up C-PIB retentions were compared. RESULTS Initially, 9/10 A-MCI patients were C-PIB positive and one was C-PIB negative. All four NA-MCI patients were C-PIB negative. Of the C-PIB-positive A-MCI patients, seven progressed to Alzheimer's disease dementia (AD-D), one to mixed dementia and one remained as A-MCI. The C-PIB-negative A-MCI patient remained as A-MCI. Of the four C-PIB-negative NA-MCI, one progressed to semantic dementia. All changes in C-PIB retention were of low intensity. The A-MCI patients who progressed to AD-D (n=7) showed an increase in C-PIB retention in the frontal (5/7), BG (3/7), TP (3/7), occipital (1/7), and posterior cingulate (1/7) regions. The A-MCI patient who progressed to mix dementia showed an increase in C-PIB retention in the frontal region. The C-PIB-positive A-MCI patient who remained as A-MCI showed an increase in C-PIB retention in the frontal, BG, and TP areas. The amyloid deposition in the anterior part of the brain (frontal, TP, and BG) increased more than that in the posterior part (occipital and precuneus) (7/9 vs. 2/9; P<0.05). CONCLUSION PIB retention increased predominantly in the frontal, BG, and TP areas. C-PIB-positive A-MCI patients mostly progressed to AD-D, showing similar topographic changes in their cerebral C-PIB pattern than the patient who remained as A-MCI.
Collapse
|
72
|
Tau Accumulation and Network Breakdown in Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1184:231-240. [PMID: 32096042 DOI: 10.1007/978-981-32-9358-8_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Misfolded and aggregated tau and amyloid β (Aβ) proteins are the pathological hallmarks of Alzheimer's disease (AD). These aberrant proteins lose their physiological roles, acquire neurotoxicity, and propagate across neural systems. Despite the growing understanding of the molecular pathophysiology, the relationship among molecular alterations, pathological changes, and dementia onset and progression remain to be elucidated. Connectivity is an exclusive characteristic of the brain, and the integrity and segregation of the functional and anatomical networks are crucial for normal functioning. Interestingly, a lot of magnetic resonance imaging (MRI) studies have demonstrated successive structural and functional disconnection among brain regions supporting the idea that AD is a disconnection syndrome. Recent several studies using the combination of cutting-edge Aβ and tau PET tracers integrated by data-driven statistical methods, resting-state functional MRI, and diffusion tensor imaging have shed light on the spatial distribution pattern of tau retention as well the relationship between tau retention and functional/structural network disruption in AD. Regional retention of tau PET traces is associated with gray matter changes, structural network disruption, and cognitive function tests. The tau retention will mainly spread along with cognition-related resting state networks and be more common in the network hubs which exhibit many strong interconnections with other regions within the network as well as without the networks. Mainly, precuneus and posterior cingulate gyrus are commonly involved and can be the critical nodes associated with clinically manifested dementia from the normal cognitive state.
Collapse
|
73
|
Amoroso N, La Rocca M, Bruno S, Maggipinto T, Monaco A, Bellotti R, Tangaro S. Multiplex Networks for Early Diagnosis of Alzheimer's Disease. Front Aging Neurosci 2018; 10:365. [PMID: 30487745 PMCID: PMC6247675 DOI: 10.3389/fnagi.2018.00365] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/23/2018] [Indexed: 12/18/2022] Open
Abstract
Analysis and quantification of brain structural changes, using Magnetic Resonance Imaging (MRI), are increasingly used to define novel biomarkers of brain pathologies, such as Alzheimer's disease (AD). Several studies have suggested that brain topological organization can reveal early signs of AD. Here, we propose a novel brain model which captures both intra- and inter-subject information within a multiplex network approach. This model localizes brain atrophy effects and summarizes them with a diagnostic score. On an independent test set, our multiplex-based score segregates (i) normal controls (NC) from AD patients with a 0.86±0.01 accuracy and (ii) NC from mild cognitive impairment (MCI) subjects that will convert to AD (cMCI) with an accuracy of 0.84±0.01. The model shows that illness effects are maximally detected by parceling the brain in equal volumes of 3, 000 mm3 ("patches"), without any a priori segmentation based on anatomical features. The multiplex approach shows great sensitivity in detecting anomalous changes in the brain; the robustness of the obtained results is assessed using both voxel-based morphometry and FreeSurfer morphological features. Because of its generality this method can provide a reliable tool for clinical trials and a disease signature of many neurodegenerative pathologies.
Collapse
Affiliation(s)
- Nicola Amoroso
- Dipartimento Interateneo di Fisica “M. Merlin”, Università degli studi di Bari “A. Moro”, Bari, Italy
- Dipartimento Interateneo di Fisica “M. Merlin”, Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - Marianna La Rocca
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Stefania Bruno
- Blackheath Brain Injury Rehabilitation Centre, London, United Kingdom
| | - Tommaso Maggipinto
- Dipartimento Interateneo di Fisica “M. Merlin”, Università degli studi di Bari “A. Moro”, Bari, Italy
- Dipartimento Interateneo di Fisica “M. Merlin”, Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - Alfonso Monaco
- Dipartimento Interateneo di Fisica “M. Merlin”, Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - Roberto Bellotti
- Dipartimento Interateneo di Fisica “M. Merlin”, Università degli studi di Bari “A. Moro”, Bari, Italy
- Dipartimento Interateneo di Fisica “M. Merlin”, Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - Sabina Tangaro
- Dipartimento Interateneo di Fisica “M. Merlin”, Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| |
Collapse
|