51
|
|
52
|
Sotenjwa VZ, Chen W, Veale CGL, Anokwuru CP, Tankeu SY, Combrinck S, Kamatou GPP, Viljoen AM. Chemotypic variation of non-volatile constituents of Artemisia afra (African wormwood) from South Africa. Fitoterapia 2020; 147:104740. [PMID: 33039496 DOI: 10.1016/j.fitote.2020.104740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/04/2020] [Accepted: 10/04/2020] [Indexed: 11/29/2022]
Abstract
Artemisia afra (African wormwood) is a popular medicinal plant of southern Africa and is an excellent candidate for commercialisation. This current study was aimed at exploring the phytochemistry and chemical variation of non-volatile compounds within wild populations of A. afra, and developing chromatographic quality control protocols for raw materials based on the identification of marker compounds. Chromatographic data, from samples representing 12 distinct populations, were obtained using liquid chromatography-mass spectrometry. An untargeted chemometric approach revealed three clusters. Marker compounds for each cluster, revealed through discriminant analysis, were isolated and identified using NMR spectroscopy, as acacetin (1) (Group 1), chrysoeriol (2) (Group 2), and 3,5-di-O-caffeoylquinic acid (3) and scopoletin (4) (Group 3). In addition, (3) and rutin (5), (both reported for the first time from A. afra), and (1), (2), (4) and 4-caffeoylquinic acid (6) were established as reliable markers for species identification, since they were abundant in most samples. Quantitative analysis using a validated method established (4) as the dominant compound in the samples (1080-19,600 μg/g dry weight (d.w.)), followed by (5) (49.5-2490 μg/g d.w.). A high performance thin layer chromatography (HPTLC) method was developed. The Rf values and colours of the bands corresponding to the marker compounds were recorded so that these compounds could be easily identified for quality control purposes. Multivariate analysis of the data using the rTLC online application confirmed the presence of different chemical groupings within the samples. It was deduced that quantitative, rather than qualitative differences, characterised the samples. Future research should focus on comparing the efficacy of the various chemical clusters in multi-target biological assays aligned to the traditional use of the plant.
Collapse
Affiliation(s)
- V Zimkhitha Sotenjwa
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Weiyang Chen
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Pietermaritzburg 3201, South Africa
| | - Chinedu P Anokwuru
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Sidonie Y Tankeu
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Sandra Combrinck
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Guy P P Kamatou
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Alvaro M Viljoen
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Pretoria 0001, South Africa; SAMRC Herbal Drugs Research Unit, Faculty of Science, Tshwane University of Technology, Pretoria 0001, South Africa.
| |
Collapse
|
53
|
Olennikov DN, Vasilieva AG, Chirikova NK. Fragaria viridis Fruit Metabolites: Variation of LC-MS Profile and Antioxidant Potential during Ripening and Storage. Pharmaceuticals (Basel) 2020; 13:ph13090262. [PMID: 32971880 PMCID: PMC7559413 DOI: 10.3390/ph13090262] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
Fragaria viridis Weston or creamy strawberry is one of the less-known species of the Fragaria genus (Rosaceae family) with a wide distribution in Eurasia and is still in the shadow of more popular relatives F. ananassa (garden strawberry) or F. vesca (wild strawberry). Importantly, there is a lack of scientific knowledge on F. viridis compounds, their stability in the postharvest period, and bioactivity. In this study, metabolites of F. viridis fruits in three ripening stages were characterized with high-performance liquid chromatography with photodiode array and electrospray ionization triple quadrupole mass spectrometric detection (HPLC-PAD-ESI-tQ-MS). In total, 95 compounds of various groups including carbohydrates, organic acids, phenolics, and triterpenes, were identified for the first time. The quantitative content of the compounds varied differently during the ripening progress; some of them increased (anthocyanins, organic acids, and carbohydrates), while others demonstrated a decrease (ellagitannins, flavonols, etc.). The most abundant secondary metabolites of F. viridis fruits were ellagitannins (5.97–7.54 mg/g of fresh weight), with agrimoniin (1.41–2.63 mg/g) and lambertianin C (1.20–1.86 mg/g) as major components. Antioxidant properties estimated by in vitro assays (2,2-diphenyl-1-picrylhydrazyl radical (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) cation radical (ABTS), ferric reducing antioxidant power (FRAP), and oxygen radical absorbance capacity (ORAC)) showed good antioxidant potential in all ripening stages of F. viridis fruits. The pilot human experiment on the effect of F. viridis fruit consumption on the serum total antioxidant capacity confirmed the effectiveness of this kind of strawberry. Postharvest storage of ripe fruits at 4 °C and 20 °C lead to declining content in the majority of compounds particularly ascorbic acid, ellagitannins, and flavonols, with the most significant loss at room temperature storage. These results suggest that F. viridis fruits are a prospective source of numerous metabolites that have potential health benefits.
Collapse
Affiliation(s)
- Daniil N. Olennikov
- Laboratory of Medical and Biological Research, Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, 6 Sakh’yanovoy Street, 670047 Ulan-Ude, Russia
- Correspondence: ; Tel.: +7-9021-600-627
| | - Aina G. Vasilieva
- Department of Biology, Institute of Natural Sciences, North-Eastern Federal University, 58 Belinsky Street, 677027 Yakutsk, Russia; (A.G.V.); (N.K.C.)
| | - Nadezhda K. Chirikova
- Department of Biology, Institute of Natural Sciences, North-Eastern Federal University, 58 Belinsky Street, 677027 Yakutsk, Russia; (A.G.V.); (N.K.C.)
| |
Collapse
|
54
|
Majdan M, Kiss AK, Hałasa R, Granica S, Osińska E, Czerwińska ME. Inhibition of Neutrophil Functions and Antibacterial Effects of Tarragon ( Artemisia dracunculus L.) Infusion-Phytochemical Characterization. Front Pharmacol 2020; 11:947. [PMID: 32903580 PMCID: PMC7438555 DOI: 10.3389/fphar.2020.00947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/10/2020] [Indexed: 12/29/2022] Open
Abstract
The aim of the study was to characterize phytochemicals in an infusion of the aerial parts of tarragon (Artemisia dracunculus L.) using ultra-high-performance liquid chromatography diode array detector electrospray ionisation tandem mass spectrometry UHPLC‐DAD‐ESI‐MS/MS method, as well as an evaluation of its effects on mediators of the inflammation in an in vitro model of human neutrophils, and antimicrobial activity on selected pathogens. Flavonoids and caffeoylquinic acids were the main phenolic components of the extract of tarragon’s aerial parts. The infusion was able to inhibit reactive oxygen species (ROS), interleukin 8 (IL-8), and tumour necrosis factor α (TNF-α) production. The antimicrobial assay was performed with the use of nine strains of bacteria, both Gram-negative and Gram-positive. Three human pathogens, Staphylococcus aureus ATCC6538, Staphylococcus epidermidis ATCC14990, and Staphylococcus aureus MRSA (methicyllin-resistant Staphylococcus aureus) ATCC43300, proved to be the most sensitive to tarragon infusion. Our study demonstrated the antiinflammatory and antimicrobial properties of tarragon (Artemisia dracunculus L.), meaning the common spice may be a prospective source of health-promoting constituents.
Collapse
Affiliation(s)
- Magdalena Majdan
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland.,Department of Bromatology, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Anna K Kiss
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Rafał Hałasa
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| | - Sebastian Granica
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Osińska
- Department of Vegetable and Medicinal Plants, Institute of Horticulture Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Monika E Czerwińska
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
55
|
Li J, Chi G, Wang L, Wang F, He S. Isolation, identification, and inhibitory enzyme activity of phenolic substances present in Spirulina. J Food Biochem 2020; 44:e13356. [PMID: 32627220 DOI: 10.1111/jfbc.13356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/12/2020] [Accepted: 06/09/2020] [Indexed: 11/28/2022]
Abstract
Spirulina species are edible with high nutritional as well as potential therapeutic values. In this work, we show that phenolic extracts from Spirulina (p-Coumaric acid) possessed inhibitory potential on α-glucosidase (IC50 = 1.67 ± 0.02 mM) and tyrosinase (IC50 = 52.71 ± 3.01 mM). Moreover, p-Coumaric acid inhibited α-glucosidase and tyrosinase in a reversible mixed-type manner. Interestingly, molecular docking demonstrated that p-Coumaric acid penetrated in depth of the active-site of tyrosinase and α-glucosidase by the noncovalent force or interaction. Among them, making polar interactions with Cu2+ ions and the amino acid residue capable of forming cation-π significantly contribute to the strong binding of p-Coumaric acid on tyrosinase. p-Coumaric acid was isolated and identified from Spirulina for the first time, which can be used as a lead compound for the design of functional food additives and skin-lightening active ingredient in cosmetics, and pharmaceuticals against type 2 diabetes. PRACTICAL APPLICATIONS: A natural, food-derived compound possessing the potential for the development of an anti-hyperglycaemic and skin-lightening supplement is very promising in cosmetics, functional food, and pharmaceuticals against type 2 diabetes. Herein, the present study is the first to present high levels of p-Coumaric acid from Spirulina, which simultaneously possessed inhibition potential on α-glucosidase and tyrosinase. Importantly, we gained initial information about the polypeptide-inhibitor interactions and underlying mechanisms for Spirulina's therapeutic effects, which will provide the bases for developing new drugs for preventing or treating type 2 diabetes and enzyme inhibitors. Moreover, this work also demonstrates the potential of the extraction of high-value chemicals from Spirulina waste.
Collapse
Affiliation(s)
- Jian Li
- College of Food and Biological Engineering, Jimei University, Xiamen, P.R. China
| | - Guoxiang Chi
- College of Food and Biological Engineering, Jimei University, Xiamen, P.R. China
| | - Li Wang
- College of Food and Biological Engineering, Jimei University, Xiamen, P.R. China
| | - Fang Wang
- College of Chemistry and Life Science, Quanzhou Normal College, Quanzhou, P.R. China
| | - Shansheng He
- College of Food and Biological Engineering, Jimei University, Xiamen, P.R. China
| |
Collapse
|
56
|
|
57
|
Olennikov DN, Chirikova NK, Vasilieva AG, Fedorov IA. LC-MS Profile, Gastrointestinal and Gut Microbiota Stability and Antioxidant Activity of Rhodiola rosea Herb Metabolites: A Comparative Study with Subterranean Organs. Antioxidants (Basel) 2020; 9:E526. [PMID: 32560093 PMCID: PMC7346138 DOI: 10.3390/antiox9060526] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 12/14/2022] Open
Abstract
Golden root (Rhodiola rosea L., Crassulaceae) is a famous medical plant with a one-sided history of scientific interest in the roots and rhizomes as sources of bioactive compounds, unlike the herb, which has not been studied extensively. To address this deficiency, we used high-performance liquid chromatography with diode array and electrospray triple quadrupole mass detection for comparative qualitative and quantitative analysis of the metabolic profiles of Rhodiola rosea organs before and after gastrointestinal digestion in simulated conditions together with various biochemical assays to determine antioxidant properties of the extracts and selected compounds. R. rosea organs showed 146 compounds, including galloyl O-glucosides, catechins, procyanidins, simple phenolics, phenethyl alcohol derivatives, (hydroxy)cinnamates, hydroxynitrile glucosides, monoterpene O-glucosides, and flavonol O-glycosides, most of them for the first time in the species. The organ-specific distribution of compounds found for catechins, procyanidins, and cinnamyl alcohols and glucosides was typical for underground organs and flavonoids and galloylated glucoses concentrated in the herb. Extracts from rhizomes, leaves and flowers showed high phenolic content and were effective scavengers of free radicals (2,2-diphenyl-1-picrylhydrazyl (DPPH•), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+), O2•-, •OH) and protected β-carotene in a bleaching assay. Digestion in the gastric and intestine phase influenced the composition of R. rosea extracts negatively, affecting the content of catechins, procyanidins, and galloyl glucoses, and therefore, the antioxidativity level. After gut microbiota treatment, the antioxidant capacity of rhizome extract was lower than leaves and flowers due to the aglycone composition found in the colonic phase of digestion. Our study demonstrated that the herb of R. rosea is a rich source of metabolites with high antioxidant properties and could be a valuable plant for new bioactive products.
Collapse
Affiliation(s)
- Daniil N. Olennikov
- Laboratory of Medical and Biological Research, Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, 6 Sakh’yanovoy Street, Ulan-Ude 670047, Russia
| | - Nadezhda K. Chirikova
- Department of Biology, Institute of Natural Sciences, North-Eastern Federal University, 58 Belinsky Street, Yakutsk 677027, Russia; (N.K.C.); (A.G.V.)
| | - Aina G. Vasilieva
- Department of Biology, Institute of Natural Sciences, North-Eastern Federal University, 58 Belinsky Street, Yakutsk 677027, Russia; (N.K.C.); (A.G.V.)
| | - Innokentii A. Fedorov
- Institute for Biological Problems of Cryolithozone, Siberian Division, Russian Academy of Science, 41 Lenina Street, Yakutsk 677000, Russia;
| |
Collapse
|
58
|
Silenerepin – a New C-Glycosylflavone from Silene repens. Chem Nat Compd 2020. [DOI: 10.1007/s10600-020-03053-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
59
|
Kim SM, Vetrivel P, Kim HH, Ha SE, Saralamma VVG, Kim GS. Artemisia iwayomogi (Dowijigi) inhibits lipopolysaccharide-induced inflammation in RAW264.7 macrophages by suppressing the NF-κB signaling pathway. Exp Ther Med 2020; 19:2161-2170. [PMID: 32104280 PMCID: PMC7027351 DOI: 10.3892/etm.2020.8472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 12/13/2019] [Indexed: 12/25/2022] Open
Abstract
Inflammatory diseases are an important health concern and have a growing incidence worldwide. Thus, developing novel and safe drugs to treat these disorders remains an important pursuit. Artemisia iwayomogi, locally known as Dowijigi (DJ), is a perennial herb found primarily in Korea and is used to treat various diseases such as hepatitis, inflammation and immune disorders. In the present study, the anti-inflammatory effects of a polyphenolic extract from the DJ flower (PDJ) in lipopolysaccharide (LPS)-stimulated mouse macrophage RAW264.7 cells were investigated. Cell cytotoxicity was assessed using the MTT assay. The production of nitric oxide (NO) and prostaglandin E2 (PGE2) was measured by Griess and ELISA analysis, respectively. The expression levels of inducible nitric oxide (iNOS) and cyclooxygenase-2 (COX2) were examined by western blot analysis. Reverse transcription-quantitative PCR was performed to detect the mRNA expression levels of pro-inflammatory cytokines, including tumor necrosis factor α (TNFα), interleukin (IL)-6 and IL-1β, as well as COX2 and iNOS. The production of NO and PGE2 was significantly decreased following treatment with PDJ. The mRNA expression levels of TNFα, IL-6, IL-1β, COX2 and iNOS were significantly decreased in LPS-induced PDJ co-treated cells compared with the group treated with LPS alone. Western blot analysis indicated that PDJ downregulated the LPS-induced expression of iNOS and COX2, as well as the expression of NF-κB proteins. In conclusion, the present study demonstrated that PDJ exerted anti-inflammatory effects in LPS-induced macrophage cells by suppressing the NF-κB signaling pathway. Therefore, PDJ may be used as a potential therapeutic agent in inflammation.
Collapse
Affiliation(s)
- Seong Min Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsang 52828, Republic of Korea
| | - Preethi Vetrivel
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsang 52828, Republic of Korea
| | - Hun Hwan Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsang 52828, Republic of Korea
| | - Sang Eun Ha
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsang 52828, Republic of Korea
| | - Venu Venkatarame Gowda Saralamma
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsang 52828, Republic of Korea
| | - Gon Sup Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsang 52828, Republic of Korea
| |
Collapse
|
60
|
Stompor M, Broda D, Bajek-Bil A. Dihydrochalcones: Methods of Acquisition and Pharmacological Properties-A First Systematic Review. Molecules 2019; 24:molecules24244468. [PMID: 31817526 PMCID: PMC6943545 DOI: 10.3390/molecules24244468] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022] Open
Abstract
Dihydrochalcones are a class of secondary metabolites, for which demand in biological and pharmacological applications is still growing. They posses several health-endorsing properties and, therefore, are promising candidates for further research and development. However, low content of dihydrochalcones in plants along with their low solubility and bioavailability restrict the development of these compounds as clinical therapeutics. Therefore, chemomicrobial and enzymatic modifications are required to expand their application. This review aims at analyzing and summarizing the methods of obtaining dihydrochalcones and of presenting their pharmacological actions that have been described in the literature to support potential future development of this group of compounds as novel therapeutic drugs. We have also performed an evaluation of the available literature on beneficial effects of dihydrochalcones with potent antioxidant activity and multifactorial pharmacological effects, including antidiabetic, antitumor, lipometabolism regulating, antioxidant, anti-inflammatory, antibacterial, antiviral, and immunomodulatory ones. In addition, we provide useful information on their properties, sources, and usefulness in medicinal chemistry.
Collapse
Affiliation(s)
- Monika Stompor
- Institute of Medical Sciences, University of Rzeszów, 35-959 Rzeszów, Poland
- Correspondence:
| | - Daniel Broda
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Agata Bajek-Bil
- Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszów, Poland;
| |
Collapse
|
61
|
|
62
|
|
63
|
Olennikov DN, Gadimli AI, Isaev JI, Kashchenko NI, Prokopyev AS, Kataeva TN, Chirikova NK, Vennos C. Caucasian Gentiana Species: Untargeted LC-MS Metabolic Profiling, Antioxidant and Digestive Enzyme Inhibiting Activity of Six Plants. Metabolites 2019; 9:E271. [PMID: 31703419 PMCID: PMC6918269 DOI: 10.3390/metabo9110271] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 11/16/2022] Open
Abstract
The members of Gentiana genus are widely distributed in the Caucasus region where they are used as phytoremedies, but they still have not been studied for their chemical composition and bioactivity. High-performance liquid chromatography with diode array and electrospray triple quadrupole mass detection (HPLC-DAD-ESI-QQQ-MS) was used to investigate metabolites of herb and roots of six gentians (Gentiana asclepiadea, G. cruciata, G. gelida, G. paradoxa, G. pneumonanthe, G. septemfida) grown in the Caucasus. In total, 137 compounds were found including three carbohydrates, 71 iridoid glycosides (mostly loganic acid), loganin, swertiamarin, gentiopicroside and sweroside derivatives, 40 flavones C-, O-, C,O-glycosides (such as luteolin, apigenin, chrysoeriol, and acacetin derivatives), two phenolic O-glycosides, five hydroxycinnamates, eight xanthones, and seven triterpene glycosides. Most of these compounds were identified in gentian samples for the first time. Quantitative differences were found in levels of seven iridoid glycosides, nine glycosylflavones, and two xanthones obtained by HPLC-DAD assay. The gentian extracts were evaluated for their radical-scavenging properties against DPPH and superoxide anion radicals, lipid peroxidation inhibition, and α-amylase/α-glycosidase inhibition. The herb extracts showed higher activity than root extracts. Positive correlations were found between the content of quantified phenolics and antioxidant and digestive enzymes inhibiting activity. The findings presented in our work suggest that the Caucasian gentians are a good source of bioactive phytocompounds with antioxidant and antidiabetic potential.
Collapse
Affiliation(s)
- Daniil N. Olennikov
- Laboratory of Medical and Biological Research, Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, 6 Sakh’yanovoy Street, 670047 Ulan-Ude, Russia;
| | - Aydan I. Gadimli
- Department of Pharmacognosy, Azerbaijan Medical University, Anvar Gasimzade Street 14, Baku AZ1022, Azerbaijan; (A.I.G.); (J.I.I.)
| | - Javanshir I. Isaev
- Department of Pharmacognosy, Azerbaijan Medical University, Anvar Gasimzade Street 14, Baku AZ1022, Azerbaijan; (A.I.G.); (J.I.I.)
| | - Nina I. Kashchenko
- Laboratory of Medical and Biological Research, Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, 6 Sakh’yanovoy Street, 670047 Ulan-Ude, Russia;
| | - Alexey S. Prokopyev
- Siberian Botanic Garden, Tomsk State University, Lenin Avenue 34/1, 634050 Tomsk, Russia; (A.S.P.); (T.N.K.)
| | - Tatyana N. Kataeva
- Siberian Botanic Garden, Tomsk State University, Lenin Avenue 34/1, 634050 Tomsk, Russia; (A.S.P.); (T.N.K.)
| | - Nadezhda K. Chirikova
- Department of Biochemistry and Biotechnology, North-Eastern Federal University, 58 Belinsky Street, 677027 Yakutsk, Russia;
| | - Cecile Vennos
- Regulatory and Medical Scientific Affairs, Padma AG, 30 Haldenstrasse, CH-8620 Wetzikon, Switzerland;
| |
Collapse
|
64
|
Deipenbrock M, Hensel A. Polymethoxylated flavones from Orthosiphon stamineus leaves as antiadhesive compounds against uropathogenic E. coli. Fitoterapia 2019; 139:104387. [PMID: 31678632 DOI: 10.1016/j.fitote.2019.104387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/17/2019] [Accepted: 10/20/2019] [Indexed: 12/30/2022]
Abstract
Aqueous and acetone extracts of O. stamineus leaves reduce the adhesion of uropathogenic E. coli (UPEC, strain UTI89) to T24 bladder cells significantly (IC25 ~ 524 mg/mL, resp. 40 μg/mL). The acteonic extract had no cytotoxic effects against UPEC in concentrations that inhibited the bacterial adhesion. The extract significantly reduced the gene expression of fimH, fimC, fimD, csgA and focG, which are strongly involved in the formation of bacterial adhesins. The antiadhesive effect was due to the presence of polymethoxylated flavones, enriched in the acetonic extract. Five flavones have been isolated by fast centrifugal partition chromatography, followed by preparative HPLC. Eupatorin, ladanein, salvigenin, sinensetin, 5,6,7,4'-tetramethoxyflavone and 5-hydroxy-6,7,3',4'-tetramethoxyflavone were identified as the main polymethoxylated flavones. With the exception of eupatorin, all of these flavones reduced the bacterial adhesion in a concentration depending manner, indicating that B-ring hydroxylation and methoxylation seems to have a major impact on the antiadhesive activity. In addition, this was confirmed by investigation of the flavones chrysoeriol and diosmetin, which had only very weak antiadhesive activity. From these data, Orthosiphon extracts can be assessed to have a pronounced antiadhesive activity against UPEC, based on a variety of polymethoxylated flavones.
Collapse
Affiliation(s)
- Melanie Deipenbrock
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Corrensstraße 48, D-48149 Münster, Germany
| | - Andreas Hensel
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Corrensstraße 48, D-48149 Münster, Germany.
| |
Collapse
|
65
|
Polyoxometalates: Study of inhibitory kinetics and mechanism against α-glucosidase. J Inorg Biochem 2019; 199:110784. [DOI: 10.1016/j.jinorgbio.2019.110784] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 12/23/2022]
|
66
|
|
67
|
Olennikov DN, Kashchenko NI, Chirikova NK, Vasil'eva AG, Gadimli AI, Isaev JI, Vennos C. Caffeoylquinic Acids and Flavonoids of Fringed Sagewort ( Artemisia frigida Willd.): HPLC-DAD-ESI-QQQ-MS Profile, HPLC-DAD Quantification, in Vitro Digestion Stability, and Antioxidant Capacity. Antioxidants (Basel) 2019; 8:E307. [PMID: 31416222 PMCID: PMC6720735 DOI: 10.3390/antiox8080307] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/29/2019] [Accepted: 08/12/2019] [Indexed: 01/07/2023] Open
Abstract
Fringed sagewort (Artemisia frigida Willd., Compositae family) is a well-known medicinal plant in Asian medical systems. Fifty-nine hydroxycinnamates and flavonoids have been found in A. frigida herbs of Siberian origin by high-performance liquid chromatography with diode array and electrospray triple quadrupole mass detection (HPLC-DAD-ESI-QQQ-MS). Their structures were determined after mass fragmentation analysis as caffeoylquinic acids, flavone O-/C-glycosides, flavones, and flavonol aglycones. Most of the discovered components were described in A. frigida for the first time. It was shown that flavonoids with different types of substitution have chemotaxonomic significance for species of Artemisia subsection Frigidae (section Absinthium). After HPLC-DAD quantification of 16 major phenolics in 21 Siberian populations of A. frigida and subsequent principal component analysis, we found substantial variation in the selected compounds, suggesting the existence of two geographical groups of A. frigida. The antioxidant activity of A. frigida herbal tea was determined using 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH•) and hydrophilic/lipophilic oxygen radical absorbance capacity (ORAC) assays and DPPH•-HPLC profiling, revealing it to be high. The effect of digestive media on the phenolic profile and antioxidant capacity of A. frigida herbal tea was assessed under simulated gastrointestinal digestion. We found a minor reduction in caffeoylquinic acid content and ORAC values, but remaining levels were satisfactory for antioxidant protection. These results suggest that A. frigida and its food derivate herbal tea could be recommended as new plant antioxidants rich in phenolics.
Collapse
Affiliation(s)
- Daniil N Olennikov
- Laboratory of Medical and Biological Research, Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, 6 Sakh'yanovoy Street, Ulan-Ude 670047, Russia.
| | - Nina I Kashchenko
- Laboratory of Medical and Biological Research, Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, 6 Sakh'yanovoy Street, Ulan-Ude 670047, Russia
| | - Nadezhda K Chirikova
- Department of Biochemistry and Biotechnology, North-Eastern Federal University, 58 Belinsky Street, Yakutsk 677027, Russia
| | - Aina G Vasil'eva
- Department of Biochemistry and Biotechnology, North-Eastern Federal University, 58 Belinsky Street, Yakutsk 677027, Russia
| | - Aydan I Gadimli
- Department of Pharmacognosy, Azerbaijan Medical University, Anvar Gasimzade Street 14, Baku AZ1022, Azerbaijan
| | - Javanshir I Isaev
- Department of Pharmacognosy, Azerbaijan Medical University, Anvar Gasimzade Street 14, Baku AZ1022, Azerbaijan
| | - Cecile Vennos
- Regulatory and Medical Scientific Affairs, Padma AG, 1 Underfeldstrasse, CH-8340 Hinwil, Switzerland
| |
Collapse
|
68
|
|
69
|
|
70
|
Khellactone Derivatives and Other Phenolics of Phlojodicarpus sibiricus (Apiaceae): HPLC-DAD-ESI-QQQ-MS/MS and HPLC-UV Profile, and Antiobesity Potential of Dihydrosamidin. Molecules 2019; 24:molecules24122286. [PMID: 31248222 PMCID: PMC6630902 DOI: 10.3390/molecules24122286] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 01/09/2023] Open
Abstract
With obesity, the consumption of phenolic-enriched food additives as a part of traditional nutrition avoids the negative implications of eating high-calorie products. This study investigated the new herbal food additive, Phlojodicarpus sibiricus roots and herb, ubiquitously used in Siberia as a spice. Chromatographic techniques such as HPLC-DAD-ESI-QQQ-MS/MS and microcolumn HPLC-UV were the basic instruments for component profiling and quantification, and antiobesity potential was investigated using a differentiated 3T3-L1 adipocytes assay. We found that the roots and herb of P. sibiricus were high-coumarin-containing additives inhibiting triacylglycerol accumulation in 3T3-L1 preadipocytes. Forty-one phenolics were detected in P. sibiricus extracts, and 35 were coumarins, including 27 khellactone derivatives present as esters and glucosides. Total coumarin content varied from 36.16 mg/g of herb to 98.24 mg/g of roots, and from 0.32 mg/mL to 52.91 mg/mL in P. sibiricus preparations. Moreover, Siberian populations of P. sibiricus were characterised by a different HPLC-based coumarin profile. The most pronounced inhibiting effect on triacylglycerol accumulation in 3T3-L1 preadipocytes was shown for dihydrosamidin (khellactone 3′-O-isovaleroyl-4′-O-acetyl ester), which was more active than other khellactone esters and glucosides. The results demonstrated that if used as a food additive Phlojodicarpus sibiricus could be a source of bioactive coumarins of the khellactone group with high antiobesity potential.
Collapse
|
71
|
Moraes Neto RN, Setúbal RFB, Higino TMM, Brelaz-de-Castro MCA, da Silva LCN, Aliança ASDS. Asteraceae Plants as Sources of Compounds Against Leishmaniasis and Chagas Disease. Front Pharmacol 2019; 10:477. [PMID: 31156427 PMCID: PMC6530400 DOI: 10.3389/fphar.2019.00477] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 04/16/2019] [Indexed: 12/28/2022] Open
Abstract
Leishmaniasis and Chagas disease cause great impact on social and economic aspects of people living in developing countries. The treatments for these diseases are based on the same regimen for over 40 years, thus, there is an urgent need for the development of new drugs. In this scenario, Asteraceae plants (a family widely used in folk medicine worldwide) are emerging as an interesting source for new trypanocidal and leishmanicidal compounds. Herein, we provide a non-exhaustive review about the activity of plant-derived products from Asteraceae with inhibitory action toward Leishmania spp. and T. cruzi. Special attention was given to those studies aiming the isolation (or identification) of the bioactive compounds. Ferulic acid, rosmarinic acid, and ursolic acid (Baccharis uncinella DC.) were efficient to treat experimental leishmaniasis; while deoxymikanolide (Mikania micrantha) and (+)-15-hydroxy-labd-7-en-17-al (Aristeguietia glutinosa Lam.) showed in vivo anti-T. cruzi action. It is also important to highlight that several plant-derived products (compounds, essential oils) from Artemisia plants have shown high inhibitory potential against Leishmania spp., such as artemisinin and its derivatives. In summary, these compounds may help the development of new effective agents against these neglected diseases.
Collapse
|
72
|
Chi G, Qi Y, Li J, Wang L, Hu J. Polyoxomolybdates as α-glucosidase inhibitors: Kinetic and molecular modeling studies. J Inorg Biochem 2019; 193:173-179. [PMID: 30776576 DOI: 10.1016/j.jinorgbio.2019.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/17/2019] [Accepted: 02/01/2019] [Indexed: 11/25/2022]
Abstract
Noninsulin dependent diabetes mellitus is a serious global disease that is treated by inhibiting α-glucosidase to reduce the glucose content in the blood. Several incompletely satisfactory therapeutic drugs are already on the market. In this report, we showed that polyoxomolybdates based on Keggin-type architecture are promising candidates. Kinetic studies indicate that H3PMo12O40, Na4PMo11VO40, Na6PMo11FeO40 and Na7PMo11CoO40 strongly inhibit α-glucosidase with IC50 values of 6.14 ± 0.38 μM, 52.33 ± 1.41 μM, 161.90 ± 7.68 μM and 103.10 ± 2.88 μM, respectively. Moreover, H3PMo12O40, Na4PMo11VO40, and Na7PMo11CoO40 are reversible, competitive inhibitors with KI values of 0.018 mM, 0.146 mM and 0.121 mM, respectively. Na6PMo11FeO40 inhibited α-glucosidase in a reversible noncompetitive manner with KI and KIS of 0.312 mM and 0.412 mM, respectively. Molecular docking simulation suggested that H3PMo12O40 binds into the substrate binding site in accordance with competitive inhibition behavior and offered, in addition, an initial insight into the polypeptide-inhibitor interactions. This work presents a promising new perspective for designing effective α-glucosidase inhibitors and further demonstrates the enormous potential of polyoxomolybdates as enzyme inhibitors.
Collapse
Affiliation(s)
- Guoxiang Chi
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Yanfei Qi
- School of Public Health, Jilin University, Changchun 130021, PR China
| | - Jian Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Li Wang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| | - Jingjing Hu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| |
Collapse
|