51
|
Huang LH, Lavine KJ, Randolph GJ. Cardiac Lymphatic Vessels, Transport, and Healing of the Infarcted Heart. ACTA ACUST UNITED AC 2017; 2:477-483. [PMID: 28989985 PMCID: PMC5628514 DOI: 10.1016/j.jacbts.2017.02.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The lymphatic vasculature plays a key role in regulating tissue fluid homeostasis, lipid transport, and immune surveillance throughout the body. Although it has been appreciated that the heart relies on lymphatic vessels to maintain fluid balance and that such balance must be tightly maintained to allow for normal cardiac output, it has only recently come to light that the lymphatic vasculature may serve as a therapeutic target with which to promote optimal healing following myocardial ischemia and infarction. This article reviews the subject of cardiac lymphatic vessels and highlights studies that imply targeting of lymphatic vessel development or transport using vascular endothelial growth factor-C therapy may serve as a promising avenue for future clinical application in the context of ischemic injury.
Collapse
Affiliation(s)
- Li-Hao Huang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
- Address for correspondence: Dr. Li-Hao Huang, Department of Pathology and Immunology, Washington University School of Medicine, 425 South Euclid Avenue, BJCIH 8307, St. Louis, Missouri 63110.
| | - Kory J. Lavine
- Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Gwendalyn J. Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
- Dr. Gwendalyn J. Randolph, Department of Pathology and Immunology, Washington University School of Medicine, 425 South Euclid Avenue, BJCIH 8307, St. Louis, Missouri 63110.
| |
Collapse
|
52
|
Li Y, Wang X, Shen Z. Traditional Chinese medicine for lipid metabolism disorders. Am J Transl Res 2017; 9:2038-2049. [PMID: 28559959 PMCID: PMC5446491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Dyslipidemia significantly contributes to the development of cardiovascular disease (CVD), which is the most common cause of morbidity and mortality in China. Statins are the first-line therapy for reducing LDL-C serum levels. However, they have adverse effects, which restrict their clinical application. Traditional Chinese medicine (TCM) preparations have been increasingly described for their beneficial effects in hyperlipidemic patients. Existing data show that the lipid-regulating effects of TCM may be related to: (1) inhibiting intestinal absorption of lipids; (2) reducing endogenous cholesterol synthesis; (3) regulating cholesterol transport; (4) promoting the excretion of cholesterol in the liver; (5) regulating transcription factors related to lipid metabolism. This study provides an overview of recent studies and elaborates the underlying mechanisms of lipid-regulation by TCM.
Collapse
Affiliation(s)
- Yiping Li
- Department of Cardiovascular, Shuguang Hospital Affiliated to Shanghai University of TCMShanghai, China
| | - Xiaolong Wang
- Department of Cardiovascular, Shuguang Hospital Affiliated to Shanghai University of TCMShanghai, China
| | - Zhijie Shen
- Department of Cardiovascular, Shuguang Hospital Affiliated to Shanghai University of TCMShanghai, China
| |
Collapse
|
53
|
Abouelkheir GR, Upchurch BD, Rutkowski JM. Lymphangiogenesis: fuel, smoke, or extinguisher of inflammation's fire? Exp Biol Med (Maywood) 2017; 242:884-895. [PMID: 28346012 DOI: 10.1177/1535370217697385] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lymphangiogenesis is a recognized hallmark of inflammatory processes in tissues and organs as diverse as the skin, heart, bowel, and airways. In clinical and animal models wherein the signaling processes of lymphangiogenesis are manipulated, most studies demonstrate that an expanded lymphatic vasculature is necessary for the resolution of inflammation. The fundamental roles that lymphatics play in fluid clearance and immune cell trafficking from the periphery make these results seemingly obvious as a mechanism of alleviating locally inflamed environments: the lymphatics are simply providing a drain. Depending on the tissue site, lymphangiogenic mechanism, or induction timeframe, however, evidence shows that inflammation-associated lymphangiogenesis (IAL) may worsen the pathology. Recent studies have identified lymphatic endothelial cells themselves to be local regulators of immune cell activity and its consequential phenotypes - a more active role in inflammation regulation than previously thought. Indeed, results focusing on the immunocentric roles of peripheral lymphatic function have revealed that the basic drainage task of lymphatic vessels is a complex balance of locally processed and transported antigens as well as interstitial cytokine and immune cell signaling: an interplay that likely defines the function of IAL. This review will summarize the latest findings on how IAL impacts a series of disease states in various tissues in both preclinical models and clinical studies. This discussion will serve to highlight some emerging areas of lymphatic research in an attempt to answer the question relevant to an array of scientists and clinicians of whether IAL helps to fuel or extinguish inflammation. Impact statement Inflammatory progression is present in acute and chronic tissue pathologies throughout the body. Lymphatic vessels play physiological roles relevant to all medical fields as important regulators of fluid balance, immune cell trafficking, and immune identity. Lymphangiogenesis is often concurrent with inflammation and can potentially aide or worsen disease progression. How new lymphatic vessels impact inflammation and by which mechanism is an important consideration in current and future clinical therapies targeting inflammation and/or vasculogenesis. This review identifies, across a range of tissue-specific pathologies, the current understanding of inflammation-associated lymphangiogenesis in the progression or resolution of inflammation.
Collapse
Affiliation(s)
- Gabriella R Abouelkheir
- 1 Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M College of Medicine, College Station, TX 77843, USA
| | - Bradley D Upchurch
- 1 Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M College of Medicine, College Station, TX 77843, USA
| | - Joseph M Rutkowski
- 1 Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M College of Medicine, College Station, TX 77843, USA
| |
Collapse
|
54
|
Kaneva AM, Potolitsyna NN, Bojko ER. Usefulness of the LDL-C/apoB ratio in the overall evaluation of atherogenicity of lipid profile. Arch Physiol Biochem 2017; 123:16-22. [PMID: 27347637 DOI: 10.1080/13813455.2016.1195411] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
CONTEXT The ratio of low-density lipoprotein cholesterol to apolipoprotein-B (LDL-C/apoB) conventionally represents an alternative index of LDL particle size. OBJECTIVE This study was undertaken to determine the importance of LDL-C/apoB ratio in the overall evaluation of atherogenicity of lipid profile. METHODS The plasma levels of total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), apolipoprotein (apo) A-I, apoB and apoE were measured in 186 apparently healthy men using enzymatic and immunoturbidimetric methods. RESULTS The subjects with low values of the LDL-C/apoB ratio, indicating a predominance of small dense LDL (sd-LDL) particles in plasma, were characterized by higher TG levels and lower apoE levels. CONCLUSION Low levels of apoE are most likely a cause of reduced clearance of TG-rich lipoproteins, which promotes the formation of sd-LDL. Determination of the LDL-C/apoB ratio can be used for monitoring qualitative changes in lipid profile, in addition to traditional lipid variables indicating quantitative changes.
Collapse
Affiliation(s)
- Anastasiya M Kaneva
- a Institute of Physiology, Komi Science Center, Ural Branch of Russian Academy of Sciences , Syktyvkar , Russia
| | - Natalya N Potolitsyna
- a Institute of Physiology, Komi Science Center, Ural Branch of Russian Academy of Sciences , Syktyvkar , Russia
| | - Evgeny R Bojko
- a Institute of Physiology, Komi Science Center, Ural Branch of Russian Academy of Sciences , Syktyvkar , Russia
| |
Collapse
|
55
|
Papanagnou P, Stivarou T, Tsironi M. The Role of miRNAs in Common Inflammatory Arthropathies: Osteoarthritis and Gouty Arthritis. Biomolecules 2016; 6:biom6040044. [PMID: 27845712 PMCID: PMC5197954 DOI: 10.3390/biom6040044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/29/2016] [Accepted: 11/02/2016] [Indexed: 01/15/2023] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNA species that are highly evolutionarily conserved, from higher invertebrates to man. Up to 1000 miRNAs have been identified in human cells thus far, where they are key regulators of the expression of numerous targets at the post-transcriptional level. They are implicated in various processes, including cell differentiation, metabolism, and inflammation. An expanding list of miRNAs is known to be involved in the pathogenesis of common, non-autoimmune inflammatory diseases. Interestingly, osteoarthritis (OA) is now being conceptualized as a metabolic disease, as there is a correlation among hyperuricemia and metabolic syndrome (MetS). Experimental evidence suggests that metabolic deregulation is a commonality between these different pathological entities, and that miRNAs are key players in the modulation of metabolic routes. In light of these findings, this review discusses the role of miRNAs in OA and gouty arthritis, as well as the possible therapeutic targetability of miRNAs in these diseases.
Collapse
Affiliation(s)
- Panagiota Papanagnou
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Orthias Artemidos and Plateon St, GR-23100 Sparti, Greece.
| | - Theodora Stivarou
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Orthias Artemidos and Plateon St, GR-23100 Sparti, Greece.
- Immunology Laboratory, Immunology Department, Hellenic Pasteur Institute, P.O Box 115 21, Athens, Greece.
| | - Maria Tsironi
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Orthias Artemidos and Plateon St, GR-23100 Sparti, Greece.
| |
Collapse
|
56
|
Prominent Lymphatic Vessel Hyperplasia with Progressive Dysfunction and Distinct Immune Cell Infiltration in Lymphedema. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2193-2203. [PMID: 27315777 DOI: 10.1016/j.ajpath.2016.04.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/16/2016] [Accepted: 04/12/2016] [Indexed: 01/22/2023]
Abstract
Lymphedema is a common complication that occurs after breast cancer treatment in up to 30% of the patients undergoing surgical lymph node excision. It is associated with tissue swelling, fibrosis, increased risk of infection, and impaired wound healing. Despite the pronounced clinical manifestations of the disease, little is known about the morphological and functional characteristics of the lymphatic vasculature during the course of lymphedema progression. We used an experimental murine tail lymphedema model where sustained fluid stasis was generated on disruption of lymphatic flow, resulting in chronic edema formation with fibrosis and adipose tissue deposition. Morphological analysis of the lymphatic vessels revealed a dramatic expansion during the course of the disease, with active proliferation of lymphatic endothelial cells at the early stages of lymphedema. The lymphatic capillaries exhibited progressively impaired tracer filling and retrograde flow near the surgery site, whereas the collecting lymphatic vessels showed a gradually decreasing contraction amplitude with unchanged contraction frequency, leading to lymphatic contraction arrest at the later stages of the disease. Lymphedema onset was associated with pronounced infiltration by immune cells, predominantly Ly6G(+) and CD4(+) cells, which have been linked to impaired lymphatic vessel function.
Collapse
|
57
|
Vaziri ND. Disorders of lipid metabolism in nephrotic syndrome: mechanisms and consequences. Kidney Int 2016; 90:41-52. [PMID: 27165836 DOI: 10.1016/j.kint.2016.02.026] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/02/2016] [Accepted: 02/11/2016] [Indexed: 12/17/2022]
Abstract
Nephrotic syndrome results in hyperlipidemia and profound alterations in lipid and lipoprotein metabolism. Serum cholesterol, triglycerides, apolipoprotein B (apoB)-containing lipoproteins (very low-density lipoprotein [VLDL], immediate-density lipoprotein [IDL], and low-density lipoprotein [LDL]), lipoprotein(a) (Lp[a]), and the total cholesterol/high-density lipoprotein (HDL) cholesterol ratio are increased in nephrotic syndrome. This is accompanied by significant changes in the composition of various lipoproteins including their cholesterol-to-triglyceride, free cholesterol-to-cholesterol ester, and phospholipid-to-protein ratios. These abnormalities are mediated by changes in the expression and activities of the key proteins involved in the biosynthesis, transport, remodeling, and catabolism of lipids and lipoproteins including apoproteins A, B, C, and E; 3-hydroxy-3-methylglutaryl-coenzyme A reductase; fatty acid synthase; LDL receptor; lecithin cholesteryl ester acyltransferase; acyl coenzyme A cholesterol acyltransferase; HDL docking receptor (scavenger receptor class B, type 1 [SR-B1]); HDL endocytic receptor; lipoprotein lipase; and hepatic lipase, among others. The disorders of lipid and lipoprotein metabolism in nephrotic syndrome contribute to the development and progression of cardiovascular and kidney disease. In addition, by limiting delivery of lipid fuel to the muscles for generation of energy and to the adipose tissues for storage of energy, changes in lipid metabolism contribute to the reduction of body mass and impaired exercise capacity. This article provides an overview of the mechanisms, consequences, and treatment of lipid disorders in nephrotic syndrome.
Collapse
Affiliation(s)
- Nosratola D Vaziri
- Division of Nephrology and Hypertension, Departments of Medicine, Physiology, and Biophysics, University of California, Irvine, Irvine, California.
| |
Collapse
|
58
|
Wang Y, Hao J, Liu X, Wang H, Zeng X, Yang J, Li L, Kuang X, Zhang T. The mechanism of apoliprotein A1 down-regulated by Hepatitis B virus. Lipids Health Dis 2016; 15:64. [PMID: 27015844 PMCID: PMC4807537 DOI: 10.1186/s12944-016-0232-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 03/19/2016] [Indexed: 12/12/2022] Open
Abstract
Background Hepatitis B virus (HBV) infection correlated with the development of cirrhosis, liver failure and hepatocellular carcinoma (HCC), poses a huge health burden on the global community. However, the pathogenesis of chronic hepatitis B (CHB) remains unclear. Apolipoprotein A1 (ApoA1) mainly secreted by hepatocytes, represents the major protein component of high-density lipoprotein. ApoA1 secretion may be disrupted by HBV infection. In this study, we mainly investigated the molecular mechanism of ApoA1 down regulated by HBV for revealing the pathogenesis of CHB. Methods ApoA1 expression in livers of CHB patients as well as healthy controls were performed by Real-time PCR (RT-PCR) and Western blot. The serum ApoA1 levels were measured by Enzymed-linked immunosorbent assay (ELISA). Expression of ApoA1 mRNA and protein levels were performed by RT-PCR and Western blot in human hepatoma HepG2 cells and subline HepG2.2.15 cells. HBV expression construct, pHBV1.3 were transfected into HepG2, the changes of ApoA1 mRNA and protein expression were detected by RT-PCR and Western blot. To further study the mechanism of ApoA1 down regulation by HBV, 11 CpG islands in ApoA1 promotor were tested for DNA methylation status by MSP. HepG2.2.15 cell lines were treated with DNA methyltransferase inhibitor 5-aza-deoxycytidine (5-aza-dC), then, expression of ApoA1 mRNA and HBV particles in the supernatant, as well as ApoA1 protein levels were detected by RT-PCR and Western blot. Secretion of HBsAg and HBeAg in HepG2 cells cotransfected with pApoA1 and pHBV1.3 constructs was tested by ELISA. Meanwhile, secretion of HBsAg and HBeAg in the supernatant were quantified by ELISA in the HepG2.2.15 cells treated with 5-aza-dC plus ApoA1 siRNA. Results Expression of ApoA1 mRNA and protein levels, as well as serum ApoA1 levels in CHB patients were decreased corresponding healthy controls in vivo. In addition, the expression of ApoA1 mRNA and protein levels were down regulated in HepG2.2.15 cells correponding HepG2 cells, 11 CpG islands in ApoA1 promoter were tested for methylation status by MSP in HepG2.2.15 cells compared to HepG2 cells, while two CpG islands were found hypermethylated. Expression of ApoA1 mRNA and protein levels were increased in HepG2.2.15 cells treated with DNA methyltransferase inhibitor 5-aza-dC. Furthermore, overexpression of ApoA1 can enhance HBV expression in HepG2 cells while the inhibitory effect of 5-aza-dC on HBV expression was completely abolished by blocking 5-aza-dC-induced up-regulation of ApoA1 using RNAi. Conclusions Epigenetic silencing of ApoA1 gene expression by CpG island DNA hypermethylation induced by HBV may contribute to the pathogenesis of CHB.
Collapse
Affiliation(s)
- Yuanyuan Wang
- School of Biomedical Sciences, Chengdu Medical College, Sichuan, 610500, China
| | - Junli Hao
- School of Biomedical Sciences, Chengdu Medical College, Sichuan, 610500, China
| | - Xiaohong Liu
- School of Biomedical Sciences, Chengdu Medical College, Sichuan, 610500, China
| | - Hongxin Wang
- School of Biomedical Sciences, Chengdu Medical College, Sichuan, 610500, China
| | - Xin Zeng
- School of Biomedical Sciences, Chengdu Medical College, Sichuan, 610500, China
| | - Jing Yang
- School of Biomedical Sciences, Chengdu Medical College, Sichuan, 610500, China
| | - Lei Li
- School of Biomedical Sciences, Chengdu Medical College, Sichuan, 610500, China
| | - Xi Kuang
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Sichuan, 610041, China.
| | - Tao Zhang
- School of Biomedical Sciences, Chengdu Medical College, Sichuan, 610500, China.
| |
Collapse
|
59
|
Ceglarek U, Kresse K, Becker S, Fiedler GM, Thiery J, Quante M, Wieland R, Bartels M, Aust G. Circulating sterols as predictors of early allograft dysfunction and clinical outcome in patients undergoing liver transplantation. Metabolomics 2016; 12:182. [PMID: 27840599 PMCID: PMC5078158 DOI: 10.1007/s11306-016-1129-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 10/15/2016] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Sensitive and specific assessment of the hepatic graft metabolism after liver transplantation (LTX) is essential for early detection of postoperative dysfunction implying the need for consecutive therapeutic interventions. OBJECTIVES Here, we assessed circulating liver metabolites of the cholesterol pathway, amino acids and acylcarnitines and evaluated their predictive value on early allograft dysfunction (EAD) and clinical outcome in the context of LTX. METHODS The metabolites were quantified in the plasma of 40 liver graft recipients one day pre- and 10 days post-LTX by liquid chromatography/tandem mass spectrometry (LC-MS/MS). Plant sterols as well as cholesterol and its precursors were determined in the free and esterified form; lanosterol in the free form only. Metabolites and esterification ratios were compared to the model for early allograft function scoring (MEAF) which is calculated at day 3 post-LTX from routine parameters defining EAD. RESULTS The hepatic esterification ratio of all sterols, but not amino acids and acylcarnitine concentrations, showed substantial metabolic disturbances post-LTX and correlated to the MEAF. In ROC analysis, the low esterification ratio of β-sitosterol and stigmasterol from day 1 and of the other sterols from day 3 were predictive for a high MEAF, i.e. EAD. Additionally, the ratio of esterified β-sitosterol and free lanosterol were predictive for all days and the esterification ratio of the other sterols at day 3 or 4 post-LTX for 3-month mortality. CONCLUSION Low ratios of circulating esterified sterols are associated with a high risk of EAD and impaired clinical outcome in the early postoperative phase following LTX.
Collapse
Affiliation(s)
- Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, University of Leipzig, 04103 Leipzig, Germany
- LIFE–Leipzig Research Center for Civilization Diseases, University Leipzig, Philipp-Rosenthal-Strasse 27, 04103 Leipzig, Germany
| | - Kathleen Kresse
- Research Laboratories and Clinic of Visceral, Transplantation, Thoracic, and Vascular Surgery, University Hospital Leipzig, University of Leipzig, Liebigstraße 19, 04103 Leipzig, Germany
| | - Susen Becker
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, University of Leipzig, 04103 Leipzig, Germany
- LIFE–Leipzig Research Center for Civilization Diseases, University Leipzig, Philipp-Rosenthal-Strasse 27, 04103 Leipzig, Germany
| | - Georg Martin Fiedler
- Department of Laboratory Medicine, Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Joachim Thiery
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, University of Leipzig, 04103 Leipzig, Germany
- LIFE–Leipzig Research Center for Civilization Diseases, University Leipzig, Philipp-Rosenthal-Strasse 27, 04103 Leipzig, Germany
| | - Markus Quante
- Research Laboratories and Clinic of Visceral, Transplantation, Thoracic, and Vascular Surgery, University Hospital Leipzig, University of Leipzig, Liebigstraße 19, 04103 Leipzig, Germany
| | - Robert Wieland
- Research Laboratories and Clinic of Visceral, Transplantation, Thoracic, and Vascular Surgery, University Hospital Leipzig, University of Leipzig, Liebigstraße 19, 04103 Leipzig, Germany
| | - Michael Bartels
- Research Laboratories and Clinic of Visceral, Transplantation, Thoracic, and Vascular Surgery, University Hospital Leipzig, University of Leipzig, Liebigstraße 19, 04103 Leipzig, Germany
| | - Gabriela Aust
- Research Laboratories and Clinic of Visceral, Transplantation, Thoracic, and Vascular Surgery, University Hospital Leipzig, University of Leipzig, Liebigstraße 19, 04103 Leipzig, Germany
| |
Collapse
|