51
|
Otvos B, Alban TJ, Grabowski MM, Bayik D, Mulkearns-Hubert EE, Radivoyevitch T, Rabljenovic A, Johnson S, Androjna C, Mohammadi AM, Barnett GH, Ahluwalia MS, Vogelbaum MA, Fecci PE, Lathia JD. Preclinical Modeling of Surgery and Steroid Therapy for Glioblastoma Reveals Changes in Immunophenotype that are Associated with Tumor Growth and Outcome. Clin Cancer Res 2021; 27:2038-2049. [PMID: 33542075 DOI: 10.1158/1078-0432.ccr-20-3262] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/08/2020] [Accepted: 02/02/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Glioblastoma (GBM) immunotherapy clinical trials are generally initiated after standard-of-care treatment-including surgical resection, perioperative high-dose steroid therapy, chemotherapy, and radiation treatment-has either begun or failed. However, the impact of these interventions on the antitumoral immune response is not well studied. While discoveries regarding the impact of chemotherapy and radiation on immune response have been made and translated into clinical trial design, the impact of surgical resection and steroids on the antitumor immune response has yet to be determined. EXPERIMENTAL DESIGN We developed a murine model integrating tumor resection and steroid treatment and used flow cytometry to analyze systemic and local immune changes. These mouse model findings were validated in a cohort of 95 patients with primary GBM. RESULTS Using our murine resection model, we observed a systemic reduction in lymphocytes corresponding to increased tumor volume and decreased circulating lymphocytes that was masked by dexamethasone treatment. The reduction in circulating T cells was due to reduced CCR7 expression, resulting in T-cell sequestration in lymphoid organs and the bone marrow. We confirmed these findings in a cohort of patients with primary GBM and found that prior to steroid treatment, circulating lymphocytes inversely correlated with tumor volume. Finally, we demonstrated that peripheral lymphocyte content varies with progression-free survival and overall survival, independent of tumor volume, steroid use, or molecular profiles. CONCLUSIONS These data reveal that prior to intervention, increased tumor volume corresponds with reduced systemic immune function and that peripheral lymphocyte counts are prognostic when steroid treatment is taken into account.
Collapse
Affiliation(s)
- Balint Otvos
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio
| | - Tyler J Alban
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Matthew M Grabowski
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio
| | - Defne Bayik
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Erin E Mulkearns-Hubert
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Tomas Radivoyevitch
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Anja Rabljenovic
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Sarah Johnson
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Charlie Androjna
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Alireza M Mohammadi
- Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio.,Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio.,Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Gene H Barnett
- Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio.,Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio.,Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Manmeet S Ahluwalia
- Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio.,Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio.,Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | | | - Peter E Fecci
- Department of Neurosurgery, Duke University Hospital, Durham, North Carolina
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio. .,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio.,Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio.,Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
52
|
Identification of a Dexamethasone Mediated Radioprotection Mechanism Reveals New Therapeutic Vulnerabilities in Glioblastoma. Cancers (Basel) 2021; 13:cancers13020361. [PMID: 33478100 PMCID: PMC7836009 DOI: 10.3390/cancers13020361] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Despite the indisputable effectiveness of dexamethasone (DEXA) to reduce inflammation in glioblastoma (GBM) patients, its influence on tumour progression and radiotherapy response remains controversial. (2) Methods: We analysed patient data and used expression and cell biological analyses to assess effects of DEXA on GBM cells. We tested the efficacy of tyrosine kinase inhibitors in vitro and in vivo. (3) Results: We confirm in our patient cohort that administration of DEXA correlates with worse overall survival and shorter time to relapse. In GBM cells and glioma stem-like cells (GSCs) DEXA down-regulates genes controlling G2/M and mitotic-spindle checkpoints, and it enables cells to override the spindle assembly checkpoint (SAC). Concurrently, DEXA up-regulates Platelet Derived Growth Factor Receptor (PDGFR) signalling, which stimulates expression of anti-apoptotic regulators BCL2L1 and MCL1, required for survival during extended mitosis. Importantly, the protective potential of DEXA is dependent on intact tyrosine kinase signalling and ponatinib, sunitinib and dasatinib, all effectively overcome the radio-protective and pro-proliferative activity of DEXA. Moreover, we discovered that DEXA-induced signalling creates a therapeutic vulnerability for sunitinib in GSCs and GBM cells in vitro and in vivo. (4) Conclusions: Our results reveal a novel DEXA-induced mechanism in GBM cells and provide a rationale for revisiting the use of tyrosine kinase inhibitors for the treatment of GBM.
Collapse
|
53
|
Li Y, Zhang ZX, Huang GH, Xiang Y, Yang L, Pei YC, Yang W, Lv SQ. A systematic review of multifocal and multicentric glioblastoma. J Clin Neurosci 2021; 83:71-76. [PMID: 33358091 DOI: 10.1016/j.jocn.2020.11.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/23/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023]
Abstract
Multiple glioblastoma multiforme (GBM) is classified as multifocal and multicentric GBM according to whether there is communication between the lesions. Multiple GBM is more genetically heterogeneous, aggressive and resistant to chemoradiotherapy than unifocal GBM, and has a worse prognosis. There is no international consensus on the treatment of multiple GBM. This review discusses some paradigms of multiple GBM and focuses on the heterogeneity spread pathway, imaging diagnosis, pathology, molecular characterization and prognosis of multifocal and multicentric GBM. Several promising therapeutic methods of multiple GBM are also recommended.
Collapse
Affiliation(s)
- Yao Li
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China
| | - Zuo-Xin Zhang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China
| | - Guo-Hao Huang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China
| | - Yan Xiang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China
| | - Lin Yang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China
| | - Yu-Chun Pei
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China
| | - Wei Yang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China
| | - Sheng-Qing Lv
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China.
| |
Collapse
|
54
|
Silva VDCJD, Silva RDNO, Colli LG, Carvalho MHCD, Rodrigues SF. Gold nanoparticles carrying or not anti-VEGF antibody do not change glioblastoma multiforme tumor progression in mice. Heliyon 2020; 6:e05591. [PMID: 33294714 PMCID: PMC7701192 DOI: 10.1016/j.heliyon.2020.e05591] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/20/2020] [Accepted: 11/19/2020] [Indexed: 12/28/2022] Open
Abstract
Aims Glioblastoma multiforme (GBM) is the most devastating malignant primary brain tumor known. Life expectance is around 15 months after diagnosis. Several events contribute to the GBM progression such as uncontrolled genetic cancer cells proliferation, angiogenesis (mostly vascular endothelial growth factor (VEGF)-mediated), tissue invasion, glioma stem cell activity, immune system failure, and a hypoxic and inflammatory tumor microenvironment. Tumor cells antiproliferative effect of 20 nm citrate-covered gold nanoparticles (cit-AuNP) has been reported, along with anti-inflammatory and anti-oxidative effects. We aimed to test whether either chronic treatment with 20 nm cit-AuNP or anti-VEGF antibody (Ig)-covered AuNP could reduce GBM progression in mice. Main methods Effect of the gold nanoparticles on the GL261 glioblastoma cells proliferation in vitro, and on the GL261-induced glioblastoma cell growth in C57BL/6 mice in vivo were tested. Besides, fluorophore-conjugated gold nanoparticles penetration through the GL261 plasma cell membrane, gold labelling in brain parenchyma of glioblastoma-carrying mice, and VEGF expression into the tumor were evaluated. Key findings We observed cit-AuNP did no change the GL261 cells proliferation. Similarly, we demonstrated chronic treatment with either cit-AuNP or anti-VEGF Ig-covered AuNP did not modify the GL261 cells-induced GBM progression in mice. By the end, we showed AuNPs did not trespass in appreciable amount both the GL261 plasma cell membrane and the tumoral blood brain barrier (BBB), and did not change the VEGF expression into the tumor. Significance 20 nm cit-AuNP or anti-VEGF Ig covered-AuNP are not good tools to reduce GBM in mice, probably because they do not penetrate both tumor cells and BBB in enough amount to reduce tumor growing.
Collapse
Affiliation(s)
- Viviane de Cassia Jesus da Silva
- Laboratory of Vascular Nanopharmacology, Department of Pharmacology, Institute of Biomedical Sciences I, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Renee de Nazare O Silva
- Department of Pharmacology, Institute of Biomedical Sciences I, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Lucas Giglio Colli
- Laboratory of Hypertension, Diabetes and Vascular Biology, Department of Pharmacology, Institute of Biomedical Sciences I, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Maria Helena Catelli de Carvalho
- Laboratory of Hypertension, Diabetes and Vascular Biology, Department of Pharmacology, Institute of Biomedical Sciences I, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Stephen Fernandes Rodrigues
- Laboratory of Vascular Nanopharmacology, Department of Pharmacology, Institute of Biomedical Sciences I, University of Sao Paulo, Sao Paulo, SP, Brazil.,Laboratory of Hypertension, Diabetes and Vascular Biology, Department of Pharmacology, Institute of Biomedical Sciences I, University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
55
|
Astrocytoma: A Hormone-Sensitive Tumor? Int J Mol Sci 2020; 21:ijms21239114. [PMID: 33266110 PMCID: PMC7730176 DOI: 10.3390/ijms21239114] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022] Open
Abstract
Astrocytomas and, in particular, their most severe form, glioblastoma, are the most aggressive primary brain tumors and those with the poorest vital prognosis. Standard treatment only slightly improves patient survival. Therefore, new therapies are needed. Very few risk factors have been clearly identified but many epidemiological studies have reported a higher incidence in men than women with a sex ratio of 1:4. Based on these observations, it has been proposed that the neurosteroids and especially the estrogens found in higher concentrations in women's brains could, in part, explain this difference. Estrogens can bind to nuclear or membrane receptors and potentially stimulate many different interconnected signaling pathways. The study of these receptors is even more complex since many isoforms are produced from each estrogen receptor encoding gene through alternative promoter usage or splicing, with each of them potentially having a specific role in the cell. The purpose of this review is to discuss recent data supporting the involvement of steroids during gliomagenesis and to focus on the potential neuroprotective role as well as the mechanisms of action of estrogens in gliomas.
Collapse
|
56
|
Acharya S, Praveena J, Guru BR. In Vitro Studies of Prednisolone Loaded PLGA Nanoparticles-Surface Functionalized With Folic Acid on Glioma and Macrophage Cell Lines. PHARMACEUTICAL SCIENCES 2020; 27:407-417. [DOI: 10.34172/ps.2020.94] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/13/2020] [Indexed: 01/03/2025] Open
Abstract
Background: Glucocorticoids are employed for their anti-inflammatory effects in treatingglioma, whose cells are known to overexpress the folate receptors. Some glucocorticoids haveshown inhibitory effects, but the efficacy of prednisolone when delivered via folate receptormediateduptake, has not been attempted. The study aimed to assess the efficacy of targeteddelivery of prednisolone on glioma cell lines like C6 and U87 via the folate receptors. Methods: Targeted delivery of prednisolone was achieved by initially conjugating folic acid (FA)to the di-block copolymer of polylactic acid (PLA) – polyethylene glycol (PEG). This moietycarrying di-block copolymer was incorporated on the surface of the drug-loaded poly lactic-coglycolicacid (PLGA) nanoparticle (NP) by employing the Interfacial Activity Assisted SurfaceFunctionalization (IAASF) technique. The NPs were evaluated for size, zeta potential, and drugloading. It was characterized using particle size analyser, SEM, 1H-NMR, and XRD. cell uptake,cytotoxicity, and anti-inflammatory activities were studied for various formulations. Results: The cytotoxicity assay indicated a high cell growth inhibitory effect of drug encapsulatedNPs with FA moiety as compared to free drug and NPs without the moiety for an incubationperiod of three, five, and six days. The growth-inhibitory effect of the free drug was short-lived,whereas FA functionalized NPs showed higher uptake and sustained inhibitory effect, and werealso able to significantly control the release of pro-inflammatory cytokines like tumour necrosisfactor-alpha (TNF-α) and nitric oxide (NO). Conclusion: Uptake, attenuation of pro-inflammatory signals, and the inhibitory effect ofprednisolone on the cells were more effective when targeted with the FA moiety on the surfaceof NPs as compared to free drug and NPs without the moiety.
Collapse
Affiliation(s)
- Sriprasad Acharya
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Joyceline Praveena
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Bharath Raja Guru
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
57
|
Saurabh R, Nandi S, Sinha N, Shukla M, Sarkar RR. Prediction of survival rate and effect of drugs on cancer patients with somatic mutations of genes: An AI‐based approach. Chem Biol Drug Des 2020; 96:1005-1019. [DOI: 10.1111/cbdd.13668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/24/2020] [Accepted: 02/02/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Rochi Saurabh
- Chemical Engineering and Process Development Division CSIR‐National Chemical Laboratory Pune India
| | - Sutanu Nandi
- Chemical Engineering and Process Development Division CSIR‐National Chemical Laboratory Pune India
- Academy of Scientific & Innovative Research (AcSIR) Ghaziabad India
| | - Noopur Sinha
- Chemical Engineering and Process Development Division CSIR‐National Chemical Laboratory Pune India
- Academy of Scientific & Innovative Research (AcSIR) Ghaziabad India
| | - Mudita Shukla
- Chemical Engineering and Process Development Division CSIR‐National Chemical Laboratory Pune India
| | - Ram Rup Sarkar
- Chemical Engineering and Process Development Division CSIR‐National Chemical Laboratory Pune India
- Academy of Scientific & Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
58
|
Montoya ML, Kasahara N, Okada H. Introduction to immunotherapy for brain tumor patients: challenges and future perspectives. Neurooncol Pract 2020; 7:465-476. [PMID: 33014387 PMCID: PMC7516091 DOI: 10.1093/nop/npaa007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Malignant gliomas, including glioblastoma (GBM) as the most aggressive type of adult CNS tumors, are notoriously resistant to current standard of care treatments, including surgery, systemic chemotherapy, and radiation therapy (RT). This lack of effective treatment options highlights the urgent need for novel therapies, including immunotherapies. The overarching goal of immunotherapy is to stimulate and activate the patient's immune system in a targeted manner to kill tumor cells. The success of immunotherapeutic interventions in other cancer types has led to interest in and evaluation of various experimental immunotherapies in patients with malignant gliomas. However, these primary malignant brain tumors present a challenge because they exist in a vital and sensitive organ with a unique immune environment. The challenges and current status of experimental immunotherapeutic approaches, including vaccines, immune-checkpoint blockade, chimeric antigen receptor T-cell therapy, and oncolytic viruses will be discussed, as well as the potential for combinatorial therapies.
Collapse
Affiliation(s)
- Megan L Montoya
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, US
| | - Noriyuki Kasahara
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, US
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, US
| | - Hideho Okada
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, US
- The Parker Institute of Cancer Immunotherapy, California, US
- Cancer Immunotherapy Program, University of California San Francisco, San Francisco, California, US
| |
Collapse
|
59
|
Chai M, Gu C, Shen Q, Liu J, Zhou Y, Jin Z, Xiong W, Zhou Y, Tan W. Hypoxia alleviates dexamethasone-induced inhibition of angiogenesis in cocultures of HUVECs and rBMSCs via HIF-1α. Stem Cell Res Ther 2020; 11:343. [PMID: 32762747 PMCID: PMC7409505 DOI: 10.1186/s13287-020-01853-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/23/2020] [Accepted: 07/24/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND AIM Inadequate vascularization is a challenge in bone tissue engineering because internal cells are prone to necrosis due to a lack of nutrient supply. Rat bone marrow-derived mesenchymal stem cells (rBMSCs) and human umbilical vein endothelial cells (HUVECs) were cocultured to construct prevascularized bone tissue in osteogenic induction medium (OIM) in vitro. The angiogenic capacity of HUVECs was limited in the coculture system. In this study, the effects of the components in the medium on HUVEC angiogenesis were analyzed. METHODS The coculture system was established in OIM. Alizarin red staining and alkaline phosphatase staining were used to assess the osteogenic ability of MSCs. A Matrigel tube assay was used to assess the angiogenic ability of HUVECs in vitro. The proliferation of HUVECs was evaluated by cell counting and CCK-8 assays, and migration was evaluated by the streaked plate assay. The expression levels of angiogenesis-associated genes and proteins in HUVECs were measured by qRT-PCR and Western blotting, respectively. RESULTS Dexamethasone in the OIM suppressed the proliferation and migration of HUVECs, inhibiting the formation of capillary-like structures. Our research showed that dexamethasone stimulated HUVECs to secrete tissue inhibitor of metalloproteinase (TIMP-3), which competed with vascular endothelial growth factor (VEGF-A) to bind to vascular endothelial growth factor receptor 2 (VEGFR2, KDR). This effect was related to inhibiting the phosphorylation of ERK and AKT, which are two downstream targets of KDR. However, under hypoxia, the enhanced expression of hypoxia-inducible factor-1α (HIF-1α) decreased the expression of TIMP-3 and promoted the phosphorylation of KDR, improving HUVEC angiogenesis in the coculture system. CONCLUSION Coculture of hypoxia-preconditioned HUVECs and MSCs showed robust angiogenesis and osteogenesis in OIM, which has important implications for prevascularization in bone tissue engineering in the future.
Collapse
Affiliation(s)
- Miaomiao Chai
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Ce Gu
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Qihua Shen
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Jiaxing Liu
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Yi Zhou
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Ziyang Jin
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Wanli Xiong
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China.
| | - Wensong Tan
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China
| |
Collapse
|
60
|
Lee C, Ahn S, Park JS, Song JH, Hong YK, Jeun SS. Effect of Cumulative Dexamethasone Dose during Concomitant Chemoradiation on Lymphopenia in Patients with Newly Diagnosed Glioblastoma. Brain Tumor Res Treat 2020; 8:71-76. [PMID: 32648384 PMCID: PMC7595853 DOI: 10.14791/btrt.2020.8.e12] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 12/19/2022] Open
Abstract
Background Lymphopenia frequently occurs after concomitant chemoradiation (CCRT) in patients with glioblastoma (GBM) and is associated with worse overall survival (OS). A few studies have tried to identify risk factors for lymphopenia; however, the results were not clear. We aimed to identify potential risk factors for lymphopenia, focusing on the use of dexamethasone to control cerebral edema in patients with GBM. Methods The electronic medical records of 186 patients with newly diagnosed GBM treated at our institution between 2009 and 2017 were retrospectively examined. Acute lymphopenia was defined as total lymphocyte count less than 1,000 cells/µL at 4 weeks after completion of CCRT. Multivariate logistic regression analysis was used to identify independent risk factors for lymphopenia, and Cox regression analysis was used to identify independent risk factors for OS. Results Of the 125 eligible patients, 40 patients (32.0%) developed acute lymphopenia. Female sex and median daily dexamethasone dose ≥2 mg after initiation of CCRT were independent risk factors for acute lymphopenia on multivariate analysis. Acute lymphopenia, extent of surgical resection, and performance status were associated with OS; however, dexamethasone use itself was not an independent risk factor for poor OS. Conclusion Female sex, median daily dexamethasone dose ≥2 mg after initiation of CCRT until 4 weeks after completion of CCRT may be associated with acute lymphopenia. However, dexamethasone use itself did not affect OS in patients newly diagnosed with GBM. These results should be validated by further prospective studies controlling for other confounding factors.
Collapse
Affiliation(s)
- Changik Lee
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Stephen Ahn
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Jae Sung Park
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jin Ho Song
- Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yong Kil Hong
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sin Soo Jeun
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
61
|
Ma D, Hou L, Xia H, Li H, Fan H, Jia X, Niu Z. PER2 inhibits proliferation and stemness of glioma stem cells via the Wnt/β‑catenin signaling pathway. Oncol Rep 2020; 44:533-542. [PMID: 32468039 PMCID: PMC7336516 DOI: 10.3892/or.2020.7624] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/29/2020] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma is a highly malignant tumor that contains stem‑like cells known as glioma stem cells (GSCs), which lare associated with an increased risk of glioma occurrence, recurrence and poor prognosis. Circadian clock gene, period circadian clock 2 (PER2) expression has been revealed to be inhibited in various types of cancer. However, the precise role and potential mechanisms of PER2 in GSCs remains unclear. The present study demonstrated that PER2 mRNA and protein expression was downregulated in GSCs compared with non‑stem glioma cells, which indicated that PER2 could be involved in the malignant process of glioma. Furthermore, functional studies revealed that PER2 overexpression could induce GSC arrest at the G0/G1 phase and suppress their proliferation, stemness and invasion ability in vitro and in vivo. Subsequently, the Wnt/β‑catenin signaling pathway was identified as the target of PER2 in GSCs. These results indicated that PER2 plays a critical role in regulating the stemness of GSCs and provides a novel therapeutic target to overcome the effects of GSCs.
Collapse
Affiliation(s)
- Dede Ma
- Incubation Base of National Key Laboratory for Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Li Hou
- Incubation Base of National Key Laboratory for Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Hechun Xia
- Incubation Base of National Key Laboratory for Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Hailiang Li
- Incubation Base of National Key Laboratory for Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Heng Fan
- Institute of Human Stem Cells, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Xiaoxiong Jia
- Incubation Base of National Key Laboratory for Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Zhanfeng Niu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
62
|
Bernhardt D, Wick W, Weiss SE, Sahgal A, Lo SS, Suh JH, Chang EL, Foote M, Perry J, Meyer B, Vajkoczy P, Wen PY, Straube C, Pigorsch S, Wilkens JJ, Combs SE. Neuro-oncology Management During the COVID-19 Pandemic With a Focus on WHO Grade III and IV Gliomas. Neuro Oncol 2020; 22:noaa113. [PMID: 32369601 PMCID: PMC7239150 DOI: 10.1093/neuonc/noaa113] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Because of the increased risk in cancer patients of developing complications caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), physicians have to balance the competing risks of the negative impact of the pandemic and the primary tumor. In this consensus statement, an international group of experts present mitigation strategies and treatment guidance for patients suffering from high grade gliomas (HGG) during the coronavirus disease 2019 (COVID-19) pandemic. METHOD / RESULTS 16 international experts in the treatment of HGG contributed to this consensus-based practice recommendation including neuro-oncologists, neurosurgeons, radiation -oncologists and a medical physicist. Generally, treatment of neuro-oncological patients cannot be significantly delayed and initiating therapy should not be outweighed by COVID-19. We present detailed interdisciplinary treatment strategies for molecular subgroups in two pandemic scenarios, a scale-up phase and a crisis phase. CONCLUSION This practice recommendation presents a pragmatic framework and consensus-based mitigation strategies for the treatment of HGG patients during the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Denise Bernhardt
- 1Department of Radiation Oncology, Technical University of Munich (TUM), School of Medicine and Klinikum rechts der Isar, Munich, Germany
- Department of Radiation Sciences (DRS), Institute of Radiation Medicine (IRM), Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, Germany
| | - Wolfgang Wick
- Neurology Clinic, University of Heidelberg and German Cancer Research Center, Heidelberg, Germany
| | | | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Science Centre, Odette Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Simon S Lo
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington, USA
| | - John H Suh
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Eric L Chang
- Department of Radiation Oncology, Keck School of Medicine at University of Southern California, Los Angeles, California, USA
| | - Matthew Foote
- Department of Radiation Oncology, Princess Alexandra Hospital, University of Queensland, Woolloongabba, Queensland, Australia
| | - James Perry
- Division of Neurology, Department of Medicine. Odette Cancer and Sunnybrook Health Science Centres, University of Toronto, Toronto, Ontario, Canada
| | - Bernhard Meyer
- Department of Neurosurgery, Technical University of Munich (TUM), School of Medicine and Klinikum rechts der Isar,Munich, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Boston, Massachusetts, USA
| | - Christoph Straube
- 1Department of Radiation Oncology, Technical University of Munich (TUM), School of Medicine and Klinikum rechts der Isar, Munich, Germany
- Department of Radiation Sciences (DRS), Institute of Radiation Medicine (IRM), Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, Germany
| | - Steffi Pigorsch
- 1Department of Radiation Oncology, Technical University of Munich (TUM), School of Medicine and Klinikum rechts der Isar, Munich, Germany
- Department of Radiation Sciences (DRS), Institute of Radiation Medicine (IRM), Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, Germany
| | - Jan J Wilkens
- 1Department of Radiation Oncology, Technical University of Munich (TUM), School of Medicine and Klinikum rechts der Isar, Munich, Germany
| | - Stephanie E Combs
- 1Department of Radiation Oncology, Technical University of Munich (TUM), School of Medicine and Klinikum rechts der Isar, Munich, Germany
- Department of Radiation Sciences (DRS), Institute of Radiation Medicine (IRM), Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, Germany
| |
Collapse
|
63
|
Komakech A, Im JH, Gwak HS, Lee KY, Kim JH, Yoo BC, Cheong H, Park JB, Kwon JW, Shin SH, Yoo H. Dexamethasone Interferes with Autophagy and Affects Cell Survival in Irradiated Malignant Glioma Cells. J Korean Neurosurg Soc 2020; 63:566-578. [PMID: 32272509 PMCID: PMC7477145 DOI: 10.3340/jkns.2019.0187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/08/2019] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Radiation is known to induce autophagy in malignant glioma cells whether it is cytocidal or cytoprotective. Dexamethasone is frequently used to reduce tumor-associated brain edema, especially during radiation therapy. The purpose of the study was to determine whether and how dexamethasone affects autophagy in irradiated malignant glioma cells and to identify possible intervening molecular pathways. METHODS We prepared p53 mutant U373 and LN229 glioma cell lines, which varied by phosphatase and tensin homolog (PTEN) mutational status and were used to make U373 stable transfected cells expressing GFP-LC3 protein. After performing cell survival assay after irradiation, the IC50 radiation dose was determined. Dexamethasone dose (10 μM) was determined from the literature and added to the glioma cells 24 hours before the irradiation. The effect of adding dexamethasone was evaluated by cell survival assay or clonogenic assay and cell cycle analysis. Measurement of autophagy was visualized by western blot of LC3-I/LC3-II and quantified by the GFP-LC3 punctuated pattern under fluorescence microscopy and acridine orange staining for acidic vesicle organelles by flow cytometry. RESULTS Dexamethasone increased cell survival in both U373 and LN229 cells after irradiation. It interfered with autophagy after irradiation differently depending on the PTEN mutational status : the autophagy decreased in U373 (PTEN-mutated) cells but increased in LN229 (PTEN wild-type) cells. Inhibition of protein kinase B (AKT) phosphorylation after irradiation by LY294002 reversed the dexamethasone-induced decrease of autophagy and cell death in U373 cells but provoked no effect on both autophagy and cell survival in LN229 cells. After ATG5 knockdown, radiation-induced autophagy decreased and the effect of dexamethasone also diminished in both cell lines. The diminished autophagy resulted in a partial reversal of dexamethasone protection from cell death after irradiation in U373 cells; however, no significant change was observed in surviving fraction LN229 cells. CONCLUSION Dexamethasone increased cell survival in p53 mutated malignant glioma cells and increased autophagy in PTEN-mutant malignant glioma cell but not in PTEN-wildtype cell. The difference of autophagy response could be mediated though the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin signaling pathway.
Collapse
Affiliation(s)
- Alfred Komakech
- Department of Cancer Control, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Korea
| | - Ji-Hye Im
- Department of Cancer Control, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Korea
| | - Ho-Shin Gwak
- Department of Cancer Control, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Korea
| | - Kyue-Yim Lee
- Department of Cancer Control, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Korea
| | - Jong Heon Kim
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Korea
| | - Byong Chul Yoo
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Korea
| | - Heesun Cheong
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Korea
| | - Jong Bae Park
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Korea
| | - Ji Woong Kwon
- Neuro-oncology Clinic, National Cancer Center, Goyang, Korea
| | - Sang Hoon Shin
- Neuro-oncology Clinic, National Cancer Center, Goyang, Korea
| | - Heon Yoo
- Neuro-oncology Clinic, National Cancer Center, Goyang, Korea
| |
Collapse
|
64
|
Tan C, Dai Y, Liu X, Zhao G, Wang W, Li J, Qi L. STAT5A induced LINC01198 promotes proliferation of glioma cells through stabilizing DGCR8. Aging (Albany NY) 2020; 12:5675-5692. [PMID: 32246817 PMCID: PMC7185146 DOI: 10.18632/aging.102938] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/27/2020] [Indexed: 01/03/2023]
Abstract
Background: LINC01198 has been suggested to be able to predict overall prognosis for glioma; however, it has been little described in glioma. Results: It was shown that LINC01198 was markedly enriched in neoplasmic tissues relative to normal controls; and that elevated LINC01198 significantly correlated with unfavorable overall prognosis. Moreover, activation of STAT5A, identified as transcription factor (TF), can induce the expression of LINC01198. DGCR8, a kind of RNA-binding proteins (RBPs), was identified to be able to bind with LINC01198 that can stabilize the DGCR8. Five differential miRNAs with most significant difference, including miR-21-5p, miR-34-5p, miR-1246, miR-4488 and miR-494, were obtainable after silencing of DGCR8. Conclusions: Together, the data we presented here suggested that STAT5 induced LINC01198 promotes proliferation and motility of glioma cells through stabilizing DGCR8 in glioma cells. Methods: Expression of LINC01198 was appraised by quantitative PCR (qPCR) and in situ hybridization (ISH) in glioma clinical specimens, totaling 100 cases. Post hoc statistical analysis was conducted. In vitro, LINC01198 was stably silenced or re-expressed by transfection with lentiviral-based vectors. Chromatin-immunoprecipitation (CHIP) was applied to identify the relevant TFs that can bind with LINC01198, which was corroborated with electrophoretic mobility shift (EMSA) assay. RNA-immunoprecipitation (RIP) was used to identify the RNA-binding protein that can bind with LINC01198. Moreover, miRNA microarray was used to screen out differential miRNAs after silencing of DGCR8.
Collapse
Affiliation(s)
- Cheng Tan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, P.R. China
| | - Yimeng Dai
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, P.R. China
| | - Xiaoyang Liu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, P.R. China
| | - Guifang Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, P.R. China.,Department of Pathophysiology, Jilin Medical University, Jilin 132013, P.R. China
| | - Weiyao Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, P.R. China.,Department of Pathophysiology, Jilin Medical University, Jilin 132013, P.R. China
| | - Jia Li
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, P.R. China
| | - Ling Qi
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, P.R. China.,Department of Pathophysiology, Jilin Medical University, Jilin 132013, P.R. China
| |
Collapse
|
65
|
Phase II study of weekly carboplatin in pretreated adult malignant gliomas. J Neurooncol 2019; 144:211-216. [PMID: 31273578 DOI: 10.1007/s11060-019-03223-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/16/2019] [Indexed: 01/08/2023]
Abstract
PURPOSE Patients with relapse of recurrent glioma have a poor outcome and limited treatment options. The aim of this study is to investigate the clinical benefit and tolerability of weekly intravenous administration of carboplatin-based monotherapy in adult glioma patients who had progressed from previous chemotherapy lines based on temozolomide and nitrosoureas. METHODS This was a single-arm, phase II study. Eligibility criteria included progressive or recurrent glioma after radiotherapy and chemotherapy-based treatments and Karnofsky performance status (KPS) > 60. RESULTS Thirty-two patients (median age 43.5 years) were enrolled to receive weekly carboplatin monotherapy in an intravenous method of administration. The median duration of response was 7.3 months with an overall disease control rate of 31.3%. Median progression-free survival was 2.3 months while overall survival was 5.5 months. Pre-treatment with corticosteroids (i.e. dexamethasone) was associated to clinical benefit in 43.8% of patients. Patients achieving clinical benefit exhibited a longer progression-free survival (4.6 vs. 1.5 months; p > 0.001) and overall survival (7.9 vs. 3.2 months; p = 0.041) compared with those not achieving clinical benefit. CONCLUSIONS Our findings show that single agent, weekly, intravenous administration of carboplatin may have a role in patients with recurrent glioma and suggest that pre-treatment with corticosteroids may confer survival benefit.
Collapse
|