51
|
Sun H. Different sensitivity of action potential generation to the rate of depolarization in vagal afferent A-fiber versus C-fiber neurons. J Neurophysiol 2021; 125:2000-2012. [PMID: 33881911 DOI: 10.1152/jn.00722.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This study demonstrates that the action potential discharge in vagal afferent A-fiber neurons is about 20 times more sensitive to the rate of membrane depolarization compared to C-fiber neurons. The sensitivity of action potential generation to the depolarization rate in vagal sensory neurons is independent of the intensity of current stimuli but nearly abrogated by inhibiting the D-type potassium channel. These findings help better understand the mechanisms that control the activation of vagal afferent nerves.
Collapse
Affiliation(s)
- Hui Sun
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
52
|
Fu M, Zhang L, Xie X, Wang N, Xiao Z. Differential contributions of voltage-gated potassium channel subunits in enhancing temporal coding in the bushy cells of the ventral cochlear nucleus. J Neurophysiol 2021; 125:1954-1972. [PMID: 33852808 DOI: 10.1152/jn.00435.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Temporal coding precision of bushy cells in the ventral cochlear nucleus (VCN), critical for sound localization and communication, depends on the generation of rapid and temporally precise action potentials (APs). Voltage-gated potassium (Kv) channels are critically involved in this. The bushy cells in rat VCN express Kv1.1, 1.2, 1.3, 1.6, 3.1, 4.2, and 4.3 subunits. The Kv1.1 subunit contributes to the generation of a temporally precise single AP. However, the understanding of the functions of other Kv subunits expressed in the bushy cells is limited. Here, we investigated the functional diversity of Kv subunits concerning their contributions to temporal coding. We characterized the electrophysiological properties of the Kv channels with different subunits using whole cell patch-clamp recording and pharmacological methods. The neuronal firing pattern changed from single to multiple APs only when the Kv1.1 subunit was blocked. The Kv subunits, including the Kv1.1, 1.2, 1.6, or 3.1, were involved in enhancing temporal coding by lowering membrane excitability, shortening AP latencies, reducing jitter, and regulating AP kinetics. Meanwhile, all the Kv subunits contributed to rapid repolarization and sharpening peaks by narrowing half-width and accelerating fall rate, and the Kv1.1 subunit also affected the depolarization of AP. The Kv1.1, 1.2, and 1.6 subunits endowed bushy cells with a rapid time constant and a low input resistance of membrane for enhancing spike timing precision. The present results indicate that the Kv channels differentially affect intrinsic membrane properties to optimize the generation of rapid and reliable APs for temporal coding.NEW & NOTEWORTHY This study investigates the roles of Kv channels in effecting precision using electrophysiological and pharmacological methods in bushy cells. Different Kv channels have varying electrophysiological characteristics, which contribute to the interplay between changes in the membrane properties and regulation of neuronal excitability which then improve temporal coding. We conclude that the Kv channels are specialized to promote the precise and rapid coding of acoustic input by optimizing the generation of reliable APs.
Collapse
Affiliation(s)
- Mingyu Fu
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lu Zhang
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao Xie
- Nanhai Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Ningqian Wang
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhongju Xiao
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Nanhai Hospital, Southern Medical University, Foshan, Guangdong, China
| |
Collapse
|
53
|
Positive Regulatory Domain I-binding Factor 1 Mediates Peripheral Nerve Injury-induced Nociception in Mice by Repressing Kv4.3 Channel Expression. Anesthesiology 2021; 134:435-456. [PMID: 33370445 DOI: 10.1097/aln.0000000000003654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The transcriptional repressor positive regulatory domain I-binding factor 1 (PRDM1) is expressed in adult mouse dorsal root ganglion and regulates the formation and function of peripheral sensory neurons. The authors hypothesized that PRDM1 in the dorsal root ganglion may contribute to peripheral nerve injury-induced nociception regulation and that its mechanism may involve Kv4.3 channel transcriptional repression. METHODS Nociception was induced in C57BL/6 mice by applying chronic constriction injury, complete Freund's adjuvant, or capsaicin plantar injection. Nociceptive response was evaluated by mechanical allodynia, thermal hyperalgesia, cold hyperalgesia, or gait analysis. The role of PRDM1 was evaluated by injection of Prdm1 knockdown and overexpression adeno-associated viruses. The interaction of PRDM1 at the Kv4.3 (Kcnd3) promoter was evaluated by chromatin immunoprecipitation assay. Excitability of dorsal root ganglion neurons was evaluated by whole cell patch clamp recordings, and calcium signaling in spinal dorsal horn neurons was evaluated by in vivo two-photon imaging. RESULTS Peripheral nerve injury increased PRDM1 expression in the dorsal root ganglion, which reduced the activity of the Kv4.3 promoter and repressed Kv4.3 channel expression (injured vs. uninjured; all P < 0.001). Knockdown of PRDM1 rescued Kv4.3 expression, reduced the high excitability of injured dorsal root ganglion neurons, and alleviated peripheral nerve injury-induced nociception (short hairpin RNA vs. Scram; all P < 0.05). In contrast, PRDM1 overexpression in naive mouse dorsal root ganglion neurons diminished Kv4.3 channel expression and induced hyperalgesia (PRDM1 overexpression vs. control, mean ± SD; n = 13; all P < 0.0001) as evaluated by mechanical allodynia (0.6 ± 0.3 vs. 1.2 ± 0.2 g), thermal hyperalgesia (5.2 ± 1.3 vs. 9.8 ± 1.7 s), and cold hyperalgesia (3.4 ± 0.5 vs. 5.3 ± 0.6 s). Finally, PRDM1 downregulation in naive mice reduced the calcium signaling response of spinal dorsal horn neurons to thermal stimulation. CONCLUSIONS PRDM1 contributes to peripheral nerve injury-induced nociception by repressing Kv4.3 channel expression in injured dorsal root ganglion neurons. EDITOR’S PERSPECTIVE
Collapse
|
54
|
Sakamoto T, Ishio Y, Ishida Y, Mogi K, Kikusui T. Low maternal licking/grooming stimulation increases pain sensitivity in male mouse offspring. Exp Anim 2021; 70:13-21. [PMID: 32741955 PMCID: PMC7887629 DOI: 10.1538/expanim.20-0030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/03/2020] [Indexed: 12/21/2022] Open
Abstract
Deprivation of maternal care has been associated with higher pain sensitivity in offspring. In the present study, we hypothesized that the maternal licking/grooming behavior was an important factor for the development of the pain regulatory system. To test this hypothesis, we used male F2 offspring of early-weaned (EW) F1 mother mice that exhibit lower frequency of licking/grooming behavior. The formalin test revealed that F2 offspring of EW F1 dams showed significantly higher pain behavior than F2 offspring of normally-weaned (NW) F1 dams. We found that the mRNA levels of transient receptor potential vanilloid 1 (TRPV1), a nociceptor, were higher in the lumbosacral dorsal root ganglion (DRG) of F2 offspring of EW F1 dams than those of F2 offspring of NW F1 dams, suggesting that the higher pain sensitivity may be attributed to low licking/grooming, which may result in developmental changes in nociceptive neurons. In the DRG, mRNA levels of Mas-related G-protein coupled receptor B4 (MrgprB4), a marker of sensory neurons that detect gentle stroking, was also up-regulated in the F2 offspring of EW F1 dams. Considering that gentle touch alleviates pain, Mrgprb4 up-regulation may reflect a compensatory change. The present findings indicate important implications of maternal licking/grooming behavior in the development of the pain regulatory system.
Collapse
Affiliation(s)
- Takashi Sakamoto
- Department of Animal Science and Biotechnology, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| | - Yukino Ishio
- Department of Animal Science and Biotechnology, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| | - Yuiko Ishida
- Department of Animal Science and Biotechnology, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| | - Kazutaka Mogi
- Department of Animal Science and Biotechnology, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| | - Takefumi Kikusui
- Department of Animal Science and Biotechnology, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| |
Collapse
|
55
|
Kv4.3 Channel Dysfunction Contributes to Trigeminal Neuropathic Pain Manifested with Orofacial Cold Hypersensitivity in Rats. J Neurosci 2021; 41:2091-2105. [PMID: 33472822 DOI: 10.1523/jneurosci.2036-20.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Trigeminal neuropathic pain is the most debilitating pain disorder but current treatments including opiates are not effective. A common symptom of trigeminal neuropathic pain is cold allodynia/hyperalgesia or cold hypersensitivity in orofacial area, a region where exposure to cooling temperatures are inevitable in daily life. Mechanisms underlying trigeminal neuropathic pain manifested with cold hypersensitivity are not fully understood. In this study, we investigated trigeminal neuropathic pain in male rats following infraorbital nerve chronic constrictive injury (ION-CCI). Assessed by the orofacial operant behavioral test, ION-CCI animals displayed orofacial cold hypersensitivity. The cold hypersensitivity was associated with the hyperexcitability of small-sized trigeminal ganglion (TG) neurons that innervated orofacial regions. Furthermore, ION-CCI resulted in a reduction of A-type voltage-gated K+ currents (IA currents) in these TG neurons. We further showed that these small-sized TG neurons expressed Kv4.3 voltage-gated K+ channels, and Kv4.3 expression in these cells was significantly downregulated following ION-CCI. Pharmacological inhibition of Kv4.3 channels with phrixotoxin-2 inhibited IA-currents in these TG neurons and induced orofacial cold hypersensitivity. On the other hand, pharmacological potentiation of Kv4.3 channels amplified IA currents in these TG neurons and alleviated orofacial cold hypersensitivity in ION-CCI rats. Collectively, Kv4.3 downregulation in nociceptive trigeminal afferent fibers may contribute to peripheral cold hypersensitivity following trigeminal nerve injury, and Kv4.3 activators may be clinically useful to alleviate trigeminal neuropathic pain.SIGNIFICANCE STATEMENT Trigeminal neuropathic pain, the most debilitating pain disorder, is often triggered and exacerbated by cooling temperatures. Here, we created infraorbital nerve chronic constrictive injury (ION-CCI) in rats, an animal model of trigeminal neuropathic pain to show that dysfunction of Kv4.3 voltage-gated K+ channels in nociceptive-like trigeminal ganglion (TG) neurons underlies the trigeminal neuropathic pain manifested with cold hypersensitivity in orofacial regions. Furthermore, we demonstrate that pharmacological potentiation of Kv4.3 channels can alleviate orofacial cold hypersensitivity in ION-CCI rats. Our results may have clinical implications in trigeminal neuropathic pain in human patients, and Kv4.3 channels may be an effective therapeutic target for this devastating pain disorder.
Collapse
|
56
|
Ojala KS, Ginebaugh SP, Wu M, Miller EW, Ortiz G, Covarrubias M, Meriney SD. A high-affinity, partial antagonist effect of 3,4-diaminopyridine mediates action potential broadening and enhancement of transmitter release at NMJs. J Biol Chem 2021; 296:100302. [PMID: 33465376 PMCID: PMC7949096 DOI: 10.1016/j.jbc.2021.100302] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/03/2022] Open
Abstract
3,4-Diaminopyridine (3,4-DAP) increases transmitter release from neuromuscular junctions (NMJs), and low doses of 3,4-DAP (estimated to reach ∼1 μM in serum) are the Food and Drug Administration (FDA)-approved treatment for neuromuscular weakness caused by Lambert–Eaton myasthenic syndrome. Canonically, 3,4-DAP is thought to block voltage-gated potassium (Kv) channels, resulting in prolongation of the presynaptic action potential (AP). However, recent reports have shown that low millimolar concentrations of 3,4-DAP have an off-target agonist effect on the Cav1 subtype (“L-type”) of voltage-gated calcium (Cav) channels and have speculated that this agonist effect might contribute to 3,4-DAP effects on transmitter release at the NMJ. To address 3,4-DAP’s mechanism(s) of action, we first used the patch-clamp electrophysiology to characterize the concentration-dependent block of 3,4-DAP on the predominant presynaptic Kv channel subtypes found at the mammalian NMJ (Kv3.3 and Kv3.4). We identified a previously unreported high-affinity (1–10 μM) partial antagonist effect of 3,4-DAP in addition to the well-known low-affinity (0.1–1 mM) antagonist activity. We also showed that 1.5-μM DAP had no effects on Cav1.2 or Cav2.1 current. Next, we used voltage imaging to show that 1.5- or 100-μM 3,4-DAP broadened the AP waveform in a dose-dependent manner, independent of Cav1 calcium channels. Finally, we demonstrated that 1.5- or 100-μM 3,4-DAP augmented transmitter release in a dose-dependent manner and this effect was also independent of Cav1 channels. From these results, we conclude that low micromolar concentrations of 3,4-DAP act solely on Kv channels to mediate AP broadening and enhance transmitter release at the NMJ.
Collapse
Affiliation(s)
- Kristine S Ojala
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Scott P Ginebaugh
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Man Wu
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Evan W Miller
- Departments of Chemistry and Molecular & Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Gloria Ortiz
- Departments of Chemistry and Molecular & Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Manuel Covarrubias
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Stephen D Meriney
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
57
|
Xiao Y, Yang J, Ji W, He Q, Mao L, Shu Y. A- and D-type potassium currents regulate axonal action potential repolarization in midbrain dopamine neurons. Neuropharmacology 2021; 185:108399. [PMID: 33400937 DOI: 10.1016/j.neuropharm.2020.108399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/11/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022]
Abstract
Midbrain dopamine neurons (DANs) regulate various brain functions such as motor control and motivation. Alteration of spiking activities of these neurons could contribute to severe brain disorders including Parkinson's disease and depression. Previous studies showed important roles of somatodendritic voltage-gated K+ channels (Kv) of DANs in governing neuronal excitability and dopamine release. However, it remains largely unclear about the biophysical properties and the function of Kv channels distributed at DAN axons. We performed whole-cell recordings from the axons of DANs in acute mouse midbrain and striatal slices. We detected both rapidly activating/inactivating Kv current (i.e. A-current) and rapidly activating but slowly inactivating current (i.e. D-current) in DAN axons. Pharmacological experiments with channel blockers revealed that these currents are predominantly mediated by Kv1.4 and Kv1.2 subunits, respectively. Blocking these currents could substantially prolong axonal action potentials (APs) via a reduction of their repolarization slope. Together, our results show that Kv channels mediating A- and D-currents shape AP waveforms in midbrain DAN axons, through this regulation they may control dopamine release at the axonal terminals. Therefore, these axonal Kv channels could be drug targets for brain disorders with abnormal dopamine release.
Collapse
Affiliation(s)
- Yujie Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Jun Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Wenliang Ji
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Quansheng He
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yousheng Shu
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
58
|
Zemel BM, Zhi L, Brown EV, Tymanskyj SR, Liang Q, Covarrubias M. PKCε associates with the Kv3.4 channel to promote its expression in a kinase activity-dependent manner. FASEB J 2021; 35:e21241. [PMID: 33368632 DOI: 10.1096/fj.201901877r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/05/2020] [Accepted: 11/19/2020] [Indexed: 01/16/2023]
Abstract
The voltage-gated potassium channel Kv3.4 is a crucial regulator of nociceptive signaling in the dorsal root ganglion (DRG) and the dorsal horn of the spinal cord. Moreover, Kv3.4 dysfunction has been linked to neuropathic pain. Although kinases and phosphatases can directly modulate Kv3.4 gating, the signaling mechanisms regulating the expression and stability of the Kv3.4 protein are generally unknown. We explored a potential role of PKCε and found an unexpected interaction that has a positive effect on Kv3.4 expression. Co-immunoprecipitation studies revealed a physical association between PKCε and Kv3.4 in both heterologous cells and rat DRG neurons. Furthermore, in contrast to the wild-type and constitutively active forms of PKCε, expression of a catalytically inactive form of the enzyme inhibits Kv3.4 expression and membrane localization through a dominant negative effect. Co-expression of Kv3.4 with the wild-type, constitutively active, or catalytically inactive forms of PKCε had no significant effects on Kv3.4 gating. These results suggest that a novel physical interaction of the Kv3.4 channel with functional PKCε primarily determines its stability and localization in DRG neurons. This interaction is akin to those of previously identified accessory ion channel proteins, which could be significant in neural tissues where Kv3.4 regulates electrical signaling.
Collapse
Affiliation(s)
- Benjamin M Zemel
- Department of Neuroscience and Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA.,Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Lianteng Zhi
- Department of Neuroscience and Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Eric V Brown
- Department of Neuroscience and Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Stephen R Tymanskyj
- Department of Neuroscience and Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Qiansheng Liang
- Department of Neuroscience and Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Manuel Covarrubias
- Department of Neuroscience and Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
59
|
Park J, Cho KH, Lee HJ, Choi JS, Rhie DJ. Open channel block of Kv1.4 potassium channels by aripiprazole. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:545-553. [PMID: 33093275 PMCID: PMC7585592 DOI: 10.4196/kjpp.2020.24.6.545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 11/15/2022]
Abstract
Aripiprazole is a quinolinone derivative approved as an atypical antipsychotic drug for the treatment of schizophrenia and bipolar disorder. It acts as with partial agonist activities at the dopamine D2 receptors. Although it is known to be relatively safe for patients with cardiac ailments, less is known about the effect of aripiprazole on voltage-gated ion channels such as transient A-type K+ channels, which are important for the repolarization of cardiac and neuronal action potentials. Here, we investigated the effects of aripiprazole on Kv1.4 currents expressed in HEK293 cells using a whole-cell patch-clamp technique. Aripiprazole blocked Kv1.4 channels in a concentration-dependent manner with an IC50 value of 4.4 μM and a Hill coefficient of 2.5. Aripiprazole also accelerated the activation (time-to-peak) and inactivation kinetics. Aripiprazole induced a voltage-dependent (δ = 0.17) inhibition, which was use-dependent with successive pulses on Kv1.4 currents without altering the time course of recovery from inactivation. Dehydroaripiprazole, an active metabolite of aripiprazole, inhibited Kv1.4 with an IC50 value of 6.3 μM (p < 0.05 compared with aripiprazole) with a Hill coefficient of 2.0. Furthermore, aripiprazole inhibited Kv4.3 currents to a similar extent in a concentration-dependent manner with an IC50 value of 4.9 μM and a Hill coefficient of 2.3. Thus, our results indicate that aripiprazole blocked Kv1.4 by preferentially binding to the open state of the channels.
Collapse
Affiliation(s)
- Jeaneun Park
- Department of Physiology, 3Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Kwang-Hyun Cho
- Department of Physiology, 3Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Hong Joon Lee
- Department of Physiology, 3Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Jin-Sung Choi
- College of Pharmacy, Integrated Research Institute of Pharmaceutical, The Catholic University of Korea, Bucheon 14662, Korea
| | - Duck-Joo Rhie
- Department of Physiology, 3Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
60
|
Smith PA. K + Channels in Primary Afferents and Their Role in Nerve Injury-Induced Pain. Front Cell Neurosci 2020; 14:566418. [PMID: 33093824 PMCID: PMC7528628 DOI: 10.3389/fncel.2020.566418] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Sensory abnormalities generated by nerve injury, peripheral neuropathy or disease are often expressed as neuropathic pain. This type of pain is frequently resistant to therapeutic intervention and may be intractable. Numerous studies have revealed the importance of enduring increases in primary afferent excitability and persistent spontaneous activity in the onset and maintenance of peripherally induced neuropathic pain. Some of this activity results from modulation, increased activity and /or expression of voltage-gated Na+ channels and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. K+ channels expressed in dorsal root ganglia (DRG) include delayed rectifiers (Kv1.1, 1.2), A-channels (Kv1.4, 3.3, 3.4, 4.1, 4.2, and 4.3), KCNQ or M-channels (Kv7.2, 7.3, 7.4, and 7.5), ATP-sensitive channels (KIR6.2), Ca2+-activated K+ channels (KCa1.1, 2.1, 2.2, 2.3, and 3.1), Na+-activated K+ channels (KCa4.1 and 4.2) and two pore domain leak channels (K2p; TWIK related channels). Function of all K+ channel types is reduced via a multiplicity of processes leading to altered expression and/or post-translational modification. This also increases excitability of DRG cell bodies and nociceptive free nerve endings, alters axonal conduction and increases neurotransmitter release from primary afferent terminals in the spinal dorsal horn. Correlation of these cellular changes with behavioral studies provides almost indisputable evidence for K+ channel dysfunction in the onset and maintenance of neuropathic pain. This idea is underlined by the observation that selective impairment of just one subtype of DRG K+ channel can produce signs of pain in vivo. Whilst it is established that various mediators, including cytokines and growth factors bring about injury-induced changes in DRG function and excitability, evidence presently available points to a seminal role for interleukin 1β (IL-1β) in control of K+ channel function. Despite the current state of knowledge, attempts to target K+ channels for therapeutic pain management have met with limited success. This situation may change with the advent of personalized medicine. Identification of specific sensory abnormalities and genetic profiling of individual patients may predict therapeutic benefit of K+ channel activators.
Collapse
Affiliation(s)
- Peter A. Smith
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
61
|
Forster LA, Jansen LAR, Rubaharan M, Murphy AZ, Baro DJ. Alterations in SUMOylation of the hyperpolarization-activated cyclic nucleotide-gated ion channel 2 during persistent inflammation. Eur J Pain 2020; 24:1517-1536. [PMID: 32446289 PMCID: PMC7496191 DOI: 10.1002/ejp.1606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/28/2020] [Accepted: 05/15/2020] [Indexed: 01/08/2023]
Abstract
Background Unilateral injection of Complete Freund's Adjuvant (CFA) into the intra‐plantar surface of the rodent hindpaw elicits chronic inflammation and hyperalgesia in the ipsilateral hindlimb. Mechanisms contributing to this hyperalgesia may act over multiple time courses and can include changes in ion channel expression and post‐translational SUMOylation. Hyperpolarization‐activated, cyclic nucleotide‐gated (HCN) channels mediate the hyperpolarization‐activated current, Ih. An HCN2‐mediated increase in C‐nociceptor Ih contributes to mechanical hyperalgesia in the CFA model of inflammatory pain. Changes in HCN2 post‐translational SUMOylation and protein expression have not been systematically documented for a given dorsal root ganglia (DRG) throughout the time course of inflammation. Methods This study examined HCN2 protein expression and post‐translational SUMOylation in a rat model of CFA‐induced hindpaw inflammation. L5 DRG cryosections were used in immunohistochemistry experiments and proximity ligation assays to investigate HCN2 expression and SUMOylation, respectively, on days 1 and 3 post‐CFA. Results Unilateral CFA injection elicited a significant bilateral increase in HCN2 staining intensity in small diameter DRG neurons on day 1 post‐CFA, and a significant bilateral increase in the number of small neurons expressing HCN2 but not staining intensity on day 3 post‐CFA. HCN2 channels were hyper‐SUMOylated in small diameter neurons of ipsilateral relative to contralateral DRG on days 1 and 3 post‐CFA. Conclusions Unilateral CFA injection elicits unilateral mechanical hyperalgesia, a bilateral increase in HCN2 expression and a unilateral increase in post‐translational SUMOylation. This suggests that enhanced HCN2 expression in L5 DRG is not sufficient for mechanical hyperalgesia in the early stages of inflammation and that hyper‐SUMOylation of HCN2 channels may also be necessary. Significance Nociceptor HCN2 channels mediate an increase in Ih that is necessary for mechanical hyperalgesia in a CFA model of chronic pain, but the mechanisms producing the increase in nociceptor Ih have not been resolved. The data presented here suggest that the increase in Ih during the early stages of inflammation may be mediated by an increase in HCN2 protein expression and post‐translational SUMOylation.
Collapse
Affiliation(s)
- Lori A Forster
- Department of Biology, Georgia State University, Atlanta, GA, USA.,Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | | | | | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Deborah J Baro
- Department of Biology, Georgia State University, Atlanta, GA, USA.,Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
62
|
The Frog Motor Nerve Terminal Has Very Brief Action Potentials and Three Electrical Regions Predicted to Differentially Control Transmitter Release. J Neurosci 2020; 40:3504-3516. [PMID: 32265260 DOI: 10.1523/jneurosci.2415-19.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 11/21/2022] Open
Abstract
The action potential (AP) waveform controls the opening of voltage-gated calcium channels and contributes to the driving force for calcium ion flux that triggers neurotransmission at presynaptic nerve terminals. Although the frog neuromuscular junction (NMJ) has long been a model synapse for the study of neurotransmission, its presynaptic AP waveform has never been directly studied, and thus the AP waveform shape and propagation through this long presynaptic nerve terminal are unknown. Using a fast voltage-sensitive dye, we have imaged the AP waveform from the presynaptic terminal of male and female frog NMJs and shown that the AP is very brief in duration and actively propagated along the entire length of the terminal. Furthermore, based on measured AP waveforms at different regions along the length of the nerve terminal, we show that the terminal is divided into three distinct electrical regions: A beginning region immediately after the last node of Ranvier where the AP is broadest, a middle region with a relatively consistent AP duration, and an end region near the tip of nerve terminal branches where the AP is briefer. We hypothesize that these measured changes in the AP waveform along the length of the motor nerve terminal may explain the proximal-distal gradient in transmitter release previously reported at the frog NMJ.SIGNIFICANCE STATEMENT The AP waveform plays an essential role in determining the behavior of neurotransmission at the presynaptic terminal. Although the frog NMJ is a model synapse for the study of synaptic transmission, there are many unknowns centered around the shape and propagation of its presynaptic AP waveform. Here, we demonstrate that the presynaptic terminal of the frog NMJ has a very brief AP waveform and that the motor nerve terminal contains three distinct electrical regions. We propose that the changes in the AP waveform as it propagates along the terminal can explain the proximal-distal gradient in transmitter release seen in electrophysiological studies.
Collapse
|
63
|
Newly Discovered Action of HpTx3 from Venom of Heteropoda venatoria on Na v1.7 and Its Pharmacological Implications in Analgesia. Toxins (Basel) 2019; 11:toxins11120680. [PMID: 31757020 PMCID: PMC6950750 DOI: 10.3390/toxins11120680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
It has been reported that Heteropodatoxin3 (HpTx3), a peptidic neurotoxin purified from the venom of the spider species Heteropoda venatoria, could inhibit Kv4.2 channels. Our present study newly found that HpTx3 also has potent and selective inhibitory action on Nav1.7, with an IC50 of 135.61 ± 12.98 nM. Without effect on the current–voltage (I-V) relationship of Nav1.7, HpTx3 made minor alternation in the voltage-dependence of activation and steady-state inactivation of Nav1.7 (4.15 mV and 7.29 mV, respectively) by interacting with the extracellular S3–S4 loop (S3b–S4 sequence) in domain II and the domain IV of the Nav channel subtype, showing the characteristics of both pore blocker and gate modifier toxin. During the interaction of HpTx3 with the S3b–S4 sequence of Nav1.7, the amino acid residue D in the sequence played a key role. When administered intraperitoneally or intramuscularly, HpTx3 displayed potent analgesic activity in a dose-dependent manner in different mouse pain models induced by formalin, acetic acid, complete Freund’s adjuvant, hot plate, or spared nerve injury, demonstrating that acute, inflammatory, and neuropathic pains were all effectively inhibited by the toxin. In most cases HpTx3 at doses of ≥ 1mg/kg could produce the analgesic effect comparable to that of 1 mg/kg morphine. These results suggest that HpTx3 not only can be used as a molecular probe to investigate ion channel function and pain mechanism, but also has potential in the development of the drugs that treat the Nav1.7 channel-related pain.
Collapse
|
64
|
朱 时, 刘 丹, 胡 卫, 杨 红. [Effect of cinobufagin on transient outward potassium current in dorsal root ganglion cells of rats with cancer-induced bone pain]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:1078-1082. [PMID: 31640967 PMCID: PMC6881743 DOI: 10.12122/j.issn.1673-4254.2019.09.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To observe the effect of cinobufagin on transient outward potassium current (IA) in rat dorsal root ganglion cells of cancer-induced bone pain (CIBP) and explore the possible analgesic mechanism of cinobufagin. METHODS Whole cell patch clamp technique was used to examine the effect of cionbufagin on IA in acutely isolated dorsal root ganglion (DRG) cells from normal SD rats and rats with bone cancer pain. RESULTS The DRG cells from rats with CIBP showed obviously decreased IA current density, an activation curve shift to the right, and an inactivation curve shift to the left. Cinobufagin treatment significantly increased the IA current density and reversed the changes in the activation and inactivation curves in the DRG cells. CONCLUSIONS IA current is decreased in DRG neurons from rats with CIBP. Cinobufagin can regulate the activation and inactivation of IA current in the DRG cells, which may be related to its analgesic mechanism.
Collapse
Affiliation(s)
- 时钰 朱
- />三峡大学医学院,湖北 宜昌 443002Medical College of China Three Gorges University, Yichang 443002, China
| | - 丹 刘
- />三峡大学医学院,湖北 宜昌 443002Medical College of China Three Gorges University, Yichang 443002, China
| | - 卫 胡
- />三峡大学医学院,湖北 宜昌 443002Medical College of China Three Gorges University, Yichang 443002, China
| | - 红卫 杨
- />三峡大学医学院,湖北 宜昌 443002Medical College of China Three Gorges University, Yichang 443002, China
| |
Collapse
|
65
|
O'Donovan B, Adeluyi A, Anderson EL, Cole RD, Turner JR, Ortinski PI. Altered gating of K v1.4 in the nucleus accumbens suppresses motivation for reward. eLife 2019; 8:e47870. [PMID: 31487241 PMCID: PMC6728144 DOI: 10.7554/elife.47870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022] Open
Abstract
Deficient motivation contributes to numerous psychiatric disorders, including withdrawal from drug use, depression, schizophrenia, and others. Nucleus accumbens (NAc) has been implicated in motivated behavior, but it remains unclear whether motivational drive is linked to discrete neurobiological mechanisms within the NAc. To examine this, we profiled cohorts of Sprague-Dawley rats in a test of motivation to consume sucrose. We found that substantial variability in willingness to exert effort for reward was not associated with operant responding under low-effort conditions or stress levels. Instead, effort-based motivation was mirrored by a divergent NAc shell transcriptome with differential regulation at potassium and dopamine signaling genes. Functionally, motivation was inversely related to excitability of NAc principal neurons. Furthermore, neuronal and behavioral outputs associated with low motivation were linked to faster inactivation of a voltage-gated potassium channel, Kv1.4. These results raise the prospect of targeting Kv1.4 gating in psychiatric conditions associated with motivational dysfunction.
Collapse
Affiliation(s)
| | - Adewale Adeluyi
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of PharmacyUniversity of South CarolinaColumbiaUnited States
| | - Erin L Anderson
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of PharmacyUniversity of South CarolinaColumbiaUnited States
| | - Robert D Cole
- Department of NeuroscienceUniversity of KentuckyLexingtonUnited States
| | - Jill R Turner
- College of PharmacyUniversity of KentuckyLexingtonUnited States
| | - Pavel I Ortinski
- Department of NeuroscienceUniversity of KentuckyLexingtonUnited States
| |
Collapse
|
66
|
Alvarez P, Bogen O, Levine JD. Interleukin 6 decreases nociceptor expression of the potassium channel KV1.4 in a rat model of hand-arm vibration syndrome. Pain 2019; 160:1876-1882. [PMID: 31335655 PMCID: PMC6668361 DOI: 10.1097/j.pain.0000000000001570] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic muscle pain is a prominent symptom of the hand-arm vibration syndrome (HAVS), an occupational disease induced by exposure to vibrating power tools, but the underlying mechanism remains unknown. We evaluated the hypothesis that vibration induces an interleukin 6 (IL-6)-mediated downregulation of the potassium voltage-gated channel subfamily A member 4 (KV1.4) in nociceptors leading to muscle pain. Adult male rats were submitted to a protocol of mechanical vibration of the right hind limb. Twenty-four hours after vibration, muscle hyperalgesia was observed, concomitant to increased levels of IL-6 in the gastrocnemius muscle and decreased expression of KV1.4 in the dorsal root ganglia. Local injection of neutralizing antibodies against IL-6 attenuated the muscle hyperalgesia induced by vibration, whereas antisense knockdown of this channel in the dorsal root ganglia mimicked the muscle hyperalgesia observed in the model of HAVS. Finally, knockdown of the IL-6 receptor signaling subunit glycoprotein 130 (gp130) attenuated both vibration-induced muscle hyperalgesia and downregulation of KV1.4. These results support the hypothesis that IL-6 plays a central role in the induction of muscle pain in HAVS. This likely occurs through intracellular signaling downstream to the IL-6 receptor subunit gp130, which decreases the expression of KV1.4 in nociceptors.
Collapse
Affiliation(s)
- Pedro Alvarez
- Department of Oral and Maxillofacial Surgery, University of California, San Francisco, USA
| | - Oliver Bogen
- Department of Oral and Maxillofacial Surgery, University of California, San Francisco, USA
| | - Jon D. Levine
- Department of Oral and Maxillofacial Surgery, University of California, San Francisco, USA
- Department of Medicine, University of California, San Francisco, USA
| |
Collapse
|
67
|
Nociceptor Signalling through ion Channel Regulation via GPCRs. Int J Mol Sci 2019; 20:ijms20102488. [PMID: 31137507 PMCID: PMC6566991 DOI: 10.3390/ijms20102488] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/23/2022] Open
Abstract
The prime task of nociceptors is the transformation of noxious stimuli into action potentials that are propagated along the neurites of nociceptive neurons from the periphery to the spinal cord. This function of nociceptors relies on the coordinated operation of a variety of ion channels. In this review, we summarize how members of nine different families of ion channels expressed in sensory neurons contribute to nociception. Furthermore, data on 35 different types of G protein coupled receptors are presented, activation of which controls the gating of the aforementioned ion channels. These receptors are not only targeted by more than 20 separate endogenous modulators, but can also be affected by pharmacotherapeutic agents. Thereby, this review provides information on how ion channel modulation via G protein coupled receptors in nociceptors can be exploited to provide improved analgesic therapy.
Collapse
|