51
|
Gorodetski L, Zeira R, Lavian H, Korngreen A. Long-term plasticity of glutamatergic input from the subthalamic nucleus to the entopeduncular nucleus. Eur J Neurosci 2018; 48:2139-2151. [PMID: 30103273 DOI: 10.1111/ejn.14105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/24/2018] [Accepted: 08/01/2018] [Indexed: 11/26/2022]
Abstract
The hyperdirect pathway of the basal ganglia bypasses the striatum, and delivers cortical information directly to the subthalamic nucleus (STN). In rodents, the STN excites the two output nuclei of the basal ganglia, the entopeduncular nucleus (EP) and the substantia nigra reticulata (SNr). Thus, during hyperdirect pathway activation, the STN drives EP firing inhibiting the thalamus. We hypothesized that STN activity could induce long-term changes to the STN->EP synapse. To test this hypothesis, we recorded in the whole-cell mode from neurons in the EP in acute brain slices from rats while electrically stimulating the STN. Repetitive pre-synaptic stimulation generated modest long-term depression (LTD) in the STN->EP synapse. However, pairing EP firing with STN stimulation generated robust LTD that manifested for pre-before post-as well as for post- before pre-synaptic pairing. This LTD was highly sensitive to the time difference and was not detected at a time delay of 10 ms. To investigate whether post-synaptic calcium levels were important for LTD induction, we made dendritic recordings from EP neurons that revealed action potential back-propagation and dendritic calcium transients. Buffering the dendritic calcium concentration in the EP neurons with EGTA generated long term potentiation instead of LTD. Finally, mild LTD could be induced by post-synaptic activity alone that was blocked by an endocannabinoid 1 (CB1) receptor blocker. These results thus suggest there may be an adaptive mechanism for buffering the impact of the hyperdirect pathway on basal ganglia output which could contribute to the de-correlation of STN and EP firing.
Collapse
Affiliation(s)
- Lilach Gorodetski
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Reut Zeira
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Hagar Lavian
- The Leslie and Susan Gonda Interdisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Alon Korngreen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,The Leslie and Susan Gonda Interdisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
52
|
D5 dopamine receptors control glutamatergic AMPA transmission between the motor cortex and subthalamic nucleus. Sci Rep 2018; 8:8858. [PMID: 29891970 PMCID: PMC5995923 DOI: 10.1038/s41598-018-27195-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/25/2018] [Indexed: 12/23/2022] Open
Abstract
Corticofugal fibers target the subthalamic nucleus (STN), a component nucleus of the basal ganglia, in addition to the striatum, their main input. The cortico-subthalamic, or hyperdirect, pathway, is thought to supplement the cortico-striatal pathways in order to interrupt/change planned actions. To explore the previously unknown properties of the neurons that project to the STN, retrograde and anterograde tools were used to specifically identify them in the motor cortex and selectively stimulate their synapses in the STN. The cortico-subthalamic neurons exhibited very little sag and fired an initial doublet followed by non-adapting action potentials. In the STN, AMPA/kainate synaptic currents had a voltage-dependent conductance, indicative of GluA2-lacking receptors and were partly inhibited by Naspm. AMPA transmission displayed short-term depression, with the exception of a limited bandpass in the 5 to 15 Hz range. AMPA synaptic currents were negatively controlled by dopamine D5 receptors. The reduction in synaptic strength was due to postsynaptic D5 receptors, mediated by a PKA-dependent pathway, but did not involve a modified rectification index. Our data indicated that dopamine, through post-synaptic D5 receptors, limited the cortical drive onto STN neurons in the normal brain.
Collapse
|
53
|
Cenci MA, Jörntell H, Petersson P. On the neuronal circuitry mediating L-DOPA-induced dyskinesia. J Neural Transm (Vienna) 2018; 125:1157-1169. [PMID: 29704061 PMCID: PMC6060876 DOI: 10.1007/s00702-018-1886-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/17/2018] [Indexed: 11/27/2022]
Abstract
With the advent of rodent models of l-DOPA-induced dyskinesia (LID), a growing literature has linked molecular changes in the striatum to the development and expression of abnormal involuntary movements. Changes in information processing at the striatal level are assumed to impact on the activity of downstream basal ganglia nuclei, which in turn influence brain-wide networks, but very little is actually known about systems-level mechanisms of dyskinesia. As an aid to approach this topic, we here review the anatomical and physiological organisation of cortico-basal ganglia-thalamocortical circuits, and the changes affecting these circuits in animal models of parkinsonism and LID. We then review recent findings indicating that an abnormal cerebellar compensation plays a causal role in LID, and that structures outside of the classical motor circuits are implicated too. In summarizing the available data, we also propose hypotheses and identify important knowledge gaps worthy of further investigation. In addition to informing novel therapeutic approaches, the study of LID can provide new clues about the interplay between different brain circuits in the control of movement.
Collapse
Affiliation(s)
- M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department Experimental Medical Science, Lund University, Lund, Sweden.
| | - Henrik Jörntell
- Neural Basis of Sensorimotor Control, Department Experimental Medical Science, Lund University, Lund, Sweden
| | - Per Petersson
- The Group for Integrative Neurophysiology and Neurotechnology, Neuronano Research Centre, Department Experimental Medical Science, Lund University, Lund, Sweden
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
54
|
Wang Y, Zhou FM. Striatal But Not Extrastriatal Dopamine Receptors Are Critical to Dopaminergic Motor Stimulation. Front Pharmacol 2017; 8:935. [PMID: 29311936 PMCID: PMC5742616 DOI: 10.3389/fphar.2017.00935] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 12/11/2017] [Indexed: 11/19/2022] Open
Abstract
Dopamine (DA) is required for motor function in vertebrate animals including humans. The striatum, a key motor control center, receives a dense DA innervation and express high levels of DA D1 receptors (D1Rs) and D2 receptors (D2Rs). Other brain areas involved in motor function such as the globus pallidus external segment (GPe) and the substantia nigra pars reticulata (SNr) and the motor cortex (MC) also receive DA innervation and express DA receptors. Thus, the relative contribution of the striatal and extrastriatal DA systems to the motor function has been an important question critical for understanding the functional operation of the motor control circuits and also for therapeutic targeting. We have now experimentally addressed this question in the transcription factor Pitx3 null mutant (Pitx3Null) mice that have an autogenic and parkinsonian-like striatal DA denervation and hence supersensitive motor response to DA stimulation. Using DA agonist unilateral microinjection-induced rotation as a reliable readout of motor stimulation, our results show that L-dopa microinjection into the dorsal striatum (DS) induced 5–10 times more rotations than that induced by L-dopa microinjection into GPe and SNr, while L-dopa microinjection into the primary MC induced the least number of rotations. Furthermore, our results show that separate microinjection of the D1R-like agonist SKF81297 and the D2R-like agonist ropinirole into the DS each induced only modest numbers of rotation, whereas concurrent injection of the two agonists triggered more rotations than the sum of the rotations induced by each of these two agonists separately, indicating D1R–D2R synergy. These results suggest that the striatum, not GPe, SNr or MC, is the primary site for D1Rs and D2Rs to synergistically stimulate motor function in L-dopa treatment of Parkinson’s disease (PD). Our results also predict that non-selective, broad spectrum DA agonists activating both D1Rs and D2Rs are more efficacious anti-PD drugs than the current D2R agonists.
Collapse
Affiliation(s)
- Yuhan Wang
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, TN, United States
| | - Fu-Ming Zhou
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, TN, United States
| |
Collapse
|
55
|
Ivica N, Richter U, Sjöbom J, Brys I, Tamtè M, Petersson P. Changes in neuronal activity of cortico-basal ganglia-thalamic networks induced by acute dopaminergic manipulations in rats. Eur J Neurosci 2017; 47:236-250. [PMID: 29250896 DOI: 10.1111/ejn.13805] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 01/18/2023]
Abstract
The basal ganglia are thought to be particularly sensitive to changes in dopaminergic tone, and the realization that reduced dopaminergic signaling causes pronounced motor dysfunction is the rationale behind dopamine replacement therapy in Parkinson's disease. It has, however, proven difficult to identify which neurophysiological changes that ultimately lead to motor dysfunctions. To clarify this, we have here recorded neuronal activity throughout the cortico-basal ganglia-thalamic circuits in freely behaving rats during periods of immobility following acute dopaminergic manipulations, involving both vesicular dopamine depletion and antagonism of D1 and D2 type dopamine receptors. Synchronized and rhythmic activities were detected in the form of betaband oscillations in local field potentials and as cortical entrainment of action potentials in several basal ganglia structures. Analyses of the temporal development of synchronized oscillations revealed a spread from cortex to gradually also include deeper structures. In addition, firing rate changes involving neurons in all parts of the network were observed. These changes were typically relatively balanced within each structure, resulting in negligible net rate changes. Animals treated with D1 receptor antagonist showed a rapid onset of hypokinesia that preceded most of the neurophysiological changes, with the exception of these balanced rate changes. Parallel rate changes in functionally coupled ensembles of neurons in different structures may therefore be the first step in a cascade of neurophysiological changes underlying motor symptoms in the parkinsonian state. We suggest that balanced rate changes in distributed networks are possible mechanism of disease that should be further investigated in conditions involving dopaminergic dysfunction.
Collapse
Affiliation(s)
- Nedjeljka Ivica
- Department of Experimental Medical Sciences, Integrative Neurophysiology and Neurotechnology, Neuronano Research Center, Lund University, BMC, S-221 84, Lund, Sweden
| | - Ulrike Richter
- Department of Experimental Medical Sciences, Integrative Neurophysiology and Neurotechnology, Neuronano Research Center, Lund University, BMC, S-221 84, Lund, Sweden
| | - Joel Sjöbom
- Department of Experimental Medical Sciences, Integrative Neurophysiology and Neurotechnology, Neuronano Research Center, Lund University, BMC, S-221 84, Lund, Sweden
| | - Ivani Brys
- Department of Experimental Medical Sciences, Integrative Neurophysiology and Neurotechnology, Neuronano Research Center, Lund University, BMC, S-221 84, Lund, Sweden
| | - Martin Tamtè
- Department of Experimental Medical Sciences, Integrative Neurophysiology and Neurotechnology, Neuronano Research Center, Lund University, BMC, S-221 84, Lund, Sweden
| | - Per Petersson
- Department of Experimental Medical Sciences, Integrative Neurophysiology and Neurotechnology, Neuronano Research Center, Lund University, BMC, S-221 84, Lund, Sweden
| |
Collapse
|
56
|
Blesa J, Trigo-Damas I, Dileone M, Del Rey NLG, Hernandez LF, Obeso JA. Compensatory mechanisms in Parkinson's disease: Circuits adaptations and role in disease modification. Exp Neurol 2017; 298:148-161. [PMID: 28987461 DOI: 10.1016/j.expneurol.2017.10.002] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/27/2017] [Accepted: 10/03/2017] [Indexed: 12/21/2022]
Abstract
The motor features of Parkinson's disease (PD) are well known to manifest only when striatal dopaminergic deficit reaches 60-70%. Thus, PD has a long pre-symptomatic and pre-motor evolution during which compensatory mechanisms take place to delay the clinical onset of disabling manifestations. Classic compensatory mechanisms have been attributed to changes and adjustments in the nigro-striatal system, such as increased neuronal activity in the substantia nigra pars compacta and enhanced dopamine synthesis and release in the striatum. However, it is not so clear currently that such changes occur early enough to account for the pre-symptomatic period. Other possible mechanisms relate to changes in basal ganglia and motor cortical circuits including the cerebellum. However, data from early PD patients are difficult to obtain as most studies have been carried out once the diagnosis and treatments have been established. Likewise, putative compensatory mechanisms taking place throughout disease evolution are nearly impossible to distinguish by themselves. Here, we review the evidence for the role of the best known and other possible compensatory mechanisms in PD. We also discuss the possibility that, although beneficial in practical terms, compensation could also play a deleterious role in disease progression.
Collapse
Affiliation(s)
- Javier Blesa
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain.
| | - Inés Trigo-Damas
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Michele Dileone
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Natalia Lopez-Gonzalez Del Rey
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Ledia F Hernandez
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - José A Obeso
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain.
| |
Collapse
|
57
|
Masilamoni GJ, Smith Y. Chronic MPTP administration regimen in monkeys: a model of dopaminergic and non-dopaminergic cell loss in Parkinson's disease. J Neural Transm (Vienna) 2017; 125:337-363. [PMID: 28861737 DOI: 10.1007/s00702-017-1774-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/29/2017] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder clinically characterized by cardinal motor deficits including bradykinesia, tremor, rigidity and postural instability. Over the past decades, it has become clear that PD symptoms extend far beyond motor signs to include cognitive, autonomic and psychiatric impairments, most likely resulting from cortical and subcortical lesions of non-dopaminergic systems. In addition to nigrostriatal dopaminergic degeneration, pathological examination of PD brains, indeed, reveals widespread distribution of intracytoplasmic inclusions (Lewy bodies) and death of non-dopaminergic neurons in the brainstem and thalamus. For that past three decades, the MPTP-treated monkey has been recognized as the gold standard PD model because it displays some of the key behavioral and pathophysiological changes seen in PD patients. However, a common criticism raised by some authors about this model, and other neurotoxin-based models of PD, is the lack of neuronal loss beyond the nigrostriatal dopaminergic system. In this review, we argue that this assumption is largely incorrect and solely based on data from monkeys intoxicated with acute administration of MPTP. Work achieved in our laboratory and others strongly suggest that long-term chronic administration of MPTP leads to brain pathology beyond the dopaminergic system that displays close similarities to that seen in PD patients. This review critically examines these data and suggests that the chronically MPTP-treated nonhuman primate model may be suitable to study the pathophysiology and therapeutics of some non-motor features of PD.
Collapse
Affiliation(s)
- Gunasingh J Masilamoni
- Yerkes National Primate Research Center, Emory University, 954, Gatewood Rd NE, Atlanta, GA, 30322, USA.
- Udall Center of Excellence for Parkinson's Disease, Emory University, 954, Gatewood Rd NE, Atlanta, GA, 30322, USA.
| | - Yoland Smith
- Yerkes National Primate Research Center, Emory University, 954, Gatewood Rd NE, Atlanta, GA, 30322, USA
- Department of Neurology, Emory University, 954, Gatewood Rd NE, Atlanta, GA, 30322, USA
- Udall Center of Excellence for Parkinson's Disease, Emory University, 954, Gatewood Rd NE, Atlanta, GA, 30322, USA
| |
Collapse
|
58
|
Dopaminergic Modulation of Synaptic Integration and Firing Patterns in the Rat Entopeduncular Nucleus. J Neurosci 2017; 37:7177-7187. [PMID: 28652413 DOI: 10.1523/jneurosci.0639-17.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/07/2017] [Accepted: 06/13/2017] [Indexed: 11/21/2022] Open
Abstract
Dopamine is known to differentially modulate the impact of cortical input to the striatum between the direct and indirect pathways of the basal ganglia (BG). However, the role of extrastriatal dopamine receptors (DRs) in BG information processing is less clear. To investigate the role of extrastriatal DRs, we studied their distribution and function in one of the output nuclei of the BG of the rodent, the entopeduncular nucleus (EP). qRT-PCR indicated that all DR subtypes were expressed by EP neurons, suggesting that both D1-like receptors (D1LRs) and D2-like receptors (D2LRs) were likely to affect information processing in the EP. Whole-cell recordings revealed that striatal inputs to the EP were potentiated by D1LRs whereas pallidal inputs to the EP were depressed by D2LRs. Changes to the paired-pulse ratio of inputs to the EP suggested that dopaminergic modulation of striatal inputs is mediated by postsynaptic receptors, and that of globus pallidus-evoked inputs is mediated by presynaptic receptors. We show that these changes in synaptic efficacy changed the information content of EP neuron firing. Overall, the findings suggest that the dopaminergic system affects the passage of feedforward information through the BG by modulating input divergence in the striatum and output convergence in the EP.SIGNIFICANCE STATEMENT The entopeduncular nucleus (EP), one of the basal ganglia (BG) output nuclei, is an important station in information processing in BG. However, it remains unclear how EP neurons encode information and how dopamine affects this process. This contrasts with the well established role of dopamine in the striatum, which is known to redistribute cortical input between the direct and indirect pathways. Here we show that, in symmetry with the striatum, dopamine controls the rebalancing of information flow between the two pathways in the EP. Specifically, we demonstrate that dopamine regulates EP activity by differentially modulating striatal and pallidal GABAergic inputs. These results call for a reassessment of current perspectives on BG information processing by highlighting the functional role of extrastriatal dopamine receptors.
Collapse
|
59
|
Villalba RM, Smith Y. Loss and remodeling of striatal dendritic spines in Parkinson's disease: from homeostasis to maladaptive plasticity? J Neural Transm (Vienna) 2017; 125:431-447. [PMID: 28540422 DOI: 10.1007/s00702-017-1735-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/10/2017] [Indexed: 12/20/2022]
Abstract
In Parkinson's disease (PD) patients and animal models of PD, the progressive degeneration of the nigrostriatal dopamine (DA) projection leads to two major changes in the morphology of striatal projection neurons (SPNs), i.e., a profound loss of dendritic spines and the remodeling of axospinous glutamatergic synapses. Striatal spine loss is an early event tightly associated with the extent of striatal DA denervation, but not the severity of parkinsonian motor symptoms, suggesting that striatal spine pruning might be a form of homeostatic plasticity that compensates for the loss of striatal DA innervation and the resulting dysregulation of corticostriatal glutamatergic transmission. On the other hand, the remodeling of axospinous corticostriatal and thalamostriatal glutamatergic synapses might represent a form of late maladaptive plasticity that underlies changes in the strength and plastic properties of these afferents and the resulting increased firing and bursting activity of striatal SPNs in the parkinsonian state. There is also evidence that these abnormal synaptic connections might contribute to the pathophysiology of L-DOPA-induced dyskinesia. Despite the significant advances made in this field over the last thirty years, many controversial issues remain about the striatal SPN subtypes affected, the role of spine changes in the altered activity of SPNs in the parkinsonisn state, and the importance of striatal spine plasticity in the pathophysiology of L-DOPA-induced dyskinesia. In this review, we will examine the current state of knowledge of these issues, discuss the limitations of the animal models used to address some of these questions, and assess the relevance of data from animal models to the human-diseased condition.
Collapse
Affiliation(s)
- Rosa M Villalba
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA. .,UDALL Center of Excellence for Parkinson's Disease, Emory University, Atlanta, GA, USA.
| | - Yoland Smith
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA.,UDALL Center of Excellence for Parkinson's Disease, Emory University, Atlanta, GA, USA.,Department of Neurology, Emory University, Atlanta, GA, USA
| |
Collapse
|
60
|
Nagatomo K, Suga S, Saitoh M, Kogawa M, Kobayashi K, Yamamoto Y, Yamada K. Dopamine D1 Receptor Immunoreactivity on Fine Processes of GFAP-Positive Astrocytes in the Substantia Nigra Pars Reticulata of Adult Mouse. Front Neuroanat 2017; 11:3. [PMID: 28203148 PMCID: PMC5285371 DOI: 10.3389/fnana.2017.00003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/13/2017] [Indexed: 12/20/2022] Open
Abstract
Substantia nigra pars reticulata (SNr), the major output nucleus of the basal ganglia, receives dopamine from dendrites extending from dopaminergic neurons of the adjacent nucleus pars compacta (SNc), which is known for its selective degeneration in Parkinson's disease. As a recipient for dendritically released dopamine, the dopamine D1 receptor (D1R) is a primary candidate due to its very dense immunoreactivity in the SNr. However, the precise location of D1R remains unclear at the cellular level in the SNr except for that reported on axons/axon terminals of presumably striatal GABAergic neurons. To address this, we used D1R promotor-controlled, mVenus-expressing transgenic mice. When cells were acutely dissociated from SNr of mouse brain, prominent mVenus fluorescence was detected in fine processes of glia-like cells, but no such fluorescence was detected from neurons in the same preparation, except for the synaptic bouton-like structure on the neurons. Double immunolabeling of SNr cells dissociated from adult wild-type mice brain further revealed marked D1R immunoreactivity in the processes of glial fibrillary acidic protein (GFAP)-positive astrocytes. Such D1R imunoreactivity was significantly stronger in the SNr astrocytes than that in those of the visual cortex in the same preparation. Interestingly, GFAP-positive astrocytes dissociated from the striatum demonstrated D1R immunoreactivity, either remarkable or minimal, similarly to that shown in neurons in this nucleus. In contrast, in the SNr and visual cortex, only weak D1R immunoreactivity was detected in the neurons tested. These results suggest that the SNr astrocyte may be a candidate recipient for dendritically released dopamine. Further study is required to fully elucidate the physiological roles of divergent dopamine receptor immunoreactivity profiles in GFAP-positive astrocytes.
Collapse
Affiliation(s)
- Katsuhiro Nagatomo
- Department of Physiology, Hirosaki University Graduate School of Medicine Aomori, Japan
| | - Sechiko Suga
- Department of Physiology, Hirosaki University Graduate School of MedicineAomori, Japan; Department of Emergency Medical Technology, Hirosaki University of Health and WelfareAomori, Japan
| | - Masato Saitoh
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University Iwate, Japan
| | - Masahito Kogawa
- Department of Physiology, Hirosaki University Graduate School of Medicine Aomori, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine Fukushima, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University Iwate, Japan
| | - Katsuya Yamada
- Department of Physiology, Hirosaki University Graduate School of Medicine Aomori, Japan
| |
Collapse
|
61
|
Deffains M, Iskhakova L, Katabi S, Haber SN, Israel Z, Bergman H. Subthalamic, not striatal, activity correlates with basal ganglia downstream activity in normal and parkinsonian monkeys. eLife 2016; 5. [PMID: 27552049 PMCID: PMC5030093 DOI: 10.7554/elife.16443] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/22/2016] [Indexed: 02/02/2023] Open
Abstract
The striatum and the subthalamic nucleus (STN) constitute the input stage of the basal ganglia (BG) network and together innervate BG downstream structures using GABA and glutamate, respectively. Comparison of the neuronal activity in BG input and downstream structures reveals that subthalamic, not striatal, activity fluctuations correlate with modulations in the increase/decrease discharge balance of BG downstream neurons during temporal discounting classical condition task. After induction of parkinsonism with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), abnormal low beta (8-15 Hz) spiking and local field potential (LFP) oscillations resonate across the BG network. Nevertheless, LFP beta oscillations entrain spiking activity of STN, striatal cholinergic interneurons and BG downstream structures, but do not entrain spiking activity of striatal projection neurons. Our results highlight the pivotal role of STN divergent projections in BG physiology and pathophysiology and may explain why STN is such an effective site for invasive treatment of advanced Parkinson's disease and other BG-related disorders. DOI:http://dx.doi.org/10.7554/eLife.16443.001 The symptoms of Parkinson’s disease include tremor and slow movement, as well as loss of balance, depression and problems with sleep and memory. The death of neurons in a region of the brain called the substantia nigra pars compacta is one of the major hallmarks of Parkinson’s disease. These neurons produce a chemical called dopamine, and their death reduces dopamine levels in another area of the brain called the striatum. This structure is one of five brain regions known collectively as the basal ganglia, which form a circuit that helps to control movement. The most effective treatment currently available for advanced Parkinson’s disease entails lowering electrodes deep into the brain in order to shut down the activity of part of the basal ganglia. However, the target is not the striatum; instead it is a structure called the subthalamic nucleus. The striatum and the subthalamic nucleus are the two input regions of the basal ganglia: each sends signals to the other three structures downstream. So why does targeting the subthalamic nucleus, but not the striatum, reduce the symptoms of Parkinson’s disease? To shed some light on this issue, Deffains et al. recorded the activity of neurons in the basal ganglia before and after injecting two monkeys with a drug called MPTP. Related to heroin, MPTP produces symptoms in animals that resemble those of Parkinson’s disease. Before the injections, spontaneous fluctuations in the activity of the subthalamic nucleus produced matching changes in the activity of the three downstream basal ganglia structures. Fluctuations in the activity of the striatum, by contrast, had no such effect. Moreover, injecting the monkeys with MPTP caused the basal ganglia to fire in an abnormal highly synchronized rhythm, similar to that seen in Parkinson’s disease. Crucially, the subthalamic nucleus contributed to this abnormal rhythm, whereas the striatum did not. The results presented by Deffains et al. provide a concrete explanation for why inactivating the subthalamic nucleus, but not the striatum, reduces the symptoms of Parkinson’s disease. Further research is now needed to explore how the striatum controls the activity of downstream regions of the basal ganglia, both in healthy people and in those with Parkinson's disease. DOI:http://dx.doi.org/10.7554/eLife.16443.002
Collapse
Affiliation(s)
- Marc Deffains
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Liliya Iskhakova
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Shiran Katabi
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Suzanne N Haber
- Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, United States
| | - Zvi Israel
- Department of Neurosurgery, Hadassah University Hospital, Jerusalem, Israel
| | - Hagai Bergman
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
62
|
Human striatal recordings reveal abnormal discharge of projection neurons in Parkinson's disease. Proc Natl Acad Sci U S A 2016; 113:9629-34. [PMID: 27503874 DOI: 10.1073/pnas.1606792113] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Circuitry models of Parkinson's disease (PD) are based on striatal dopamine loss and aberrant striatal inputs into the basal ganglia network. However, extrastriatal mechanisms have increasingly been the focus of attention, whereas the status of striatal discharges in the parkinsonian human brain remains conjectural. We now report the activity pattern of striatal projection neurons (SPNs) in patients with PD undergoing deep brain stimulation surgery, compared with patients with essential tremor (ET) and isolated dystonia (ID). The SPN activity in ET was very low (2.1 ± 0.1 Hz) and reminiscent of that found in normal animals. In contrast, SPNs in PD fired at much higher frequency (30.2 ± 1.2 Hz) and with abundant spike bursts. The difference between PD and ET was reproduced between 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated and normal nonhuman primates. The SPN activity was also increased in ID, but to a lower level compared with the hyperactivity observed in PD. These results provide direct evidence that the striatum contributes significantly altered signals to the network in patients with PD.
Collapse
|
63
|
Zhu H, Wang Z, Jin J, Pei X, Zhao Y, Wu H, Lin W, Tao J, Ji Y. Parkinson’s disease-like forelimb akinesia induced by BmK I, a sodium channel modulator. Behav Brain Res 2016; 308:166-76. [DOI: 10.1016/j.bbr.2016.04.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 04/16/2016] [Accepted: 04/19/2016] [Indexed: 12/16/2022]
|
64
|
Wichmann T, DeLong MR. Deep Brain Stimulation for Movement Disorders of Basal Ganglia Origin: Restoring Function or Functionality? Neurotherapeutics 2016; 13:264-83. [PMID: 26956115 PMCID: PMC4824026 DOI: 10.1007/s13311-016-0426-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Deep brain stimulation (DBS) is highly effective for both hypo- and hyperkinetic movement disorders of basal ganglia origin. The clinical use of DBS is, in part, empiric, based on the experience with prior surgical ablative therapies for these disorders, and, in part, driven by scientific discoveries made decades ago. In this review, we consider anatomical and functional concepts of the basal ganglia relevant to our understanding of DBS mechanisms, as well as our current understanding of the pathophysiology of two of the most commonly DBS-treated conditions, Parkinson's disease and dystonia. Finally, we discuss the proposed mechanism(s) of action of DBS in restoring function in patients with movement disorders. The signs and symptoms of the various disorders appear to result from signature disordered activity in the basal ganglia output, which disrupts the activity in thalamocortical and brainstem networks. The available evidence suggests that the effects of DBS are strongly dependent on targeting sensorimotor portions of specific nodes of the basal ganglia-thalamocortical motor circuit, that is, the subthalamic nucleus and the internal segment of the globus pallidus. There is little evidence to suggest that DBS in patients with movement disorders restores normal basal ganglia functions (e.g., their role in movement or reinforcement learning). Instead, it appears that high-frequency DBS replaces the abnormal basal ganglia output with a more tolerable pattern, which helps to restore the functionality of downstream networks.
Collapse
Affiliation(s)
- Thomas Wichmann
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
| | - Mahlon R DeLong
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
65
|
Dopamine and Its Actions in the Basal Ganglia System. INNOVATIONS IN COGNITIVE NEUROSCIENCE 2016. [DOI: 10.1007/978-3-319-42743-0_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
66
|
Udupa K, Chen R. The mechanisms of action of deep brain stimulation and ideas for the future development. Prog Neurobiol 2015; 133:27-49. [DOI: 10.1016/j.pneurobio.2015.08.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 08/04/2015] [Accepted: 08/15/2015] [Indexed: 12/19/2022]
|
67
|
Villalba RM, Mathai A, Smith Y. Morphological changes of glutamatergic synapses in animal models of Parkinson's disease. Front Neuroanat 2015; 9:117. [PMID: 26441550 PMCID: PMC4585113 DOI: 10.3389/fnana.2015.00117] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/17/2015] [Indexed: 02/05/2023] Open
Abstract
The striatum and the subthalamic nucleus (STN) are the main entry doors for extrinsic inputs to reach the basal ganglia (BG) circuitry. The cerebral cortex, thalamus and brainstem are the key sources of glutamatergic inputs to these nuclei. There is anatomical, functional and neurochemical evidence that glutamatergic neurotransmission is altered in the striatum and STN of animal models of Parkinson’s disease (PD) and that these changes may contribute to aberrant network neuronal activity in the BG-thalamocortical circuitry. Postmortem studies of animal models and PD patients have revealed significant pathology of glutamatergic synapses, dendritic spines and microcircuits in the striatum of parkinsonians. More recent findings have also demonstrated a significant breakdown of the glutamatergic corticosubthalamic system in parkinsonian monkeys. In this review, we will discuss evidence for synaptic glutamatergic dysfunction and pathology of cortical and thalamic inputs to the striatum and STN in models of PD. The potential functional implication of these alterations on synaptic integration, processing and transmission of extrinsic information through the BG circuits will be considered. Finally, the significance of these pathological changes in the pathophysiology of motor and non-motor symptoms in PD will be examined.
Collapse
Affiliation(s)
- Rosa M Villalba
- Yerkes National Primate Research Center, Emory University Atlanta, GA, USA ; UDALL Center of Excellence for Parkinson's Disease, Emory University Atlanta, GA, USA
| | - Abraham Mathai
- Yerkes National Primate Research Center, Emory University Atlanta, GA, USA ; UDALL Center of Excellence for Parkinson's Disease, Emory University Atlanta, GA, USA
| | - Yoland Smith
- Yerkes National Primate Research Center, Emory University Atlanta, GA, USA ; UDALL Center of Excellence for Parkinson's Disease, Emory University Atlanta, GA, USA ; Department of Neurology, Emory University Atlanta, GA, USA
| |
Collapse
|
68
|
Eid L, Parent M. Morphological evidence for dopamine interactions with pallidal neurons in primates. Front Neuroanat 2015; 9:111. [PMID: 26321923 PMCID: PMC4531254 DOI: 10.3389/fnana.2015.00111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/27/2015] [Indexed: 12/04/2022] Open
Abstract
The external (GPe) and internal (GPi) segments of the primate globus pallidus receive dopamine (DA) axonal projections arising mainly from the substantia nigra pars compacta and this innervation is here described based on tyrosine hydroxylase (TH) immunohistochemical observations gathered in the squirrel monkey (Saimiri sciureus). At the light microscopic level, unbiased stereological quantification of TH positive (+) axon varicosities reveals a similar density of innervation in the GPe (0.19 ± 0.02 × 106 axon varicosities/mm3 of tissue) and GPi (0.17 ± 0.01 × 106), but regional variations occur in the anteroposterior and dorsoventral axes in both GPe and GPi and along the mediolateral plane in the GPe. Estimation of the neuronal population in the GPe (3.47 ± 0.15 × 103 neurons/mm3) and GPi (2.69 ± 0.18 × 103) yields a mean ratio of, respectively, 28 ± 3 and 68 ± 15 TH+ axon varicosities/pallidal neuron. At the electron microscopic level, TH+ axon varicosities in the GPe appear significantly smaller than those in the GPi and very few TH+ axon varicosities are engaged in synaptic contacts in the GPe (17 ± 3%) and the GPi (15 ± 4%) compared to their unlabeled counterparts (77 ± 6 and 50 ± 12%, respectively). Genuine synaptic contacts made by TH+ axon varicosities in the GPe and GPi are of the symmetrical and asymmetrical type. Such synaptic contacts together with the presence of numerous synaptic vesicles in all TH+ axon varicosities observed in the GPe and GPi support the functionality of the DA pallidal innervation. By virtue of its predominantly volumic mode of action, DA appears to exert a key modulatory effect upon pallidal neurons in concert with the more direct GABAergic inhibitory and glutamatergic excitatory actions of the striatum and subthalamic nucleus. We argue that the DA pallidal innervation plays a major role in the functional organization of the primate basal ganglia under both normal and pathological conditions.
Collapse
Affiliation(s)
- Lara Eid
- Department of Psychiatry and Neuroscience, Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Université Laval Quebec City, QC, Canada
| | - Martin Parent
- Department of Psychiatry and Neuroscience, Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Université Laval Quebec City, QC, Canada
| |
Collapse
|
69
|
Faggiani E, Delaville C, Benazzouz A. The combined depletion of monoamines alters the effectiveness of subthalamic deep brain stimulation. Neurobiol Dis 2015. [PMID: 26206409 DOI: 10.1016/j.nbd.2015.07.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Non-motor symptoms of Parkinson's disease are under-studied and therefore not well treated. Here, we investigated the role of combined depletions of dopamine, norepinephrine and/or serotonin in the manifestation of motor and non-motor deficits in the rat. Then, we studied the impact of these depletions on the efficacy of deep brain stimulation of the subthalamic nucleus (STN-DBS). We performed selective depletions of dopamine, norepinephrine and serotonin, and the behavioral effects of different combined depletions were investigated using the open field, the elevated plus maze and the forced swim test. Bilateral dopamine depletion alone induced locomotor deficits associated with anxiety and mild "depressive-like" behaviors. Although additional depletions of norepinephrine and/or serotonin did not potentiate locomotor and anxiety disorders, combined depletions of the three monoamines dramatically exacerbated "depressive-like" behavior. STN-DBS markedly reversed locomotor deficits and anxiety behavior in animals with bilateral dopamine depletion alone. However, these improvements were reduced or lost by the additional depletion of norepinephrine and/or serotonin, indicating that the depletion of these monoamines may interfere with the antiparkinsonian efficacy of STN-DBS. Furthermore, our results showed that acute STN-DBS improved "depressive-like" disorder in animals with bilateral depletion of dopamine and also in animals with combined depletions of the three monoamines, which induced severe immobility in the forced swim test. Our data highlight the key role of monoamine depletions in the pathophysiology of anxiety and depressive-like disorders and provide the first evidence of their negative consequences on the efficacy of STN-DBS upon the motor and anxiety disorders in the context of Parkinson's disease.
Collapse
Affiliation(s)
- Emilie Faggiani
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France
| | - Claire Delaville
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France
| | - Abdelhamid Benazzouz
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France.
| |
Collapse
|
70
|
Mathai A, Ma Y, Paré JF, Villalba RM, Wichmann T, Smith Y. Reduced cortical innervation of the subthalamic nucleus in MPTP-treated parkinsonian monkeys. Brain 2015; 138:946-62. [PMID: 25681412 PMCID: PMC5014077 DOI: 10.1093/brain/awv018] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 11/30/2014] [Accepted: 12/05/2014] [Indexed: 11/12/2022] Open
Abstract
The striatum and the subthalamic nucleus are the main entry points for cortical information to the basal ganglia. Parkinson's disease affects not only the function, but also the morphological integrity of some of these inputs and their synaptic targets in the basal ganglia. Significant morphological changes in the cortico-striatal system have already been recognized in patients with Parkinson's disease and in animal models of the disease. To find out whether the primate cortico-subthalamic system is also subject to functionally relevant morphological alterations in parkinsonism, we used a combination of light and electron microscopy anatomical approaches and in vivo electrophysiological methods in monkeys rendered parkinsonian following chronic exposure to low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). At the light microscopic level, the density of vesicular glutamate transporter 1-positive (i.e. cortico-subthalamic) profiles in the dorsolateral part of the subthalamic nucleus (i.e. its sensorimotor territory) was 26.1% lower in MPTP-treated parkinsonian monkeys than in controls. These results were confirmed by electron microscopy studies showing that the number of vesicular glutamate transporter 1-positive terminals and of axon terminals forming asymmetric synapses in the dorsolateral subthalamic nucleus was reduced by 55.1% and 27.9%, respectively, compared with controls. These anatomical findings were in line with in vivo electrophysiology data showing a 60% reduction in the proportion of pallidal neurons that responded to electrical stimulation of the cortico-subthalamic system in parkinsonian monkeys. These findings provide strong evidence for a partial loss of the hyperdirect cortico-subthalamic projection in MPTP-treated parkinsonian monkeys.
Collapse
Affiliation(s)
- Abraham Mathai
- 1 Yerkes National Primate Research Centre, Emory University, Atlanta, GA 30329, USA 2 Morris K. Udall Centre of Excellence for Parkinson's Disease Research, Emory University, Atlanta, GA 30329, USA
| | - Yuxian Ma
- 1 Yerkes National Primate Research Centre, Emory University, Atlanta, GA 30329, USA 2 Morris K. Udall Centre of Excellence for Parkinson's Disease Research, Emory University, Atlanta, GA 30329, USA
| | - Jean-Francois Paré
- 1 Yerkes National Primate Research Centre, Emory University, Atlanta, GA 30329, USA 2 Morris K. Udall Centre of Excellence for Parkinson's Disease Research, Emory University, Atlanta, GA 30329, USA
| | - Rosa M Villalba
- 1 Yerkes National Primate Research Centre, Emory University, Atlanta, GA 30329, USA 2 Morris K. Udall Centre of Excellence for Parkinson's Disease Research, Emory University, Atlanta, GA 30329, USA
| | - Thomas Wichmann
- 1 Yerkes National Primate Research Centre, Emory University, Atlanta, GA 30329, USA 2 Morris K. Udall Centre of Excellence for Parkinson's Disease Research, Emory University, Atlanta, GA 30329, USA 3 Department of Neurology, Emory University, Atlanta, GA 30322, USA
| | - Yoland Smith
- 1 Yerkes National Primate Research Centre, Emory University, Atlanta, GA 30329, USA 2 Morris K. Udall Centre of Excellence for Parkinson's Disease Research, Emory University, Atlanta, GA 30329, USA 3 Department of Neurology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
71
|
Mamad O, Delaville C, Benjelloun W, Benazzouz A. Dopaminergic control of the globus pallidus through activation of D2 receptors and its impact on the electrical activity of subthalamic nucleus and substantia nigra reticulata neurons. PLoS One 2015; 10:e0119152. [PMID: 25742005 PMCID: PMC4350999 DOI: 10.1371/journal.pone.0119152] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 01/09/2015] [Indexed: 11/19/2022] Open
Abstract
The globus pallidus (GP) receives dopaminergic afferents from the pars compacta of substantia nigra and several studies suggested that dopamine exerts its action in the GP through presynaptic D2 receptors (D2Rs). However, the impact of dopamine in GP on the pallido-subthalamic and pallido-nigral neurotransmission is not known. Here, we investigated the role of dopamine, through activation of D2Rs, in the modulation of GP neuronal activity and its impact on the electrical activity of subthalamic nucleus (STN) and substantia nigra reticulata (SNr) neurons. Extracellular recordings combined with local intracerebral microinjection of drugs were done in male Sprague-Dawley rats under urethane anesthesia. We showed that dopamine, when injected locally, increased the firing rate of the majority of neurons in the GP. This increase of the firing rate was mimicked by quinpirole, a D2R agonist, and prevented by sulpiride, a D2R antagonist. In parallel, the injection of dopamine, as well as quinpirole, in the GP reduced the firing rate of majority of STN and SNr neurons. However, neither dopamine nor quinpirole changed the tonic discharge pattern of GP, STN and SNr neurons. Our results are the first to demonstrate that dopamine through activation of D2Rs located in the GP plays an important role in the modulation of GP-STN and GP-SNr neurotransmission and consequently controls STN and SNr neuronal firing. Moreover, we provide evidence that dopamine modulate the firing rate but not the pattern of GP neurons, which in turn control the firing rate, but not the pattern of STN and SNr neurons.
Collapse
Affiliation(s)
- Omar Mamad
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000, Bordeaux, France
- Université Mohamed V-Agdal, Faculté des Sciences, Equipe Rythmes Biologiques, Neurosciences et Environnement, 10000, Rabat, Morocco
| | - Claire Delaville
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000, Bordeaux, France
| | - Wail Benjelloun
- Université Mohamed V-Agdal, Faculté des Sciences, Equipe Rythmes Biologiques, Neurosciences et Environnement, 10000, Rabat, Morocco
| | - Abdelhamid Benazzouz
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000, Bordeaux, France
| |
Collapse
|
72
|
Nambu A, Tachibana Y, Chiken S. Cause of parkinsonian symptoms: Firing rate, firing pattern or dynamic activity changes? ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.baga.2014.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
73
|
The role of pallidal serotonergic function in Parkinson's disease dyskinesias: a positron emission tomography study. Neurobiol Aging 2015; 36:1736-1742. [PMID: 25649022 DOI: 10.1016/j.neurobiolaging.2014.12.037] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/19/2014] [Accepted: 12/29/2014] [Indexed: 02/03/2023]
Abstract
We have investigated the role of globus pallidus (GP) serotonergic terminals in the development of levodopa-induced dyskinesias (LIDs) in Parkinson's disease (PD). We studied 12 PD patients without LIDs, 12 PD patients with LIDs, and 12 healthy control subjects. We used (11)C-DASB positron emission tomography (PET), a marker of serotonin transporter availability, and (11)C-raclopride PET to measure changes in synaptic dopamine levels following levodopa administration. PD patients without LIDs showed a significant reduction of GP serotonin transporter binding compared with healthy controls although this was within the normal range in PD patients with LIDs. Levels of GP serotonin transporter binding correlated positively with severity of dyskinesias. (11)C-raclopride PET detected a significant rise in GP synaptic dopamine levels of patients with LIDs after a levodopa challenge but not in patients with a stable response. Our findings indicate that LIDs in PD are associated with higher GP serotonergic function. This increased serotonin function may result in further dysregulation of thalamocortical signals and so promote the expression of dyskinesias.
Collapse
|
74
|
Dopeso-Reyes IG, Rico AJ, Roda E, Sierra S, Pignataro D, Lanz M, Sucunza D, Chang-Azancot L, Lanciego JL. Calbindin content and differential vulnerability of midbrain efferent dopaminergic neurons in macaques. Front Neuroanat 2014; 8:146. [PMID: 25520629 PMCID: PMC4253956 DOI: 10.3389/fnana.2014.00146] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 11/14/2014] [Indexed: 11/26/2022] Open
Abstract
Calbindin (CB) is a calcium binding protein reported to protect dopaminergic neurons from degeneration. Although a direct link between CB content and differential vulnerability of dopaminergic neurons has long been accepted, factors other than CB have also been suggested, particularly those related to the dopamine transporter. Indeed, several studies have reported that CB levels are not causally related to the differential vulnerability of dopaminergic neurons against neurotoxins. Here we have used dual stains for tyrosine hydroxylase (TH) and CB in 3 control and 3 MPTP-treated monkeys to visualize dopaminergic neurons in the ventral tegmental area (VTA) and in the dorsal and ventral tiers of the substantia nigra pars compacta (SNcd and SNcv) co-expressing TH and CB. In control animals, the highest percentages of co-localization were found in VTA (58.2%), followed by neurons located in the SNcd (34.7%). As expected, SNcv neurons lacked CB expression. In MPTP-treated animals, the percentage of CB-ir/TH-ir neurons in the VTA was similar to control monkeys (62.1%), whereas most of the few surviving neurons in the SNcd were CB-ir/TH-ir (88.6%). Next, we have elucidated the presence of CB within identified nigrostriatal and nigroextrastriatal midbrain dopaminergic projection neurons. For this purpose, two control monkeys received one injection of Fluoro-Gold into the caudate nucleus and one injection of cholera toxin (CTB) into the postcommissural putamen, whereas two more monkeys were injected with CTB into the internal division of the globus pallidus (GPi). As expected, all the nigrocaudate- and nigroputamen-projecting neurons were TH-ir, although surprisingly, all of these nigrostriatal-projecting neurons were negative for CB. Furthermore, all the nigropallidal-projecting neurons co-expressed both TH and CB. In summary, although CB-ir dopaminergic neurons seem to be less prone to MPTP-induced degeneration, our data clearly demonstrated that these neurons are not giving rise to nigrostriatal projections and indeed CB-ir/TH-ir neurons only originate nigroextrastriatal projections.
Collapse
Affiliation(s)
- Iria G Dopeso-Reyes
- Center for Applied Medical Research (CIMA), University of Navarra Medical College Pamplona, Spain ; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) Pamplona, Spain
| | - Alberto J Rico
- Center for Applied Medical Research (CIMA), University of Navarra Medical College Pamplona, Spain ; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) Pamplona, Spain
| | - Elvira Roda
- Center for Applied Medical Research (CIMA), University of Navarra Medical College Pamplona, Spain ; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) Pamplona, Spain
| | - Salvador Sierra
- Center for Applied Medical Research (CIMA), University of Navarra Medical College Pamplona, Spain ; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) Pamplona, Spain
| | - Diego Pignataro
- Center for Applied Medical Research (CIMA), University of Navarra Medical College Pamplona, Spain ; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) Pamplona, Spain
| | - Maria Lanz
- Center for Applied Medical Research (CIMA), University of Navarra Medical College Pamplona, Spain
| | - Diego Sucunza
- Center for Applied Medical Research (CIMA), University of Navarra Medical College Pamplona, Spain
| | - Luis Chang-Azancot
- Center for Applied Medical Research (CIMA), University of Navarra Medical College Pamplona, Spain
| | - Jose L Lanciego
- Center for Applied Medical Research (CIMA), University of Navarra Medical College Pamplona, Spain ; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) Pamplona, Spain
| |
Collapse
|
75
|
Abstract
Obsessive compulsive disorder (OCD) and attention deficit hyperactivity disorder (ADHD) are two of the most common neuropsychiatric diseases in paediatric populations. The high comorbidity of ADHD and OCD with each other, especially of ADHD in paediatric OCD, is well described. OCD and ADHD often follow a chronic course with persistent rates of at least 40–50 %. Family studies showed high heritability in ADHD and OCD, and some genetic findings showed similar variants for both disorders of the same pathogenetic mechanisms, whereas other genetic findings may differentiate between ADHD and OCD. Neuropsychological and neuroimaging studies suggest that partly similar executive functions are affected in both disorders. The deficits in the corresponding brain networks may be responsible for the perseverative, compulsive symptoms in OCD but also for the disinhibited and impulsive symptoms characterizing ADHD. This article reviews the current literature of neuroimaging, neurochemical circuitry, neuropsychological and genetic findings considering similarities as well as differences between OCD and ADHD.
Collapse
|
76
|
Ellens DJ, Leventhal DK. Review: electrophysiology of basal ganglia and cortex in models of Parkinson disease. JOURNAL OF PARKINSONS DISEASE 2014; 3:241-54. [PMID: 23948994 DOI: 10.3233/jpd-130204] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Incomplete understanding of the systems-level pathophysiology of Parkinson Disease (PD) remains a significant barrier to improving its treatment. Substantial progress has been made, however, due to the availability of neurotoxins that selectively target monoaminergic (in particular, dopaminergic) neurons. This review discusses the in vivo electrophysiology of basal ganglia (BG), thalamic, and cortical regions after dopamine-depleting lesions. These include firing rate changes, neuronal burst-firing, neuronal oscillations, and neuronal synchrony that result from a combination of local microanatomic changes and network-level interactions. While much is known of the clinical and electrophysiological phenomenology of dopamine loss, a critical gap in our conception of PD pathophysiology is the link between them. We discuss potential mechanisms by which these systems-level electrophysiological changes may emerge, as well as how they may relate to clinical parkinsonism. Proposals for an updated understanding of BG function are reviewed, with an emphasis on how emerging frameworks will guide future research into the pathophysiology and treatment of PD.
Collapse
Affiliation(s)
- Damien J Ellens
- Department of Neurology, University of Michigan Medical School, MI, USA
| | | |
Collapse
|
77
|
El Arfani A, Bentea E, Aourz N, Ampe B, De Deurwaerdère P, Van Eeckhaut A, Massie A, Sarre S, Smolders I, Michotte Y. NMDA receptor antagonism potentiates the L-DOPA-induced extracellular dopamine release in the subthalamic nucleus of hemi-parkinson rats. Neuropharmacology 2014; 85:198-205. [PMID: 24863042 DOI: 10.1016/j.neuropharm.2014.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 04/07/2014] [Accepted: 05/14/2014] [Indexed: 11/28/2022]
Abstract
Long term treatment with L-3,4-dihydroxyphenylalanine (L-DOPA) is associated with several motor complications. Clinical improvement of this treatment is therefore needed. Lesions or high frequency stimulation of the hyperactive subthalamic nucleus (STN) in Parkinson's disease (PD), alleviate the motor symptoms and reduce dyskinesia, either directly and/or by allowing the reduction of the L-DOPA dose. N-methyl-D-aspartate (NMDA) receptor antagonists might have similar actions. However it remains elusive how the neurochemistry changes in the STN after a separate or combined administration of L-DOPA and a NMDA receptor antagonist. By means of in vivo microdialysis, the effect of L-DOPA and/or MK 801, on the extracellular dopamine (DA) and glutamate (GLU) levels was investigated for the first time in the STN of sham and 6-hydroxydopamine-lesioned rats. The L-DOPA-induced DA increase in the STN was significantly higher in DA-depleted rats compared to shams. MK 801 did not influence the L-DOPA-induced DA release in shams. However, MK 801 enhanced the L-DOPA-induced DA release in hemi-parkinson rats. Interestingly, the extracellular STN GLU levels remained unchanged after nigral degeneration. Furthermore, administration of MK 801 alone or combined with L-DOPA did not alter the STN GLU levels in both sham and DA-depleted rats. The present study does not support the hypothesis that DA-ergic degeneration influences the STN GLU levels neither that MK 801 alters the GLU levels in lesioned and non-lesioned rats. However, NMDA receptor antagonists could be used as a beneficial adjuvant treatment for PD by enhancing the therapeutic efficacy of l-DOPA at least in part in the STN.
Collapse
Affiliation(s)
- Anissa El Arfani
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neuroscience, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | - Eduard Bentea
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neuroscience, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium; Department of Pharmaceutical Biotechnology and Molecular Biology, Center for Neuroscience, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | - Najat Aourz
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neuroscience, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | - Ben Ampe
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neuroscience, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | - Philippe De Deurwaerdère
- Unité Mixte de Recherche, Centre National de la Recherche Scientifique (UMR-CNRS) 5227, Université de Bordeaux, 146 rue Léo Saignat, B.P. 28, 33076 Bordeaux Cedex, France.
| | - Ann Van Eeckhaut
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neuroscience, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | - Ann Massie
- Department of Pharmaceutical Biotechnology and Molecular Biology, Center for Neuroscience, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | - Sophie Sarre
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neuroscience, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | - Ilse Smolders
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neuroscience, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | - Yvette Michotte
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neuroscience, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| |
Collapse
|
78
|
Benazzouz A, Mamad O, Abedi P, Bouali-Benazzouz R, Chetrit J. Involvement of dopamine loss in extrastriatal basal ganglia nuclei in the pathophysiology of Parkinson's disease. Front Aging Neurosci 2014; 6:87. [PMID: 24860498 PMCID: PMC4026754 DOI: 10.3389/fnagi.2014.00087] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 04/23/2014] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is a neurological disorder characterized by the manifestation of motor symptoms, such as akinesia, muscle rigidity and tremor at rest. These symptoms are classically attributed to the degeneration of dopamine neurons in the pars compacta of substantia nigra (SNc), which results in a marked dopamine depletion in the striatum. It is well established that dopamine neurons in the SNc innervate not only the striatum, which is the main target, but also other basal ganglia nuclei including the two segments of globus pallidus and the subthalamic nucleus (STN). The role of dopamine and its depletion in the striatum is well known, however, the role of dopamine depletion in the pallidal complex and the STN in the genesis of their abnormal neuronal activity and in parkinsonian motor deficits is still not clearly determined. Based on recent experimental data from animal models of Parkinson's disease in rodents and non-human primates and also from parkinsonian patients, this review summarizes current knowledge on the role of dopamine in the modulation of basal ganglia neuronal activity and also the role of dopamine depletion in these nuclei in the pathophysiology of Parkinson's disease.
Collapse
Affiliation(s)
- Abdelhamid Benazzouz
- Institut des Maladies Neurodégénératives, Université Bordeaux Segalen, UMR 5293 Bordeaux, France ; CNRS, Institut des Maladies Neurodégénératives, Université Bordeaux Segalen, UMR 5293 Bordeaux, France
| | - Omar Mamad
- Institut des Maladies Neurodégénératives, Université Bordeaux Segalen, UMR 5293 Bordeaux, France ; CNRS, Institut des Maladies Neurodégénératives, Université Bordeaux Segalen, UMR 5293 Bordeaux, France ; Faculté des Sciences, Equipe Rythmes Biologiques, Neurosciences et Environnement, Université Mohamed V-Agdal Rabat, Morocco
| | - Pamphyle Abedi
- Institut des Maladies Neurodégénératives, Université Bordeaux Segalen, UMR 5293 Bordeaux, France ; CNRS, Institut des Maladies Neurodégénératives, Université Bordeaux Segalen, UMR 5293 Bordeaux, France ; Faculté des Sciences, Equipe Rythmes Biologiques, Neurosciences et Environnement, Université Mohamed V-Agdal Rabat, Morocco
| | - Rabia Bouali-Benazzouz
- Institut Interdisciplinaire des Neurosciences, Université Bordeaux Segalen, UMR 5297 Bordeaux, France
| | - Jonathan Chetrit
- Institut des Maladies Neurodégénératives, Université Bordeaux Segalen, UMR 5293 Bordeaux, France ; CNRS, Institut des Maladies Neurodégénératives, Université Bordeaux Segalen, UMR 5293 Bordeaux, France
| |
Collapse
|
79
|
Galvan A, Hu X, Rommelfanger KS, Pare JF, Khan ZU, Smith Y, Wichmann T. Localization and function of dopamine receptors in the subthalamic nucleus of normal and parkinsonian monkeys. J Neurophysiol 2014; 112:467-79. [PMID: 24760789 DOI: 10.1152/jn.00849.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The subthalamic nucleus (STN) receives a dopaminergic innervation from the substantia nigra pars compacta, but the role of this projection remains poorly understood, particularly in primates. To address this issue, we used immuno-electron microscopy to localize D1, D2, and D5 dopamine receptors in the STN of rhesus macaques and studied the electrophysiological effects of activating D1-like or D2-like receptors in normal and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated parkinsonian monkeys. Labeling of D1 and D2 receptors was primarily found presynaptically, on preterminal axons and putative glutamatergic and GABAergic terminals, while D5 receptors were more significantly expressed postsynaptically, on dendritic shafts of STN neurons. The electrical spiking activity of STN neurons, recorded with standard extracellular recording methods, was studied before, during, and after intra-STN administration of the dopamine D1-like receptor agonist SKF82958, the D2-like receptor agonist quinpirole, or artificial cerebrospinal fluid (control injections). In normal animals, administration of SKF82958 significantly reduced the spontaneous firing but increased the rate of intraburst firing and the proportion of pause-burst sequences of firing. Quinpirole only increased the proportion of such pause-burst sequences in STN neurons of normal monkeys. In MPTP-treated monkeys, the D1-like receptor agonist also reduced the firing rate and increased the proportion of pause-burst sequences, while the D2-like receptor agonist did not change any of the chosen descriptors of the firing pattern of STN neurons. Our data suggest that dopamine receptor activation can directly modulate the electrical activity of STN neurons by pre- and postsynaptic mechanisms in both normal and parkinsonian states, predominantly via activation of D1 receptors.
Collapse
Affiliation(s)
- Adriana Galvan
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia; Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia; Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia;
| | - Xing Hu
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia
| | - Karen S Rommelfanger
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia; Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia
| | - Jean-Francois Pare
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia
| | - Zafar U Khan
- Laboratory of Neurobiology at CIMES, Faculty of Medicine, University of Malaga, Malaga, Spain; Department of Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain; and CIBERNED, Institute of Health Carlos III, Madrid, Spain
| | - Yoland Smith
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia; Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia; Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia
| | - Thomas Wichmann
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia; Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia; Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia
| |
Collapse
|
80
|
Transgenic mouse lines subdivide external segment of the globus pallidus (GPe) neurons and reveal distinct GPe output pathways. J Neurosci 2014; 34:2087-99. [PMID: 24501350 DOI: 10.1523/jneurosci.4646-13.2014] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cell-type diversity in the brain enables the assembly of complex neural circuits, whose organization and patterns of activity give rise to brain function. However, the identification of distinct neuronal populations within a given brain region is often complicated by a lack of objective criteria to distinguish one neuronal population from another. In the external segment of the globus pallidus (GPe), neuronal populations have been defined using molecular, anatomical, and electrophysiological criteria, but these classification schemes are often not generalizable across preparations and lack consistency even within the same preparation. Here, we present a novel use of existing transgenic mouse lines, Lim homeobox 6 (Lhx6)-Cre and parvalbumin (PV)-Cre, to define genetically distinct cell populations in the GPe that differ molecularly, anatomically, and electrophysiologically. Lhx6-GPe neurons, which do not express PV, are concentrated in the medial portion of the GPe. They have lower spontaneous firing rates, narrower dynamic ranges, and make stronger projections to the striatum and substantia nigra pars compacta compared with PV-GPe neurons. In contrast, PV-GPe neurons are more concentrated in the lateral portions of the GPe. They have narrower action potentials, deeper afterhyperpolarizations, and make stronger projections to the subthalamic nucleus and parafascicular nucleus of the thalamus. These electrophysiological and anatomical differences suggest that Lhx6-GPe and PV-GPe neurons participate in different circuits with the potential to contribute to different aspects of motor function and dysfunction in disease.
Collapse
|
81
|
Blanco L, Ros CM, Tarragón E, Fernández-Villalba E, Herrero MT. Functional role of Barrington's nucleus in the micturition reflex: relevance in the surgical treatment of Parkinson's disease. Neuroscience 2014; 266:150-61. [PMID: 24568730 DOI: 10.1016/j.neuroscience.2014.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/31/2014] [Accepted: 02/01/2014] [Indexed: 01/23/2023]
Abstract
The pontine micturition center or Barrington's nucleus (BN) - besides regulating micturition - co-regulates the activity of other pelvic viscera such as the colon and genitals. At present, this issue is gaining particular importance due to: (i) recent findings of α-synuclein in BN, (ii) known urinary dysfunction in parkinsonian patients (part of the so-called non-motor symptoms), other patients with dementia and as in very old individuals; and (iii) its proximity to the pedunculopontine nucleus, a surgical target in deep brain stimulation for Parkinson's disease (PD). The structural and functional organization of the micturition reflex comprises a coordinating action of somatic motor activity with both divisions of the autonomic nervous system, modulated by trunk encephalic and cortical centers that involve the BN as locus coeruleus and periaqueductal gray matter, among other trunk encephalic structures. The involvement of dopaminergic activity (physiologic inhibition of the micturition reflex mediated by dopaminergic D1 activity) that diminishes in Parkinsonism and leads to overactivity of the micturition reflex is also well known. In this review, the integrating role of the BN in the context of vesical and gastrointestinal behavior is revisited, and the principal morpho-functional findings that associate dysfunction with the urinary disorders that appear during the pre-motor stages of PD are summarized.
Collapse
Affiliation(s)
- L Blanco
- Clinical and Experimental Neuroscience, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), School of Medicine, University of Murcia, Campus de Espinardo, 30071 Murcia, Spain; International Center of Neurological Restoration, Department of Experimental Neurophysiology, Avenue 25 #15805, 11300 Havana, Cuba
| | - C M Ros
- Clinical and Experimental Neuroscience, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), School of Medicine, University of Murcia, Campus de Espinardo, 30071 Murcia, Spain; Department of Medicine, School of Health Sciences, University Jaime I, Campus del Riu Sec, 12071 Castellón de la Plana, Spain
| | - E Tarragón
- Department of Medicine, School of Health Sciences, University Jaime I, Campus del Riu Sec, 12071 Castellón de la Plana, Spain
| | - E Fernández-Villalba
- Clinical and Experimental Neuroscience, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), School of Medicine, University of Murcia, Campus de Espinardo, 30071 Murcia, Spain
| | - M T Herrero
- Clinical and Experimental Neuroscience, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), School of Medicine, University of Murcia, Campus de Espinardo, 30071 Murcia, Spain; Department of Medicine, School of Health Sciences, University Jaime I, Campus del Riu Sec, 12071 Castellón de la Plana, Spain.
| |
Collapse
|
82
|
Albaugh DL, Shih YYI. Neural circuit modulation during deep brain stimulation at the subthalamic nucleus for Parkinson's disease: what have we learned from neuroimaging studies? Brain Connect 2014; 4:1-14. [PMID: 24147633 PMCID: PMC5349222 DOI: 10.1089/brain.2013.0193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Deep brain stimulation (DBS) targeting the subthalamic nucleus (STN) represents a powerful clinical tool for the alleviation of many motor symptoms that are associated with Parkinson's disease. Despite its extensive use, the underlying therapeutic mechanisms of STN-DBS remain poorly understood. In the present review, we integrate and discuss recent literature examining the network effects of STN-DBS for Parkinson's disease, placing emphasis on neuroimaging findings, including functional magnetic resonance imaging, positron emission tomography, and single-photon emission computed tomography. These techniques enable the noninvasive detection of brain regions that are modulated by DBS on a whole-brain scale, representing a key experimental strength given the diffuse and far-reaching effects of electrical field stimulation. By examining these data in the context of multiple hypotheses of DBS action, generally developed through clinical and physiological observations, we define a multitude of consistencies and inconsistencies in the developing literature of this rapidly moving field.
Collapse
Affiliation(s)
- Daniel L. Albaugh
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, North Carolina
| | - Yen-Yu Ian Shih
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, North Carolina
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
83
|
|
84
|
Rumpel R, Alam M, Klein A, Özer M, Wesemann M, Jin X, Krauss JK, Schwabe K, Ratzka A, Grothe C. Neuronal firing activity and gene expression changes in the subthalamic nucleus after transplantation of dopamine neurons in hemiparkinsonian rats. Neurobiol Dis 2013; 59:230-43. [DOI: 10.1016/j.nbd.2013.07.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/19/2013] [Accepted: 07/29/2013] [Indexed: 12/28/2022] Open
|
85
|
Marin C, Bonastre M, Mengod G, Cortés R, Rodríguez-Oroz MC, Obeso JA. Subthalamic 6-OHDA-induced lesion attenuates levodopa-induced dyskinesias in the rat model of Parkinson's disease. Exp Neurol 2013; 250:304-12. [PMID: 24140562 DOI: 10.1016/j.expneurol.2013.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 09/27/2013] [Accepted: 10/02/2013] [Indexed: 01/09/2023]
Abstract
The subthalamic nucleus (STN) receives direct dopaminergic innervation from the substantia nigra pars compacta that degenerates in Parkinson's disease. The present study aimed to investigate the role of dopaminergic denervation of STN in the origin of levodopa-induced dyskinesias. Rats were distributed in four groups which were concomitantly lesioned with 6-OHDA or vehicle (sham) in the STN and in the medial forebrain bundle (MFB) as follows: a) MFB-sham plus STN-sham, b) MFB-sham plus STN-lesion, c) MFB-lesion plus STN-sham, and d) MFB-lesion plus STN-lesion. Four weeks after lesions, animals were treated with levodopa (6mg/kg with 15mg/kg benserazide i.p.) twice daily for 22 consecutive days. Abnormal involuntary movements were measured. In situ hybridization was performed measuring the expression of striatal preproenkephalin, preprodynorphin, STN cytochrome oxidase (CO) and nigral GAD67 mRNAs. STN 6-OHDA denervation did not induce dyskinesias in levodopa-treated MFB-sham animals but attenuated axial (p<0.05), limb (p<0.05) and orolingual (p<0.01) dyskinesias in rats with a concomitant lesion of the nigrostriatal pathway. The attenuation of dyskinesias was associated with a decrease in the ipsilateral STN CO mRNA levels (p<0.05). No significant differences between MFB-lesion plus STN-sham and MFB-lesion plus STN-lesion groups in the extent of STN dopaminergic denervation were observed. Moreover, intrasubthalamic microinfusion of dopamine in the MFB-lesion plus STN-lesion group triggered orolingual (p<0.01), but not axial or limb, dyskinesias. These results suggest that dopaminergic STN innervation influences the expression of levodopa-induced dyskinesias but also the existence of non dopaminergic-mediated mechanisms. STN noradrenergic depletion induced by 6-OHDA in the STN needs to be taken in account as a possible mechanism explaining the attenuation of dyskinesias in the combined lesion group.
Collapse
Affiliation(s)
- C Marin
- INGENIO, IRCE, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS-CELLEX), Barcelona, Spain; Centro de Investigación en Redes sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.
| | | | | | | | | | | |
Collapse
|
86
|
Chetrit J, Taupignon A, Froux L, Morin S, Bouali-Benazzouz R, Naudet F, Kadiri N, Gross CE, Bioulac B, Benazzouz A. Inhibiting subthalamic D5 receptor constitutive activity alleviates abnormal electrical activity and reverses motor impairment in a rat model of Parkinson's disease. J Neurosci 2013; 33:14840-9. [PMID: 24027284 PMCID: PMC6705171 DOI: 10.1523/jneurosci.0453-13.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 07/25/2013] [Accepted: 08/08/2013] [Indexed: 11/21/2022] Open
Abstract
Burst firing has been reported as a pathological activity of subthalamic nucleus (STN) neurons in Parkinson's disease. However, the origin of bursts and their causal link with motor deficits remain unknown. Here we tested the hypothesis that dopamine D5 receptors (D5Rs), characterized by a high constitutive activity, may contribute to the emergence of burst firing in STN. We tested whether inhibiting D5R constitutive activity depresses burst firing and alleviates motor impairments in the 6-OHDA rat model of Parkinson's disease. Intrasubthalamic microinjections of either an inverse agonist of D5Rs, flupenthixol, or a D2R antagonist, raclopride, were applied. Behavioral experiments, in vivo and in vitro electrophysiological recordings, and ex vivo functional neuroanatomy studies were performed. Using [(5)S]GTPγ binding autoradiography, we show that application of flupenthixol inhibits D5R constitutive activity within the STN. Furthermore, flupenthixol reduced evoked burst in brain slices and converted pathological burst firing into physiological tonic, single-spike firing in 6-OHDA rats in vivo. This later action was mimicked by calciseptine, a Cav1 channel blocker. Moreover, the same treatment dramatically attenuated motor impairment in this model and normalized metabolic hyperactivity in both STN and substantia nigra pars reticulata, the main output structure of basal ganglia in rats. In contrast, raclopride as well as saline did not reverse burst firing and motor deficits, confirming the selective action of flupenthixol on D5Rs. These results are the first to demonstrate that subthalamic D5Rs are involved in the pathophysiology of Parkinson's disease and that administering an inverse agonist of these receptors may lessen motor symptoms.
Collapse
Affiliation(s)
- Jonathan Chetrit
- Université Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, and
| | - Anne Taupignon
- Université Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, and
| | - Lionel Froux
- Université Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, and
| | - Stephanie Morin
- Université Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, and
| | | | - Frédéric Naudet
- Université Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, and
| | - Nabila Kadiri
- Université Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, and
| | - Christian E. Gross
- Université Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, and
| | - Bernard Bioulac
- Université Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, and
| | - Abdelhamid Benazzouz
- Université Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, and
| |
Collapse
|
87
|
Castaño JG, González C, Obeso JA, Rodriguez M. Molecular Pathogenesis and Pathophysiology of Parkinson’s Disease: New Targets for New Therapies. EMERGING DRUGS AND TARGETS FOR PARKINSON’S DISEASE 2013. [DOI: 10.1039/9781849737357-00026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Parkinson’s disease (PD) is a complex chronic neurodegenerative disease of unknown etiology. A conceptual framework for all chronic diseases involves a series of channels or pathways (aging, genetic, environment, oxidative stress, mitochondrial damage, protein aggregation, etc.) and their interactions. Those channels with specificities may explain the ‘developmental’ program that through transcriptional reprogramming results in stressed dopamine neurons that eventually become dysfunctional or die, giving rise to the clinical manifestations of PD. In Chapter 2 we review the molecular mechanisms of those channels that may be implicated in the pathogenesis of PD and the pathophysiology of the disease based on the anatomo‐physiological complexity of the basal ganglia. This illustrates that understanding the molecular mechanisms of a disease may not be enough, or we have to reach an adequate system level to understand the disease process. Finally, we suggest that common therapies used for the treatment of other chronic diseases may be useful for the treatment (or help to advance the understanding) of PD, as well as new targets for new therapies that may be useful in the prevention of, or to stop the progression of, PD and other synucleinopathies.
Collapse
Affiliation(s)
- José G. Castaño
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols”, Facultad de Medicina Universidad Autónoma de Madrid Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Madrid Spain
| | - Carmen González
- Departamento de Farmacologia, Facultad de Medicina Universidad de Castilla‐La Mancha Albacete Spain
| | - José A. Obeso
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Madrid Spain
- Laboratorio de Trastornos del Movimiento, Centro de Investigación Médica Aplicada University of Navarra Pamplona Spain
| | - Manuel Rodriguez
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Madrid Spain
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine University of La Laguna Tenerife Canary Islands
| |
Collapse
|
88
|
|
89
|
Abedi PM, Delaville C, De Deurwaerdère P, Benjelloun W, Benazzouz A. Intrapallidal administration of 6-hydroxydopamine mimics in large part the electrophysiological and behavioral consequences of major dopamine depletion in the rat. Neuroscience 2013; 236:289-97. [PMID: 23376117 DOI: 10.1016/j.neuroscience.2013.01.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/12/2013] [Accepted: 01/14/2013] [Indexed: 11/26/2022]
Abstract
In addition to GABA and glutamate innervations, the globus pallidus (GP) receives dopamine afferents from the pars compacta of the substantia nigra (SNc), and in turn, sends inhibitory GABAergic efferents to the subthalamic nucleus (STN) and the pars reticulata of the substantia nigra (SNr). Nevertheless, the role of dopamine in the modulation of these pallido-subthalamic and pallido-nigral projections is not known. The present study aimed to investigate the effects of intrapallidal injection of 6-hydroxydopamine (6-OHDA) on the electrical activity of STN and SNr neurons using in vivo extracellular single unit recordings in the rat and on motor behaviors, using the "open field" actimeter and the stepping test. We show that intrapallidal injection of 6-OHDA significantly decreased locomotor activity and contralateral paw use. Electrophysiological recordings show that 6-OHDA injection into GP significantly increased the number of bursty cells in the STN without changing the firing rate, while in the SNr neuronal firing rate decreased and the proportion of irregular cells increased. Our data provide evidence that intrapallidal injection of 6-OHDA resulted in motor deficits paralleled by changes in the firing activity of STN and SNr neurons, which mimic in large part those obtained after major dopamine depletion in the classical rat model of Parkinson's disease. They support the assumption that in addition to its action in the striatum, dopamine mediates its regulatory function at various levels of the basal ganglia circuitry, including the GP.
Collapse
Affiliation(s)
- P M Abedi
- Univ. Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.
| | | | | | | | | |
Collapse
|
90
|
Liu Y, Wang G, Zhao L, Geng M, Wang L, Bai X, Hu J, Man X. SWI phase asymmetries in deep gray matter of healthy adults: is there an association with handedness? Brain Imaging Behav 2013; 7:220-6. [DOI: 10.1007/s11682-012-9217-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
91
|
Lanciego JL, Luquin N, Obeso JA. Functional neuroanatomy of the basal ganglia. Cold Spring Harb Perspect Med 2012; 2:a009621. [PMID: 23071379 DOI: 10.1101/cshperspect.a009621] [Citation(s) in RCA: 474] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The "basal ganglia" refers to a group of subcortical nuclei responsible primarily for motor control, as well as other roles such as motor learning, executive functions and behaviors, and emotions. Proposed more than two decades ago, the classical basal ganglia model shows how information flows through the basal ganglia back to the cortex through two pathways with opposing effects for the proper execution of movement. Although much of the model has remained, the model has been modified and amplified with the emergence of new data. Furthermore, parallel circuits subserve the other functions of the basal ganglia engaging associative and limbic territories. Disruption of the basal ganglia network forms the basis for several movement disorders. This article provides a comprehensive account of basal ganglia functional anatomy and chemistry and the major pathophysiological changes underlying disorders of movement. We try to answer three key questions related to the basal ganglia, as follows: What are the basal ganglia? What are they made of? How do they work? Some insight on the canonical basal ganglia model is provided, together with a selection of paradoxes and some views over the horizon in the field.
Collapse
Affiliation(s)
- José L Lanciego
- Department of Neuroscience, Center for Applied Medical Research (CIMA & CIBERNED), University of Navarra Medical College, Pamplona, Spain
| | | | | |
Collapse
|
92
|
Rubin JE, McIntyre CC, Turner RS, Wichmann T. Basal ganglia activity patterns in parkinsonism and computational modeling of their downstream effects. Eur J Neurosci 2012; 36:2213-28. [PMID: 22805066 DOI: 10.1111/j.1460-9568.2012.08108.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The availability of suitable animal models and the opportunity to record electrophysiologic data in movement disorder patients undergoing neurosurgical procedures has allowed researchers to investigate parkinsonism-related changes in neuronal firing patterns in the basal ganglia and associated areas of the thalamus and cortex. These studies have shown that parkinsonism is associated with increased activity in the basal ganglia output nuclei, along with increases in burst discharges, oscillatory firing and synchronous firing patterns throughout the basal ganglia. Computational approaches have the potential to play an important role in the interpretation of these data. Such efforts can provide a formalized view of neuronal interactions in the network of connections between the basal ganglia, thalamus, and cortex, allow for the exploration of possible contributions of particular network components to parkinsonism, and potentially result in new conceptual frameworks and hypotheses that can be subjected to biological testing. It has proven very difficult, however, to integrate the wealth of the experimental findings into coherent models of the disease. In this review, we provide an overview of the abnormalities in neuronal activity that have been associated with parkinsonism. Subsequently, we discuss some particular efforts to model the pathophysiologic mechanisms that may link abnormal basal ganglia activity to the cardinal parkinsonian motor signs and may help to explain the mechanisms underlying the therapeutic efficacy of deep brain stimulation for Parkinson's disease. We emphasize the logical structure of these computational studies, making clear the assumptions from which they proceed and the consequences and predictions that follow from these assumptions.
Collapse
Affiliation(s)
- Jonathan E Rubin
- Department of Mathematics and Center for the Neural Basis of Cognition, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, PA 15260, USA
| | | | | | | |
Collapse
|
93
|
Franco V, Turner RS. Testing the contributions of striatal dopamine loss to the genesis of parkinsonian signs. Neurobiol Dis 2012; 47:114-25. [PMID: 22498034 PMCID: PMC3358361 DOI: 10.1016/j.nbd.2012.03.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 03/01/2012] [Accepted: 03/21/2012] [Indexed: 10/28/2022] Open
Abstract
The diverse and independently-varying signs of Parkinson's disease (PD) are often attributed to one simple mechanism: degeneration of the dopaminergic innervation of the posterolateral striatum. However, growing recognition of the dopamine (DA) loss and other pathology in extra-striatal brain regions has led to uncertainty whether loss of DA in the striatum is sufficient to cause parkinsonian signs. We tested this hypothesis by infusing cis-flupenthixol (cis-flu; a broad-spectrum D1/D2 receptor antagonist) into different regions of the macaque putamen (3 hemispheres of 2 monkeys) while the animal performed a visually-cued choice reaction time task in which visual cues indicated the arm to reach with and the peripheral target to contact to obtain food reward. Following reward delivery, the animal was required to self-initiate release of the peripheral target and return of the chosen hand to its home position (i.e., without the benefit of external sensory cues or immediate rewards). Infusions of cis-flu at 15 of 26 sites induced prolongations of reaction time (9 of 15 cases), movement duration (6 cases), and/or dwell time of the hand at the peripheral target (8 cases). Dwell times were affected more severely (+95%) than visually-triggered reaction times or movement durations (+25% and +15%, respectively). Specifically, the animal's hand often 'froze' at the peripheral target for up to 25-s, similar to the akinetic freezing episodes observed in PD patients. Across injections, slowing of self-initiation did not correlate in severity with prolongations of visually-triggered reaction time or movement duration, although the latter two were correlated with each other. Episodes of slowed self-initiation appeared primarily in the arm contralateral to the injected hemisphere and were not associated with increased muscle co-contraction or global alterations in behavioral state (i.e., inattention or reduced motivation), consistent with the idea that these episodes reflected a fundamental impairment of movement initiation. We found no evidence for an anatomic topography within the putamen for the effects elicited. We conclude that acute focal blockade of DA transmission in the putamen is sufficient to induce marked akinesia-like impairments. Furthermore, different classes of impairments can be induced independently, suggesting that specific parkinsonian signs have unique pathophysiologic substrates.
Collapse
Affiliation(s)
- Vanessa Franco
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261-0001, USA
| | - Robert S. Turner
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261-0001, USA
- Department of Neurobiology and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15261-0001, USA
| |
Collapse
|
94
|
Dynamical changes in neurological diseases and anesthesia. Curr Opin Neurobiol 2012; 22:693-703. [PMID: 22446010 DOI: 10.1016/j.conb.2012.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 02/11/2012] [Accepted: 02/19/2012] [Indexed: 12/22/2022]
Abstract
Dynamics of neuronal networks can be altered in at least two ways: by changes in connectivity, that is, the physical architecture of the network, or changes in the amplitudes and kinetics of the intrinsic and synaptic currents within and between the elements making up a network. We argue that the latter changes are often overlooked as sources of alterations in network behavior when there are also structural (connectivity) abnormalities present; indeed, they may even give rise to the structural changes observed in these states. Here we look at two clinically relevant states (Parkinson's disease and schizophrenia) and argue that non-structural changes are important in the development of abnormal dynamics within the networks known to be relevant to each disorder. We also discuss anesthesia, since it is entirely acute, thus illustrating the potent effects of changes in synaptic and intrinsic membrane currents in the absence of structural alteration. In each of these, we focus on the role of changes in GABAergic function within microcircuits, stressing literature within the last few years.
Collapse
|
95
|
Lanciego JL. Basal Ganglia Circuits: What's Now and Next? Front Neuroanat 2012; 6:4. [PMID: 22347847 PMCID: PMC3277909 DOI: 10.3389/fnana.2012.00004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 01/28/2012] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jose L Lanciego
- Neurosciences Division, Basal Ganglia Neuromorphology Laboratory, University of Navarra Pamplona, Spain
| |
Collapse
|
96
|
Hadipour-Niktarash A, Rommelfanger KS, Masilamoni GJ, Smith Y, Wichmann T. Extrastriatal D2-like receptors modulate basal ganglia pathways in normal and Parkinsonian monkeys. J Neurophysiol 2011; 107:1500-12. [PMID: 22131382 DOI: 10.1152/jn.00348.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
According to traditional models of the basal ganglia-thalamocortical network of connections, dopamine exerts D2-like receptor (D2LR)-mediated effects through actions on striatal neurons that give rise to the "indirect" pathway, secondarily affecting the activity in the internal and external pallidal segments (GPi and GPe, respectively) and the substantia nigra pars reticulata (SNr). However, accumulating evidence from the rodent literature suggests that D2LR activation also directly influences synaptic transmission in these nuclei. To further examine this issue in primates, we combined in vivo electrophysiological recordings and local intracerebral microinjections of drugs with electron microscopic immunocytochemistry to study D2LR-mediated modulation of neuronal activities in GPe, GPi, and SNr of normal and MPTP-treated (parkinsonian) monkeys. D2LR activation with quinpirole increased firing in most GPe neurons, likely due to a reduction of striatopallidal GABAergic inputs. In contrast, local application of quinpirole reduced firing in GPi and SNr, possibly through D2LR-mediated effects on glutamatergic inputs. Injections of the D2LR antagonist sulpiride resulted in effects opposite to those of quinpirole in GPe and GPi. D2 receptor immunoreactivity was most prevalent in putative striatal-like GABAergic terminals and unmyelinated axons in GPe, GPi, and SNr, but a significant proportion of immunoreactive boutons also displayed ultrastructural features of glutamatergic terminals. Postsynaptic labeling was minimal in all nuclei. The D2LR-mediated effects and pattern of distribution of D2 receptor immunoreactivity were maintained in the parkinsonian state. Thus, in addition to their preferential effects on indirect pathway striatal neurons, extrastriatal D2LR activation in GPi and SNr also influences direct pathway elements in the primate basal ganglia under normal and parkinsonian conditions.
Collapse
|
97
|
Aceves JJ, Rueda-Orozco PE, Hernandez-Martinez R, Galarraga E, Bargas J. Bidirectional plasticity in striatonigral synapses: a switch to balance direct and indirect basal ganglia pathways. Learn Mem 2011; 18:764-73. [PMID: 22101179 DOI: 10.1101/lm.023432.111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
There is no hypothesis to explain how direct and indirect basal ganglia (BG) pathways interact to reach a balance during the learning of motor procedures. Both pathways converge in the substantia nigra pars reticulata (SNr) carrying the result of striatal processing. Unfortunately, the mechanisms that regulate synaptic plasticity in striatonigral (direct pathway) synapses are not known. Here, we used electrophysiological techniques to describe dopamine D(1)-receptor-mediated facilitation in striatonigral synapses in the context of its interaction with glutamatergic inputs, probably coming from the subthalamic nucleus (STN) (indirect pathway) and describe a striatonigral cannabinoid-dependent long-term synaptic depression (LTD). It is shown that striatonigral afferents exhibit D(1)-receptor-mediated facilitation of synaptic transmission when NMDA receptors are inactive, a phenomenon that changes to cannabinoid-dependent LTD when NMDA receptors are active. This interaction makes SNr neurons become coincidence-detector switching ports: When inactive, NMDA receptors lead to a dopamine-dependent enhancement of direct pathway output, theoretically facilitating movement. When active, NMDA receptors result in LTD of the same synapses, thus decreasing movement. We propose that SNr neurons, working as logical gates, tune the motor system to establish a balance between both BG pathways, enabling the system to choose appropriate synergies for movement learning and postural support.
Collapse
Affiliation(s)
- Jose J Aceves
- Instituto de Fisiologia Celular-Neurociencias, Universidad Nacional Autonoma de México (UNAM), México City, DF Mexico 04510
| | | | | | | | | |
Collapse
|
98
|
Sotoyama H, Zheng Y, Iwakura Y, Mizuno M, Aizawa M, Shcherbakova K, Wang R, Namba H, Nawa H. Pallidal hyperdopaminergic innervation underlying D2 receptor-dependent behavioral deficits in the schizophrenia animal model established by EGF. PLoS One 2011; 6:e25831. [PMID: 22022452 PMCID: PMC3192134 DOI: 10.1371/journal.pone.0025831] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 09/12/2011] [Indexed: 11/18/2022] Open
Abstract
Epidermal growth factor (EGF) is one of the ErbB receptor ligands implicated in schizophrenia neuropathology as well as in dopaminergic development. Based on the immune inflammatory hypothesis for schizophrenia, neonatal rats are exposed to this cytokine and later develop neurobehavioral abnormality such as prepulse inhibition (PPI) deficit. Here we found that the EGF-treated rats exhibited persistent increases in tyrosine hydroxylase levels and dopamine content in the globus pallidus. Furthermore, pallidal dopamine release was elevated in EGF-treated rats, but normalized by subchronic treatment with risperidone concomitant with amelioration of their PPI deficits. To evaluate pathophysiologic roles of the dopamine abnormality, we administered reserpine bilaterally to the globus pallidus to reduce the local dopamine pool. Reserpine infusion ameliorated PPI deficits of EGF-treated rats without apparent aversive effects on locomotor activity in these rats. We also administered dopamine D1-like and D2-like receptor antagonists (SCH23390 and raclopride) and a D2-like receptor agonist (quinpirole) to the globus pallidus and measured PPI and bar-hang latencies. Raclopride (0.5 and 2.0 µg/site) significantly elevated PPI levels of EGF-treated rats, but SCH23390 (0.5 and 2.0 µg/site) had no effect. The higher dose of raclopride induced catalepsy-like changes in control animals but not in EGF-treated rats. Conversely, local quinpirole administration to EGF-untreated control rats induced PPI deficits and anti-cataleptic behaviors, confirming the pathophysiologic role of the pallidal hyperdopaminergic state. These findings suggest that the pallidal dopaminergic innervation is vulnerable to circulating EGF at perinatal and/or neonatal stages and has strong impact on the D2-like receptor-dependent behavioral deficits relevant to schizophrenia.
Collapse
Affiliation(s)
- Hidekazu Sotoyama
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yingjun Zheng
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yuriko Iwakura
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Makoto Mizuno
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Miho Aizawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Ksenia Shcherbakova
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Ran Wang
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hisaaki Namba
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
- * E-mail:
| |
Collapse
|
99
|
Pennartz C, Ito R, Verschure P, Battaglia F, Robbins T. The hippocampal–striatal axis in learning, prediction and goal-directed behavior. Trends Neurosci 2011; 34:548-59. [DOI: 10.1016/j.tins.2011.08.001] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/16/2011] [Accepted: 08/01/2011] [Indexed: 02/01/2023]
|
100
|
Mathai A, Smith Y. The corticostriatal and corticosubthalamic pathways: two entries, one target. So what? Front Syst Neurosci 2011; 5:64. [PMID: 21866224 PMCID: PMC3149683 DOI: 10.3389/fnsys.2011.00064] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 07/21/2011] [Indexed: 11/13/2022] Open
Abstract
The basal ganglia receive cortical inputs through two main stations - the striatum and the subthalamic nucleus (STN). The information flowing along the corticostriatal system is transmitted to the basal ganglia circuitry via the "direct and indirect" striatofugal pathways, while information that flows through the STN is transmitted along the so-called "hyperdirect" pathway. The functional significance of this dual entry system is not clear. Although the corticostriatal system has been thoroughly characterized anatomically and electrophysiologically, such is not the case for the corticosubthalamic system. In order to provide further insights into the intricacy of this complex anatomical organization, this review examines and compares the anatomical and functional organization of the corticostriatal and corticosubthalamic systems, and highlights some key issues that must be addressed to better understand the mechanisms by which these two neural systems may interact to regulate basal ganglia functions and dysfunctions.
Collapse
Affiliation(s)
- Abraham Mathai
- Yerkes National Primate Research Center, Emory University Atlanta, GA, USA
| | | |
Collapse
|