51
|
Galvin DA, C M. The role of T-lymphocytes in neuropathic pain initiation, development of chronicity and treatment. Brain Behav Immun Health 2021; 18:100371. [PMID: 34761242 PMCID: PMC8566770 DOI: 10.1016/j.bbih.2021.100371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022] Open
Abstract
Ongoing research has strongly suggested the role the immune system plays in the pathogenesis of neuropathic pain. T cells appear to be one of the main regulators of the immune system with many mediators appearing to promote or suppress pain resolution. Limited effective therapies are available for treatment of neuropathic pain. Treatments available appear to modulate specific T cell with altered ratios present 3 months post treatment and parallels clinical improvement. This further supports the neuro-immune basis for neuropathic pain chronicity. Identification of novel immune mediators involved in pain development may suggest new target areas in treatment. Neuroimmunity plays a significant role in neuropathic pain pathogenesis neuropathic pain. Immune mediators contribute to promotion, suppression or resolution of neuropathic pain. Clinical studies in humans are lacking, most research available is pre-clinical or animal-based. Evidence-based therapies for treatment of neuropathic pain demonstrate alteration in T cell phenotype and behavior post therapy.
Collapse
Affiliation(s)
- D A Galvin
- Department of Pain Medicine, Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, Dublin 8, Ireland.,Hermitage Medical Clinic, Old Lucan Road, Dublin 20, Ireland
| | - McCrory C
- Department of Pain Medicine, Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, Dublin 8, Ireland.,Hermitage Medical Clinic, Old Lucan Road, Dublin 20, Ireland
| |
Collapse
|
52
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Annemieke Kavelaars
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cobi J Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
53
|
Epigenetic signature of chronic low back pain in human T cells. Pain Rep 2021; 6:e960. [PMID: 34746619 PMCID: PMC8568391 DOI: 10.1097/pr9.0000000000000960] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/21/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022] Open
Abstract
Supplemental Digital Content is Available in the Text. This study reveals sex-specific DNA methylation signatures in human T cells that discriminate chronic low back pain participants from healthy controls. Objective: Determine if chronic low back pain (LBP) is associated with DNA methylation signatures in human T cells that will reveal novel mechanisms and potential therapeutic targets and explore the feasibility of epigenetic diagnostic markers for pain-related pathophysiology. Methods: Genome-wide DNA methylation analysis of 850,000 CpG sites in women and men with chronic LBP and pain-free controls was performed. T cells were isolated (discovery cohort, n = 32) and used to identify differentially methylated CpG sites, and gene ontologies and molecular pathways were identified. A polygenic DNA methylation score for LBP was generated in both women and men. Validation was performed in an independent cohort (validation cohort, n = 63) of chronic LBP and healthy controls. Results: Analysis with the discovery cohort revealed a total of 2,496 and 419 differentially methylated CpGs in women and men, respectively. In women, most of these sites were hypomethylated and enriched in genes with functions in the extracellular matrix, in the immune system (ie, cytokines), or in epigenetic processes. In men, a unique chronic LBP DNA methylation signature was identified characterized by significant enrichment for genes from the major histocompatibility complex. Sex-specific polygenic DNA methylation scores were generated to estimate the pain status of each individual and confirmed in the validation cohort using pyrosequencing. Conclusion: This study reveals sex-specific DNA methylation signatures in human T cells that discriminates chronic LBP participants from healthy controls.
Collapse
|
54
|
Murray I, Bhanot G, Bhargava A. Neuron-Glia-Immune Triad and Cortico-Limbic System in Pathology of Pain. Cells 2021; 10:cells10061553. [PMID: 34205372 PMCID: PMC8234386 DOI: 10.3390/cells10061553] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 01/02/2023] Open
Abstract
Pain is an unpleasant sensation that alerts one to the presence of obnoxious stimuli or sensations. These stimuli are transferred by sensory neurons to the dorsal root ganglia-spinal cord and finally to the brain. Glial cells in the peripheral nervous system, astrocytes in the brain, dorsal root ganglia, and immune cells all contribute to the development, maintenance, and resolution of pain. Both innate and adaptive immune responses modulate pain perception and behavior. Neutrophils, microglial, and T cell activation, essential components of the innate and adaptive immune responses, can play both excitatory and inhibitory roles and are involved in the transition from acute to chronic pain. Immune responses may also exacerbate pain perception by modulating the function of the cortical-limbic brain regions involved in behavioral and emotional responses. The link between an emotional state and pain perception is larger than what is widely acknowledged. In positive psychological states, perception of pain along with other somatic symptoms decreases, whereas in negative psychological states, these symptoms may worsen. Sex differences in mechanisms of pain perception are not well studied. In this review, we highlight what is known, controversies, and the gaps in this field.
Collapse
Affiliation(s)
- Isabella Murray
- Department of Obstetrics and Gynecology, Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA; (I.M.); (G.B.)
| | - Gayatri Bhanot
- Department of Obstetrics and Gynecology, Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA; (I.M.); (G.B.)
- Eleanor Roosevelt College, University of California San Diego, San Diego, CA 92122, USA
| | - Aditi Bhargava
- Department of Obstetrics and Gynecology, Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA; (I.M.); (G.B.)
- Correspondence: ; Tel.: +1-415-502-8453
| |
Collapse
|
55
|
Inyang KE, Folger JK, Laumet G. Can FDA-Approved Immunomodulatory Drugs be Repurposed/Repositioned to Alleviate Chronic Pain? J Neuroimmune Pharmacol 2021; 16:531-547. [PMID: 34041656 DOI: 10.1007/s11481-021-10000-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022]
Abstract
Pain is among the most widespread chronic health condition confronting society today and our inability to manage chronic pain contributes to the opioid abuse epidemic in America. The immune system is known to contribute to acute and chronic pain, but only limited therapeutic treatments such as non-steroid anti-inflammatory drugs have resulted from this knowledge. The last decade has shed light on neuro-immune interactions mediating the development, maintenance, and resolution of chronic pain. Here, we do not aim to perform a comprehensive review of all immune mechanisms involved in chronic pain, but to briefly review the contribution of the main cytokines and immune cells (macrophages, microglia, mast cells and T cells) to chronic pain. Given the urgent need to address the Pain crisis, we provocatively propose to repurpose/reposition FDA-approved immunomodulatory drugs for their potential to alleviate chronic pain. Repositioning or repurposing offers an attractive way to accelerate the arrival of new analgesics.
Collapse
Affiliation(s)
| | - Joseph K Folger
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
56
|
Neuroinflammation in Alzheimer's Disease. Biomedicines 2021; 9:biomedicines9050524. [PMID: 34067173 PMCID: PMC8150909 DOI: 10.3390/biomedicines9050524] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease associated with human aging. Ten percent of individuals over 65 years have AD and its prevalence continues to rise with increasing age. There are currently no effective disease modifying treatments for AD, resulting in increasingly large socioeconomic and personal costs. Increasing age is associated with an increase in low-grade chronic inflammation (inflammaging) that may contribute to the neurodegenerative process in AD. Although the exact mechanisms remain unclear, aberrant elevation of reactive oxygen and nitrogen species (RONS) levels from several endogenous and exogenous processes in the brain may not only affect cell signaling, but also trigger cellular senescence, inflammation, and pyroptosis. Moreover, a compromised immune privilege of the brain that allows the infiltration of peripheral immune cells and infectious agents may play a role. Additionally, meta-inflammation as well as gut microbiota dysbiosis may drive the neuroinflammatory process. Considering that inflammatory/immune pathways are dysregulated in parallel with cognitive dysfunction in AD, elucidating the relationship between the central nervous system and the immune system may facilitate the development of a safe and effective therapy for AD. We discuss some current ideas on processes in inflammaging that appear to drive the neurodegenerative process in AD and summarize details on a few immunomodulatory strategies being developed to selectively target the detrimental aspects of neuroinflammation without affecting defense mechanisms against pathogens and tissue damage.
Collapse
|
57
|
Hu R, Zhang J, Liu X, Huang D, Cao YQ. Low-Dose Interleukin-2 and Regulatory T Cell Treatments Attenuate Punctate and Dynamic Mechanical Allodynia in a Mouse Model of Sciatic Nerve Injury. J Pain Res 2021; 14:893-906. [PMID: 33854366 PMCID: PMC8040486 DOI: 10.2147/jpr.s301343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/13/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Nerve injury-induced mechanical hyper-sensitivity, in particular stroking-induced dynamic allodynia, is highly debilitating and difficult to treat. Previous studies indicate that the immunosuppressive regulatory T (Treg) cells modulate the magnitude of punctate mechanical allodynia resulting from sciatic nerve injury. However, whether enhancing Treg-mediated suppression attenuates dynamic allodynia is not known. In the present study, we addressed this knowledge gap by treating mice with low-dose interleukin-2 (ld-IL2) injections or adoptive transfer of Treg cells. Methods Female Swiss Webster mice received daily injections of ld-IL2 (1 μg/mouse, intraperitoneally) either before or after unilateral spared nerve injury (SNI). Male C57BL/6J mice received adoptive transfer of 1 x 106 Treg cells 3 weeks post-SNI. The responses to punctate and dynamic mechanical stimuli on the hindpaw were monitored before and up to 4–6 weeks post-SNI. We also compared the distribution of Treg cells and CD3+ total T cells after SNI and/or ld-IL2 treatment. Results Ld-IL2 pretreatment in female Swiss Webster mice completely blocked the development of SNI-induced dynamic mechanical allodynia and reduced the magnitude of punctate allodynia. Delayed ld-IL2 treatment in female mice significantly attenuated the morphine-resistant punctate and dynamic allodynia at 3–5 weeks post-SNI. Adoptive transfer of Treg cells to male C57BL/6J mice 3 weeks post-SNI effectively reversed the persistent punctate and dynamic allodynia, supporting that the effect of ld-IL2 is mediated through endogenous Treg cells, and is likely independent of mouse strain and sex. Neither ld-IL2 treatment nor Treg transfer affected the basal responses to punctate or brush stimuli. Ld-IL2 significantly increased the frequency of Treg cells among total CD3+ T cells in the injured sciatic nerves but not in the uninjured nerves or the dorsal root ganglia, suggesting the injured nerve as ld-IL2’s site of action. Conclusion Collectively, results from the present study supports Treg as a cellular target and ld-IL2 as a potential therapeutic option for nerve injury-induced persistent punctate and dynamic mechanical allodynia.
Collapse
Affiliation(s)
- Rong Hu
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA.,Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA.,Department of Pain Management, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jintao Zhang
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA.,Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA.,Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xuemei Liu
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA.,Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Dong Huang
- Department of Pain Management, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yu-Qing Cao
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA.,Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
58
|
Dimmek DJ, Korallus C, Buyny S, Christoph G, Lichtinghagen R, Jacobs R, Nugraha B. Brain-Derived Neurotrophic Factor and Immune Cells in Osteoarthritis, Chronic Low Back Pain, and Chronic Widespread Pain Patients: Association with Anxiety and Depression. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:327. [PMID: 33915758 PMCID: PMC8065931 DOI: 10.3390/medicina57040327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 01/09/2023]
Abstract
Background and Objectives: Musculoskeletal dysfunction can induce several types of chronic pain syndromes. It is of particular interest to elucidate the pathomechanism of different forms of chronic pain. It is possible that patients who have developed chronic widespread pain (CWP) may endure different pathomechanisms as compared to those who suffer from local pain (osteoarthritis, OA) and regional pain (chronic low back pain, cLBP), especially with regard to pain regulation and its related biomediators. The aim of this study was to determine the differences in pathomechanisms among these patients by measuring pain-related biomediators, particularly brain-derived neurotrophic factor (BDNF). Additionally, subpopulations of immune cells were determined in parallel. Materials and Methods: Patients and healthy subjects (HSs) were recruited (age and gender-matched). BDNF was measured from serum samples of patients and HSs and the data of body composition parameters were recorded. Additionally, both patients and HSs were asked to fill in questionnaires related to pain intensity, anxiety, and depression. Results: Our results highlight that the levels of both free and total BDNF are significantly lower in pain patients compared to HSs, with p values of 0.041 and 0.024, respectively. The number of CD3- CD56bright natural killer (NK) cells shows significant differences between the groups. Comparing all chronic pain patients with HSs reveals a significantly lower number of CD4+ CD8+ T cells (p = 0.031), CD3- CD56bright NK cells (p = 0.049) and CD20+ CD3- cells (p = 0.007). Conclusions: To conclude, it seems that a general conformity between the pathomechanisms of different chronic pain diseases exists, although there are unique findings only in specific chronic pain patients.
Collapse
Affiliation(s)
- Dominique Josephine Dimmek
- Department of Rehabilitation Medicine, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; (D.J.D.); (C.K.); (G.C.)
| | - Christoph Korallus
- Department of Rehabilitation Medicine, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; (D.J.D.); (C.K.); (G.C.)
| | - Sabine Buyny
- Department of Rheumatology and Clinical Immunology, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; (S.B.); (R.J.)
| | - Gutenbrunner Christoph
- Department of Rehabilitation Medicine, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; (D.J.D.); (C.K.); (G.C.)
| | - Ralf Lichtinghagen
- Institute of Clinical Chemistry, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany;
| | - Roland Jacobs
- Department of Rheumatology and Clinical Immunology, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; (S.B.); (R.J.)
| | - Boya Nugraha
- Department of Rehabilitation Medicine, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; (D.J.D.); (C.K.); (G.C.)
| |
Collapse
|
59
|
Kavelaars A, Heijnen CJ. T Cells as Guardians of Pain Resolution. Trends Mol Med 2021; 27:302-313. [PMID: 33431239 PMCID: PMC8005447 DOI: 10.1016/j.molmed.2020.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/20/2020] [Accepted: 12/10/2020] [Indexed: 01/08/2023]
Abstract
Despite successful research efforts aimed at understanding pain mechanisms, there is still no adequate treatment for many patients suffering from chronic pain. The contribution of neuroinflammation to chronic pain is widely acknowledged. Here, we summarize findings indicating that T cells play a key role in the suppression of pain. An active contribution of the immune system to resolution of pain may explain why immunosuppressive drugs are often not sufficient to control pain. This would also imply that dysregulation of certain immune functions promote transition to chronic pain. Conversely, stimulating the endogenous immune-mediated resolution pathways may provide a potent approach to treat chronic pain.
Collapse
Affiliation(s)
- Annemieke Kavelaars
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, University of Texas, M.D. Anderson Cancer Center, Zayed Building, M.D. Anderson Boulevard, Houston, TX 77030, USA.
| | - Cobi J Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, University of Texas, M.D. Anderson Cancer Center, Zayed Building, M.D. Anderson Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
60
|
Heussner MJ, Folger JK, Dias C, Massri N, Dahdah A, Vermeer PD, Laumet G. A Novel Syngeneic Immunocompetent Mouse Model of Head and Neck Cancer Pain Independent of Interleukin-1 Signaling. Anesth Analg 2021; 132:1156-1163. [PMID: 33323783 PMCID: PMC7969384 DOI: 10.1213/ane.0000000000005302] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Pain is one of the first presenting symptoms in patients with head and neck cancer, who often develop chronic and debilitating pain as the disease progresses. Pain is also an important prognostic marker for survival. Unfortunately, patients rarely receive effective pain treatment due to our limited knowledge of the mechanisms underlying head and neck cancer pain (HNCP). Pain is often associated with neuroinflammation and particularly interleukin (IL)-1 signaling. The purpose of this study is to develop a novel syngeneic model of HNCP in immunocompetent mice to examine the contribution of IL-1 signaling. METHODS Male C57BL/6 mice were injected with a murine model of human papillomavirus (HPV+)-induced oropharyngeal squamous cell carcinoma in their right hindlimb to induce tumor growth. Pain sensitivity was measured via von Frey filaments. Spontaneous pain was assessed via the facial grimace scale. IL-1β was measured by quantifying gene expression via quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay (ELISA). RESULTS Pain hypersensitivity and spontaneous pain develop quickly after the implantation of tumor cells, a time when tumor volume is still insignificant. Spinal and circulating IL-1β levels are significantly elevated in tumor-bearing mice. Blocking IL-1 signaling either by intrathecal administration of interleukin-1 receptor antagonist (IL-1ra) or by genetic deletion (interleukin-1 receptor knockout [Il1r1-/-]) does not alleviate HNCP. CONCLUSIONS We established the first syngeneic model of HNCP in immunocompetent mice. Unlike inflammatory or nerve-injured pain, HNCP is independent of IL-1 signaling. These findings challenge the common belief that pain results from tissue compression or IL-1 signaling in patients with head and neck cancer.
Collapse
Affiliation(s)
- Matthew J. Heussner
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Joseph K. Folger
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Christina Dias
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Noura Massri
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Albert Dahdah
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Paola D. Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
61
|
Interleukin-10 resolves pain hypersensitivity induced by cisplatin by reversing sensory neuron hyperexcitability. Pain 2021; 161:2344-2352. [PMID: 32427749 DOI: 10.1097/j.pain.0000000000001921] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Understanding the mechanisms that drive transition from acute to chronic pain is essential to identify new therapeutic targets. The importance of endogenous resolution pathways acting as a "brake" to prevent development of chronic pain has been largely ignored. We examined the role of interleukin-10 (IL-10) in resolution of neuropathic pain induced by cisplatin. In search of an underlying mechanism, we studied the effect of cisplatin and IL-10 on spontaneous activity (SA) in dorsal root ganglia neurons. Cisplatin (2 mg/kg daily for 3 days) induced mechanical hypersensitivity that resolved within 3 weeks. In both sexes, resolution of mechanical hypersensitivity was delayed in Il10 mice, in WT mice treated intrathecally with neutralizing anti-IL-10 antibody, and in mice with cell-targeted deletion of IL-10R1 on advillin-positive sensory neurons. Electrophysiologically, small- to medium-sized dorsal root ganglia neurons from cisplatin-treated mice displayed an increase in the incidence of SA. Cisplatin treatment also depolarized the resting membrane potential, and decreased action potential voltage threshold and rheobase, while increasing ongoing activity at -45 mV and the amplitude of depolarizing spontaneous fluctuations. In vitro addition of IL-10 (10 ng/mL) reversed the effect of cisplatin on SA and on the depolarizing spontaneous fluctuation amplitudes, but unexpectedly had little effect on the other electrophysiological parameters affected by cisplatin. Collectively, our findings challenge the prevailing concept that IL-10 resolves pain solely by dampening neuroinflammation and demonstrate in a model of chemotherapy-induced neuropathic pain that endogenous IL-10 prevents transition to chronic pain by binding to IL-10 receptors on sensory neurons to regulate their activity.
Collapse
|
62
|
Prado J, Westerink RHS, Popov-Celeketic J, Steen-Louws C, Pandit A, Versteeg S, van de Worp W, Kanters DHAJ, Reedquist KA, Koenderman L, Hack CE, Eijkelkamp N. Cytokine receptor clustering in sensory neurons with an engineered cytokine fusion protein triggers unique pain resolution pathways. Proc Natl Acad Sci U S A 2021; 118:e2009647118. [PMID: 33836560 PMCID: PMC7980471 DOI: 10.1073/pnas.2009647118] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
New therapeutic approaches to resolve persistent pain are highly needed. We tested the hypothesis that manipulation of cytokine receptors on sensory neurons by clustering regulatory cytokine receptor pairs with a fusion protein of interleukin (IL)-4 and IL-10 (IL4-10 FP) would redirect signaling pathways to optimally boost pain-resolution pathways. We demonstrate that a population of mouse sensory neurons express both receptors for the regulatory cytokines IL-4 and IL-10. This population increases during persistent inflammatory pain. Triggering these receptors with IL4-10 FP has unheralded biological effects, because it resolves inflammatory pain in both male and female mice. Knockdown of both IL4 and IL10 receptors in sensory neurons in vivo ablated the IL4-10 FP-mediated inhibition of inflammatory pain. Knockdown of either one of the receptors prevented the analgesic gain-of-function of IL4-10 FP. In vitro, IL4-10 FP inhibited inflammatory mediator-induced neuronal sensitization more effectively than the combination of cytokines, confirming its superior activity. The IL4-10 FP, contrary to the combination of IL-4 and IL-10, promoted clustering of IL-4 and IL-10 receptors in sensory neurons, leading to unique signaling, that is exemplified by activation of shifts in the cellular kinome and transcriptome. Interrogation of the potentially involved signal pathways led us to identify JAK1 as a key downstream signaling element that mediates the superior analgesic effects of IL4-10 FP. Thus, IL4-10 FP constitutes an immune-biologic that clusters regulatory cytokine receptors in sensory neurons to transduce unique signaling pathways required for full resolution of persistent inflammatory pain.
Collapse
Affiliation(s)
- Judith Prado
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Remco H S Westerink
- Neurotoxicology Research Group, Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Jelena Popov-Celeketic
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Cristine Steen-Louws
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Aridaman Pandit
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Sabine Versteeg
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Wouter van de Worp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Deon H A J Kanters
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Kris A Reedquist
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Leo Koenderman
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - C Erik Hack
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Niels Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands;
| |
Collapse
|
63
|
Lacagnina MJ, Heijnen CJ, Watkins LR, Grace PM. Autoimmune regulation of chronic pain. Pain Rep 2021; 6:e905. [PMID: 33981931 PMCID: PMC8108590 DOI: 10.1097/pr9.0000000000000905] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/19/2020] [Accepted: 01/19/2021] [Indexed: 01/24/2023] Open
Abstract
Chronic pain is an unpleasant and debilitating condition that is often poorly managed by existing therapeutics. Reciprocal interactions between the nervous system and the immune system have been recognized as playing an essential role in the initiation and maintenance of pain. In this review, we discuss how neuroimmune signaling can contribute to peripheral and central sensitization and promote chronic pain through various autoimmune mechanisms. These pathogenic autoimmune mechanisms involve the production and release of autoreactive antibodies from B cells. Autoantibodies-ie, antibodies that recognize self-antigens-have been identified as potential molecules that can modulate the function of nociceptive neurons and thereby induce persistent pain. Autoantibodies can influence neuronal excitability by activating the complement pathway; by directly signaling at sensory neurons expressing Fc gamma receptors, the receptors for the Fc fragment of immunoglobulin G immune complexes; or by binding and disrupting ion channels expressed by nociceptors. Using examples primarily from rheumatoid arthritis, complex regional pain syndrome, and channelopathies from potassium channel complex autoimmunity, we suggest that autoantibody signaling at the central nervous system has therapeutic implications for designing novel disease-modifying treatments for chronic pain.
Collapse
Affiliation(s)
- Michael J. Lacagnina
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cobi J. Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linda R. Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO, USA
| | - Peter M. Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
64
|
Augé C, Basso L, Blanpied C, Vergnolle N, Gamé X, Chabot S, Lluel P, Dietrich G. Pain Management in a Model of Interstitial Cystitis/Bladder Pain Syndrome by a Vaccinal Strategy. FRONTIERS IN PAIN RESEARCH 2021; 2:642706. [PMID: 35295433 PMCID: PMC8915701 DOI: 10.3389/fpain.2021.642706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
Current analgesic treatments for Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS) are limited. Here, we propose a novel antinociceptive strategy exploiting the opioid-mediated analgesic properties of T lymphocytes to relieve from bladder pain. In a chronic model of IC/BPS in rats, we show that a secondary T cell response against intravesically administered ovalbumin prevents from visceral pain in OVA-primed animals. The analgesic effect is associated with the recruitment of T lymphocytes within the inflamed mucosa and is reversed by naloxone-methiodide, a peripheral opioid receptor antagonist. Similarly, intravesical instillation of BCG or tetanus toxoid antigens in vaccinated rats protects from pain in the same model. We show opioid-dependent analgesic properties of local vaccine antigen recall in a preclinical rat model of chronic cystitis. Since BCG bladder instillation is regularly used in humans (as anticancer therapy), our results open it as a new therapeutic positioning for a pain management indication for IC/BPS patients.
Collapse
Affiliation(s)
- Céline Augé
- Urosphere, Department of Pain and Inflammation, Toulouse, France
| | - Lilian Basso
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | | | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Xavier Gamé
- Urology Department, Rangueil University Hospital, Toulouse, France
- INSERM, I2MC-U1048, CHU Rangueil, Toulouse, France
| | - Sophie Chabot
- Urosphere, Department of Pain and Inflammation, Toulouse, France
| | - Philippe Lluel
- Urosphere, Department of Pain and Inflammation, Toulouse, France
- *Correspondence: Philippe Lluel
| | - Gilles Dietrich
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| |
Collapse
|
65
|
Bethea JR, Fischer R. Role of Peripheral Immune Cells for Development and Recovery of Chronic Pain. Front Immunol 2021; 12:641588. [PMID: 33692810 PMCID: PMC7937804 DOI: 10.3389/fimmu.2021.641588] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/03/2021] [Indexed: 01/01/2023] Open
Abstract
Chronic neuropathic pain (CNP) is caused by a lesion or disease of the somatosensory nervous system. It affects ~8% of the general population and negatively impacts a person's level of functioning and quality of life. Its resistance to available pain therapies makes CNP a major unmet medical need. Immune cells have been shown to play a role for development, maintenance and recovery of CNP and therefore are attractive targets for novel pain therapies. In particular, in neuropathic mice and humans, microglia are activated in the dorsal horn and peripheral immune cells infiltrate the nervous system to promote chronic neuroinflammation and contribute to the initiation and progression of CNP. Importantly, immunity not only controls pain development and maintenance, but is also essential for pain resolution. In particular, regulatory T cells, a subpopulation of T lymphocytes with immune regulatory function, and macrophages were shown to be important contributors to pain recovery. In this review we summarize the interactions of the peripheral immune system with the nervous system and outline their contribution to the development and recovery of pain.
Collapse
Affiliation(s)
- John R. Bethea
- Department of Biology, Drexel University, Philadelphia, PA, United States
| | - Roman Fischer
- Institute of Cell Biology and Immunology, University Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
66
|
Kwiatkowski K, Pawlik K, Ciapała K, Piotrowska A, Makuch W, Mika J. Bidirectional Action of Cenicriviroc, a CCR2/CCR5 Antagonist, Results in Alleviation of Pain-Related Behaviors and Potentiation of Opioid Analgesia in Rats With Peripheral Neuropathy. Front Immunol 2021; 11:615327. [PMID: 33408720 PMCID: PMC7779470 DOI: 10.3389/fimmu.2020.615327] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/19/2020] [Indexed: 12/25/2022] Open
Abstract
Clinical management of neuropathic pain is unsatisfactory, mainly due to its resistance to the effects of available analgesics, including opioids. Converging evidence indicates the functional interactions between chemokine and opioid receptors and their influence on nociceptive processes. Recent studies highlight that the CC chemokine receptors type 2 (CCR2) and 5 (CCR5) seem to be of particular interest. Therefore, in this study, we investigated the effects of the dual CCR2/CCR5 antagonist, cenicriviroc, on pain-related behaviors, neuroimmune processes, and the efficacy of opioids in rats after chronic constriction injury (CCI) of the sciatic nerve. To define the mechanisms of action of cenicriviroc, we studied changes in the activation/influx of glial and immune cells and, simultaneously, the expression level of CCR2, CCR5, and important pronociceptive cytokines in the spinal cord and dorsal root ganglia (DRG). We demonstrated that repeated intrathecal injections of cenicriviroc, in a dose-dependent manner, alleviated hypersensitivity to mechanical and thermal stimuli in rats after sciatic nerve injury, as measured by von Frey and cold plate tests. Behavioral effects were associated with the beneficial impact of cenicriviroc on the activation/influx level of C1q/IBA-1-positive cells in the spinal cord and/or DRG and GFAP-positive cells in DRG. In parallel, administration of cenicriviroc decreased the expression of CCR2 in the spinal cord and CCR5 in DRG. Concomitantly, we observed that the level of important pronociceptive factors (e.g., IL-1beta, IL-6, IL-18, and CCL3) were increased in the lumbar spinal cord and/or DRG 7 days following injury, and cenicriviroc was able to prevent these changes. Additionally, repeated administration of this dual CCR2/CCR5 antagonist enhanced the analgesic effects of morphine and buprenorphine in neuropathic rats, which can be associated with the ability of cenicriviroc to prevent nerve injury-induced downregulation of all opioid receptors at the DRG level. Overall, our results suggest that pharmacological modulation based on the simultaneous blockade of CCR2 and CCR5 may serve as an innovative strategy for the treatment of neuropathic pain, as well as in combination with opioids.
Collapse
Affiliation(s)
- Klaudia Kwiatkowski
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Ciapała
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Anna Piotrowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
67
|
The Neuroimmunology of Chronic Pain: From Rodents to Humans. J Neurosci 2020; 41:855-865. [PMID: 33239404 DOI: 10.1523/jneurosci.1650-20.2020] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic pain, encompassing conditions, such as low back pain, arthritis, persistent post-surgical pain, fibromyalgia, and neuropathic pain disorders, is highly prevalent but remains poorly treated. The vast majority of therapeutics are directed solely at neurons, despite the fact that signaling between immune cells, glia, and neurons is now recognized as indispensable for the initiation and maintenance of chronic pain. This review highlights recent advances in understanding fundamental neuroimmune signaling mechanisms and novel therapeutic targets in rodent models of chronic pain. We further discuss new technological developments to study, diagnose, and quantify neuroimmune contributions to chronic pain in patient populations.
Collapse
|
68
|
Leiguarda C, Potilinski C, Rubione J, Tate P, Villar MJ, Montaner A, Bisagno V, Constandil L, Brumovsky PR. IMT504 Provides Analgesia by Modulating Cell Infiltrate and Inflammatory Milieu in a Chronic Pain Model. J Neuroimmune Pharmacol 2020; 16:651-666. [PMID: 33221983 DOI: 10.1007/s11481-020-09971-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022]
Abstract
IMT504 is a non-CPG, non-coding synthetic oligodeoxinucleotide (ODN) with immunomodulatory properties and a novel inhibitory role in pain transmission, exerting long-lasting analgesic effects upon multiple systemic administrations. However, its mechanisms of anti-nociceptive action are still poorly understood. In the present study in male adult rats undergoing complete Freund's adjuvant-induced hindpaw inflammation, we focused in the analysis of the immunomodulatory role of IMT504 over the cellular infiltrate, the impact on the inflammatory milieu, and the correlation with its anti-allodynic role. By means of behavioral analysis, we determined that a single subcutaneous administration of 6 mg/kg of IMT504 is sufficient to exert a 6-week-long full reversal of mechanical and cold allodynia, compromising neither acute pain perception nor locomotor activity. Importantly, we found that the anti-nociceptive effects of systemic IMT504, plus quick reductions in hindpaw edema, were associated with a modulatory action upon cellular infiltrate of B-cells, macrophages and CD8+ T-cells populations. Accordingly, we observed a profound downregulation of several inflammatory leukocyte adhesion proteins, chemokines and cytokines, as well as of β-endorphin and an increase in the anti-inflammatory cytokine, interleukin-10. Altogether, we demonstrate that at least part of the anti-nociceptive actions of IMT504 relate to the modulation of the peripheral immune system at the site of injury, favoring a switch from pro- to anti-inflammatory conditions, and provide further support to its use against chronic inflammatory pain. Graphical abstract GA short description - IMT504 systemic Administration. Systemic administration of the non-CpG ODN IMT504 results in a 6-week long blockade of pain-like behavior in association with anti-inflammatory responses at the site of injury. These include modulation of lymphoid and myeloid populations plus downregulated expression levels of multiple pro-inflammatory cytokines and β-endorphin. Nocifensive responses and locomotion remain unaltered.
Collapse
Affiliation(s)
- Candelaria Leiguarda
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Juan D. Perón 1500 B1629AHJ, Pilar, Buenos Aires, Argentina
| | - Constanza Potilinski
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Juan D. Perón 1500 B1629AHJ, Pilar, Buenos Aires, Argentina
| | - Julia Rubione
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Juan D. Perón 1500 B1629AHJ, Pilar, Buenos Aires, Argentina
| | - Pablo Tate
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Juan D. Perón 1500 B1629AHJ, Pilar, Buenos Aires, Argentina
| | - Marcelo J Villar
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Juan D. Perón 1500 B1629AHJ, Pilar, Buenos Aires, Argentina
| | - Alejandro Montaner
- Instituto de Ciencia y Tecnología "Dr. César Milstein", CONICET-Fundación Pablo Cassará, Buenos Aires, Argentina
| | - Verónica Bisagno
- Instituto de Investigaciones Farmacológicas, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luis Constandil
- Laboratorio de Neurobiología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Pablo R Brumovsky
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Juan D. Perón 1500 B1629AHJ, Pilar, Buenos Aires, Argentina.
| |
Collapse
|
69
|
The ambiguity of opioids revealed by immunology is changing the knowledge and the therapeutic approach in cancer and non-cancer pain: A narrative review. Immunol Lett 2020; 226:12-21. [DOI: 10.1016/j.imlet.2020.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/17/2020] [Indexed: 12/18/2022]
|
70
|
Moustafa SR, Al-Rawi KF, Stoyanov D, Al-Dujaili AH, Supasitthumrong T, Al-Hakeim HK, Maes M. The Endogenous Opioid System in Schizophrenia and Treatment Resistant Schizophrenia: Increased Plasma Endomorphin 2, and κ and μ Opioid Receptors Are Associated with Interleukin-6. Diagnostics (Basel) 2020; 10:633. [PMID: 32858974 PMCID: PMC7554941 DOI: 10.3390/diagnostics10090633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/30/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND activation of the immune-inflammatory response system (IRS) and the compensatory immune-regulatory system (CIRS) plays a key role in schizophrenia (SCZ) and treatment resistant SCZ. There are only a few data on immune and endogenous opioid system (EOS) interactions in SCZ and treatment resistant SCZ. METHODS we examined serum β-endorphin, endomorphin-2 (EM2), mu-opioid (MOR) and kappa-opioid (KOR) receptors, and interleukin (IL)-6 and IL-10 in 60 non responders to treatment (NRTT), 55 partial RTT (PRTT) and 43 normal controls. RESULTS serum EM2, KOR, MOR, IL-6 and IL-10 were significantly increased in SCZ as compared with controls. β-endorphin, EM2, MOR and IL-6 were significantly higher in NRTT than in PRTT. There were significant correlations between IL-6, on the one hand, and β-endorphin, EM2, KOR, and MOR, on the other, while IL-10 was significantly correlated with MOR only. A large part of the variance in negative symptoms, psychosis, hostility, excitation, mannerism, psychomotor retardation and formal thought disorders was explained by the combined effects of EM2 and MOR with or without IL-6 while increased KOR was significantly associated with all symptom dimensions. Increased MOR, KOR, EM2 and IL-6 were also associated with neurocognitive impairments including in episodic, semantic and working memory and executive functions. CONCLUSION the EOS contributes to SCZ symptomatology, neurocognitive impairments and a non-response to treatment. In SCZ, EOS peptides/receptors may exert CIRS functions, whereas increased KOR levels may contribute to the pathophysiology of SCZ and EM2 and KOR to a non-response to treatment.
Collapse
Affiliation(s)
- Shatha Rouf Moustafa
- Clinical Analysis Department, College of Pharmacy, Hawler Medical University, Havalan City, Erbil 44001, Iraq;
| | | | - Drozdstoi Stoyanov
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv 4000, Bulgaria;
| | | | | | | | - Michael Maes
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv 4000, Bulgaria;
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10110, Thailand;
- School of Medicine, IMPACT Strategic Research Centre, Deakin University, Geelong, VIC 3220, Australia
| |
Collapse
|
71
|
Machelska H, Celik MÖ. Immune cell-mediated opioid analgesia. Immunol Lett 2020; 227:48-59. [PMID: 32814155 DOI: 10.1016/j.imlet.2020.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022]
Abstract
Pathological pain is regulated by a balance between pro-algesic and analgesic mechanisms. Interactions between opioid peptide-producing immune cells and peripheral sensory neurons expressing opioid receptors represent a powerful intrinsic pain control in animal models and in humans. Therefore, treatments based on general suppression of immune responses have been mostly unsuccessful. It is highly desirable to develop strategies that specifically promote neuro-immune communication mediated by opioids. Promising examples include vaccination-based recruitment of opioid-containing leukocytes to painful tissue and the local reprogramming of pro-algesic immune cells into analgesic cells producing and secreting high amounts of opioid peptides. Such approaches have the potential to inhibit pain at its origin and be devoid of central and systemic side effects of classical analgesics. In support of these concepts, in this article, we describe the functioning of peripheral opioid receptors, migration of opioid-producing immune cells to inflamed tissue, opioid peptide release, and the consequent pain relief. Conclusively, we provide clinical evidence and discuss therapeutic opportunities and challenges associated with immune cell-mediated peripheral opioid analgesia.
Collapse
Affiliation(s)
- Halina Machelska
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany.
| | - Melih Ö Celik
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
72
|
Alles SR, Gomez K, Moutal A, Khanna R. Putative roles of SLC7A5 (LAT1) transporter in pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2020; 8:100050. [PMID: 32715162 PMCID: PMC7369351 DOI: 10.1016/j.ynpai.2020.100050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
Large amino acid transporter 1 (LAT1), also known as SLC7A5, is an essential amino acid transporter that forms a heterodimeric complex with the glycoprotein cell-surface antigen heavy chain (4F2hc (CD98, SLC3A2)). Within nociceptive pathways, LAT1 is expressed in the dorsal root ganglia and spinal cord. Although LAT1 expression is upregulated following spinal cord injury, little is known about LAT1 in neuropathic pain. To date, only circumstantial evidence supports LAT1/4F2hc's role in pain. Notably, LAT1's expression and regulation link it to key cell types and pathways implicated in pain. Transcriptional regulation of LAT1 expression occurs via the Wnt/frizzled/β-catenin signal transduction pathway, which has been shown to be involved in chronic pain. The LAT1/4F2hc complex may also be involved in pain pathways related to T- and B-cells. LAT1's expression induces activation of the mammalian target of rapamycin (mTOR) signaling axis, which is involved in inflammation and neuropathic pain. Similarly, hypoxia and cancer induce activation of hypoxia-inducible factor 2 alpha, promoting not only LAT1's expression but also mTORC1's activation. Perhaps the strongest evidence linking LAT1 to pain is its interactions with key voltage-gated ion channels connected to nociception, namely the voltage-gated potassium channels Kv1.1 and Kv1.2 and the voltage-gated sodium channel Nav1.7. Through functional regulation of these channels, LAT1 may play a role in governing the excitatory to inhibitory ratio which is altered in chronic neuropathic pain states. Remarkably, the most direct role for LAT1 in pain is to mediate the influx of gabapentin and pregabalin, two first-line neuropathic pain drugs, that indirectly inhibit high voltage-activated calcium channel auxiliary subunit α2δ-1. In this review, we discuss the expression, regulation, relevant signaling pathways, and protein interactions of LAT1 that may link it to the development and/or maintenance of pain. We hypothesize that LAT1 expressed in nociceptive pathways may be a viable new target in pain.
Collapse
Affiliation(s)
- Sascha R.A. Alles
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, United States
| | - Kimberly Gomez
- Department of Pharmacology, University of Arizona, United States
| | - Aubin Moutal
- Department of Pharmacology, University of Arizona, United States
| | - Rajesh Khanna
- Department of Pharmacology, University of Arizona, United States
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, AZ 85724, United States
- BIO5 Institute, University of Arizona, 1657 East Helen Street Tucson, AZ 85719, United States
- Center for Innovation in Brain Sciences, University of Arizona, Tucson, AZ 85721, United States
- Regulonix Holding Inc., Tucson, AZ, United States
| |
Collapse
|
73
|
Tawfik VL, Huck NA, Baca QJ, Ganio EA, Haight ES, Culos A, Ghaemi S, Phongpreecha T, Angst MS, Clark JD, Aghaeepour N, Gaudilliere B. Systematic Immunophenotyping Reveals Sex-Specific Responses After Painful Injury in Mice. Front Immunol 2020; 11:1652. [PMID: 32849569 PMCID: PMC7403191 DOI: 10.3389/fimmu.2020.01652] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 01/24/2023] Open
Abstract
Many diseases display unequal prevalence between sexes. The sex-specific immune response to both injury and persistent pain remains underexplored and would inform treatment paradigms. We utilized high-dimensional mass cytometry to perform a comprehensive analysis of phenotypic and functional immune system differences between male and female mice after orthopedic injury. Multivariate modeling of innate and adaptive immune cell responses after injury using an elastic net algorithm, a regularized regression method, revealed sex-specific divergence at 12 h and 7 days after injury with a stronger immune response to injury in females. At 12 h, females upregulated STAT3 signaling in neutrophils but downregulated STAT1 and STAT6 signals in T regulatory cells, suggesting a lack of engagement of immune suppression pathways by females. Furthermore, at 7 days females upregulated MAPK pathways (p38, ERK, NFkB) in CD4T memory cells, setting up a possible heightened immune memory of painful injury. Taken together, our findings provide the first comprehensive and functional analysis of sex-differences in the immune response to painful injury.
Collapse
Affiliation(s)
- Vivianne L Tawfik
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
| | - Nolan A Huck
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
| | - Quentin J Baca
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
| | - Edward A Ganio
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
| | - Elena S Haight
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
| | - Anthony Culos
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
| | - Sajjad Ghaemi
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States.,Digital Technologies Research Centre, National Research Council Canada, Toronto, ON, Canada
| | - Thanaphong Phongpreecha
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States.,Department of Biomedical Data Sciences, Stanford University, Stanford, CA, United States.,Department of Pathology, Stanford University, Stanford, CA, United States
| | - Martin S Angst
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
| | - J David Clark
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States.,Department of Biomedical Data Sciences, Stanford University, Stanford, CA, United States.,Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - Brice Gaudilliere
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States.,Department of Pediatrics, Stanford University, Stanford, CA, United States
| |
Collapse
|
74
|
Kwiatkowska KM, Bacalini MG, Sala C, Kaziyama H, de Andrade DC, Terlizzi R, Giannini G, Cevoli S, Pierangeli G, Cortelli P, Garagnani P, Pirazzini C. Analysis of Epigenetic Age Predictors in Pain-Related Conditions. Front Public Health 2020; 8:172. [PMID: 32582603 PMCID: PMC7296181 DOI: 10.3389/fpubh.2020.00172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/20/2020] [Indexed: 01/31/2023] Open
Abstract
Chronic pain prevalence is high worldwide and increases at older ages. Signs of premature aging have been associated with chronic pain, but few studies have investigated aging biomarkers in pain-related conditions. A set of DNA methylation (DNAm)-based estimates of age, called “epigenetic clocks,” has been proposed as biological measures of age-related adverse processes, morbidity, and mortality. The aim of this study is to assess if different pain-related phenotypes show alterations in DNAm age. In our analysis, we considered three cohorts for which whole-blood DNAm data were available: heat pain sensitivity (HPS), including 20 monozygotic twin pairs discordant for heat pain temperature threshold; fibromyalgia (FM), including 24 cases and 20 controls; and headache, including 22 chronic migraine and medication overuse headache patients (MOH), 18 episodic migraineurs (EM), and 13 healthy subjects. We used the Horvath's epigenetic age calculator to obtain DNAm-based estimates of epigenetic age, telomere length, levels of 7 proteins in plasma, number of smoked packs of cigarettes per year, and blood cell counts. We did not find differences in epigenetic age acceleration, calculated using five different epigenetic clocks, between subjects discordant for pain-related phenotypes. Twins with high HPS had increased CD8+ T cell counts (nominal p = 0.028). HPS thresholds were negatively associated with estimated levels of GDF15 (nominal p = 0.008). FM patients showed decreased naive CD4+ T cell counts compared with controls (nominal p = 0.015). The severity of FM manifestations expressed through various evaluation tests was associated with decreased levels of leptin, shorter length of telomeres, and reduced CD8+ T and natural killer cell counts (nominal p < 0.05), while the duration of painful symptoms was positively associated with telomere length (nominal p = 0.034). No differences in DNAm-based estimates were detected for MOH or EM compared with controls. In summary, our study suggests that HPS, FM, and MOH/EM do not show signs of epigenetic age acceleration in whole blood, while HPS and FM are associated with DNAm-based estimates of immunological parameters, plasma proteins, and telomere length. Future studies should extend these observations in larger cohorts.
Collapse
Affiliation(s)
| | | | - Claudia Sala
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Helena Kaziyama
- Department of Neurology, Pain Center, LIM 62, University of São Paulo, São Paulo, Brazil
| | - Daniel Ciampi de Andrade
- Department of Neurology, Pain Center, LIM 62, University of São Paulo, São Paulo, Brazil.,Pain Center, Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | | | - Giulia Giannini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sabina Cevoli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giulia Pierangeli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Pietro Cortelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,Department of Laboratory Medicine, Clinical Chemistry, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Applied Biomedical Research Center (CRBA), Policlinico S.Orsola-Malpighi Polyclinic, Bologna, Italy.,Unit of Bologna, CNR Institute of Molecular Genetics Luigi Luca Cavalli-Sforza, Bologna, Italy
| | - Chiara Pirazzini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
75
|
Davies AJ, Rinaldi S, Costigan M, Oh SB. Cytotoxic Immunity in Peripheral Nerve Injury and Pain. Front Neurosci 2020; 14:142. [PMID: 32153361 PMCID: PMC7047751 DOI: 10.3389/fnins.2020.00142] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
Cytotoxicity and consequent cell death pathways are a critical component of the immune response to infection, disease or injury. While numerous examples of inflammation causing neuronal sensitization and pain have been described, there is a growing appreciation of the role of cytotoxic immunity in response to painful nerve injury. In this review we highlight the functions of cytotoxic immune effector cells, focusing in particular on natural killer (NK) cells, and describe the consequent action of these cells in the injured nerve as well as other chronic pain conditions and peripheral neuropathies. We describe how targeted delivery of cytotoxic factors via the immune synapse operates alongside Wallerian degeneration to allow local axon degeneration in the absence of cell death and is well-placed to support the restoration of homeostasis within the nerve. We also summarize the evidence for the expression of endogenous ligands and receptors on injured nerve targets and infiltrating immune cells that facilitate direct neuro-immune interactions, as well as modulation of the surrounding immune milieu. A number of chronic pain and peripheral neuropathies appear comorbid with a loss of function of cellular cytotoxicity suggesting such mechanisms may actually help to resolve neuropathic pain. Thus while the immune response to peripheral nerve injury is a major driver of maladaptive pain, it is simultaneously capable of directing resolution of injury in part through the pathways of cellular cytotoxicity. Our growing knowledge in tuning immune function away from inflammation toward recovery from nerve injury therefore holds promise for interventions aimed at preventing the transition from acute to chronic pain.
Collapse
Affiliation(s)
- Alexander J. Davies
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Simon Rinaldi
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Michael Costigan
- Department of Anesthesia, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Neurobiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Seog Bae Oh
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Dental Research Institute and Department of Neurobiology & Physiology, School of Dentistry, Seoul National University, Seoul, South Korea
| |
Collapse
|
76
|
Laumet G, Edralin JD, Dantzer R, Heijnen CJ, Kavelaars A. CD3 + T cells are critical for the resolution of comorbid inflammatory pain and depression-like behavior. NEUROBIOLOGY OF PAIN 2020; 7:100043. [PMID: 32510006 PMCID: PMC7264986 DOI: 10.1016/j.ynpai.2020.100043] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/27/2022]
Abstract
T cells are necessary for resolution of CFA-induced mechanical allodynia and spontaneous pain. T cells are required for the resolution of inflammation-induced depression-like behavior. T cells did not contribute to onset or severity of indicators of pain and depression-like behavior. T cells did not affect cytokine expression in the paw, spinal cord and brain.
Background Chronic pain and depression often co-occur. The mechanisms underlying this comorbidity are incompletely understood. Here, we investigated the role of CD3+ T cells in an inflammatory model of comorbid persistent mechanical allodynia, spontaneous pain, and depression-like behavior in mice. Methods C57Bl/6 wt and Rag2−/− mice were compared in their response to intraplantar administration of complete Freund’s adjuvant (CFA). Mechanical allodynia, spontaneous pain and depression-like behavior were assessed by von Frey, conditioned place preference and forced swim test respectively. Results Resolution of mechanical allodynia, spontaneous pain, and depression-like behavior was markedly delayed in Rag2−/− mice that are devoid of adaptive immune cells. Reconstitution of Rag2−/− mice with CD3+ T cells from WT mice before CFA injection normalized the resolution of indicators of pain and depression-like behavior. T cells did not contribute to onset or severity of indicators of pain and depression-like behavior. The lack of T cells did not affect cytokine expression in the paw, spinal cord and brain, indicating that the delayed resolution was not resulting from prolonged (neuro)inflammation. Conclusions Our findings show that T cells are critical for the natural resolution of mechanical allodynia, spontaneous pain, and depression-like behavior after an inflammatory challenge. Dysregulation of this T cell-mediated resolution pathway could contribute to the comorbidity of chronic pain and depression. Significance Chronic pain and depression are frequently associated with signs of inflammation. However, general immunosuppression is not sufficient to resolve comorbid pain and depression. Here we demonstrate that T cells are required for resolution of comorbid persistent mechanical allodynia, spontaneous pain, and depression in a model of peripheral inflammation, indicating the immune system can contribute to both onset and resolution of these comorbidities. Enhancing pro-resolution effects of T cells may have a major impact to treat patients with comorbid persistent pain and depression.
Collapse
Affiliation(s)
- Geoffroy Laumet
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Jules D Edralin
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert Dantzer
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Cobi J Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Annemieke Kavelaars
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
77
|
Gonçalves WA, Rezende BM, de Oliveira MPE, Ribeiro LS, Fattori V, da Silva WN, Prazeres PHDM, Queiroz-Junior CM, Santana KTDO, Costa WC, Beltrami VA, Costa VV, Birbrair A, Verri WA, Lopes F, Cunha TM, Teixeira MM, Amaral FA, Pinho V. Sensory Ganglia-Specific TNF Expression Is Associated With Persistent Nociception After Resolution of Inflammation. Front Immunol 2020; 10:3120. [PMID: 32038637 PMCID: PMC6984351 DOI: 10.3389/fimmu.2019.03120] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/20/2019] [Indexed: 12/26/2022] Open
Abstract
Joint pain is a distressing symptom of arthritis, and it is frequently persistent even after treatments which reduce local inflammation. Continuous production of algogenic factors activate/sensitize nociceptors in the joint structures and contribute to persistent pain, a challenging and difficult condition to treat. TNF is a crucial cytokine for the pathogenesis of several rheumatic diseases, and its inhibition is a mainstay of treatment to control joint symptoms, including pain. Here, we sought to investigate the inflammatory changes and the role of TNF in dorsal root ganglia (DRG) during persistent hypernociception after the resolution of acute joint inflammation. Using a model of antigen-induced arthritis, the peak of joint inflammation occurred 12–24 h after local antigen injection and was characterized by an intense influx of neutrophils, pro-inflammatory cytokine production, and joint damage. We found that inflammatory parameters in the joint returned to basal levels between 6 and 8 days after antigen-challenge, characterizing the resolving phase of joint inflammation. Mechanical hyperalgesia was persistent up to 14 days after joint insult. The persistent nociception was associated with the inflammatory status of DRG after cessation of acute joint inflammation. The late state of neuroinflammation in the ipsilateral side was evidenced by gene expression of TNF, TNFR2, IL-6, IL-1β, CXCL2, COX2, and iNOS in lumbar DRG (L3-L5) and leukocyte adhesion in the lumbar intumescent vessels between days 6 and 8. Moreover, there were signs of resident macrophage activation in DRG, as evidenced by an increase in Iba1-positive cells. Intrathecal or systemic injection of etanercept, an agent clinically utilized for TNF neutralization, at day 7 post arthritis induction, alleviated the persistent joint hyperalgesia by specific action in DRG. Our data suggest that neuroinflammation in DRG after the resolution of acute joint inflammation drives continuous neural sensitization resulting in persistent joint nociception in a TNF-dependent mechanism.
Collapse
Affiliation(s)
- William Antonio Gonçalves
- Departamento de Morfologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Barbara Maximino Rezende
- Departamento de Enfermagem Básica, Escola de Enfermagem da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Marcos Paulo Esteves de Oliveira
- Departamento de Morfologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Lucas Secchim Ribeiro
- Biomediziniches Zentrum (BMZ), Institut für Angeborene Immunität, Rheinische Friedrich-Wilhelms-Universität Bonn, Venusberg, Germany
| | - Victor Fattori
- Departamento de Patologia, Center of Biological Sciences, Londrina State University, Londrina, Brazil
| | - Walison Nunes da Silva
- Departamento de Patologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Celso Martins Queiroz-Junior
- Departamento de Morfologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Karina Talita de Oliveira Santana
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Walyson Coelho Costa
- Departamento de Morfologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vinícius Amorim Beltrami
- Departamento de Morfologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vivian Vasconcelos Costa
- Departamento de Morfologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Alexander Birbrair
- Departamento de Patologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Waldiceu A Verri
- Departamento de Patologia, Center of Biological Sciences, Londrina State University, Londrina, Brazil
| | - Fernando Lopes
- Institute of Parasitology and Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Thiago Mattar Cunha
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Flávio Almeida Amaral
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vanessa Pinho
- Departamento de Morfologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|