51
|
The Therapeutic Potential of Non-invasive Neurostimulation for Motor Skill Learning in Children with Neurodevelopmental Disorders. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2019. [DOI: 10.1007/s40474-019-0155-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
52
|
Eggleston JD, Harry JR, Dufek JS. Lower extremity joint stiffness during walking distinguishes children with and without autism. Hum Mov Sci 2018; 62:25-33. [PMID: 30218847 PMCID: PMC6251740 DOI: 10.1016/j.humov.2018.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 01/14/2023]
Abstract
How children with Autism Spectrum Disorder (ASD) and peers with typical development (TD) modulate lower extremity stiffness during walking could identify a mechanism for gait differences between groups. We quantified differences in lower extremity joint stiffness and linear impulses, along the vertical and anterior/posterior axes during over-ground walking in children with ASD compared to age- and gender-matched children with TD. Nine age- and gender-matched pairs of children, aged 5-12 years, completed the current study. Joint stiffness and linear impulses were computed in four sub-phases of stance: loading response, mid-stance, terminal stance, and pre-swing. The Model Statistic technique (α = 0.05) was used to test for statistical significance between the matched-pairs for each variable and sub-phase. Furthermore, dependent t-tests (α = 0.05) were utilized, at the group level, to determine whether significant differences existed between sub-phases. Results indicate that children with ASD may exhibit greater stiffness in pre-swing, and thus, produce inefficient propulsive forces during walking. We attribute these differences to sensory processing dysfunction previously observed in children with ASD.
Collapse
Affiliation(s)
- Jeffrey D Eggleston
- Department of Kinesiology, University of Texas at El Paso, 500 University Avenue, El Paso, TX 79968, USA.
| | - John R Harry
- Department of Kinesiology and Sport Management, Texas Tech University, 2500 Broadway, Box 43011, Lubbock, TX 79409, USA
| | - Janet S Dufek
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Las Vegas, NV 89154, USA
| |
Collapse
|
53
|
Tsai PT, Rudolph S, Guo C, Ellegood J, Gibson JM, Schaeffer SM, Mogavero J, Lerch JP, Regehr W, Sahin M. Sensitive Periods for Cerebellar-Mediated Autistic-like Behaviors. Cell Rep 2018; 25:357-367.e4. [PMID: 30304677 PMCID: PMC6226056 DOI: 10.1016/j.celrep.2018.09.039] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/06/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023] Open
Abstract
Despite a prevalence exceeding 1%, mechanisms underlying autism spectrum disorders (ASDs) are poorly understood, and targeted therapies and guiding parameters are urgently needed. We recently demonstrated that cerebellar dysfunction is sufficient to generate autistic-like behaviors in a mouse model of tuberous sclerosis complex (TSC). Here, using the mechanistic target of rapamycin (mTOR)-specific inhibitor rapamycin, we define distinct sensitive periods for treatment of autistic-like behaviors with sensitive periods extending into adulthood for social behaviors. We identify cellular and electrophysiological parameters that may contribute to behavioral rescue, with rescue of Purkinje cell survival and excitability corresponding to social behavioral rescue. In addition, using anatomic and diffusion-based MRI, we identify structural changes in cerebellar domains implicated in ASD that correlate with sensitive periods of specific autism-like behaviors. These findings thus not only define treatment parameters into adulthood, but also support a mechanistic basis for the targeted rescue of autism-related behaviors.
Collapse
Affiliation(s)
- Peter T Tsai
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA.
| | | | - Chong Guo
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Kids, Toronto, ON, Canada
| | - Jennifer M Gibson
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Samantha M Schaeffer
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jazmin Mogavero
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Kids, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Wade Regehr
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Mustafa Sahin
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
54
|
Insights from perceptual, sensory, and motor functioning in autism and cerebellar primary disturbances: Are there reliable markers for these disorders? Neurosci Biobehav Rev 2018; 95:263-279. [PMID: 30268434 DOI: 10.1016/j.neubiorev.2018.09.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 06/09/2018] [Accepted: 09/23/2018] [Indexed: 12/21/2022]
Abstract
The contribution of cerebellar circuitry alterations in the pathophysiology of Autism Spectrum Disorder (ASD) has been widely investigated in the last decades. Yet, experimental studies on neurocognitive markers of ASD have not been attentively compared with similar studies in patients with cerebellar primary disturbances (e.g., malformations, agenesis, degeneration, etc). Addressing this neglected issue could be useful to underline unexpected areas of overlap and/or underestimated differences between these sets of conditions. In fact, ASD and cerebellar primary disturbances (notably, Cerebellar Cognitive Affective Syndrome, CCAS) can share atypical manifestations in perceptual, sensory, and motor functions, but neural subcircuits involved in these anomalies/difficulties could be distinct. Here, we specifically deal with this issue focusing on four paradigmatic neurocognitive functions: visual and biological motion perception, multisensory integration, and high stages of the motor hierarchy. From a research perspective, this represents an essential challenge to more deeply understand neurocognitive markers of ASD and of cerebellar primary disturbances/CCAS. Although we cannot assume definitive conclusions, and beyond phenotypical similarities between ASD and CCAS, clinical and experimental evidence described in this work argues that ASD and CCAS are distinct phenomena. ASD and CCAS seem to be characterized by different pathophysiological mechanisms and mediated by distinct neural nodes. In parallel, from a clinical perspective, this characterization may furnish insights to tackle the distinction between autistic functioning/autistic phenotype (in ASD) and dysmetria of thought/autistic-like phenotype (in CCAS).
Collapse
|
55
|
Neuromotor and cognitive responses of adults with autism spectrum disorder compared to neurotypical adults. Exp Brain Res 2018; 236:2321-2332. [DOI: 10.1007/s00221-018-5300-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 05/24/2018] [Indexed: 10/14/2022]
|
56
|
The neural circuitry of restricted repetitive behavior: Magnetic resonance imaging in neurodevelopmental disorders and animal models. Neurosci Biobehav Rev 2018; 92:152-171. [PMID: 29802854 DOI: 10.1016/j.neubiorev.2018.05.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 04/18/2018] [Accepted: 05/20/2018] [Indexed: 11/23/2022]
Abstract
Restricted, repetitive behaviors (RRBs) are patterns of behavior that exhibit little variation in form and have no obvious function. RRBs although transdiagonstic are a particularly prominent feature of certain neurodevelopmental disorders, yet relatively little is known about the neural circuitry of RRBs. Past work in this area has focused on isolated brain regions and neurotransmitter systems, but implementing a neural circuit approach has the potential to greatly improve understanding of RRBs. Magnetic resonance imaging (MRI) is well-suited to studying the structural and functional connectivity of the nervous system, and is a highly translational research tool. In this review, we synthesize MRI research from both neurodevelopmental disorders and relevant animal models that informs the neural circuitry of RRB. Together, these studies implicate distributed neural circuits between the cortex, basal ganglia, and cerebellum. Despite progress in neuroimaging of RRB, there are many opportunities for conceptual and methodological improvement. We conclude by suggesting future directions for MRI research in RRB, and how such studies can benefit from complementary approaches in neuroscience.
Collapse
|
57
|
Lin CY, Chang KW, Lin CY, Wu JY, Coon H, Huang PH, Ho HN, Akbarian S, Gau SSF, Huang HS. Allele-specific expression in a family quartet with autism reveals mono-to-biallelic switch and novel transcriptional processes of autism susceptibility genes. Sci Rep 2018; 8:4277. [PMID: 29523860 PMCID: PMC5844893 DOI: 10.1038/s41598-018-22753-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/28/2018] [Indexed: 02/07/2023] Open
Abstract
Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental disorder, and the exact causal mechanism is unknown. Dysregulated allele-specific expression (ASE) has been identified in persons with ASD; however, a comprehensive analysis of ASE has not been conducted in a family quartet with ASD. To fill this gap, we analyzed ASE using genomic DNA from parent and offspring and RNA from offspring's postmortem prefrontal cortex (PFC); one of the two offspring had been diagnosed with ASD. DNA- and RNA-sequencing revealed distinct ASE patterns from the PFC of both offspring. However, only the PFC of the offspring with ASD exhibited a mono-to-biallelic switch for LRP2BP and ZNF407. We also identified a novel site of RNA-editing in KMT2C in addition to new monoallelically-expressed genes and miRNAs. Our results demonstrate the prevalence of ASE in human PFC and ASE abnormalities in the PFC of a person with ASD. Taken together, these findings may provide mechanistic insights into the pathogenesis of ASD.
Collapse
Affiliation(s)
- Chun-Yen Lin
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Department of Pediatrics, Yong-He Cardinal Tien Hospital, Taipei, Taiwan
| | - Kai-Wei Chang
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Chia-Yi Lin
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Jia-Ying Wu
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Hilary Coon
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, 84108, USA
| | - Pei-Hsin Huang
- Department of Pathology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Hong-Nerng Ho
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Susan Shur-Fen Gau
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Hsien-Sung Huang
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan.
- Neurodevelopment Club in Taiwan, Taipei, 10051, Taiwan.
| |
Collapse
|
58
|
Leung AW, Li JYH. The Molecular Pathway Regulating Bergmann Glia and Folia Generation in the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2018; 17:42-48. [PMID: 29218544 PMCID: PMC5809181 DOI: 10.1007/s12311-017-0904-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Evolution of complex behaviors in higher vertebrates and primates require the development of sophisticated neuronal circuitry and the expansion of brain surface area to accommodate the vast number of neuronal and glial populations. To achieve these goals, the neocortex in primates and the cerebellum in amniotes have developed specialized types of basal progenitors to aid the folding of their cortices. In the cerebellum, Bergmann glia constitute such a basal progenitor population, having a distinctive morphology and playing a critical role in cerebellar corticogenesis. Here, we review recent studies on the induction of Bergmann glia and their crucial role in mediating folding of the cerebellar cortex. These studies uncover a key function of FGF-ERK-ETV signaling cascade in the transformation of Bergmann glia from radial glia in the ventricular zone. Remarkably, in the neocortex, the same signaling axis operates to facilitate the transformation of ventricular radial glia into basal radial glia, a Bergmann glia-like basal progenitor population, which have been implicated in the establishment of neocortical gyri. These new findings draw a striking similarity in the function and ontogeny of the two basal progenitor populations born in distinct brain compartments.
Collapse
Affiliation(s)
- Alan W Leung
- Department of Genetics and Yale Stem Cell Center, Yale University, 10 Amistad Street, New Haven, CT, 06520-8073, USA
| | - James Y H Li
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030-6403, USA.
- Institute for Systems Genomics, University of Connecticut, 400 Farmington Avenue, Farmington, CT, 06030-6403, USA.
| |
Collapse
|
59
|
Stoodley CJ, D'Mello AM, Ellegood J, Jakkamsetti V, Liu P, Nebel MB, Gibson JM, Kelly E, Meng F, Cano CA, Pascual JM, Mostofsky SH, Lerch JP, Tsai PT. Altered cerebellar connectivity in autism and cerebellar-mediated rescue of autism-related behaviors in mice. Nat Neurosci 2017; 20:1744-1751. [PMID: 29184200 PMCID: PMC5867894 DOI: 10.1038/s41593-017-0004-1] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 09/11/2017] [Indexed: 01/12/2023]
Abstract
Cerebellar abnormalities, particularly in Right Crus I (RCrusI), are consistently reported in autism spectrum disorders (ASD). Although RCrusI is functionally connected with ASD-implicated circuits, the contribution of RCrusI dysfunction to ASD remains unclear. Here neuromodulation of RCrusI in neurotypical humans resulted in altered functional connectivity with the inferior parietal lobule, and children with ASD showed atypical functional connectivity in this circuit. Atypical RCrusI-inferior parietal lobule structural connectivity was also evident in the Purkinje neuron (PN) TscI ASD mouse model. Additionally, chemogenetically mediated inhibition of RCrusI PN activity in mice was sufficient to generate ASD-related social, repetitive, and restricted behaviors, while stimulation of RCrusI PNs rescued social impairment in the PN TscI ASD mouse model. Together, these studies reveal important roles for RCrusI in ASD-related behaviors. Further, the rescue of social behaviors in an ASD mouse model suggests that investigation of the therapeutic potential of cerebellar neuromodulation in ASD may be warranted.
Collapse
Affiliation(s)
- Catherine J Stoodley
- Department of Psychology and Center for Behavioral Neuroscience, American University, Washington, DC, USA.
| | - Anila M D'Mello
- Department of Psychology and Center for Behavioral Neuroscience, American University, Washington, DC, USA
| | - Jacob Ellegood
- Toronto Mouse Imaging Centre, Hospital for Sick Kids, Toronto, Canada
| | - Vikram Jakkamsetti
- The Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Pei Liu
- The Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mary Beth Nebel
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Jennifer M Gibson
- The Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Elyza Kelly
- The Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Fantao Meng
- The Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Christopher A Cano
- The Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Juan M Pascual
- The Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Stewart H Mostofsky
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Jason P Lerch
- Toronto Mouse Imaging Centre, Hospital for Sick Kids, Toronto, Canada
| | - Peter T Tsai
- The Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
60
|
Ablation of TFR1 in Purkinje Cells Inhibits mGlu1 Trafficking and Impairs Motor Coordination, But Not Autistic-Like Behaviors. J Neurosci 2017; 37:11335-11352. [PMID: 29054881 DOI: 10.1523/jneurosci.1223-17.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/28/2017] [Accepted: 10/06/2017] [Indexed: 11/21/2022] Open
Abstract
Group 1 metabotropic glutamate receptors (mGlu1/5s) are critical to synapse formation and participate in synaptic LTP and LTD in the brain. mGlu1/5 signaling alterations have been documented in cognitive impairment, neurodegenerative disorders, and psychiatric diseases, but underlying mechanisms for its modulation are not clear. Here, we report that transferrin receptor 1 (TFR1), a transmembrane protein of the clathrin complex, modulates the trafficking of mGlu1 in cerebellar Purkinje cells (PCs) from male mice. We show that conditional knock-out of TFR1 in PCs does not affect the cytoarchitecture of PCs, but reduces mGlu1 expression at synapses. This regulation by TFR1 acts in concert with that by Rab8 and Rab11, which modulate the internalization and recycling of mGlu1, respectively. TFR1 can bind to Rab proteins and facilitate their expression at synapses. PC ablation of TFR1 inhibits parallel fiber-PC LTD, whereas parallel fiber-LTP and PC intrinsic excitability are not affected. Finally, we demonstrate that PC ablation of TFR1 impairs motor coordination, but does not affect social behaviors in mice. Together, these findings underscore the importance of TFR1 in regulating mGlu1 trafficking and suggest that mGlu1- and mGlu1-dependent parallel fiber-LTD are associated with regulation of motor coordination, but not autistic behaviors.SIGNIFICANCE STATEMENT Group 1 metabotropic glutamate receptor (mGlu1/5) signaling alterations have been documented in cognitive impairment, neurodegenerative disorders, and psychiatric diseases. Recent work suggests that altered mGlu1 signaling in Purkinje cells (PCs) may be involved in not only motor learning, but also autistic-like behaviors. We find that conditional knock-out of transferrin receptor 1 (TFR1) in PCs reduces synaptic mGlu1 by tethering Rab8 and Rab11 in the cytosol. PC ablation of TFR1 inhibits parallel fiber-PC LTD, whereas parallel fiber-PC LTP and PC intrinsic excitability are intact. Motor coordination is impaired, but social behaviors are normal in TFR1flox/flox;pCP2-cre mice. Our data reveal a new regulator for trafficking and synaptic expression of mGlu1 and suggest that mGlu1-dependent LTD is associated with motor coordination, but not autistic-like behaviors.
Collapse
|
61
|
Affiliation(s)
- Vincent M Vacca
- Vincent M. Vacca, Jr., is a clinical nurse educator in the Neuroscience Intensive Care Unit at Brigham & Women's Hospital, Boston, Mass
| |
Collapse
|
62
|
Hagan N, Guarente J, Ellisor D, Zervas M. The Temporal Contribution of the Gbx2 Lineage to Cerebellar Neurons. Front Neuroanat 2017; 11:50. [PMID: 28785208 PMCID: PMC5519623 DOI: 10.3389/fnana.2017.00050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 06/16/2017] [Indexed: 11/13/2022] Open
Abstract
The cerebellum (Cb) is an exquisite structure that controls elaborate motor behaviors and is essential for sensory-motor learning. During development, the Cb is derived from rhombomere 1 (r1). Within this embryonic compartment, precursors in r1 are patterned by signaling cues originating from the isthmus organizer (IsO) and subsequently undergo complex morphogenic movements to establish their final position in the mature Cb. The transcription factor Gbx2 is expressed in the developing Cb and is intimately involved in organizing and patterning the Cb. Nevertheless, how precursors expressing Gbx2 at specific embryonic time points contribute to distinct cell types in the adult Cb is unresolved. In this study, we used Genetic Inducible Fate Mapping (GIFM) to mark Gbx2-expressing precursors with fine temporal resolution and to subsequently track this lineage through embryogenesis. We then determined the terminal neuronal fate of the Gbx2 lineage in the adult Cb. Our analysis demonstrates that the Gbx2 lineage contributes to the Cb with marking over the course of five stages: Embryonic day 7.5 (E7.5) through E11.5. The Gbx2 lineage gives rise to Purkinje cells, granule neurons, and deep cerebellar neurons across these marking stages. Notably, the contribution of the Gbx2 lineage shifts as development proceeds with each marking stage producing a distinct profile of mature neurons in the adult Cb. These findings demonstrate the relationship between the temporal expression of Gbx2 and the terminal cell fate of neurons in the Cb. Based on these results, Gbx2 is critical to Cb development, not only for its well-defined role in positioning and maintaining the IsO, but also for guiding the development of Cb precursors and determining the identity of Cb neurons.
Collapse
Affiliation(s)
- Nellwyn Hagan
- Division of Biology and Medicine, Department of Neuroscience, Brown UniversityProvidence, RI, United States
| | - Juliana Guarente
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversityProvidence, RI, United States
| | - Debra Ellisor
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversityProvidence, RI, United States
| | - Mark Zervas
- Division of Biology and Medicine, Department of Neuroscience, Brown UniversityProvidence, RI, United States.,Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversityProvidence, RI, United States.,Department of Neuroscience, AmgenCambridge, MA, United States
| |
Collapse
|
63
|
Subramanian K, Brandenburg C, Orsati F, Soghomonian JJ, Hussman JP, Blatt GJ. Basal ganglia and autism - a translational perspective. Autism Res 2017; 10:1751-1775. [PMID: 28730641 DOI: 10.1002/aur.1837] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 12/20/2022]
Abstract
The basal ganglia are a collection of nuclei below the cortical surface that are involved in both motor and non-motor functions, including higher order cognition, social interactions, speech, and repetitive behaviors. Motor development milestones that are delayed in autism such as gross motor, fine motor and walking can aid in early diagnosis of autism. Neuropathology and neuroimaging findings in autism cases revealed volumetric changes and altered cell density in select basal ganglia nuclei. Interestingly, in autism, both the basal ganglia and the cerebellum are impacted both in their motor and non-motor domains and recently, found to be connected via the pons through a short disynaptic pathway. In typically developing individuals, the basal ganglia plays an important role in: eye movement, movement coordination, sensory modulation and processing, eye-hand coordination, action chaining, and inhibition control. Genetic models have proved to be useful toward understanding cellular and molecular changes at the synaptic level in the basal ganglia that may in part contribute to these autism-related behaviors. In autism, basal ganglia functions in motor skill acquisition and development are altered, thus disrupting the normal flow of feedback to the cortex. Taken together, there is an abundance of emerging evidence that the basal ganglia likely plays critical roles in maintaining an inhibitory balance between cortical and subcortical structures, critical for normal motor actions and cognitive functions. In autism, this inhibitory balance is disturbed thus impacting key pathways that affect normal cortical network activity. Autism Res 2017, 10: 1751-1775. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY Habit learning, action selection and performance are modulated by the basal ganglia, a collection of groups of neurons located below the cerebral cortex in the brain. In autism, there is emerging evidence that parts of the basal ganglia are structurally and functionally altered disrupting normal information flow. The basal ganglia through its interconnected circuits with the cerebral cortex and the cerebellum can potentially impact various motor and cognitive functions in the autism brain.
Collapse
Affiliation(s)
| | - Cheryl Brandenburg
- Program on Neuroscience, Hussman Institute for Autism, Baltimore, MD, 21201
| | - Fernanda Orsati
- Program on Supports, Hussman Institute for Autism, Catonsville, MD, 21228
| | | | - John P Hussman
- Program on Neuroscience, Hussman Institute for Autism, Baltimore, MD, 21201.,Program on Supports, Hussman Institute for Autism, Catonsville, MD, 21228
| | - Gene J Blatt
- Program on Neuroscience, Hussman Institute for Autism, Baltimore, MD, 21201
| |
Collapse
|
64
|
Fernández M, Mollinedo-Gajate I, Peñagarikano O. Neural Circuits for Social Cognition: Implications for Autism. Neuroscience 2017; 370:148-162. [PMID: 28729065 DOI: 10.1016/j.neuroscience.2017.07.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/01/2017] [Accepted: 07/07/2017] [Indexed: 12/28/2022]
Abstract
Social neuroscience, the study of the neurobiological basis of social behavior, has become a major area of current research in behavioral neuroscience and psychiatry, since many psychiatric disorders are characterized by social deficits. Social behavior refers to the behavioral response with regard to socially relevant information, and requires the perception and integration of social cues through a complex cognition process (i.e. social cognition) that involves attention, memory, motivation and emotion. Neurobiological and molecular mechanisms underlying social behavior are highly conserved across species, and inter- and intra-specific variability observed in social behavior can be explained to large extent by differential activity of this conserved neural network. Human functional magnetic resonance imaging (fMRI) studies have greatly informed about the brain structures and their connectivity networks that are important for social cognition. Animal research has been crucial for identifying specific circuits and molecular mechanisms that modulate this structural network. From a molecular neurobiology perspective, activity in these brain structures is coordinated by neuronal circuits modulated by several neurotransmitters and neuromodulators. Thus, quantitative variation in the levels, release and/or receptor density of these molecules could affect the observed behavioral response. The present review presents an overall framework of the components of the social brain circuitry and its modulation. By integrating multiple research approaches, from human fMRI studies to animal models we can start shedding light into how dysfunction in these circuits could lead to disorders of social-functioning such as Autism.
Collapse
Affiliation(s)
- Marta Fernández
- Department of Pharmacology, School of Medicine, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Irene Mollinedo-Gajate
- Department of Pharmacology, School of Medicine, University of the Basque Country (UPV/EHU), Leioa 48940, Spain; Biomedical Research Networking Center in Mental Health (CIBERSAM), Spain
| | - Olga Peñagarikano
- Department of Pharmacology, School of Medicine, University of the Basque Country (UPV/EHU), Leioa 48940, Spain; Biomedical Research Networking Center in Mental Health (CIBERSAM), Spain.
| |
Collapse
|
65
|
The Role of the Pediatric Cerebellum in Motor Functions, Cognition, and Behavior: A Clinical Perspective. Neuroimaging Clin N Am 2017; 26:317-29. [PMID: 27423796 DOI: 10.1016/j.nic.2016.03.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article discusses the contribution of the pediatric cerebellum to locomotion, ocular motor control, speech articulation, cognitive function, and behavior modulation. Hypotheses on cerebellar function are discussed. Clinical features in patients with cerebellar disorders are outlined. Cerebellar abnormalities in cognitive and behavioral disorders are detailed.
Collapse
|
66
|
Wolff JJ, Swanson MR, Elison JT, Gerig G, Pruett JR, Styner MA, Vachet C, Botteron KN, Dager SR, Estes AM, Hazlett HC, Schultz RT, Shen MD, Zwaigenbaum L, Piven J. Neural circuitry at age 6 months associated with later repetitive behavior and sensory responsiveness in autism. Mol Autism 2017; 8:8. [PMID: 28316772 PMCID: PMC5351210 DOI: 10.1186/s13229-017-0126-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 02/25/2017] [Indexed: 01/10/2023] Open
Abstract
Background Restricted and repetitive behaviors are defining features of autism spectrum disorder (ASD). Under revised diagnostic criteria for ASD, this behavioral domain now includes atypical responses to sensory stimuli. To date, little is known about the neural circuitry underlying these features of ASD early in life. Methods Longitudinal diffusion tensor imaging data were collected from 217 infants at high familial risk for ASD. Forty-four of these infants were diagnosed with ASD at age 2. Targeted cortical, cerebellar, and striatal white matter pathways were defined and measured at ages 6, 12, and 24 months. Dependent variables included the Repetitive Behavior Scale-Revised and the Sensory Experiences Questionnaire. Results Among children diagnosed with ASD, repetitive behaviors and sensory response patterns were strongly correlated, even when accounting for developmental level or social impairment. Longitudinal analyses indicated that the genu and cerebellar pathways were significantly associated with both repetitive behaviors and sensory responsiveness but not social deficits. At age 6 months, fractional anisotropy in the genu significantly predicted repetitive behaviors and sensory responsiveness at age 2. Cerebellar pathways significantly predicted later sensory responsiveness. Exploratory analyses suggested a possible disordinal interaction based on diagnostic status for the association between fractional anisotropy and repetitive behavior. Conclusions Our findings suggest that restricted and repetitive behaviors contributing to a diagnosis of ASD at age 2 years are associated with structural properties of callosal and cerebellar white matter pathways measured during infancy and toddlerhood. We further identified that repetitive behaviors and unusual sensory response patterns co-occur and share common brain-behavior relationships. These results were strikingly specific given the absence of association between targeted pathways and social deficits. Electronic supplementary material The online version of this article (doi:10.1186/s13229-017-0126-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jason J Wolff
- Department of Educational Psychology, University of Minnesota, Minneapolis, MN USA
| | - Meghan R Swanson
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC USA
| | - Jed T Elison
- Institute of Child Development, University of Minnesota, Minneapolis, MN USA
| | - Guido Gerig
- Tandon School of Engineering, New York University, New York City, NY USA
| | - John R Pruett
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
| | - Martin A Styner
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC USA
| | - Clement Vachet
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT USA
| | - Kelly N Botteron
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
| | - Stephen R Dager
- Department of Radiology, University of Washington, Seattle, WA USA
| | - Annette M Estes
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA USA
| | - Heather C Hazlett
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC USA.,Department of Psychiatry, University of North Carolina, Chapel Hill, NC USA
| | - Robert T Schultz
- Center for Autism Research, Children's Hospital of Philadelphia, Philadelphia, PA USA
| | - Mark D Shen
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC USA
| | | | - Joseph Piven
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC USA.,Department of Psychiatry, University of North Carolina, Chapel Hill, NC USA
| | | |
Collapse
|
67
|
Usui N, Co M, Harper M, Rieger MA, Dougherty JD, Konopka G. Sumoylation of FOXP2 Regulates Motor Function and Vocal Communication Through Purkinje Cell Development. Biol Psychiatry 2017; 81:220-230. [PMID: 27009683 PMCID: PMC4983264 DOI: 10.1016/j.biopsych.2016.02.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Mutations in the gene encoding the transcription factor forkhead box P2 (FOXP2) result in brain developmental abnormalities, including reduced gray matter in both human patients and rodent models and speech and language deficits. However, neither the region-specific function of FOXP2 in the brain, in particular the cerebellum, nor the effects of any posttranslational modifications of FOXP2 in the brain and disorders have been explored. METHODS We characterized sumoylation of FOXP2 biochemically and analyzed the region-specific function and sumoylation of FOXP2 in the developing mouse cerebellum. Using in utero electroporation to manipulate the sumoylation state of FOXP2 as well as Foxp2 expression levels in Purkinje cells of the cerebellum in vivo, we reduced Foxp2 expression approximately 40% in the mouse cerebellum. Such a reduction approximates the haploinsufficiency observed in human patients who demonstrate speech and language impairments. RESULTS We identified sumoylation of FOXP2 at K674 (K673 in mice) in the cerebellum of neonates. In vitro co-immunoprecipitation and in vivo colocalization experiments suggest that PIAS3 acts as the small ubiquitin-like modifier E3 ligase for FOXP2 sumoylation. This sumoylation modifies transcriptional regulation by FOXP2. We demonstrated that FOXP2 sumoylation is required for regulation of cerebellar motor function and vocal communication, likely through dendritic outgrowth and arborization of Purkinje cells in the mouse cerebellum. CONCLUSIONS Sumoylation of FOXP2 in neonatal mouse cerebellum regulates Purkinje cell development and motor functions and vocal communication, demonstrating evidence for sumoylation in regulating mammalian behaviors.
Collapse
Affiliation(s)
- Noriyoshi Usui
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-911, USA
| | - Marissa Co
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-911, USA
| | - Matthew Harper
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-911, USA
| | - Michael A. Rieger
- Department of Genetics and Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph D. Dougherty
- Department of Genetics and Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Genevieve Konopka
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
68
|
A developmental neuroscience approach to the search for biomarkers in autism spectrum disorder. Curr Opin Neurol 2016; 29:123-9. [PMID: 26953849 DOI: 10.1097/wco.0000000000000298] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW The delineation of biomarkers in autism spectrum disorder (ASD) offers a promising approach to inform precision-medicine-based approaches to ASD diagnosis and treatment and to move toward a mechanistic description of the disorder. However, biomarkers with sufficient sensitivity or specificity for clinical application in ASD are yet to be realized. Here, we review recent evidence for early, low-level alterations in brain and behavior development that may offer promising avenues for biomarker development in ASD. RECENT FINDINGS Accumulating evidence suggests that signs associated with ASD may unfold in a manner that maps onto the hierarchical organization of brain development. Genetic and neuroimaging evidence points towards perturbations in brain development early in life, and emerging evidence indicates that sensorimotor development may be among the earliest emerging signs associated with ASD, preceding social and cognitive impairment. SUMMARY The search for biomarkers of risk, prediction and stratification in ASD may be advanced through a developmental neuroscience approach that looks outside of the core signs of ASD and considers the bottom-up nature of brain development alongside the dynamic nature of development over time. We provide examples of assays that could be incorporated in studies to target low-level circuits.
Collapse
|
69
|
Wang Z, Hallac RR, Conroy KC, White SP, Kane AA, Collinsworth AL, Sweeney JA, Mosconi MW. Postural orientation and equilibrium processes associated with increased postural sway in autism spectrum disorder (ASD). J Neurodev Disord 2016; 8:43. [PMID: 27933108 PMCID: PMC5124312 DOI: 10.1186/s11689-016-9178-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 11/08/2016] [Indexed: 02/07/2023] Open
Abstract
Background Increased postural sway has been repeatedly documented in children with autism spectrum disorder (ASD). Characterizing the control processes underlying this deficit, including postural orientation and equilibrium, may provide key insights into neurophysiological mechanisms associated with ASD. Postural orientation refers to children’s ability to actively align their trunk and head with respect to their base of support, while postural equilibrium is an active process whereby children coordinate ankle dorsi-/plantar-flexion and hip abduction/adduction movements to stabilize their upper body. Dynamic engagement of each of these control processes is important for maintaining postural stability, though neither postural orientation nor equilibrium has been studied in ASD. Methods Twenty-two children with ASD and 21 age and performance IQ-matched typically developing (TD) controls completed three standing tests. During static stance, participants were instructed to stand as still as possible. During dynamic stances, participants swayed at a comfortable speed and magnitude in either anterior-posterior (AP) or mediolateral (ML) directions. The center of pressure (COP) standard deviation and trajectory length were examined to determine if children with ASD showed increased postural sway. Postural orientation was assessed using a novel virtual time-to-contact (VTC) approach that characterized spatiotemporal dimensions of children’s postural sway (i.e., body alignment) relative to their postural limitation boundary, defined as the maximum extent to which each child could sway in each direction. Postural equilibrium was quantified by evaluating the amount of shared or mutual information of COP time series measured along the AP and ML directions. Results Consistent with prior studies, children with ASD showed increased postural sway during both static and dynamic stances relative to TD children. In regard to postural orientation processes, children with ASD demonstrated reduced spatial perception of their postural limitation boundary towards target directions and reduced time to correct this error during dynamic postural sways but not during static stance. Regarding postural equilibrium, they showed a compromised ability to decouple ankle dorsi-/plantar-flexion and hip abduction/adduction processes during dynamic stances. Conclusions These results suggest that deficits in both postural orientation and equilibrium processes contribute to reduced postural stability in ASD. Specifically, increased postural sway in ASD appears to reflect patients’ impaired perception of their body movement relative to their own postural limitation boundary as well as a reduced ability to decouple distinct ankle and hip movements to align their body during standing. Our findings that deficits in postural orientation and equilibrium are more pronounced during dynamic compared to static stances suggests that the increased demands of everyday activities in which children must dynamically shift their COP involve more severe postural control deficits in ASD relative to static stance conditions that often are studied. Systematic assessment of dynamic postural control processes in ASD may provide important insights into new treatment targets and neurodevelopmental mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/s11689-016-9178-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zheng Wang
- Schiefelbusch Institute for Life Span Studies and Clinical Child Psychology Program, University of Kansas, 1000 Sunnyside Ave., Suite 2004, Lawrence, KS 66045 USA ; Kansas Center for Autism Research and Training (KCART), University of Kansas Medical School, Overland Park, KS 66213 USA
| | - Rami R Hallac
- Analytical Imaging and Modeling Center, Children's Medical Center, Dallas, TX 75235 USA
| | - Kaitlin C Conroy
- Center for Autism and Developmental Disabilities, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Stormi P White
- Center for Autism and Developmental Disabilities, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Alex A Kane
- Analytical Imaging and Modeling Center, Children's Medical Center, Dallas, TX 75235 USA
| | - Amy L Collinsworth
- Analytical Imaging and Modeling Center, Children's Medical Center, Dallas, TX 75235 USA
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45219 USA
| | - Matthew W Mosconi
- Schiefelbusch Institute for Life Span Studies and Clinical Child Psychology Program, University of Kansas, 1000 Sunnyside Ave., Suite 2004, Lawrence, KS 66045 USA ; Kansas Center for Autism Research and Training (KCART), University of Kansas Medical School, Overland Park, KS 66213 USA
| |
Collapse
|
70
|
Yadav S, Tiwari V, Singh M, Yadav RK, Roy S, Devi U, Gautam S, Rawat JK, Ansari MN, Saeedan AS, Prakash A, Saraf SA, Kaithwas G. Comparative efficacy of alpha-linolenic acid and gamma-linolenic acid to attenuate valproic acid-induced autism-like features. J Physiol Biochem 2016; 73:187-198. [DOI: 10.1007/s13105-016-0532-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 10/19/2016] [Indexed: 01/31/2023]
|
71
|
Abstract
Autism is a prevalent neurodevelopmental disorder whose origins are not well understood. Cerebellar involvement has been implicated in the pathogenesis of autism spectrum disorders with increasing evidence from both clinical studies and animal models supporting an important role for cerebellar dysfunction in autism spectrum disorders. This article discusses the various cerebellar contributions to autism spectrum disorders. Both clinical and preclinical studies are discussed and future research directions highlighted.
Collapse
Affiliation(s)
- Peter T Tsai
- University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
72
|
Peter S, ten Brinke MM, Stedehouder J, Reinelt CM, Wu B, Zhou H, Zhou K, Boele HJ, Kushner SA, Lee MG, Schmeisser MJ, Boeckers TM, Schonewille M, Hoebeek FE, De Zeeuw CI. Dysfunctional cerebellar Purkinje cells contribute to autism-like behaviour in Shank2-deficient mice. Nat Commun 2016; 7:12627. [PMID: 27581745 PMCID: PMC5025785 DOI: 10.1038/ncomms12627] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/19/2016] [Indexed: 01/02/2023] Open
Abstract
Loss-of-function mutations in the gene encoding the postsynaptic scaffolding protein SHANK2 are a highly penetrant cause of autism spectrum disorders (ASD) involving cerebellum-related motor problems. Recent studies have implicated cerebellar pathology in the aetiology of ASD. Here we evaluate the possibility that cerebellar Purkinje cells (PCs) represent a critical locus of ASD-like pathophysiology in mice lacking Shank2. Absence of Shank2 impairs both PC intrinsic plasticity and induction of long-term potentiation at the parallel fibre to PC synapse. Moreover, inhibitory input onto PCs is significantly enhanced, most prominently in the posterior lobe where simple spike (SS) regularity is most affected. Using PC-specific Shank2 knockouts, we replicate alterations of SS regularity in vivo and establish cerebellar dependence of ASD-like behavioural phenotypes in motor learning and social interaction. These data highlight the importance of Shank2 for PC function, and support a model by which cerebellar pathology is prominent in certain forms of ASD.
Collapse
Affiliation(s)
- Saša Peter
- Netherlands Institute for Neuroscience, Amsterdam 1105 CA, Netherlands
| | | | | | - Claudia M. Reinelt
- Institute for Anatomy and Cell Biology, Ulm University, Ulm 89081, Germany
| | - Bin Wu
- Department of Neuroscience, Erasmus MC, Rotterdam 3000 DR, Netherlands
| | - Haibo Zhou
- Department of Neuroscience, Erasmus MC, Rotterdam 3000 DR, Netherlands
| | - Kuikui Zhou
- Department of Neuroscience, Erasmus MC, Rotterdam 3000 DR, Netherlands
| | - Henk-Jan Boele
- Department of Neuroscience, Erasmus MC, Rotterdam 3000 DR, Netherlands
| | - Steven A. Kushner
- Department of Psychiatry, Erasmus MC, Rotterdam 3000 DR, Netherlands
| | - Min Goo Lee
- Yonsei University College of Medicine, Seoul 120–752, Korea
| | - Michael J. Schmeisser
- Institute for Anatomy and Cell Biology, Ulm University, Ulm 89081, Germany
- Department of Neurology, Ulm University, Ulm 89081, Germany
| | - Tobias M. Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm 89081, Germany
| | | | - Freek E. Hoebeek
- Department of Neuroscience, Erasmus MC, Rotterdam 3000 DR, Netherlands
| | - Chris I. De Zeeuw
- Netherlands Institute for Neuroscience, Amsterdam 1105 CA, Netherlands
- Department of Neuroscience, Erasmus MC, Rotterdam 3000 DR, Netherlands
| |
Collapse
|
73
|
Johnson BP, Lum JAG, Rinehart NJ, Fielding J. Ocular motor disturbances in autism spectrum disorders: Systematic review and comprehensive meta-analysis. Neurosci Biobehav Rev 2016; 69:260-79. [PMID: 27527824 DOI: 10.1016/j.neubiorev.2016.08.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/25/2016] [Accepted: 08/05/2016] [Indexed: 01/21/2023]
Abstract
There has been considerable focus placed on how individuals with autism spectrum disorder (ASD) visually perceive and attend to social information, such as facial expressions or social gaze. The role of eye movements is inextricable from visual perception, however this aspect is often overlooked. We performed a series of meta-analyses based on data from 28 studies of eye movements in ASD to determine whether there is evidence for ocular motor dysfunction in ASD. Tasks assessed included visually-guided saccade tasks, gap/overlap, anti-saccade, pursuit tasks and ocular fixation. These analyses revealed evidence for ocular motor dysfunction in ASD, specifically relating to saccade dysmetria, difficulty inhibiting saccades and impaired tracking of moving targets. However there was no evidence for deficits relating to initiating eye movements, or engaging and disengaging from simple visual targets. Characterizing ocular motor abnormalities in ASD may provide insight into the functional integrity of brain networks in ASD across development, and assist our understanding of visual and social attention in ASD.
Collapse
Affiliation(s)
- Beth P Johnson
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, 18 Innovation Walk, Monash University, VIC 3800, Australia.
| | - Jarrad A G Lum
- Deakin Child Study Centre, School of Psychology, Deakin Unviersity, 221 Burwood Highway, Burwood, VIC 3125, Australia
| | - Nicole J Rinehart
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, 18 Innovation Walk, Monash University, VIC 3800, Australia; Deakin Child Study Centre, School of Psychology, Deakin Unviersity, 221 Burwood Highway, Burwood, VIC 3125, Australia
| | - Joanne Fielding
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, 18 Innovation Walk, Monash University, VIC 3800, Australia
| |
Collapse
|
74
|
Konopka G, Roberts TF. Insights into the Neural and Genetic Basis of Vocal Communication. Cell 2016; 164:1269-1276. [PMID: 26967292 DOI: 10.1016/j.cell.2016.02.039] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Indexed: 12/11/2022]
Abstract
The use of vocalizations to communicate information and elaborate social bonds is an adaptation seen in many vertebrate species. Human speech is an extreme version of this pervasive form of communication. Unlike the vocalizations exhibited by the majority of land vertebrates, speech is a learned behavior requiring early sensory exposure and auditory feedback for its development and maintenance. Studies in humans and a small number of other species have provided insights into the neural and genetic basis for learned vocal communication and are helping to delineate the roles of brain circuits across the cortex, basal ganglia, and cerebellum in generating vocal behaviors. This Review provides an outline of the current knowledge about these circuits and the genes implicated in vocal communication, as well as a perspective on future research directions in this field.
Collapse
Affiliation(s)
- Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| | - Todd F Roberts
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| |
Collapse
|
75
|
Saffin JM, Tohid H. Walk like me, talk like me. The connection between mirror neurons and autism spectrum disorder. NEUROSCIENCES (RIYADH, SAUDI ARABIA) 2016; 21:108-19. [PMID: 27094520 PMCID: PMC5107264 DOI: 10.17712/nsj.2016.2.20150472] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Understanding social cognition has become a hallmark in deciphering autism spectrum disorder. Neurobiological theories are taking precedence in causation studies as researchers look to abnormalities in brain development as the cause of deficits in social behavior, cognitive processes, and language. Following their discovery in the 1990s, mirror neurons have become a dominant theory for that the mirror neuron system may play a critical role in the pathophysiology of various symptoms of autism. Over the decades, the theory has evolved from the suggestion of a broken mirror neuron system to impairments in mirror neuron circuitry. The mirror neuron system has not gained total support due to inconsistent findings; a comprehensive analysis of the growing body of research could shed light on the benefits, or the disadvantage of continuing to study mirror neurons and their connection to autism.
Collapse
Affiliation(s)
- Jillian M. Saffin
- From the Department of Psychology (Saffin), Northern Arizona University, Arizona, and the Department of Neurology (Tohid), University of California, Los Angeles, UCLA, the Center for Mind & Brain (Tohid), the Department of Neurology (Tohid), University of California, Davis, Davis, and the Department of Psychiatry (Tohid), Napa State Hospital, California, United States of America
| | - Hassaan Tohid
- From the Department of Psychology (Saffin), Northern Arizona University, Arizona, and the Department of Neurology (Tohid), University of California, Los Angeles, UCLA, the Center for Mind & Brain (Tohid), the Department of Neurology (Tohid), University of California, Davis, Davis, and the Department of Psychiatry (Tohid), Napa State Hospital, California, United States of America,Address correspondence and reprint request to: Dr. Hassaan Tohid, Center for Mind and Brain, Fairfield, California, United States of America. E-mail:
| |
Collapse
|
76
|
Castex MT, Arabo A, Bénard M, Roy V, Le Joncour V, Prévost G, Bonnet JJ, Anouar Y, Falluel-Morel A. Selenoprotein T Deficiency Leads to Neurodevelopmental Abnormalities and Hyperactive Behavior in Mice. Mol Neurobiol 2015; 53:5818-5832. [DOI: 10.1007/s12035-015-9505-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 10/19/2015] [Indexed: 01/27/2023]
|