51
|
Deemer SE, Davis RAH, Roberts BM, Smith DL, Koutnik AP, Poff AM, D’Agostino DP, Plaisance EP. Exogenous Dietary Ketone Ester Decreases Body Weight and Adiposity in Mice Housed at Thermoneutrality. Obesity (Silver Spring) 2020; 28:1447-1455. [PMID: 32618116 PMCID: PMC7501155 DOI: 10.1002/oby.22855] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The aim of this study was to examine the effects of a ketone ester (KE)-supplemented diet on energy expenditure (EE) and adiposity in mice housed at 23 °C versus thermoneutrality (30 °C), in which sympathetic nervous system activity is diminished. METHODS Thirty-two 10-week-old male C57BL/6J mice were assigned to 1 of 4 groups (n = 8 per group): 30% KE diet + 23 °C (KE23), control (CON) diet + 23 °C (CON23), 30% KE diet + 30 °C (KE30), or CON diet + 30 °C (CON30). CON mice were pair-fed to the average intake of mice consuming the KE diet (ad libitum) for 8 weeks. Body composition and components of energy balance were measured at completion of the study. RESULTS CON23 (mean ± SD, 26.0 ± 1.6 g) and CON30 (29.7 ± 1.4 g) mice weighed more than KE groups (P < 0.03 for both) and were also different from each other (CON23 vs. CON30, P < 0.01). However, KE23 (23.4 ± 2.7 g) and KE30 (23.1 ± 1.9 g) mice were not different in body weight. As expected, food intake at 30 °C (2.0 ± 0.3 g/d) was lower than at 23 °C (2.6 ± 0.3 g/d, P < 0.01). Diet did not influence resting and total EE, but mice housed at 30 °C had lower EE compared with mice at 23 °C (P < 0.01). CONCLUSIONS Dietary KEs attenuate body weight gain at standard (23 °C) and thermoneutral (30 °C) housing temperatures, and this effect is not mediated by increased EE under these conditions.
Collapse
Affiliation(s)
- Sarah E. Deemer
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rachel A. H. Davis
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brandon M. Roberts
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniel L. Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew P. Koutnik
- Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - Angela M. Poff
- Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | | | - Eric P. Plaisance
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
52
|
Granados-Rojas L, Jerónimo-Cruz K, Juárez-Zepeda TE, Tapia-Rodríguez M, Tovar AR, Rodríguez-Jurado R, Carmona-Aparicio L, Cárdenas-Rodríguez N, Coballase-Urrutia E, Ruíz-García M, Durán P. Ketogenic Diet Provided During Three Months Increases KCC2 Expression but Not NKCC1 in the Rat Dentate Gyrus. Front Neurosci 2020; 14:673. [PMID: 32733191 PMCID: PMC7358437 DOI: 10.3389/fnins.2020.00673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/02/2020] [Indexed: 01/01/2023] Open
Abstract
Ketogenic diet, a high fat and low carbohydrate diet, has been used as a non-pharmacological treatment in refractory epilepsy since 1920. In recent years, it has demonstrated to be effective in the treatment of numerous neurological and non-neurological diseases. Some neurological and neuropsychiatric disorders are known to be caused by gamma-aminobutyric acid (GABA)-mediated neurotransmission dysfunction. The strength and polarity of GABA-mediated neurotransmission are determined by the intracellular chloride concentration, which in turn is regulated by cation-chloride cotransporters NKCC1 and KCC2. Currently, it is unknown if the effect of ketogenic diet is due to the modulation of these cotransporters. Thus, we analyzed the effect of a ketogenic diet on the cation-chloride cotransporters expression in the dentate gyrus. We estimated the total number of NKCC1 immunoreactive (NKCC1-IR) neuronal and glial cells by stereology and determined KCC2 labeling intensity by densitometry in the molecular and granule layers as well as in the hilus of dentate gyrus of rats fed with normal or ketogenic diet for 3 months. The results indicated that ketogenic diet provided during 3 months increased KCC2 expression, but not NKCC1 in the dentate gyrus of the rat. The significant increase of KCC2 expression could explain, at least in part, the beneficial effect of ketogenic diet in the diseases where the GABAergic system is altered by increasing its inhibitory efficiency.
Collapse
Affiliation(s)
| | - Karina Jerónimo-Cruz
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Mexico City, Mexico
| | | | - Miguel Tapia-Rodríguez
- Unidad de Microscopía, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | | | | | | | - Matilde Ruíz-García
- Servicio de Neurología, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Pilar Durán
- Laboratorio de Biología Animal Experimental, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
53
|
Ketogenic therapy in neurodegenerative and psychiatric disorders: From mice to men. Prog Neuropsychopharmacol Biol Psychiatry 2020; 101:109913. [PMID: 32151695 DOI: 10.1016/j.pnpbp.2020.109913] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/11/2020] [Accepted: 03/05/2020] [Indexed: 01/31/2023]
Abstract
Ketogenic diet is a low carbohydrate and high fat diet that has been used for over 100 years in the management of childhood refractory epilepsy. More recently, ketogenic diet has been investigated for a number of metabolic, neurodegenerative and neurodevelopmental disorders. In this comprehensive review, we critically examine the potential therapeutic benefits of ketogenic diet and ketogenic agents on neurodegenerative and psychiatric disorders in humans and translationally valid animal models. The preclinical literature provides strong support for the efficacy of ketogenic diet in a variety of diverse animal models of neuropsychiatric disorders. However, the evidence from clinical studies, while encouraging, particularly in Alzheimer's disease, psychotic and autism spectrum disorders, is limited to case studies and small pilot trials. Firm conclusion on the efficacy of ketogenic diet in psychiatric disorders cannot be drawn due to the lack of randomised, controlled clinical trials. The potential mechanisms of action of ketogenic therapy in these disorders with diverse pathophysiology may include energy metabolism, oxidative stress and immune/inflammatory processes. In conclusion, while ketogenic diet and ketogenic substances hold promise pre-clinically in a variety of neurodegenerative and psychiatric disorders, further studies, particularly randomised controlled clinical trials, are warranted to better understand their clinical efficacy and potential side effects.
Collapse
|
54
|
β-Hydroxybutyrate Increases Exercise Capacity Associated with Changes in Mitochondrial Function in Skeletal Muscle. Nutrients 2020; 12:nu12071930. [PMID: 32610627 PMCID: PMC7400376 DOI: 10.3390/nu12071930] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/17/2022] Open
Abstract
β-hydroxybutyrate is the main ketone body generated by the liver under starvation. Under these conditions, it can sustain ATP levels by its oxidation in mitochondria. As mitochondria can modify its shape and function under different nutritional challenges, we study the chronic effects of β-hydroxybutyrate supplementation on mitochondrial morphology and function, and its relation to exercise capacity. Male C57BL/6 mice were supplemented with β-hydroxybutyrate mineral salt (3.2%) or control (CT, NaCl/KCl) for six weeks and submitted to a weekly exercise performance test. We found an increase in distance, maximal speed, and time to exhaustion at two weeks of supplementation. Fatty acid metabolism and OXPHOS subunit proteins declined at two weeks in soleus but not in tibialis anterior muscles. Oxygen consumption rate on permeabilized fibers indicated a decrease in the presence of pyruvate in the short-term treatment. Both the tibialis anterior and soleus showed decreased levels of Mitofusin 2, while electron microscopy assessment revealed a significant reduction in mitochondrial cristae shape in the tibialis anterior, while a reduction in the mitochondrial number was observed only in soleus. These results suggest that short, but not long-term, β-hydroxybutyrate supplementation increases exercise capacity, associated with modifications in mitochondrial morphology and function in mouse skeletal muscle.
Collapse
|
55
|
Quiles JM, Gustafsson ÅB. Mitochondrial Quality Control and Cellular Proteostasis: Two Sides of the Same Coin. Front Physiol 2020; 11:515. [PMID: 32528313 PMCID: PMC7263099 DOI: 10.3389/fphys.2020.00515] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction is a hallmark of cardiac pathophysiology. Defects in mitochondrial performance disrupt contractile function, overwhelm myocytes with reactive oxygen species (ROS), and transform these cellular powerhouses into pro-death organelles. Thus, quality control (QC) pathways aimed at identifying and removing damaged mitochondrial proteins, components, or entire mitochondria are crucial processes in post-mitotic cells such as cardiac myocytes. Almost all of the mitochondrial proteins are encoded by the nuclear genome and the trafficking of these nuclear-encoded proteins necessitates significant cross-talk with the cytosolic protein QC machinery to ensure that only functional proteins are delivered to the mitochondria. Within the organelle, mitochondria contain their own protein QC system consisting of chaperones and proteases. This system represents another level of QC to promote mitochondrial protein folding and prevent aggregation. If this system is overwhelmed, a conserved transcriptional response known as the mitochondrial unfolded protein response is activated to increase the expression of proteins involved in restoring mitochondrial proteostasis. If the mitochondrion is beyond repair, the entire organelle must be removed before it becomes cytotoxic and causes cellular damage. Recent evidence has also uncovered mitochondria as participants in cytosolic protein QC where misfolded cytosolic proteins can be imported and degraded inside mitochondria. However, this process also places increased pressure on mitochondrial QC pathways to ensure that the imported proteins do not cause mitochondrial dysfunction. This review is focused on discussing the pathways involved in regulating mitochondrial QC and their relationship to cellular proteostasis and mitochondrial health in the heart.
Collapse
Affiliation(s)
- Justin M Quiles
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Åsa B Gustafsson
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
56
|
Cardiac ketone body metabolism. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165739. [PMID: 32084511 DOI: 10.1016/j.bbadis.2020.165739] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 12/14/2022]
Abstract
The ketone bodies, d-β-hydroxybutyrate and acetoacetate, are soluble 4-carbon compounds derived principally from fatty acids, that can be metabolised by many oxidative tissues, including heart, in carbohydrate-depleted conditions as glucose-sparing energy substrates. They also have important signalling functions, acting through G-protein coupled receptors and histone deacetylases to regulate metabolism and gene expression including that associated with anti-oxidant activity. Their concentration, and hence availability, increases in diabetes mellitus and heart failure. Whilst known to be substrates for ATP production, especially in starvation, their role(s) in the heart, and in heart disease, is uncertain. Recent evidence, reviewed here, indicates that increased ketone body metabolism is a feature of heart failure, and is accompanied by other changes in substrate selection. Whether the change in myocardial ketone body metabolism is adaptive or maladaptive is unknown, but it offers the possibility of using exogenous ketones to treat the failing heart.
Collapse
|
57
|
Versele R, Corsi M, Fuso A, Sevin E, Businaro R, Gosselet F, Fenart L, Candela P. Ketone Bodies Promote Amyloid-β 1-40 Clearance in a Human in Vitro Blood-Brain Barrier Model. Int J Mol Sci 2020; 21:E934. [PMID: 32023814 PMCID: PMC7037612 DOI: 10.3390/ijms21030934] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by the abnormal accumulation of amyloid-β (Aβ) peptides in the brain. The pathological process has not yet been clarified, although dysfunctional transport of Aβ across the blood-brain barrier (BBB) appears to be integral to disease development. At present, no effective therapeutic treatment against AD exists, and the adoption of a ketogenic diet (KD) or ketone body (KB) supplements have been investigated as potential new therapeutic approaches. Despite experimental evidence supporting the hypothesis that KBs reduce the Aβ load in the AD brain, little information is available about the effect of KBs on BBB and their effect on Aβ transport. Therefore, we used a human in vitro BBB model, brain-like endothelial cells (BLECs), to investigate the effect of KBs on the BBB and on Aβ transport. Our results show that KBs do not modify BBB integrity and do not cause toxicity to BLECs. Furthermore, the presence of KBs in the culture media was combined with higher MCT1 and GLUT1 protein levels in BLECs. In addition, KBs significantly enhanced the protein levels of LRP1, P-gp, and PICALM, described to be involved in Aβ clearance. Finally, the combined use of KBs promotes Aβ efflux across the BBB. Inhibition experiments demonstrated the involvement of LRP1 and P-gp in the efflux. This work provides evidence that KBs promote Aβ clearance from the brain to blood in addition to exciting perspectives for studying the use of KBs in therapeutic approaches.
Collapse
Affiliation(s)
- Romain Versele
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d'Artois, F-62300 Lens, France; (R.V.); (M.C.); (E.S.); (F.G.); (L.F.)
| | - Mariangela Corsi
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d'Artois, F-62300 Lens, France; (R.V.); (M.C.); (E.S.); (F.G.); (L.F.)
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy;
| | - Andrea Fuso
- Department of Experimental Medicine, Sapienza University of Rome, Dip. di Chirurgia “P. Valdoni”, Via A. Scarpa 16, 00161 Rome, Italy;
| | - Emmanuel Sevin
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d'Artois, F-62300 Lens, France; (R.V.); (M.C.); (E.S.); (F.G.); (L.F.)
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy;
| | - Fabien Gosselet
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d'Artois, F-62300 Lens, France; (R.V.); (M.C.); (E.S.); (F.G.); (L.F.)
| | - Laurence Fenart
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d'Artois, F-62300 Lens, France; (R.V.); (M.C.); (E.S.); (F.G.); (L.F.)
| | - Pietra Candela
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d'Artois, F-62300 Lens, France; (R.V.); (M.C.); (E.S.); (F.G.); (L.F.)
| |
Collapse
|
58
|
Kovács Z, Brunner B, D'Agostino DP, Ari C. Inhibition of adenosine A1 receptors abolished the nutritional ketosis-evoked delay in the onset of isoflurane-induced anesthesia in Wistar Albino Glaxo Rijswijk rats. BMC Anesthesiol 2020; 20:30. [PMID: 32000673 PMCID: PMC6993369 DOI: 10.1186/s12871-020-0943-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/16/2020] [Indexed: 11/26/2022] Open
Abstract
Background It has been demonstrated that administration of exogenous ketone supplement ketone salt (KS) and ketone ester (KE) increased blood ketone level and delayed the onset of isoflurane-induced anesthesia in different rodent models, such as Wistar Albino Glaxo Rijswijk (WAG/Rij) rats. The modulatory effect of adenosinergic system may have a role in the ketone supplementation-evoked effects on isoflurane-generated anesthesia. Thus, we investigated whether adenosine receptor antagonists can modulate the effect of exogenous ketone supplements on the onset of akinesia induced by isoflurane. Methods To investigate the effect of exogenous ketone supplements on anesthetic induction we used ketone supplement KE, KS, KEKS (1:1 mix of KE and KS), KSMCT and KEMCT (1:1 mix of KS and KE with medium chain triglyceride/MCT oil, respectively) in WAG/Rij rats. Animals were fed with standard diet (SD), which was supplemented by oral gavage of different ketone supplements (2.5 g/kg/day) for 1 week. After 7 days, isoflurane (3%) was administered for 5 min and the time until onset of isoflurane-induced anesthesia (time until immobility; light phase of anesthesia: loss of consciousness without movement) was measured. Changes in levels of blood β-hydroxybutyrate (βHB), blood glucose and body weight of animals were also recorded. To investigate the putative effects of adenosine receptors on ketone supplements-evoked influence on isoflurane-induced anesthesia we used a specific adenosine A1 receptor antagonist DPCPX (intraperitoneally/i.p. 0.2 mg/kg) and a selective adenosine A2A receptor antagonist SCH 58261 (i.p. 0.5 mg/kg) alone as well as in combination with KEKS. Results Significant increases were demonstrated in both blood βHB levels and the number of seconds required before isoflurane-induced anesthesia (immobility) after the final treatment by all exogenous ketone supplements. Moreover, this effect of exogenous ketone supplements positively correlated with blood βHB levels. It was also demonstrated that DPCPX completely abolished the effect of KEKS on isoflurane-induced anesthesia (time until immobility), but not SCH 58261. Conclusions These findings strengthen our previous suggestion that exogenous ketone supplements may modulate the isoflurane-induced onset of anesthesia (immobility), likely through A1Rs.
Collapse
Affiliation(s)
- Zsolt Kovács
- Savaria Department of Biology, ELTE Eötvös Loránd University, Savaria University Centre, Szombathely, Hungary
| | - Brigitta Brunner
- Savaria Department of Biology, ELTE Eötvös Loránd University, Savaria University Centre, Szombathely, Hungary.,Institute of Biology, University of Pécs, Pécs, Hungary
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Institute for Human and Machine Cognition, Ocala, FL, USA
| | - Csilla Ari
- Department of Psychology, Hyperbaric Neuroscience Research Laboratory, University of South Florida, 4202 E. Fowler Ave, PCD 3127, Tampa, FL, 33620, USA.
| |
Collapse
|
59
|
The behavioural and pathophysiological effects of the ketogenic diet on mild traumatic brain injury in adolescent rats. Behav Brain Res 2019; 376:112225. [DOI: 10.1016/j.bbr.2019.112225] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/16/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
|
60
|
Poff AM, Rho JM, D'Agostino DP. Ketone Administration for Seizure Disorders: History and Rationale for Ketone Esters and Metabolic Alternatives. Front Neurosci 2019; 13:1041. [PMID: 31680801 PMCID: PMC6803688 DOI: 10.3389/fnins.2019.01041] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 09/13/2019] [Indexed: 12/31/2022] Open
Abstract
The ketogenic diet (KD) is a high-fat, low-carbohydrate treatment for medically intractable epilepsy. One of the hallmark features of the KD is the production of ketone bodies which have long been believed, but not yet proven, to exert direct anti-seizure effects. The prevailing view has been that ketosis is an epiphenomenon during KD treatment, mostly due to clinical observations that blood ketone levels do not correlate well with seizure control. Nevertheless, there is increasing experimental evidence that ketone bodies alone can exert anti-seizure properties through a multiplicity of mechanisms, including but not limited to: (1) activation of inhibitory adenosine and ATP-sensitive potassium channels; (2) enhancement of mitochondrial function and reduction in oxidative stress; (3) attenuation of excitatory neurotransmission; and (4) enhancement of central γ-aminobutyric acid (GABA) synthesis. Other novel actions more recently reported include inhibition of inflammasome assembly and activation of peripheral immune cells, and epigenetic effects by decreasing the activity of histone deacetylases (HDACs). Collectively, the preclinical evidence to date suggests that ketone administration alone might afford anti-seizure benefits for patients with epilepsy. There are, however, pragmatic challenges in administering ketone bodies in humans, but prior concerns may largely be mitigated through the use of ketone esters or balanced ketone electrolyte formulations that can be given orally and induce elevated and sustained hyperketonemia to achieve therapeutic effects.
Collapse
Affiliation(s)
- Angela M Poff
- Laboratory of Metabolic Medicine, Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Jong M Rho
- Departments of Pediatrics, Clinical Neurosciences, Physiology and Pharmacology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Division of Pediatric Neurology, Rady Children's Hospital-San Diego, University of California, San Diego, San Diego, CA, United States
| | - Dominic P D'Agostino
- Laboratory of Metabolic Medicine, Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Institute for Human and Machine Cognition, Ocala, FL, United States
| |
Collapse
|
61
|
Ari C, Murdun C, Koutnik AP, Goldhagen CR, Rogers C, Park C, Bharwani S, Diamond DM, Kindy MS, D’Agostino DP, Kovács Z. Exogenous Ketones Lower Blood Glucose Level in Rested and Exercised Rodent Models. Nutrients 2019; 11:E2330. [PMID: 31581549 PMCID: PMC6835632 DOI: 10.3390/nu11102330] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/30/2019] [Accepted: 09/17/2019] [Indexed: 01/08/2023] Open
Abstract
Diseases involving inflammation and oxidative stress can be exacerbated by high blood glucose levels. Due to tight metabolic regulation, safely reducing blood glucose can prove difficult. The ketogenic diet (KD) reduces absolute glucose and insulin, while increasing fatty acid oxidation, ketogenesis, and circulating levels of β-hydroxybutyrate (βHB), acetoacetate (AcAc), and acetone. Compliance to KD can be difficult, so alternative therapies that help reduce glucose levels are needed. Exogenous ketones provide an alternative method to elevate blood ketone levels without strict dietary requirements. In this study, we tested the changes in blood glucose and ketone (βHB) levels in response to acute, sub-chronic, and chronic administration of various ketogenic compounds in either a post-exercise or rested state. WAG/Rij (WR) rats, a rodent model of human absence epilepsy, GLUT1 deficiency syndrome mice (GLUT1D), and wild type Sprague Dawley rats (SPD) were assessed. Non-pathological animals were also assessed across different age ranges. Experimental groups included KD, standard diet (SD) supplemented with water (Control, C) or with exogenous ketones: 1, 3-butanediol (BD), βHB mineral salt (KS), KS with medium chain triglyceride/MCT (KSMCT), BD acetoacetate diester (KE), KE with MCT (KEMCT), and KE with KS (KEKS). In rested WR rats, the KE, KS, KSMCT groups had lower blood glucose level after 1 h of treatment, and in KE and KSMCT groups after 24 h. After exercise, the KE, KSMCT, KEKS, and KEMCT groups had lowered glucose levels after 1 h, and in the KEKS and KEMCT groups after 7 days, compared to control. In GLUT1D mice without exercise, only KE resulted in significantly lower glucose levels at week 2 and week 6 during a 10 weeks long chronic feeding study. In 4-month and 1-year-old SPD rats in the post-exercise trials, blood glucose was significantly lower in KD and KE, and in KEMCT groups, respectively. After seven days, the KSMCT group had the most significantly reduced blood glucose levels, compared to control. These results indicate that exogenous ketones were efficacious in reducing blood glucose levels within and outside the context of exercise in various rodent models of different ages, with and without pathology.
Collapse
MESH Headings
- 3-Hydroxybutyric Acid/pharmacology
- Acetoacetates/pharmacology
- Animals
- Biomarkers
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Butylene Glycols/pharmacology
- Carbohydrate Metabolism, Inborn Errors/blood
- Carbohydrate Metabolism, Inborn Errors/genetics
- Carbohydrate Metabolism, Inborn Errors/physiopathology
- Carbohydrate Metabolism, Inborn Errors/therapy
- Diet, Ketogenic
- Dietary Supplements
- Disease Models, Animal
- Down-Regulation
- Epilepsy, Absence/blood
- Epilepsy, Absence/genetics
- Epilepsy, Absence/physiopathology
- Epilepsy, Absence/therapy
- Glucose Transporter Type 1/deficiency
- Glucose Transporter Type 1/genetics
- Male
- Mice, Knockout
- Monosaccharide Transport Proteins/blood
- Monosaccharide Transport Proteins/deficiency
- Monosaccharide Transport Proteins/genetics
- Physical Exertion
- Rats, Sprague-Dawley
- Rest
- Time Factors
Collapse
Affiliation(s)
- Csilla Ari
- Department of Psychology, University of South Florida, Tampa, FL 33620, USA; (C.P.); (S.B.); (D.M.D.)
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (C.M.); (A.P.K.); (C.R.G.); (C.R.); (D.P.D.)
| | - Cem Murdun
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (C.M.); (A.P.K.); (C.R.G.); (C.R.); (D.P.D.)
| | - Andrew P. Koutnik
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (C.M.); (A.P.K.); (C.R.G.); (C.R.); (D.P.D.)
| | - Craig R. Goldhagen
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (C.M.); (A.P.K.); (C.R.G.); (C.R.); (D.P.D.)
| | - Christopher Rogers
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (C.M.); (A.P.K.); (C.R.G.); (C.R.); (D.P.D.)
| | - Collin Park
- Department of Psychology, University of South Florida, Tampa, FL 33620, USA; (C.P.); (S.B.); (D.M.D.)
| | - Sahil Bharwani
- Department of Psychology, University of South Florida, Tampa, FL 33620, USA; (C.P.); (S.B.); (D.M.D.)
| | - David M. Diamond
- Department of Psychology, University of South Florida, Tampa, FL 33620, USA; (C.P.); (S.B.); (D.M.D.)
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (C.M.); (A.P.K.); (C.R.G.); (C.R.); (D.P.D.)
| | - Mark S. Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33620, USA;
- James A. Haley VA Medical Center, Tampa, FL 33612, USA
- Shriners Hospital for Children, Tampa, FL 33612, USA
| | - Dominic P. D’Agostino
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (C.M.); (A.P.K.); (C.R.G.); (C.R.); (D.P.D.)
- Institute for Human and Machine Cognition, Ocala, FL 33471, USA
| | - Zsolt Kovács
- Savaria Department of Biology, ELTE Eötvös Loránd University, Savaria University Centre, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary
| |
Collapse
|
62
|
Bassett SA, Young W, Fraser K, Dalziel JE, Webster J, Ryan L, Fitzgerald P, Stanton C, Dinan TG, Cryan JF, Clarke G, Hyland N, Roy NC. Metabolome and microbiome profiling of a stress-sensitive rat model of gut-brain axis dysfunction. Sci Rep 2019; 9:14026. [PMID: 31575902 PMCID: PMC6773725 DOI: 10.1038/s41598-019-50593-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 09/09/2019] [Indexed: 12/16/2022] Open
Abstract
Stress negatively impacts gut and brain health. Individual differences in response to stress have been linked to genetic and environmental factors and more recently, a role for the gut microbiota in the regulation of stress-related changes has been demonstrated. However, the mechanisms by which these factors influence each other are poorly understood, and there are currently no established robust biomarkers of stress susceptibility. To determine the metabolic and microbial signatures underpinning physiological stress responses, we compared stress-sensitive Wistar Kyoto (WKY) rats to the normo-anxious Sprague Dawley (SD) strain. Here we report that acute stress-induced strain-specific changes in brain lipid metabolites were a prominent feature in WKY rats. The relative abundance of Lactococcus correlated with the relative proportions of many brain lipids. In contrast, plasma lipids were significantly elevated in response to stress in SD rats, but not in WKY rats. Supporting these findings, we found that the greatest difference between the SD and WKY microbiomes were the predicted relative abundance of microbial genes involved in lipid and energy metabolism. Our results provide potential insights for developing novel biomarkers of stress vulnerability, some of which appear genotype specific.
Collapse
Affiliation(s)
- Shalome A Bassett
- Food Nutrition & Health, AgResearch Ltd., Grasslands Research Centre, Tennent Drive, Palmerston North, 4442, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Wayne Young
- Food Nutrition & Health, AgResearch Ltd., Grasslands Research Centre, Tennent Drive, Palmerston North, 4442, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Karl Fraser
- Food Nutrition & Health, AgResearch Ltd., Grasslands Research Centre, Tennent Drive, Palmerston North, 4442, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Julie E Dalziel
- Food Nutrition & Health, AgResearch Ltd., Grasslands Research Centre, Tennent Drive, Palmerston North, 4442, New Zealand. .,Riddet Institute, Massey University, Palmerston North, New Zealand.
| | - Jim Webster
- Farm Systems North, AgResearch Ltd., Ruakura Research Centre, Hamilton, New Zealand
| | - Leigh Ryan
- Food Nutrition & Health, AgResearch Ltd., Grasslands Research Centre, Tennent Drive, Palmerston North, 4442, New Zealand
| | - Patrick Fitzgerald
- Laboratory of Neurogastroenterology, APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Timothy G Dinan
- Laboratory of Neurogastroenterology, APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- Laboratory of Neurogastroenterology, APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- Laboratory of Neurogastroenterology, APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Niall Hyland
- Laboratory of Neurogastroenterology, APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Physiology, University College Cork, Cork, Ireland
| | - Nicole C Roy
- Food Nutrition & Health, AgResearch Ltd., Grasslands Research Centre, Tennent Drive, Palmerston North, 4442, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| |
Collapse
|
63
|
Deemer SE, Davis RAH, Gower BA, Koutnik AP, Poff AM, Dickinson SL, Allison DB, D'Agostino DP, Plaisance EP. Concentration-Dependent Effects of a Dietary Ketone Ester on Components of Energy Balance in Mice. Front Nutr 2019; 6:56. [PMID: 31119133 PMCID: PMC6504762 DOI: 10.3389/fnut.2019.00056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/11/2019] [Indexed: 12/30/2022] Open
Abstract
Objectives: Exogenous ketones may provide therapeutic benefit in treatment of obesity. Administration of the ketone ester (KE) R,S-1,3-butanediol acetoacetate diester (BD-AcAc2) decreases body weight in mice, but effects on energy balance have not been extensively characterized. The purpose of this investigation was to explore concentration-dependent effects of BD-AcAc2 on energy intake and expenditure in mice. Methods: Forty-two male C57BL/6J mice were randomly assigned to one of seven isocaloric diets (n = 6 per group): (1) Control (CON, 0% KE by kcals); (2) KE5 (5% KE); (3) KE10 (10% KE); (4) KE15 (15% KE); (5) KE20 (20% KE); (6) KE25 (25% KE); and (7) KE30 (30% KE) for 3 weeks. Energy intake and body weight were measured daily. Fat mass (FM), lean body mass (LBM), and energy expenditure (EE) were measured at completion of the study. Differences among groups were compared to CON using ANOVA and ANCOVA. Results: Mean energy intake was similar between CON and each concentration of KE, except KE30 which was 12% lower than CON (P < 0.01). KE25 and KE30 had lower body weight and FM compared to CON, while only KE30 had lower LBM (P < 0.03). Adjusted resting and total EE were lower in KE30 compared to CON (P < 0.03), but similar for all other groups. Conclusions: A diet comprised of 30% energy from BD-AcAc2 results in lower energy intake, coincident with lower body weight and whole animal adiposity; while KE20 and KE25 have significantly lower body weight and adiposity effects independent of changes in energy intake or expenditure.
Collapse
Affiliation(s)
- Sarah E. Deemer
- Nutrition Obesity Research Center, University of Alabama, Birmingham, AL, United States
| | - Rachel A. H. Davis
- Nutrition Obesity Research Center, University of Alabama, Birmingham, AL, United States
- Department of Nutrition Sciences, University of Alabama, Birmingham, AL, United States
| | - Barbara A. Gower
- Nutrition Obesity Research Center, University of Alabama, Birmingham, AL, United States
- Department of Nutrition Sciences, University of Alabama, Birmingham, AL, United States
| | - Andrew P. Koutnik
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, United States
| | - Angela M. Poff
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, United States
| | | | - David B. Allison
- School of Public Health, Indiana University Bloomington, Bloomington, IN, United States
| | - Dominic P. D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, United States
| | - Eric P. Plaisance
- Nutrition Obesity Research Center, University of Alabama, Birmingham, AL, United States
- Department of Nutrition Sciences, University of Alabama, Birmingham, AL, United States
- Department of Human Studies, University of Alabama, Birmingham, AL, United States
| |
Collapse
|
64
|
Kovács Z, D'Agostino DP, Diamond DM, Ari C. Exogenous Ketone Supplementation Decreased the Lipopolysaccharide-Induced Increase in Absence Epileptic Activity in Wistar Albino Glaxo Rijswijk Rats. Front Mol Neurosci 2019; 12:45. [PMID: 30930744 PMCID: PMC6427924 DOI: 10.3389/fnmol.2019.00045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 02/05/2019] [Indexed: 12/02/2022] Open
Abstract
It has been demonstrated previously that exogenous ketone supplements such as ketone ester (KE) decreased absence epileptic activity in a well-studied animal model of human absence epilepsy, Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. It is known that lipopolysaccharide (LPS)-generated changes in inflammatory processes increase absence epileptic activity, while previous studies show that ketone supplement-evoked ketosis can modulate inflammatory processes. Thus, we investigated in the present study whether administration of exogenous ketone supplements, which were mixed with standard rodent chow (containing 10% KE + 10% ketone salt/KS, % by weight, KEKS) for 10 days, can modulate the LPS-evoked changes in absence epileptic activity in WAG/Rij rats. At first, KEKS food alone was administered and changes in spike-wave discharge (SWD) number, SWD time, discharge frequency within SWDs, blood glucose, and beta-hydroxybutyrate (βHB) levels, as well as body weight and sleep-waking stages were measured. In a separate experiment, intraperitoneal (i.p.) injection of LPS (50 μg/kg) alone and a cyclooxygenase 1 and 2 (COX-1 and COX-2) inhibitor indomethacin (10 mg/kg) alone, as well as combined IP injection of indomethacin with LPS (indomethacin + LPS) were applied in WAG/Rij rats to elucidate their influences on SWD number. In order to determine whether KEKS food can modify the LPS-evoked changes in SWD number, KEKS food in combination with IP LPS (50 μg/kg) (KEKS + LPS), as well as KEKS food with IP indomethacin (10 mg/kg) and LPS (50 μg/kg) (KEKS + indomethacin + LPS) were also administered. We demonstrated that KEKS food significantly increased blood βHB levels and decreased not only the spontaneously generated absence epileptic activity (SWD number), but also the LPS-evoked increase in SWD number in WAG/Rij rats. Our results suggest that administration of exogenous ketone supplements (ketogenic foods) may be a promising therapeutic tool in the treatment of epilepsy.
Collapse
Affiliation(s)
- Zsolt Kovács
- Department of Biology, ELTE Eötvös Loránd University, Savaria University Centre, Szombathely, Hungary
| | - Dominic P D'Agostino
- Laboratory of Metabolic Medicine, Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Institute for Human and Machine Cognition, Ocala, FL, United States
| | - David M Diamond
- Laboratory of Metabolic Medicine, Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Comparative Neuroscience Research Laboratory, Department of Psychology, University of South Florida, Tampa, FL, United States
| | - Csilla Ari
- Comparative Neuroscience Research Laboratory, Department of Psychology, University of South Florida, Tampa, FL, United States
| |
Collapse
|
65
|
Keto-Adaptation and Endurance Exercise Capacity, Fatigue Recovery, and Exercise-Induced Muscle and Organ Damage Prevention: A Narrative Review. Sports (Basel) 2019; 7:sports7020040. [PMID: 30781824 PMCID: PMC6410243 DOI: 10.3390/sports7020040] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/06/2019] [Accepted: 02/10/2019] [Indexed: 12/15/2022] Open
Abstract
A ketogenic diet (KD) could induce nutritional ketosis. Over time, the body will acclimate to use ketone bodies as a primary fuel to achieve keto-adaptation. Keto-adaptation may provide a consistent and fast energy supply, thus improving exercise performance and capacity. With its anti-inflammatory and anti-oxidative properties, a KD may contribute to muscle health, thus preventing exercise-induced fatigue and damage. Given the solid basis of its potential to improve exercise capacity, numerous investigations into KD and exercise have been carried out in recent years. This narrative review aims to summarize recent research about the potential of a KD as a nutritional approach during endurance exercise, focusing on endurance capacity, recovery from fatigue, and the prevention of exhaustive exercise-induced muscle and organ damage.
Collapse
|
66
|
Davis RAH, Deemer SE, Bergeron JM, Little JT, Warren JL, Fisher G, Smith DL, Fontaine KR, Dickinson SL, Allison DB, Plaisance EP. Dietary R, S-1,3-butanediol diacetoacetate reduces body weight and adiposity in obese mice fed a high-fat diet. FASEB J 2019; 33:2409-2421. [PMID: 30303740 PMCID: PMC6338649 DOI: 10.1096/fj.201800821rr] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/04/2018] [Indexed: 02/02/2023]
Abstract
The dietary R-3-hydroxybutyrate- R-1,3-butanediol monoester increases resting energy expenditure (REE) and markers of brown and white adipose thermogenesis in lean mice. The purpose of this investigation was to determine whether the ketone ester, R, S-1,3-butanediol diacetoacetate (BD-AcAc2), increases energy expenditure and markers of adipose tissue thermogenesis in the context of high-fat diet (HFD)-induced obesity. Thirty-five-week-old male C57BL/6J mice were placed on an ad libitum HFD (45% kcal) for 10 wk. The mice were then randomized to 1 of 3 groups ( n = 10 per group) for an additional 12 wk: 1) control (Con), continuous HFD, 2) pair-fed (PF) to ketone ester (KE); and 3) KE: HFD+30% energy from BD-AcAc2. Mean energy intake throughout the study was ∼26% lower in the KE compared to the Con group (8.2 ± 0.5 vs. 11.2 ± 0.7 kcal/d; P < 0.05). Final body weight (26.8 ± 3.6 vs. 34.9 ± 4.8 g; P < 0.001) and fat mass (5.2 ± 1.2 vs. 11.3 ± 4.5 g; P < 0.001) of the KE group was significantly lower than PF, despite being matched for energy provisions. Differences in body weight and adiposity were accompanied by higher REE and total energy expenditure in the KE group compared to PF after adjustment for lean body mass and fat-mass ( P = 0.001 and 0.007, respectively). Coupled or uncoupled mitochondrial respiratory rates in skeletal muscle were not different among groups, but markers of mitochondrial uncoupling and thermogenesis (uncoupling protein-1, deiodinase-2, and peroxisome proliferator-activated receptor γ coactivator-1α) were higher in interscapular brown adipose tissue (BAT) of mice receiving the KE diet. The absence of mitochondrial uncoupling in skeletal muscle and increased markers of mitochondrial uncoupling in BAT suggest that BD-AcAc2 initiates a transcriptional signature consistent with BAT thermogenesis in the context of HFD-induced obesity.-Davis, R. A. H., Deemer, S. E., Bergeron, J. M., Little, J. T., Warren, J. L., Fisher, G., Smith, D. L., Jr., Fontaine, K. R., Dickinson, S. L., Allison, D. B., Plaisance, E. P. Dietary R, S-1,3-butanediol diacetoacetate reduces body weight and adiposity in obese mice fed a high-fat diet.
Collapse
Affiliation(s)
- Rachel A. H. Davis
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sarah E. Deemer
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jonathan M. Bergeron
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jason T. Little
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jonathan L. Warren
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Gordon Fisher
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Daniel L. Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kevin R. Fontaine
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Health Behavior, University of Alabama at Birmingham, Birmingham, Alabama, USA; and
| | | | - David B. Allison
- Indiana University School of Public Health, Bloomington, Indiana, USA
| | - Eric P. Plaisance
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Health Behavior, University of Alabama at Birmingham, Birmingham, Alabama, USA; and
| |
Collapse
|
67
|
Kovács Z, D'Agostino DP, Diamond D, Kindy MS, Rogers C, Ari C. Therapeutic Potential of Exogenous Ketone Supplement Induced Ketosis in the Treatment of Psychiatric Disorders: Review of Current Literature. Front Psychiatry 2019; 10:363. [PMID: 31178772 PMCID: PMC6543248 DOI: 10.3389/fpsyt.2019.00363] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 05/10/2019] [Indexed: 12/16/2022] Open
Abstract
Globally, psychiatric disorders, such as anxiety disorder, bipolar disorder, schizophrenia, depression, autism spectrum disorder, and attention-deficit/hyperactivity disorder (ADHD) are becoming more prevalent. Although the exact pathological alterations are not yet clear, recent studies have demonstrated that widespread changes of very complex metabolic pathways may partially underlie the pathophysiology of many psychiatric diseases. Thus, more attention should be directed to metabolic-based therapeutic interventions in the treatment of psychiatric disorders. Emerging evidence from numerous studies suggests that administration of exogenous ketone supplements, such as ketone salts or ketone esters, generates rapid and sustained nutritional ketosis and metabolic changes, which may evoke potential therapeutic effects in cases of central nervous system (CNS) disorders, including psychiatric diseases. Therefore, the aim of this review is to summarize the current information on ketone supplementation as a potential therapeutic tool for psychiatric disorders. Ketone supplementation elevates blood levels of the ketone bodies: D-β-hydroxybutyrate (βHB), acetoacetate (AcAc), and acetone. These compounds, either directly or indirectly, beneficially affect the mitochondria, glycolysis, neurotransmitter levels, activity of free fatty acid receptor 3 (FFAR3), hydroxycarboxylic acid receptor 2 (HCAR2), and histone deacetylase, as well as functioning of NOD-like receptor pyrin domain 3 (NLRP3) inflammasome and mitochondrial uncoupling protein (UCP) expression. The result of downstream cellular and molecular changes is a reduction in the pathophysiology associated with various psychiatric disorders. We conclude that supplement-induced nutritional ketosis leads to metabolic changes and improvements, for example, in mitochondrial function and inflammatory processes, and suggest that development of specific adjunctive ketogenic protocols for psychiatric diseases should be actively pursued.
Collapse
Affiliation(s)
- Zsolt Kovács
- Savaria Department of Biology, ELTE Eötvös Loránd University, Savaria University Centre, Szombathely, Hungary
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Institute for Human and Machine Cognition, Ocala, FL, United States
| | - David Diamond
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Department of Psychology, Hyperbaric Neuroscience Research Laboratory, University of South Florida, Tampa, FL, United States
| | - Mark S Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States.,James A. Haley VA Medical Center, Tampa, FL, United States.,Shriners Hospital for Children, Tampa, FL, United States
| | - Christopher Rogers
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Csilla Ari
- Department of Psychology, Hyperbaric Neuroscience Research Laboratory, University of South Florida, Tampa, FL, United States
| |
Collapse
|
68
|
Hernandez AR, Hernandez CM, Campos K, Truckenbrod L, Federico Q, Moon B, McQuail JA, Maurer AP, Bizon JL, Burke SN. A Ketogenic Diet Improves Cognition and Has Biochemical Effects in Prefrontal Cortex That Are Dissociable From Hippocampus. Front Aging Neurosci 2018; 10:391. [PMID: 30559660 PMCID: PMC6286979 DOI: 10.3389/fnagi.2018.00391] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/08/2018] [Indexed: 12/22/2022] Open
Abstract
Age-related cognitive decline has been linked to a diverse set of neurobiological mechanisms, including bidirectional changes in proteins critical for neuron function. Importantly, these alterations are not uniform across the brain. For example, the hippocampus (HPC) and prefrontal cortex (PFC) show distinct patterns of dysfunction in advanced age. Because higher cognitive functions require large–scale interactions across prefrontal cortical and hippocampal networks, selectively targeting an alteration within one region may not broadly restore function to improve cognition. One mechanism for decline that the PFC and HPC share, however, is a reduced ability to utilize glucose for energy metabolism. Although this suggests that therapeutic strategies bypassing the need for neuronal glycolysis may be beneficial for treating cognitive aging, this approach has not been empirically tested. Thus, the current study used a ketogenic diet (KD) as a global metabolic strategy for improving brain function in young and aged rats. After 12 weeks, rats were trained to perform a spatial alternation task through an asymmetrical maze, in which one arm was closed and the other was open. Both young and aged KD-fed rats showed resilience against the anxiogenic open arm, training to alternation criterion performance faster than control animals. Following alternation testing, rats were trained to perform a cognitive dual task that required working memory while simultaneously performing a bi-conditional association task (WM/BAT), which requires PFC–HPC interactions. All KD-fed rats also demonstrated improved performance on WM/BAT. At the completion of behavioral testing, tissue punches were collected from the PFC for biochemical analysis. KD-fed rats had biochemical alterations within PFC that were dissociable from previous results in the HPC. Specifically, MCT1 and MCT4, which transport ketone bodies, were significantly increased in KD-fed rats compared to controls. GLUT1, which transports glucose across the blood brain barrier, was decreased in KD-fed rats. Contrary to previous observations within the HPC, the vesicular glutamate transporter (VGLUT1) did not change with age or diet within the PFC. The vesicular GABA transporter (VGAT), however, was increased within PFC similar to HPC. These data suggest that KDs could be optimal for enhancing large-scale network function that is critical for higher cognition.
Collapse
Affiliation(s)
- Abbi R Hernandez
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Caesar M Hernandez
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Keila Campos
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Leah Truckenbrod
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Quinten Federico
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Brianna Moon
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Joseph A McQuail
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Andrew P Maurer
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Jennifer L Bizon
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Sara N Burke
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Institute on Aging, University of Florida, Gainesville, FL, United States
| |
Collapse
|
69
|
Ari C, Kovács Z, Murdun C, Koutnik AP, Goldhagen CR, Rogers C, Diamond D, D'Agostino DP. Nutritional ketosis delays the onset of isoflurane induced anesthesia. BMC Anesthesiol 2018; 18:85. [PMID: 30021521 PMCID: PMC6052562 DOI: 10.1186/s12871-018-0554-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 06/27/2018] [Indexed: 11/10/2022] Open
Abstract
Background Ketogenic diet (KD) and exogenous ketone supplements can evoke sustained ketosis, which may modulate sleep and sleep-like effects. However, no studies have been published examining the effect of ketosis on the onset of general isoflurane induced anesthesia. Therefore, we investigated the effect of the KD and different exogenous ketogenic supplements on the onset of akinesia induced by inhalation of isoflurane. Methods We used a high fat, medium protein and low carbohydrate diet (KD) chronically (10 weeks) in the glucose transporter 1 (GLUT1) deficiency (G1D) syndrome mice model and sub-chronically (7 days) in Sprague-Dawley (SPD) rats. To investigate the effect of exogenous ketone supplements on anesthetic induction we also provided either 1) a standard rodent chow diet (SD) mixed with 20% ketone salt supplement (KS), or 2) SD mixed with 20% ketone ester supplement (KE; 1,3 butanediol-acetoacetate diester) to G1D mice for 10 weeks. Additionally, SPD rats and Wistar Albino Glaxo Rijswijk (WAG/Rij) rats were fed the SD, which was supplemented by oral gavage of KS or KE for 7 days (SPD rats: 5 g/kg body weight/day; WAG/Rij rats: 2.5 g/kg body weight/day). After these treatments (10 weeks for the mice, and 7 days for the rats) isoflurane (3%) was administered in an anesthesia chamber, and the time until anesthetic induction (time to immobility) was measured. Blood ketone levels were measured after anesthetic induction and correlation was calculated for blood beta-hydroxybutyrate (βHB) and anesthesia latency. Results Both KD and exogenous ketone supplementation increased blood ketone levels and delayed the onset of isoflurane-induced immobility in all investigated rodent models, showing positive correlation between the two measurements. These results demonstrate that elevated blood ketone levels by either KD or exogenous ketones delayed the onset of isoflurane-induced anesthesia in these animal models. Conclusions These findings suggest that ketone levels might affect surgical anesthetic needs, or could potentially decrease or delay effects of other narcotic gases.
Collapse
Affiliation(s)
- Csilla Ari
- Department of Psychology, Hyperbaric Neuroscience Research Laboratory, University of South Florida, 4202 East Fowler Ave, PCD3127, Tampa, FL, 33620, USA. .,Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612, USA.
| | - Zsolt Kovács
- Savaria Department of Biology, ELTE Eötvös Loránd University, Savaria Campus, Károlyi Gáspár tér 4, Szombathely, Hungary
| | - Cem Murdun
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612, USA
| | - Andrew P Koutnik
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612, USA
| | - Craig R Goldhagen
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612, USA
| | - Christopher Rogers
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612, USA
| | - David Diamond
- Department of Psychology, Hyperbaric Neuroscience Research Laboratory, University of South Florida, 4202 East Fowler Ave, PCD3127, Tampa, FL, 33620, USA.,Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612, USA
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612, USA
| |
Collapse
|
70
|
Stair climbing exercise as a novel health intervention for menopause: cardiovascular and skeletal muscle implications. Menopause 2018; 25:721-722. [PMID: 29939891 DOI: 10.1097/gme.0000000000001107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
71
|
Myette-Côté É, Neudorf H, Rafiei H, Clarke K, Little JP. Prior ingestion of exogenous ketone monoester attenuates the glycaemic response to an oral glucose tolerance test in healthy young individuals. J Physiol 2018; 596:1385-1395. [PMID: 29446830 DOI: 10.1113/jp275709] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/30/2018] [Indexed: 02/06/2023] Open
Abstract
KEY POINTS The recent development of exogenous ketone supplements allows direct testing of the metabolic effects of elevated blood ketones without the confounding influence of widespread changes experienced with ketogenic diets or prolonged fasting. In the present study, we determined the effect of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate ketone monoester on the glycaemic response and insulin sensitivity index during a 2 h oral glucose tolerance test (OGTT) in humans. The results obtained show that consuming a ketone monoester supplement 30 min prior to an OGTT reduced the glycaemic response and markers of insulin sensitivity without affecting insulin secretion. The findings of the present study provides evidence that ketone supplements could have therapeutic potential for future application as a glucose-lowering nutritional supplement. ABSTRACT The main objectives of the present study were: (i) to determine whether acute ingestion of ketone monoester (Kme ); (R)-3-hydroxybutyl (R)-3-hydroxybutyrate impacts plasma glucose levels during a standardized oral glucose tolerance test (OGTT) and (ii) to compare changes in insulin concentrations and estimates of insulin sensitivity after acute Kme supplementation. Twenty healthy participants (n = 10 males/females) aged between 18 and 35 years took part in a randomized cross-over study. After an overnight fast, participants consumed a Kme supplement (ΔG®; TΔS Ltd, UK, Oxford, UK; 0.45 ml kg-1 body weight) or placebo (water) 30 min before completing a 75 g OGTT. Blood samples were collected every 15-30 min over 2.5 h. The participants and study personnel performing the laboratory analyses were blinded to the study condition. Kme acutely raised blood d-beta-hydroxybutyrate (β-OHB) to 3.2 ± 0.6 mm within 30 min with levels remaining elevated throughout the entire OGTT. Compared to placebo, Kme significantly decreased the glucose area under the curve (AUC; -17%, P = 0.001), non-esterified fatty acid AUC (-44%, P < 0.001) and C-peptide incremental AUC (P = 0.005), at the same time as improving oral glucose insulin sensitivity index by ∼11% (P = 0.001). In conclusion, a Kme supplement that acutely increased β-OHB levels up to ∼3 mm attenuated the glycaemic response to an OGTT in healthy humans. The reduction in glycaemic response did not appear to be driven by an increase in insulin secretion, although it was accompanied by improved markers of insulin sensitivity. These results suggest that ketone monoester supplements could have therapeutic potential in the management and prevention of metabolic diseases.
Collapse
Affiliation(s)
- Étienne Myette-Côté
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Helena Neudorf
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Hossein Rafiei
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Kieran Clarke
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Jonathan Peter Little
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| |
Collapse
|
72
|
Kovács Z, D'Agostino DP, Ari C. Anxiolytic Effect of Exogenous Ketone Supplementation Is Abolished by Adenosine A1 Receptor Inhibition in Wistar Albino Glaxo/Rijswijk Rats. Front Behav Neurosci 2018. [PMID: 29520223 PMCID: PMC5827672 DOI: 10.3389/fnbeh.2018.00029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Anxiety disorders are one of the most common mental health problems worldwide, but the exact pathophysiology remains largely unknown. It has been demonstrated previously that administration of exogenous ketone supplement KSMCT (ketone salt/KS + medium chain triglyceride/MCT oil) by intragastric gavage for 7 days decreased the anxiety level in genetically absence epileptic Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. To investigate the potential role of the adenosinergic system in the pathomechanism of anxiety we tested whether the inhibition of adenosine A1 receptors (A1Rs) influence the anxiolytic effect of the exogenous ketone supplement. As A1Rs may mediate such an effect, in the present study we used a specific A1R antagonist, DPCPX (1,3-dipropyl-8-cyclopentylxanthine) to test whether it modulates the anxiolytic effect of sub-chronically (7 days) applied KSMCT in the previously tested animal model by using elevated plus maze (EPM) test. We administered KSMCT (2.5 g/kg/day) alone by intragastric gavage and in combination with intraperitoneally (i.p.) injected of DPCPX in two doses (lower: 0.15 mg/kg, higher: 0.25 mg/kg). Control groups represented i.p saline and water gavage with or without i.p. DPCPX administration (2.5 g/kg/day). After treatments, the level of blood glucose and beta-hydroxybutyrate (βHB), as well as body weight were recorded. KSMCT alone significantly increased the time spent in the open arms and decreased the time spent in the closed arms, supporting our previous results. Injection of lower dose of DPCPX decreased, while higher dose of DPCPX abolished the effect of KSMCT administration on EPM. Blood βHB levels were significantly increased after administration of KSMCT, while DPCPX did not change the KSMCT induced increase in blood βHB levels. These results demonstrate that A1R inhibition modified (decreased) the anti-anxiety effect of KSMCT administration implying that the adenosinergic system, likely via A1Rs, may modulate the exogenous ketone supplement induced anxiolytic influence.
Collapse
Affiliation(s)
- Zsolt Kovács
- Savaria Department of Biology, Eötvös Loránd University (ELTE), Budapest, Hungary
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, Metabolic Medicine Research Laboratory, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Institute for Human and Machine Cognition, Ocala, FL, United States
| | - Csilla Ari
- Department of Molecular Pharmacology and Physiology, Metabolic Medicine Research Laboratory, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Department of Psychology, Hyperbaric Neuroscience Research Laboratory, University of South Florida, Tampa, FL, United States
| |
Collapse
|
73
|
Stubbs BJ, Cox PJ, Evans RD, Santer P, Miller JJ, Faull OK, Magor-Elliott S, Hiyama S, Stirling M, Clarke K. On the Metabolism of Exogenous Ketones in Humans. Front Physiol 2017; 8:848. [PMID: 29163194 PMCID: PMC5670148 DOI: 10.3389/fphys.2017.00848] [Citation(s) in RCA: 274] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/11/2017] [Indexed: 12/13/2022] Open
Abstract
Background and aims: Currently there is considerable interest in ketone metabolism owing to recently reported benefits of ketosis for human health. Traditionally, ketosis has been achieved by following a high-fat, low-carbohydrate "ketogenic" diet, but adherence to such diets can be difficult. An alternative way to increase blood D-β-hydroxybutyrate (D-βHB) concentrations is ketone drinks, but the metabolic effects of exogenous ketones are relatively unknown. Here, healthy human volunteers took part in three randomized metabolic studies of drinks containing a ketone ester (KE); (R)-3-hydroxybutyl (R)-3-hydroxybutyrate, or ketone salts (KS); sodium plus potassium βHB. Methods and Results: In the first study, 15 participants consumed KE or KS drinks that delivered ~12 or ~24 g of βHB. Both drinks elevated blood D-βHB concentrations (D-βHB Cmax: KE 2.8 mM, KS 1.0 mM, P < 0.001), which returned to baseline within 3-4 h. KS drinks were found to contain 50% of the L-βHB isoform, which remained elevated in blood for over 8 h, but was not detectable after 24 h. Urinary excretion of both D-βHB and L-βHB was <1.5% of the total βHB ingested and was in proportion to the blood AUC. D-βHB, but not L-βHB, was slowly converted to breath acetone. The KE drink decreased blood pH by 0.10 and the KS drink increased urinary pH from 5.7 to 8.5. In the second study, the effect of a meal before a KE drink on blood D-βHB concentrations was determined in 16 participants. Food lowered blood D-βHB Cmax by 33% (Fed 2.2 mM, Fasted 3.3 mM, P < 0.001), but did not alter acetoacetate or breath acetone concentrations. All ketone drinks lowered blood glucose, free fatty acid and triglyceride concentrations, and had similar effects on blood electrolytes, which remained normal. In the final study, participants were given KE over 9 h as three drinks (n = 12) or a continuous nasogastric infusion (n = 4) to maintain blood D-βHB concentrations greater than 1 mM. Both drinks and infusions gave identical D-βHB AUC of 1.3-1.4 moles.min. Conclusion: We conclude that exogenous ketone drinks are a practical, efficacious way to achieve ketosis.
Collapse
Affiliation(s)
- Brianna J Stubbs
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Pete J Cox
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Rhys D Evans
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Peter Santer
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Jack J Miller
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
| | - Olivia K Faull
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Snapper Magor-Elliott
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Matthew Stirling
- Innovative Physical Organic Solutions (IPOS), University of Huddersfield, Huddersfield, United Kingdom
| | - Kieran Clarke
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
74
|
Stubbs BJ, Cox PJ, Evans RD, Santer P, Miller JJ, Faull OK, Magor-Elliott S, Hiyama S, Stirling M, Clarke K. On the Metabolism of Exogenous Ketones in Humans. Front Physiol 2017. [PMID: 29163194 DOI: 10.3389/fphys.2017.00848,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background and aims: Currently there is considerable interest in ketone metabolism owing to recently reported benefits of ketosis for human health. Traditionally, ketosis has been achieved by following a high-fat, low-carbohydrate "ketogenic" diet, but adherence to such diets can be difficult. An alternative way to increase blood D-β-hydroxybutyrate (D-βHB) concentrations is ketone drinks, but the metabolic effects of exogenous ketones are relatively unknown. Here, healthy human volunteers took part in three randomized metabolic studies of drinks containing a ketone ester (KE); (R)-3-hydroxybutyl (R)-3-hydroxybutyrate, or ketone salts (KS); sodium plus potassium βHB. Methods and Results: In the first study, 15 participants consumed KE or KS drinks that delivered ~12 or ~24 g of βHB. Both drinks elevated blood D-βHB concentrations (D-βHB Cmax: KE 2.8 mM, KS 1.0 mM, P < 0.001), which returned to baseline within 3-4 h. KS drinks were found to contain 50% of the L-βHB isoform, which remained elevated in blood for over 8 h, but was not detectable after 24 h. Urinary excretion of both D-βHB and L-βHB was <1.5% of the total βHB ingested and was in proportion to the blood AUC. D-βHB, but not L-βHB, was slowly converted to breath acetone. The KE drink decreased blood pH by 0.10 and the KS drink increased urinary pH from 5.7 to 8.5. In the second study, the effect of a meal before a KE drink on blood D-βHB concentrations was determined in 16 participants. Food lowered blood D-βHB Cmax by 33% (Fed 2.2 mM, Fasted 3.3 mM, P < 0.001), but did not alter acetoacetate or breath acetone concentrations. All ketone drinks lowered blood glucose, free fatty acid and triglyceride concentrations, and had similar effects on blood electrolytes, which remained normal. In the final study, participants were given KE over 9 h as three drinks (n = 12) or a continuous nasogastric infusion (n = 4) to maintain blood D-βHB concentrations greater than 1 mM. Both drinks and infusions gave identical D-βHB AUC of 1.3-1.4 moles.min. Conclusion: We conclude that exogenous ketone drinks are a practical, efficacious way to achieve ketosis.
Collapse
Affiliation(s)
- Brianna J Stubbs
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Pete J Cox
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Rhys D Evans
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Peter Santer
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Jack J Miller
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
| | - Olivia K Faull
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Snapper Magor-Elliott
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Matthew Stirling
- Innovative Physical Organic Solutions (IPOS), University of Huddersfield, Huddersfield, United Kingdom
| | - Kieran Clarke
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
75
|
Abstract
The positive effects of the ketogenic diet (KD) on social behavior have been recently reported in patients and rodent models of autism spectrum disorder (ASD). Given the beneficial effects of the KD on epilepsy, mitochondrial function, carbohydrate metabolism, and inflammation, treatment based on the KD has the potential to reduce some of the ASD-associated symptoms, including abnormal social interactions. It is not known whether the KD influences sociability by reducing the pathological processes underlying ASD or through some independent mechanism. The aim of the present study was to evaluate the influence of the KD on the social behavior of rats. Four-week-old Long-Evans males were treated with the KD for 4 subsequent weeks. Afterwards, behavioral tests were performed in order to evaluate sociability, locomotor activity, working memory, and anxiety-related behaviors. Additionally we performed the social interaction test in animals that were receiving β-hydroxybutyrate or acetone. We have observed that rats fed with the KD showed increased social exploration in three different experimental settings. We did not observe any changes in the level of social interactions in animals treated with exogenous ketone bodies. The results did not show any difference in mobility or anxiety-related behaviors or working memory between the animals fed with the KD or standard rodent chow. In conclusion, we showed that the KD affects the social behavior of wild-type young adult male rats, which was not associated with other behavioral changes.
Collapse
|
76
|
Brownlow ML, Jung SH, Moore RJ, Bechmann N, Jankord R. Nutritional Ketosis Affects Metabolism and Behavior in Sprague-Dawley Rats in Both Control and Chronic Stress Environments. Front Mol Neurosci 2017; 10:129. [PMID: 28555095 PMCID: PMC5430035 DOI: 10.3389/fnmol.2017.00129] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/18/2017] [Indexed: 12/19/2022] Open
Abstract
Nutritional ketosis may enhance cerebral energy metabolism and has received increased interest as a way to improve or preserve performance and resilience. Most studies to date have focused on metabolic or neurological disorders while anecdotal evidence suggests that ketosis may enhance performance in the absence of underlying dysfunction. Moreover, decreased availability of glucose in the brain following stressful events is associated with impaired cognition, suggesting the need for more efficient energy sources. We tested the hypotheses that ketosis induced by endogenous or exogenous ketones could: (a) augment cognitive outcomes in healthy subjects; and (b) prevent stress-induced detriments in cognitive parameters. Adult, male, Sprague Dawley rats were used to investigate metabolic and behavioral outcomes in 3 dietary conditions: ketogenic (KD), ketone supplemented (KS), or NIH-31 control diet in both control or chronic stress conditions. Acute administration of exogenous ketones resulted in reduction in blood glucose and sustained ketosis. Chronic experiments showed that in control conditions, only KD resulted in pronounced metabolic alterations and improved performance in the novel object recognition test. The hypothalamic-pituitary-adrenal (HPA) axis response revealed that KD-fed rats maintained peripheral ketosis despite increases in glucose whereas no diet effects were observed in ACTH or CORT levels. Both KD and KS-fed rats decreased escape latencies on the third day of water maze, whereas only KD prevented stress-induced deficits on the last testing day and improved probe test performance. Stress-induced decrease in hippocampal levels of β-hydroxybutyrate was attenuated in KD group while both KD and KS prevented stress effects on BDNF levels. Mitochondrial enzymes associated with ketogenesis were increased in both KD and KS hippocampal samples and both endothelial and neuronal glucose transporters were affected by stress but only in the control diet group. Our results highlight the complex relationship between peripheral metabolism, behavioral performance and biochemical changes in the hippocampus. Endogenous ketosis improved behavioral and metabolic parameters associated with energy metabolism and cognition while ketone supplementation replicated the biochemical effects within the hippocampus but only showed modest effects on behavioral improvements.
Collapse
Affiliation(s)
- Milene L Brownlow
- Applied Neuroscience Branch, Warfighter Interface Division, Air Force Research Laboratory, Wright-Patterson Air Force BaseDayton, OH, USA.,Research Associateship Program, National Research Council, National Academies of ScienceWashington DC, USA
| | - Seung H Jung
- Applied Neuroscience Branch, Warfighter Interface Division, Air Force Research Laboratory, Wright-Patterson Air Force BaseDayton, OH, USA.,Research Associateship Program, National Research Council, National Academies of ScienceWashington DC, USA
| | - Raquel J Moore
- Applied Neuroscience Branch, Warfighter Interface Division, Air Force Research Laboratory, Wright-Patterson Air Force BaseDayton, OH, USA.,Infoscitex, Inc.Dayton, OH, USA
| | - Naomi Bechmann
- Applied Neuroscience Branch, Warfighter Interface Division, Air Force Research Laboratory, Wright-Patterson Air Force BaseDayton, OH, USA.,Infoscitex, Inc.Dayton, OH, USA
| | - Ryan Jankord
- Applied Neuroscience Branch, Warfighter Interface Division, Air Force Research Laboratory, Wright-Patterson Air Force BaseDayton, OH, USA
| |
Collapse
|
77
|
Caminhotto RDO, Komino ACM, de Fatima Silva F, Andreotti S, Sertié RAL, Boltes Reis G, Lima FB. Oral β-hydroxybutyrate increases ketonemia, decreases visceral adipocyte volume and improves serum lipid profile in Wistar rats. Nutr Metab (Lond) 2017; 14:31. [PMID: 28450882 PMCID: PMC5404327 DOI: 10.1186/s12986-017-0184-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 04/17/2017] [Indexed: 01/22/2023] Open
Abstract
Background Ketosis can be induced in humans and in animals by fasting or dietary interventions, such as ketogenic diets. However, the increasing interest on the ketogenic state has motivated the development of alternative approaches to rapidly increase ketonemia using less drastic interventions. Here, it was tested whether oral intake of a β-hydroxybutyrate (βHB) mineral salt mixture could increase ketonemia in Wistar rats without any other dietary changes, thereby being a useful model to study ketones effects alone on metabolism. Methods βHB salts were orally administered to provoke elevation in the ketonemia. Effects of this intervention were tested acutely (by gavage) and chronically (4 weeks in drinking water). Acutely, a concomitant glucose overload was used to suppress endogenous ketogenesis and verify whether βHB salts were really absorbed or not. Long-term administration allowed to weekly evaluate the impact on ketonemia, blood glucose and, after 4 weeks, on body weight, visceral fat mass, lipid blood profile, serum lipolysis products and adiponectinemia. Results βHB salts increased ketonemia in acute and long-term administrations, improved blood lipid profile by raising HDL-cholesterol concentration and decreasing LDL/HDL ratio, while reduced visceral adipocyte volume. Mean ketonemia correlated positively with HDLc and negatively with adipocyte volume and serum lipolysis products. Conclusions Oral βHB can rapidly increase ketonemia and, therefore, be used as an acute and long-term animal model of ketosis. Long-term treatment points to important beneficial effects of ketone bodies in serum lipid concentrations and visceral fat mass. These results may help to explain the metabolic adaptations following ketogenic diets, such as a better body fat control and a serum lipid profile improvement.
Collapse
Affiliation(s)
- Rennan de Oliveira Caminhotto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes 1524 - Ed. Biomédicas I sala 131, Butantã, 05508-900 São Paulo Brazil
| | - Ayumi Cristina Medeiros Komino
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes 1524 - Ed. Biomédicas I sala 131, Butantã, 05508-900 São Paulo Brazil
| | - Flaviane de Fatima Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes 1524 - Ed. Biomédicas I sala 131, Butantã, 05508-900 São Paulo Brazil
| | - Sandra Andreotti
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes 1524 - Ed. Biomédicas I sala 131, Butantã, 05508-900 São Paulo Brazil
| | - Rogério Antônio Laurato Sertié
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes 1524 - Ed. Biomédicas I sala 131, Butantã, 05508-900 São Paulo Brazil
| | - Gabriela Boltes Reis
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes 1524 - Ed. Biomédicas I sala 131, Butantã, 05508-900 São Paulo Brazil
| | - Fabio Bessa Lima
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes 1524 - Ed. Biomédicas I sala 131, Butantã, 05508-900 São Paulo Brazil
| |
Collapse
|
78
|
Seyfried TN, Yu G, Maroon JC, D'Agostino DP. Press-pulse: a novel therapeutic strategy for the metabolic management of cancer. Nutr Metab (Lond) 2017; 14:19. [PMID: 28250801 PMCID: PMC5324220 DOI: 10.1186/s12986-017-0178-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/17/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND A shift from respiration to fermentation is a common metabolic hallmark of cancer cells. As a result, glucose and glutamine become the prime fuels for driving the dysregulated growth of tumors. The simultaneous occurrence of "Press-Pulse" disturbances was considered the mechanism responsible for reduction of organic populations during prior evolutionary epochs. Press disturbances produce chronic stress, while pulse disturbances produce acute stress on populations. It was only when both disturbances coincide that population reduction occurred. METHODS This general concept can be applied to the management of cancer by creating chronic metabolic stresses on tumor cell energy metabolism (press disturbance) that are coupled to a series of acute metabolic stressors that restrict glucose and glutamine availability while also stimulating cancer-specific oxidative stress (pulse disturbances). The elevation of non-fermentable ketone bodies protect normal cells from energy stress while further enhancing energy stress in tumor cells that lack the metabolic flexibility to use ketones as an efficient energy source. Mitochondrial abnormalities and genetic mutations make tumor cells vulnerable metabolic stress. RESULTS The press-pulse therapeutic strategy for cancer management is illustrated with calorie restricted ketogenic diets (KD-R) used together with drugs and procedures that create both chronic and intermittent acute stress on tumor cell energy metabolism, while protecting and enhancing the energy metabolism of normal cells. CONCLUSIONS Optimization of dosing, timing, and scheduling of the press-pulse therapeutic strategy will facilitate the eradication of tumor cells with minimal patient toxicity. This therapeutic strategy can be used as a framework for the design of clinical trials for the non-toxic management of most cancers.
Collapse
Affiliation(s)
| | - George Yu
- George Washington University Medical Center Washington DC, and Aegis Medical & Research Associates Annapolis, Maryland, USA
| | - Joseph C Maroon
- Department of Neurosurgery, University of Pittsburgh Medical Center, Suite 5C, 200 Lothrop St, Pittsburgh, PA USA
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida USA
| |
Collapse
|
79
|
Bostock ECS, Kirkby KC, Taylor BVM. The Current Status of the Ketogenic Diet in Psychiatry. Front Psychiatry 2017; 8:43. [PMID: 28373848 PMCID: PMC5357645 DOI: 10.3389/fpsyt.2017.00043] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/02/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The ketogenic diet (KD) has been used in treatment-resistant epilepsy since the 1920s. It has been researched in a variety of neurological conditions in both animal models and human trials. The aim of this review is to clarify the potential role of KD in psychiatry. METHODS Narrative review of electronic databases PubMED, PsychINFO, and Scopus. RESULTS The search yielded 15 studies that related the use of KD in mental disorders including anxiety, depression, bipolar disorder, schizophrenia, autism spectrum disorder (ASD), and attention deficit hyperactivity disorder (ADHD). These studies comprised nine animal models, four case studies, and two open-label studies in humans. In anxiety, exogenous ketone supplementation reduced anxiety-related behaviors in a rat model. In depression, KD significantly reduced depression-like behaviors in rat and mice models in two controlled studies. In bipolar disorder, one case study reported a reduction in symptomatology, while a second case study reported no improvement. In schizophrenia, an open-label study in female patients (n = 10) reported reduced symptoms after 2 weeks of KD, a single case study reported no improvement. In a brief report, 3 weeks of KD in a mouse model normalized pathological behaviors. In ASD, an open-label study in children (n = 30) reported no significant improvement; one case study reported a pronounced and sustained response to KD. In ASD, in four controlled animal studies, KD significantly reduced ASD-related behaviors in mice and rats. In ADHD, in one controlled trial of KD in dogs with comorbid epilepsy, both conditions significantly improved. CONCLUSION Despite its long history in neurology, the role of KD in mental disorders is unclear. Half of the published studies are based on animal models of mental disorders with limited generalizability to the analog conditions in humans. The review lists some major limitations including the lack of measuring ketone levels in four studies and the issue of compliance to the rigid diet in humans. Currently, there is insufficient evidence for the use of KD in mental disorders, and it is not a recommended treatment option. Future research should include long-term, prospective, randomized, placebo-controlled crossover dietary trials to examine the effect of KD in various mental disorders.
Collapse
Affiliation(s)
| | - Kenneth C Kirkby
- Psychiatry, School of Medicine, University of Tasmania , Hobart, TAS , Australia
| | - Bruce V M Taylor
- Menzies Institute for Medical Research, Tasmania , Hobart, TAS , Australia
| |
Collapse
|