51
|
Mahungu AC, Anderson DG, Rossouw AC, van Coller R, Carr JA, Ross OA, Bardien S. Screening of the glucocerebrosidase (GBA) gene in South Africans of African ancestry with Parkinson's disease. Neurobiol Aging 2019; 88:156.e11-156.e14. [PMID: 32035846 DOI: 10.1016/j.neurobiolaging.2019.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 01/22/2023]
Abstract
Sequence variants in glucocerebrosidase (GBA) are a major genetic risk factor for Parkinson's disease (PD), and display ethnic-dependent frequencies, for example, variants such as p.N370S and 84insGG are common in Ashkenazi Jewish patients. Notably, there are limited studies on black patients from the African continent; hence, we conducted a study on 30 South African black PD patients. All 11 exons of GBA were screened using a nested PCR approach to avoid pseudogene contamination. We identified previously described Gaucher's disease-associated variants, p.R120W in one patient [age at onset (AAO) of 35 years], and p.R131L in another patient (AAO 30 years) and in her affected sibling (AAO 45 years). In addition, we found 3 previously identified [p.K(-27)R, p.T36del, and p.Q497*] and 2 novel (p.F216L and p.G478R) variants. Screening of ethnic-matched controls for the novel variants revealed that the allele frequency of p.F216L was 9.9%, whereas p.G478R was not found in the controls. Studies such as these are important and necessary to reveal the genetic architecture underlying PD in the understudied patients of African ancestry.
Collapse
Affiliation(s)
- Amokelani C Mahungu
- Faculty of Medicine and Health Sciences, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa
| | - David G Anderson
- University of the Witwatersrand Donald Gordon Medical Centre, Neurology, University of the Witwatersrand, Johannesburg, South Africa
| | - Anastasia C Rossouw
- Faculty of Health Sciences, Division of Neurology, Department of Medicine, Walter Sisulu University, East London, South Africa
| | - Riaan van Coller
- Faculty of Health Sciences, School of Medicine, Department of Neurology, University of Pretoria, South Africa
| | - Jonathan A Carr
- Faculty of Medicine and Health Sciences, Division of Neurology, Stellenbosch University, Cape Town, South Africa
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of Clinical Genomics, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | - Soraya Bardien
- Faculty of Medicine and Health Sciences, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
52
|
Farfel-Becker T, Do J, Tayebi N, Sidransky E. Can GBA1-Associated Parkinson Disease Be Modeled in the Mouse? Trends Neurosci 2019; 42:631-643. [PMID: 31288942 DOI: 10.1016/j.tins.2019.05.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/21/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023]
Abstract
Homozygous and heterozygous mutations in GBA1, the gene implicated in Gaucher disease, increase the risk and severity of Parkinson disease (PD). We evaluated the design, phenotype, strengths, and limitations of current GBA1-associated PD mouse models. Although faithful modeling of a genetic risk factor poses many challenges, the different approaches taken were successful in revealing predisposing abnormalities in heterozygotes for GBA1 mutations and demonstrating the deleterious effects of GBA1 impairment on the PD course in PD models. GBA1-PD models differ in key parameters, with no single model recapitulating all aspects of the GBA1-PD puzzle, emphasizing the importance of selecting the proper in vivo model depending on the specific molecular mechanism or potential therapy being studied.
Collapse
Affiliation(s)
- Tamar Farfel-Becker
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3706, USA.
| | - Jenny Do
- Section of Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-3708, USA
| | - Nahid Tayebi
- Section of Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-3708, USA
| | - Ellen Sidransky
- Section of Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-3708, USA.
| |
Collapse
|
53
|
Mullin S, Beavan M, Bestwick J, McNeill A, Proukakis C, Cox T, Hughes D, Mehta A, Zetterberg H, Schapira AHV. Evolution and clustering of prodromal parkinsonian features in GBA1 carriers. Mov Disord 2019; 34:1365-1373. [PMID: 31251436 PMCID: PMC6790937 DOI: 10.1002/mds.27775] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 05/13/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022] Open
Abstract
Background Five to 25% of patients with PD carry glucocerebrosidase gene mutations, and 10% to 30% of glucocerebrosidase carriers will develop PD by age 80. Stratification of PD risk in glucocerebrosidase carriers provides an opportunity to target disease‐modifying therapies. Objective Cross‐sectional and longitudinal survey of prodromal PD signs among glucocerebrosidase carriers. Design Prospective assessment of 82 glucocerebrosidase mutation carriers and 35 controls over 4 to 5 years for prodromal clinical PD features. Results At all time points, olfactory (measured using University of Pennsylvania Smell Identification Test) and cognitive (Montreal Cognitive Assessment) function and the International Parkinson and Movement Disorder Society UPDRS parts II and III scores were significantly worse amongst glucocerebrosidase mutation carriers. Progression to microsmia (odds ratio: 8.5; 95% confidence interval: 2.6–28.2; P < 0.05) and mild cognitive impairment (odds ratio: 4.2; 95% confidence interval: 1.1–16.6; P < 0.05) were more rapid compared to controls. Those with worse olfaction also had worse cognition (OR, 1.5; 95% CI: 0.0–2.8; P < 0.05) and depression (OR, 1.3; 95% CI: 0.6–2.8; P < 0.05). No participants reached the MDS prodromal PD diagnostic criteria before PD diagnosis. One participant developed PD. He did not fulfill the International Parkinson and Movement Disorder Society prodromal PD criteria before diagnosis. Conclusion Assessment of individual and clustered PD prodromal features may serve as a useful tool to identify high‐risk subjects for conversion to PD. As a result of the low conversion rate in our glucocerebrosidase mutation carriers to date, prospective validation is needed in larger cohorts to establish the profile of these features in PD convertors. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Stephen Mullin
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom.,Institute of Translational and Stratified medicine, Plymouth University Peninsular School of Medicine, Plymouth, United Kingdom
| | - Michelle Beavan
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Jonathan Bestwick
- Wolfson Institute of Preventive Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Alisdair McNeill
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Cambridge, United Kingdom
| | - Christos Proukakis
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Timothy Cox
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Derralynn Hughes
- Lysosomal Storage Disorders Unit, Royal Free Hospital, Royal Free London NHS Foundation Trust, and Department of Haematology, University College London, London, United Kingdom
| | - Atul Mehta
- Lysosomal Storage Disorders Unit, Royal Free Hospital, Royal Free London NHS Foundation Trust, and Department of Haematology, University College London, London, United Kingdom
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Molecular Neuroscience, University College London Institute of Neurology, London, United Kingdom
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
54
|
Leija‐Salazar M, Sedlazeck FJ, Toffoli M, Mullin S, Mokretar K, Athanasopoulou M, Donald A, Sharma R, Hughes D, Schapira AH, Proukakis C. Evaluation of the detection of GBA missense mutations and other variants using the Oxford Nanopore MinION. Mol Genet Genomic Med 2019; 7:e564. [PMID: 30637984 PMCID: PMC6418358 DOI: 10.1002/mgg3.564] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/23/2018] [Accepted: 12/13/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Mutations in GBA cause Gaucher disease when biallelic and are strong risk factors for Parkinson's disease when heterozygous. GBA analysis is complicated by the nearby pseudogene. We aimed to design and validate a method for sequencing GBA using long reads. METHODS We sequenced GBA on the Oxford Nanopore MinION as an 8.9 kb amplicon from 102 individuals, including patients with Parkinson's and Gaucher diseases. We used NanoOK for quality metrics, NGMLR to align data (after comparing with GraphMap), Nanopolish and Sniffles to call variants, and WhatsHap for phasing. RESULTS We detected all known missense mutations in these samples, including the common p.N409S (N370S) and p.L483P (L444P) in multiple samples, and nine rarer ones, as well as a splicing and a truncating mutation, and intronic SNPs. We demonstrated the ability to phase mutations, confirm compound heterozygosity, and assign haplotypes. We also detected two known risk variants in some Parkinson's patients. Rare false positives were easily identified and filtered, with the Nanopolish quality score adjusted for the number of reads a very robust discriminator. In two individuals carrying a recombinant allele, we were able to detect and fully define it in one carrier, where it included a 55-base pair deletion, but not in another one, suggesting a limitation of the PCR enrichment method. Missense mutations were detected at the correct zygosity, except for the case where the RecNciI one was missed. CONCLUSION The Oxford Nanopore MinION can detect missense mutations and an exonic deletion in this difficult gene, with the added advantages of phasing and intronic analysis. It can be used as an efficient research tool, but additional work is required to exclude all recombinants.
Collapse
Affiliation(s)
- Melissa Leija‐Salazar
- Department of Clinical and Movement Neurosciences, Royal Free Campus, Institute of NeurologyUniversity College LondonLondonUK
| | | | - Marco Toffoli
- Department of Clinical and Movement Neurosciences, Royal Free Campus, Institute of NeurologyUniversity College LondonLondonUK
| | - Stephen Mullin
- Department of Clinical and Movement Neurosciences, Royal Free Campus, Institute of NeurologyUniversity College LondonLondonUK
- Institute of Translational and Stratified MedicinePlymouth University Peninsula School of MedicinePlymouthUK
| | - Katya Mokretar
- Department of Clinical and Movement Neurosciences, Royal Free Campus, Institute of NeurologyUniversity College LondonLondonUK
| | - Maria Athanasopoulou
- Department of Molecular Neuroscience, Institute of NeurologyUniversity College LondonLondonUK
| | - Aimee Donald
- Department of PaediatricsRoyal Manchester Children’s HospitalManchesterUK
| | - Reena Sharma
- The Mark Holland Metabolic Unit, Salford Royal Foundation NHS TrustSalfordUK
| | - Derralynn Hughes
- Institute of Immunity and TransplantationLysosomal Storage Disorders Unit, Royal Free HospitalLondonUK
| | - Anthony H.V. Schapira
- Department of Clinical and Movement Neurosciences, Royal Free Campus, Institute of NeurologyUniversity College LondonLondonUK
| | - Christos Proukakis
- Department of Clinical and Movement Neurosciences, Royal Free Campus, Institute of NeurologyUniversity College LondonLondonUK
| |
Collapse
|
55
|
Gatto EM, Da Prat G, Etcheverry JL, Drelichman G, Cesarini M. Parkinsonisms and Glucocerebrosidase Deficiency: A Comprehensive Review for Molecular and Cellular Mechanism of Glucocerebrosidase Deficiency. Brain Sci 2019; 9:brainsci9020030. [PMID: 30717266 PMCID: PMC6406566 DOI: 10.3390/brainsci9020030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023] Open
Abstract
In the last years, lysosomal storage diseases appear as a bridge of knowledge between rare genetic inborn metabolic disorders and neurodegenerative diseases such as Parkinson’s disease (PD) or frontotemporal dementia. Epidemiological studies helped promote research in the field that continues to improve our understanding of the link between mutations in the glucocerebrosidase (GBA) gene and PD. We conducted a review of this link, highlighting the association in GBA mutation carriers and in Gaucher disease type 1 patients (GD type 1). A comprehensive review of the literature from January 2008 to December 2018 was undertaken. Relevance findings include: (1) There is a bidirectional interaction between GBA and α- synuclein in protein homeostasis regulatory pathways involving the clearance of aggregated proteins. (2) The link between GBA deficiency and PD appears not to be restricted to α–synuclein aggregates but also involves Parkin and PINK1 mutations. (3) Other factors help explain this association, including early and later endosomes and the lysosomal-associated membrane protein 2A (LAMP-2A) involved in the chaperone-mediated autophagy (CMA). (4) The best knowledge allows researchers to explore new therapeutic pathways alongside substrate reduction or enzyme replacement therapies.
Collapse
Affiliation(s)
- Emilia M Gatto
- Department of Neurology, Parkinson's Disease and Movement Disorders Section, Institute of Neuroscience of Buenos Aires (INEBA). Guardia Vieja 4435, Buenos Aires C1192AAW, Argentina.
| | - Gustavo Da Prat
- Department of Neurology, Parkinson's Disease and Movement Disorders Section, Institute of Neuroscience of Buenos Aires (INEBA). Guardia Vieja 4435, Buenos Aires C1192AAW, Argentina.
| | - Jose Luis Etcheverry
- Department of Neurology, Parkinson's Disease and Movement Disorders Section, Institute of Neuroscience of Buenos Aires (INEBA). Guardia Vieja 4435, Buenos Aires C1192AAW, Argentina.
| | - Guillermo Drelichman
- Hospital de Niños Ricardo Gutiérrez, Gallo 1330, Buenos Aires C1425EFD, Argentina.
| | - Martin Cesarini
- Department of Neurology, Parkinson's Disease and Movement Disorders Section, Institute of Neuroscience of Buenos Aires (INEBA). Guardia Vieja 4435, Buenos Aires C1192AAW, Argentina.
| |
Collapse
|
56
|
Shu L, Zhang Y, Sun Q, Pan H, Tang B. A Comprehensive Analysis of Population Differences in LRRK2 Variant Distribution in Parkinson's Disease. Front Aging Neurosci 2019; 11:13. [PMID: 30760999 PMCID: PMC6363667 DOI: 10.3389/fnagi.2019.00013] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/14/2019] [Indexed: 11/13/2022] Open
Abstract
Background:LRRK2 variants have been demonstrated to have distinct distributions in different populations. However, researchers have thus far chosen to focus on relatively few variants, such as R1628P, G2019S, and G2385R. We therefore investigated the relationship between common LRRK2 variants and PD risk in various populations. Methods: Using a set of strict inclusion criteria, six databases were searched, resulting in the selection of 94 articles covering 49,299 cases and 47,319 controls for final pooled analysis and frequency analysis. Subgroup analysis were done for Africans, European/West Asians, Hispanics, East Asians, and mixed populations. Statistical analysis was carried out using the Mantel-Haenszel approach to determine the relationship between common LRRK2 variants and PD risk, with the significance level set at p < 0.05. Results: In the absence of obvious heterogeneities and publication biases among the included studies, we concluded that A419V, R1441C/G/H, R1628P, G2019S, and G2385R were associated with increased PD risk (p: 0.001, 0.0004, < 0.00001, < 0.00001, and < 0.00001, respectively), while R1398H was associated with decreased risk (p: < 0.00001). In East Asian populations, A419V, R1628P, and G2385R increased risk (p: 0.001, < 0.00001, < 0.00001), while R1398H had the opposite effect (p: 0.0005). G2019S increased PD risk in both European/West Asian and mixed populations (p: < 0.00001, < 0.00001), while R1441C/G/H increased risk in European/West Asian populations only (p: 0.0004). Conclusions: We demonstrated that LRRK2 variant distribution is different among various populations, which should inform decisions regarding the development of future genetic screening strategies.
Collapse
Affiliation(s)
- Li Shu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
57
|
Gastrointestinal Dysfunctions Are Associated with IL-10 Variants in Parkinson's Disease. PARKINSONS DISEASE 2019; 2018:5908359. [PMID: 30631418 PMCID: PMC6304865 DOI: 10.1155/2018/5908359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/13/2018] [Accepted: 11/21/2018] [Indexed: 11/17/2022]
Abstract
Inflammation has been demonstrated to be involved in Parkinson's disease (PD) pathogenesis. There were evidences that the disturbance of the protective function of IL-10 gene contributed to PD. In our study, haplotype analyses were conducted of IL-10 rs1800871 and rs1800872 on 371 PD patients. Because the two SNPs exposed significant linkage disequilibrium demonstrated by Haploview software, we included 177 carriers of both rs1800871 and rs1800872 and 190 noncarriers in clinical phenotype analyses. As to nonmotor symptoms, the score of the gastrointestinal dysfunction domain in Nonmotor Symptom Scale (NMSS) was lower in the carrier group of both SNPs than in the noncarrier group in PD patients (SC: -0.198, p : 023). Other nonmotor symptoms reflected by relevant rating scales showed negative results. As to comorbidity, no significant statistical significance was observed between the two SNPs and Charlson Comorbidity Index (CCI). In conclusion, we found less severe gastrointestinal dysfunctions of both IL-10 rs1800871 and rs1800872 carriers than noncarriers in PD.
Collapse
|
58
|
Mullin S, Hughes D, Mehta A, Schapira AHV. Neurological effects of glucocerebrosidase gene mutations. Eur J Neurol 2018; 26:388-e29. [PMID: 30315684 PMCID: PMC6492454 DOI: 10.1111/ene.13837] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/09/2018] [Indexed: 01/08/2023]
Abstract
The association between Gaucher disease (GD) and Parkinson disease (PD) has been described for almost two decades. In the biallelic state (homozygous or compound heterozygous) mutations in the glucocerebrosidase gene (GBA) may cause GD, in which glucosylceramide, the sphingolipid substrate of the glucocerebrosidase enzyme (GCase), accumulates in visceral organs leading to a number of clinical phenotypes. In the biallelic or heterozygous state, GBA mutations increase the risk for PD. Mutations of the GBA allele are the most significant genetic risk factor for idiopathic PD, found in 5%–20% of idiopathic PD cases depending on ethnicity. The neurological consequences of GBA mutations are reviewed and the proposition that GBA mutations result in a disparate but connected range of clinically and pathologically related neurological features is discussed. The literature relating to the clinical, biochemical and genetic basis of GBA PD, type 1 GD and neuronopathic GD is considered highlighting commonalities and distinctions between them. The evidence for a unifying disease mechanism is considered.
Collapse
Affiliation(s)
- S Mullin
- Department of Clinical Neuroscience, UCL Institute of Neurology, London, UK.,Institute of Translational and Stratified Medicine, University of Plymouth School of Medicine, Plymouth, UK
| | - D Hughes
- LSD Unit/Department of Haematology, Institute of Immunity and Transplantation, UCL, London, UK
| | - A Mehta
- LSD Unit/Department of Haematology, Institute of Immunity and Transplantation, UCL, London, UK
| | - A H V Schapira
- Department of Clinical Neuroscience, UCL Institute of Neurology, London, UK
| |
Collapse
|
59
|
Liang D, Shu L, Pan H, Xu Q, Guo J, Yan X, Tang B, Sun Q. Clinical characteristics of PD patients with LRRK2 G2385R and R1628P variants. Neurosci Lett 2018; 685:185-189. [PMID: 30121215 DOI: 10.1016/j.neulet.2018.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/06/2018] [Accepted: 08/13/2018] [Indexed: 01/28/2023]
Abstract
LRRK2 is the most common genetic cause of PD. G2385R and R1628 P variants are the most common variants of LRRK2 in Chinese populations. Consensus on the clinical features of G2385R and R1628 P related PD has not been reached yet, although it had been widely studied. In our study, genotype analyses were conducted on 721 PD patients of Chinese origin. A total of 62 G2385R carriers, 32 R1628 P carriers and 623 idiopathic PD patients underwent the following clinical feature analysis. Motor symptoms, non-motor symptoms and co-morbidities were the targeted features to be analyzed. As a result, Neither the G2385R nor the R1628 P carriers showed significant clinical feature differences when compared to the idiopathic PD patients, so did the comparison between the G2385R and the R1628 P carriers. In conclusion, the clinical features of PD patients with LRRK2 G2385R or R1628 P variants were similar to those of idiopathic PD.
Collapse
Affiliation(s)
- Dongxiao Liang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Li Shu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan 410078, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan 410078, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, China; Center for Medical Genetics, Central South University, Changsha, Hunan 410008, China; Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing 100069, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan 410078, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, China
| | - Beisha Tang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan 410078, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, China; Center for Medical Genetics, Central South University, Changsha, Hunan 410008, China; Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing 100069, China
| | - Qiying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan 410078, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
60
|
A Meta-Analysis of GBA-Related Clinical Symptoms in Parkinson's Disease. PARKINSONS DISEASE 2018; 2018:3136415. [PMID: 30363648 PMCID: PMC6180987 DOI: 10.1155/2018/3136415] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/04/2018] [Accepted: 08/14/2018] [Indexed: 12/15/2022]
Abstract
Background GBA gene had been proved to be a crucial gene to the risk of PD. Numerous studies had discussed about the unique clinical characteristics of PD patients with GBA carriers (GBA + PD). However, there was lack of updated comprehensive analysis on the topic. In order to clarify the association between GBA variants and the clinical phenotypes of PD, we conducted this comprehensive meta-analysis. Method Medline, Embase, and Cochrane were used to perform the searching. Strict selection criteria were followed in screening for new published articles or data. Revman 5.3 software was applied to perform the total statistical analysis, and funnel plots in the software were used to assess the publication biases. Results A total of 26 articles including 931 GBA + PD and 14861 GBA noncarriers of PD (GBA - PD) were involved in the final meta-analysis, and 14 of them were either newly added publications or related data newly analyzed compared with the version published in 2015. Then, a series of symptoms containing depression, orthostatic hypotension, motor fluctuation, wearing-off, and freezing were newly analyzed due to more articles eligible. Besides, clinical features like family history, AAO, UPDRS-III, H-Y, and dementia previously analyzed were updated with new data added. Significant statistical differences were found in wearing-off, family history, AAO, UPDRS-III, and dementia (OR: 1.14, 1.65; MD: -3.61, 2.17; OR: 2.44; p: 0.03, <0.00001, <0.00001, 0.003, and <0.00001). Depression was slightly associated with GBA + PD (OR: 1.47; p: 0.04). Clinical symptoms such as H-Y, orthostatic hypotension, motor fluctuation, and freezing did not feature GBA + PD. Conclusion Our results demonstrated that there were unique clinical features in GBA + PD which can help the management of the whole duration of PD patients.
Collapse
|
61
|
Shu L, Zhang Y, Pan H, Xu Q, Guo J, Tang B, Sun Q. Clinical Heterogeneity Among LRRK2 Variants in Parkinson's Disease: A Meta-Analysis. Front Aging Neurosci 2018; 10:283. [PMID: 30283330 PMCID: PMC6156433 DOI: 10.3389/fnagi.2018.00283] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 08/30/2018] [Indexed: 12/14/2022] Open
Abstract
Background: Parkinson's disease (PD) is one of the most common neurodegenerative diseases. Variants in the LRRK2 gene have been shown to be associated with PD. However, the clinical characteristics of LRRK2-related PD are heterogeneous. In our study, we performed a comprehensive pooled analysis of the association between specific LRRK2 variants and clinical features of PD. Methods: Articles from the Medline, Embase, and Cochrane databases were included in the meta-analysis. Strict inclusion criteria were applied, and detailed information was extracted from the final original articles included. Revman 5.3 software was used for publication biases and pooled and sensitivity analyses. Results: In all, 66 studies having the clinical manifestations of PD patients with G2019S, G2385R, R1628P, and R1441G were included for the final analysis. The prominent clinical features of LRRK2-G2019S-related PD patients were female sex, higher rates of early-onset PD (EOPD), and family history (OR: 0.77 [male], 1.37, 2.62; p < 0.00001, 0.02, < 0.00001). PD patients with G2019S were more likely to have high scores of Schwab & England (MD: 1.49; p < 0.00001), low GDS scores, high UPSIT scores (MD: 0.43, 4.70; p = 0.01, < 0.00001), and good response to L-dopa (OR: 2.33; p < 0.0001). Further, G2019S carriers had higher LEDD (MD: 115.20; p < 0.00001) and were more likely to develop motor complications, such as dyskinesia and motor fluctuations (OR: 2.18, 2.02; p < 0.00001, 0.04) than non-carriers. G2385R carriers were more likely to have family history (OR: 2.10; p = 0.007) than non-G2385R carriers and lower H-Y and higher MMSE scores (MD: −0.13, 1.02; p = 0.02, 0.0007). G2385R carriers had higher LEDD and tended to develop motor complications, such as motor fluctuations (MD: 53.22, OR: 3.17; p = 0.01, < 0.00001) than non-carriers. Other clinical presentations did not feature G2019S or G2385R. We observed no distinct clinical features for R1628P or R1441G. Our subgroup analyses in different ethnic group for specific variant also presented with relevant clinical characteristics of PD patients. Conclusions: Clinical heterogeneity was observed among LRRK2-associated PD in different variants in total and in different ethnic groups, especially for G2019S and G2385R.
Collapse
Affiliation(s)
- Li Shu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China.,Collaborative Innovation Center for Brain Science, Shanghai, China.,Collaborative Innovation Center for Genetics and Development, Shanghai, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China.,Collaborative Innovation Center for Brain Science, Shanghai, China.,Collaborative Innovation Center for Genetics and Development, Shanghai, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Qiying Sun
- National Clinical Research Center for Geriatric Disorders, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|