51
|
Zhang YX, Ou MY, Yang ZH, Sun Y, Li QF, Zhou SB. Adipose tissue aging is regulated by an altered immune system. Front Immunol 2023; 14:1125395. [PMID: 36875140 PMCID: PMC9981968 DOI: 10.3389/fimmu.2023.1125395] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
Adipose tissue is a widely distributed organ that plays a critical role in age-related physiological dysfunctions as an important source of chronic sterile low-grade inflammation. Adipose tissue undergoes diverse changes during aging, including fat depot redistribution, brown and beige fat decrease, functional decline of adipose progenitor and stem cells, senescent cell accumulation, and immune cell dysregulation. Specifically, inflammaging is common in aged adipose tissue. Adipose tissue inflammaging reduces adipose plasticity and pathologically contributes to adipocyte hypertrophy, fibrosis, and ultimately, adipose tissue dysfunction. Adipose tissue inflammaging also contributes to age-related diseases, such as diabetes, cardiovascular disease and cancer. There is an increased infiltration of immune cells into adipose tissue, and these infiltrating immune cells secrete proinflammatory cytokines and chemokines. Several important molecular and signaling pathways mediate the process, including JAK/STAT, NFκB and JNK, etc. The roles of immune cells in aging adipose tissue are complex, and the underlying mechanisms remain largely unclear. In this review, we summarize the consequences and causes of inflammaging in adipose tissue. We further outline the cellular/molecular mechanisms of adipose tissue inflammaging and propose potential therapeutic targets to alleviate age-related problems.
Collapse
Affiliation(s)
- Yi-Xiang Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min-Yi Ou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zi-Han Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Sun
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qing-Feng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang-Bai Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
52
|
Crisp CD, Baldi R, Fuller M, Abreu E, Nackley AG. Complementary Approaches for Military Women with Chronic Pelvic Pain: A Randomized Trial. JOURNAL OF INTEGRATIVE AND COMPLEMENTARY MEDICINE 2023; 29:22-30. [PMID: 36251868 DOI: 10.1089/jicm.2022.0616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Introduction: Active duty (AD) women suffer with chronic pelvic pain (CPP) while providers tackle diagnoses and treatments to keep them functional without contributing to the opioid epidemic. The purpose of this randomized trial was to determine the effectiveness of noninvasive, self-explanatory mindfulness-based stress reduction (MBSR) or self-paced healthy lifestyle (HL) interventions on CPP in AD women. Methods: A 6-week, interventional prospective study with AD women aged 21-55 years at Mountain Home (MTHM), Idaho, was conducted. Women were randomly assigned to MBSR (N = 21) or HL (N = 20) interventions. The primary outcome was pain perception. The secondary outcomes were depression and circulating cytokine levels. Results: Women in the MBSR group exhibited reduced pain interference (p < 0.01) and depression (p < 0.05) alongside decreased interleukin (IL)-4 (p < 0.05), IL-6 (p < 0.05), eotaxin (p < 0.05), monocyte chemoattractant protein-1 (p = 0.06), and interleukin-1 receptor antagonist (IL-1ra) (p < 0.01) and increased vascular endothelial growth factor (p < 0.05). Women in the HL group did not have changes in pain; however, they did exhibit reduced depression (p < 0.05) alongside decreased granulocyte-macrophage colony-stimulating factor (p < 0.05) and increased tumor necrosis factor alpha (p < 0.05), stromal cell-derived factor-1 (p < 0.01), and IL-1ra (p < 0.01). Conclusions: AD women receiving MBSR or HL had reduced depression scores and altered circulating cytokine levels; however, only those receiving MBSR had reduced pain perception. Findings support MBSR as an effective and viable behavioral treatment for AD women suffering from CPP and provide premise for larger randomized controlled studies. Clinical Trial Registration: MOCHI-An RCT of mindfulness as a treatment for CPP in AD Women NCT04104542 (September 26, 2019).
Collapse
Affiliation(s)
- Carol D Crisp
- Nursing and Health Science, School of Nursing and Health Studies, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Robert Baldi
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Matthew Fuller
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Eduardo Abreu
- Nursing and Health Science, School of Nursing and Health Studies, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Andrea G Nackley
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
53
|
Harsanyi S, Kupcova I, Danisovic L, Klein M. Selected Biomarkers of Depression: What Are the Effects of Cytokines and Inflammation? Int J Mol Sci 2022; 24:578. [PMID: 36614020 PMCID: PMC9820159 DOI: 10.3390/ijms24010578] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
Depression is one of the leading mental illnesses worldwide and lowers the quality of life of many. According to WHO, about 5% of the worldwide population suffers from depression. Newer studies report a staggering global prevalence of 27.6%, and it is rising. Professionally, depression belonging to affective disorders is a psychiatric illness, and the category of major depressive disorder (MDD) comprises various diagnoses related to persistent and disruptive mood disorders. Due to this fact, it is imperative to find a way to assess depression quantitatively using a specific biomarker or a panel of biomarkers that would be able to reflect the patients' state and the effects of therapy. Cytokines, hormones, oxidative stress markers, and neuropeptides are studied in association with depression. The latest research into inflammatory cytokines shows that their relationship with the etiology of depression is causative. There are stronger cytokine reactions to pathogens and stressors in depression. If combined with other predisposing factors, responses lead to prolonged inflammatory processes, prolonged dysregulation of various axes, stress, pain, mood changes, anxiety, and depression. This review focuses on the most recent data on cytokines as markers of depression concerning their roles in its pathogenesis, their possible use in diagnosis and management, their different levels in bodily fluids, and their similarities in animal studies. However, cytokines are not isolated from the pathophysiologic mechanisms of depression or other psychiatric disorders. Their effects are only a part of the whole pathway.
Collapse
Affiliation(s)
- Stefan Harsanyi
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Ida Kupcova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Martin Klein
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
| |
Collapse
|
54
|
Hughes HK, Yang H, Lesh TA, Carter CS, Ashwood P. Evidence of innate immune dysfunction in first-episode psychosis patients with accompanying mood disorder. J Neuroinflammation 2022; 19:287. [DOI: 10.1186/s12974-022-02648-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022] Open
Abstract
Abstract
Background
Inflammation and increases in inflammatory cytokines are common findings in psychiatric disorders such as schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD). Meta-analyses of studies that measured circulating cytokines have provided evidence of innate inflammation across all three disorders, with some overlap of inflammatory cytokines such as IL-6 and TNF-α. However, differences across disorders were also identified, including increased IL-4 in BD that suggest different immune mechanisms may be involved depending on the type of disorder present.
Methods
We sought to identify if the presence or absence of an affective disorder in first-episode psychotic (FEP) patients was associated with variations in cytokine production after stimulation of peripheral blood mononuclear cells (PBMC). 98 participants were recruited and grouped into healthy controls (n = 45) and first-episode psychosis patients (n = 53). Psychosis patients were further grouped by presence (AFF; n = 22) or lack (NON; n = 31) of an affective disorder. We cultured isolated PBMC from all participants for 48 h at 37 °C under four separate conditions; (1) culture media alone for baseline, or the following three stimulatory conditions: (2) 25 ng/mL lipopolysaccharide (LPS), (3) 10 ng/mL phytohemagglutinin (PHA), and (4) 125 ng/ml α-CD3 plus 250 ng/ml α-CD28. Supernatants collected at 48 h were analyzed using multiplex Luminex assay to identify differences in cytokine and chemokine production. Results from these assays were then correlated to patient clinical assessments for positive and negative symptoms common to psychotic disorders.
Results
We found that PBMC from affective FEP patients produced higher concentrations of cytokines associated with both innate and adaptive immunity after stimulation than non-affective FEP patients and healthy controls. More specifically, the AFF PBMC produced increased tumor necrosis fctor (TNF)-α, interleukin (IL)-1β, IL-6, and others associated with innate inflammation. PBMC from AFF also produced increased IL-4, IL-17, interferon (IFN)γ, and other cytokines associated with adaptive immune activation, depending on stimulation. Additionally, inflammatory cytokines that differed at rest and after LPS stimulation correlated with Scale for the Assessment of Negative Symptoms (SANS) scores.
Conclusions
Our findings suggest that immune dysfunction in affective psychosis may differ from that of primary psychotic disorders, and inflammation may be associated with increased negative symptoms. These findings could be helpful in determining clinical diagnosis after first psychotic episode.
Collapse
|
55
|
Xu H, Wang L, Chen H, Cai H. HDAC4 depletion ameliorates IL-13-triggered inflammatory response and mucus production in nasal epithelial cells via activation of SIRT1/NF-κB signaling. Immun Inflamm Dis 2022; 10:e692. [PMID: 36301023 PMCID: PMC9601864 DOI: 10.1002/iid3.692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/20/2022] [Accepted: 08/08/2022] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Allergic rhinitis (AR) is frequently known as a chronic respiratory disease with a global high prevalence. The pivotal roles of histone deacetylase 4 (HDAC4) in multiple human diseases have been underlined by numerous studies. Nevertheless, whether HDAC4 is implicated in AR remains to be elaborated. The objective of the current study is to clarify the impacts of HDAC4 on AR. METHODS First, human nasal epithelial cells (hNECs) were pretreated by interleukin-13 (IL-13). HDAC4 expression in hNECs with the presence or absence of IL-13 treatment was tested by quantitative reverse-transcription polymerase chain reaction (RT-qPCR) and western blot. Following, after HDAC4 was depleted, levels of histamine, Immunoglobulin E (IgE) and inflammatory factors were analyzed by ELISA assay. Then, Mucin-5AC (MUC5AC) expression was examined through RT-qPCR, western blot, and IF assay. Western blot was to analyze the expression of sirtuin 1 (SIRT1)/nuclear factor-kappaB (NF-κB) signaling-related proteins. After IL-13-induced hNECs were cotransfected with HDAC4 interference plasmids and SIRT1 inhibitor EX527, the functional experiments above were conducted again. RESULTS The experimental data in this study presented that HDAC4 expression was increased in IL-13-induced hNECs. Silencing of HDAC4 cut down the levels of histamine, IgE and inflammatory factors and the expression of MUC5AC. Additionally, knockdown of HDAC4 led to the activation of SIRT1/NF-κB signaling. Further, the downregulated levels of histamine, IgE and inflammatory factors and the expression of MUC5AC imposed by HDAC4 interference were all reversed by EX527. CONCLUSIONS In short, HDAC4 inhibition activated SIRT1/NF-κB signaling to mitigate inflammatory response and mucus production in IL-13-treated nasal epithelial cells in AR.
Collapse
Affiliation(s)
- Hangyu Xu
- Department of Otolaryngology, Taizhou Central HospitalTaizhou University HospitalTaizhouZhejiangChina
| | - Lingjun Wang
- Department of General Practice, Taizhou Central HospitalTaizhou University HospitalTaizhouZhejiangChina
| | - Huaqun Chen
- Department of Geriatrics, Taizhou Central HospitalTaizhou University HospitalTaizhouZhejiangChina
| | - Hefei Cai
- Department of Pediatrics, Taizhou Central HospitalTaizhou University HospitalTaizhouZhejiangChina
| |
Collapse
|
56
|
Hicks C, Dhiman A, Barrymore C, Goswami T. Traumatic Brain Injury Biomarkers, Simulations and Kinetics. Bioengineering (Basel) 2022; 9:612. [PMID: 36354523 PMCID: PMC9687153 DOI: 10.3390/bioengineering9110612] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/02/2022] [Accepted: 10/20/2022] [Indexed: 10/21/2023] Open
Abstract
This paper reviews the predictive capabilities of blood-based biomarkers to quantify traumatic brain injury (TBI). Biomarkers for concussive conditions also known as mild, to moderate and severe TBI identified along with post-traumatic stress disorder (PTSD) and chronic traumatic encephalopathy (CTE) that occur due to repeated blows to the head during one's lifetime. Since the pathways of these biomarkers into the blood are not fully understood whether there is disruption in the blood-brain barrier (BBB) and the time it takes after injury for the expression of the biomarkers to be able to predict the injury effectively, there is a need to understand the protein biomarker structure and other physical properties. The injury events in terms of brain and mechanics are a result of external force with or without the shrapnel, in the wake of a wave result in local tissue damage. Thus, these mechanisms express specific biomarkers kinetics of which reaches half-life within a few hours after injury to few days. Therefore, there is a need to determine the concentration levels that follow injury. Even though current diagnostics linking biomarkers with TBI severity are not fully developed, there is a need to quantify protein structures and their viability after injury. This research was conducted to fully understand the structures of 12 biomarkers by performing molecular dynamics simulations involving atomic movement and energies of forming hydrogen bonds. Molecular dynamics software, NAMD and VMD were used to determine and compare the approximate thermodynamic stabilities of the biomarkers and their bonding energies. Five biomarkers used clinically were S100B, GFAP, UCHL1, NF-L and tau, the kinetics obtained from literature show that the concentration values abruptly change with time after injury. For a given protein length, associated number of hydrogen bonds and bond energy describe a lower bound region where proteins self-dissolve and do not have long enough half-life to be detected in the fluids. However, above this lower bound, involving higher number of bonds and energy, we hypothesize that biomarkers will be viable to disrupt the BBB and stay longer to be modeled for kinetics for diagnosis and therefore may help in the discoveries of new biomarkers.
Collapse
Affiliation(s)
- Celeste Hicks
- Biomedical, Industrial and Human Factors Engineering, Wright State University, 3640 Col. Glen Hwy, Dayton, OH 45435, USA
| | - Akshima Dhiman
- Boonshoft School of Medicine, Wright State University, 3640 Col. Glen Hwy, Dayton, OH 45435, USA
| | - Chauntel Barrymore
- Boonshoft School of Medicine, Wright State University, 3640 Col. Glen Hwy, Dayton, OH 45435, USA
| | - Tarun Goswami
- Biomedical, Industrial and Human Factors Engineering, Wright State University, 3640 Col. Glen Hwy, Dayton, OH 45435, USA
| |
Collapse
|
57
|
Askenase PW. Recommendation: Treatment of clinical long COVID encephalopathies with nasal administered mesenchymal stromal cell extracellular vesicles. FRONTIERS IN NANOTECHNOLOGY 2022; 4. [DOI: 10.3389/fnano.2022.987117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
We propose therapy with extracellular vesicles (EVs) for dominant central nervous system aspects of chronic Long COVID Syndromes (LCS). These clinical conditions have a delayed onset of 1–3 months following the cessation of active SARS-CoV-2 virus infections that cause an acute disease called COVID-19. The therapy of LCS will be achieved by direct access to the central nervous system (CNS) by nasal administration of small EVs derived from Mesenchymal Stromal Cells (MSC). When administered nasally, they target CNS microglia and endothelia involved in LCS encephalopathy, as indicated by experimental animal models and human autopsy and spinal fluid studies. Underlying this approach is the discovery that MSC-sEV treatment for healing neuro injury targets, microglia, and macrophages that then likely release secondary trophic EVs that affect the local capillary endothelial cells to restore vascular integrity. It is postulated that the pathways of endothelial and neural pathologies in acute SARS-CoV-2 virus infections may carry over to produce underlying vascular and neurological defects mediating LCS that are susceptible to this proposed nasal therapy with MSC-sEVs.
Collapse
|
58
|
Gakharia T, Bakhtadze S, Lim M, Khachapuridze N, Kapanadze N. Alterations of Plasma Pro-Inflammatory Cytokine Levels in Children with Refractory Epilepsies. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9101506. [PMID: 36291442 PMCID: PMC9600205 DOI: 10.3390/children9101506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022]
Abstract
Paediatric epilepsy is a multifaceted neurological disorder with various aetiologies. Up to 30% of patients are considered drug-resistant. The background impact of interfering inflammatory and neuronal pathways has been closely linked to paediatric epilepsy. The characteristics of the inflamed state have been described not only in epilepsies, which are considered prototypes of an inflammatory pathophysiology, but also in patients with drug-resistant epilepsy, especially in epileptic encephalopathies. The imbalance of different cytokine levels was confirmed in several epileptic models. Chemokines are new targets for exploring neuroimmune communication in epileptogenesis, which control leukocyte migration and have a possible role in neuromodulation. Additionally, prostaglandin E2 (PGE2) is an important effector molecule for central neural inflammatory responses and may influence drug responsiveness. We measured the serum interictal quantitative levels of chemokines (CCL2, CCL4, CCL11) and PGE2 in correlation with the seizure frequency and severity in controlled and intractable childhood epilepsies. Our refractory seizure group demonstrated significantly increased concentrations of eotaxin (CCL11) compared to the controlled epilepsy group. The higher level of CCL11 was correlated with an increased seizure frequency, while the PGE2 levels were associated with the severity of seizure and epilepsy, supporting the findings that proinflammatory cytokines may contribute to epileptogenesis and possibly have a role in developing seizure resistance.
Collapse
Affiliation(s)
- Tatia Gakharia
- Department of Childs Neurology, Tbilisi State Medical University, 0186 Tbilisi, Georgia
- Correspondence: ; Tel.: +995-592933291
| | - Sophia Bakhtadze
- Department of Childs Neurology, Tbilisi State Medical University, 0186 Tbilisi, Georgia
| | - Ming Lim
- Evelina London Children’s Hospital @ Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK
- Women’s and Children’s Department, Faculty of Life Sciences and Medicine, Kings College London, London SE1 7EH, UK
| | - Nana Khachapuridze
- Department of Childs Neurology, Tbilisi State Medical University, 0186 Tbilisi, Georgia
| | - Nana Kapanadze
- Department of Childs Neurology, Tbilisi State Medical University, 0186 Tbilisi, Georgia
| |
Collapse
|
59
|
Pratama YA, Dinina F, Nurhan AD, Sari WF, Ardianto C, Khotib J. Effectiveness of Indonesian house dust mite allergenic extract in triggering allergic rhinitis sensitivity in a mouse model: A preliminary study. Vet World 2022; 15:2333-2341. [PMID: 36341054 PMCID: PMC9631360 DOI: 10.14202/vetworld.2022.2333-2341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Perennial allergic rhinitis (AR) is a chronic upper respiratory disease, with inflammation mediated by immunoglobulin E in the nasal mucosa caused by house dust mites. Recently, allergen immunotherapy showed promising allergic healing in patients with a definite history of sensitization. Based on this finding, a product was developed using Indonesian house dust mite (IHDM). This study aimed to optimize the allergenic rhinitis mouse model that was generated using IHDM to test the in vivo sensitivity and safety of this product. Materials and Methods: Seven groups of mice were used for effectiveness testing – normal, negative control with IHDM challenge, positive control with 0.1% histamine challenge, and AR group by both IHDM-induced sensitization at 12.5, 50, 250, or 500 μg and IHDM challenge. Mice were sensitized by intraperitoneal administration of IHDM once a week for 3 consecutive weeks. Thereafter, the challenge was given intranasally 5 times on alternate days. The number of nose rubbing and sneezing was noted. Eosinophil infiltration was assessed histologically using hematoxylin and eosin staining. The expression of interleukin-5 (IL-5) mRNA in the nasal mucosa was determined using semi-quantitative reverse transcription-polymerase chain reaction. Results: The induction of AR with IHDM significantly increased the number of nose rubbing and sneezing in the mouse model. Eosinophil infiltration was observed in the nasal mucosa; however, no significant change occurred in the expression of IL-5 mRNA. Conclusion: Overall, these data indicate that IHDM allergenic extract could be an effective sensitizing agent in a mouse model of AR. Although the use of IHDM is a limitation of this study because other sources of house dust mites might have different effects, this study provides a proper model for immunotherapy effectivity testing for in vivo pre-clinical studies.
Collapse
Affiliation(s)
- Yusuf Alif Pratama
- Master Program of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Fakhriyah Dinina
- Bachelor Program of Pharmacy, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Ahmad Dzulfikri Nurhan
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Winda Fatma Sari
- Bachelor Program of Pharmacy, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Junaidi Khotib
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
60
|
Shahi SK, Ghimire S, Lehman P, Mangalam AK. Obesity induced gut dysbiosis contributes to disease severity in an animal model of multiple sclerosis. Front Immunol 2022; 13:966417. [PMID: 36164343 PMCID: PMC9509138 DOI: 10.3389/fimmu.2022.966417] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/08/2022] [Indexed: 01/28/2023] Open
Abstract
Background Multiple sclerosis (MS) is an inflammatory and demyelinating disease of the CNS. The etiology of MS is complex, and results from the interaction of multiple environmental and genetic factors. Although human leukocyte antigen-HLA alleles such as HLA-DR2 and -DR3 are considered the strongest genetic factors, the environmental factors responsible for disease predisposition are not well understood. Recently, diet and gut microbiota have emerged as an important environmental factors linked to the increased incidence of MS. Especially, western diets rich in protein and fat have been linked to the increased incidence of obesity. Numerous clinical data indicate a role of obesity and gut microbiota in MS; however, the mechanistic link between gut microbiota and obesity in the pathobiology of MS remains unclear. The present study determines the mechanisms driving MS severity in the context of obesity utilizing a high-fat diet (HFD) induced obese HLA-DR3 class-II transgenic mouse model of MS. Methods HLA-DR3 transgenic mice were kept on a standard HFD diet or Normal Chow (NC) for eight weeks. Gut microbiota composition and functional analysis were performed from the fecal DNA of mice. Experimental autoimmune encephalomyelitis-EAE (an animal model of MS) was induced by immunization with the proteolipid protein-PLP91-110 peptide in complete Freud's Adjuvant (CFA) and pertussis toxin. Results We observed that HFD-induced obesity caused gut dysbiosis and severe disease compared to mice on NC. Amelioration of disease severity in mice depleted of gut microbiota suggested an important role of gut bacteria in severe EAE in obese mice. Fecal microbiota analysis in HFD mice shows gut microbiota alterations with an increase in the abundance of Proteobacteria and Desulfovibrionaceae bacteria and modulation of various bacterial metabolic pathways including bacterial hydrogen sulfide biosynthetic pathways. Finally, mice on HFD showed increased gut permeability and systemic inflammation suggesting a role gut barrier modulation in obesity induced disease severity. Conclusions This study provides evidence for the involvement of the gut microbiome and associated metabolic pathways plus gut permeability in obesity-induced modulation of EAE disease severity. A better understanding of the same will be helpful to identify novel therapeutic targets to reduce disease severity in obese MS patients.
Collapse
Affiliation(s)
- Shailesh K. Shahi
- Department of Pathology, University of Iowa, Iowa City, IA, United States,*Correspondence: Ashutosh K. Mangalam, ; Shailesh K. Shahi,
| | - Sudeep Ghimire
- Department of Pathology, University of Iowa, Iowa City, IA, United States
| | - Peter Lehman
- Department of Pathology, University of Iowa, Iowa City, IA, United States
| | - Ashutosh K. Mangalam
- Department of Pathology, University of Iowa, Iowa City, IA, United States,Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States,Graduate Program in Molecular Medicine, University of Iowa, Iowa City, IA, United States,*Correspondence: Ashutosh K. Mangalam, ; Shailesh K. Shahi,
| |
Collapse
|
61
|
Role of Innate and Adaptive Cytokines in the Survival of COVID-19 Patients. Int J Mol Sci 2022; 23:ijms231810344. [PMID: 36142255 PMCID: PMC9499609 DOI: 10.3390/ijms231810344] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
SARS-CoV-2 is a new coronavirus characterized by a high infection and transmission capacity. A significant number of patients develop inadequate immune responses that produce massive releases of cytokines that compromise their survival. Soluble factors are clinically and pathologically relevant in COVID-19 survival but remain only partially characterized. The objective of this work was to simultaneously study 62 circulating soluble factors, including innate and adaptive cytokines and their soluble receptors, chemokines and growth and wound-healing/repair factors, in severe COVID-19 patients who survived compared to those with fatal outcomes. Serum samples were obtained from 286 COVID-19 patients and 40 healthy controls. The 62 circulating soluble factors were quantified using a Luminex Milliplex assay. Results. The patients who survived had decreased levels of the following 30 soluble factors of the 62 studied compared to those with fatal outcomes, therefore, these decreases were observed for cytokines and receptors predominantly produced by the innate immune system—IL-1α, IL-1α, IL-18, IL-15, IL-12p40, IL-6, IL-27, IL-1Ra, IL-1RI, IL-1RII, TNFα, TGFα, IL-10, sRAGE, sTNF-RI and sTNF-RII—for the chemokines IL-8, IP-10, MCP-1, MCP-3, MIG and fractalkine; for the growth factors M-CSF and the soluble receptor sIL2Ra; for the cytokines involved in the adaptive immune system IFNγ, IL-17 and sIL-4R; and for the wound-repair factor FGF2. On the other hand, the patients who survived had elevated levels of the soluble factors TNFβ, sCD40L, MDC, RANTES, G-CSF, GM-CSF, EGF, PDGFAA and PDGFABBB compared to those who died. Conclusions. Increases in the circulating levels of the sCD40L cytokine; MDC and RANTES chemokines; the G-CSF and GM-CSF growth factors, EGF, PDGFAA and PDGFABBB; and tissue-repair factors are strongly associated with survival. By contrast, large increases in IL-15, IL-6, IL-18, IL-27 and IL-10; the sIL-1RI, sIL1RII and sTNF-RII receptors; the MCP3, IL-8, MIG and IP-10 chemokines; the M-CSF and sIL-2Ra growth factors; and the wound-healing factor FGF2 favor fatal outcomes of the disease.
Collapse
|
62
|
Lungova V, Wendt K, Thibeault SL. Exposure to e-cigarette vapor extract induces vocal fold epithelial injury and triggers intense mucosal remodeling. Dis Model Mech 2022; 15:dmm049476. [PMID: 35770504 PMCID: PMC9438930 DOI: 10.1242/dmm.049476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022] Open
Abstract
Vaping has been reported to cause acute epiglottitis, a life-threatening airway obstruction induced by direct epithelial injury and subsequent inflammatory reaction. Here, we show that we were able to recapitulate this phenomenon in vitro. Exposure of human engineered vocal fold (VF) mucosae to 0.5% and 5% electronic cigarette (e-cigarette) vapor extract (ECVE) for 1 week induced cellular damage of luminal cells, disrupting homeostasis and innate immune responses. Epithelial erosion was likely caused by accumulation of solvents and lipid particles in the cytosol and intercellular spaces, which altered lipid metabolism and plasma membrane properties. Next, we investigated how the mucosal cells responded to the epithelial damage. We withdrew the ECVE from the experimental system and allowed VF mucosae to regenerate for 1, 3 and 7 days, which triggered intense epithelial remodeling. The epithelial changes included expansion of P63 (TP63)-positive basal cells and cytokeratin 14 (KRT14) and laminin subunit α-5 (LAMA5) deposition, which might lead to local basal cell hyperplasia, hyperkeratinization and basement membrane thickening. In summary, vaping presents a threat to VF mucosal health and airway protection, thereby raising further concerns over the safety of e-cigarette use. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Vlasta Lungova
- Department of Surgery, University of Wisconsin-Madison, 5105 WIMR Madison, WI 53705, USA
| | - Kristy Wendt
- Department of Surgery, University of Wisconsin-Madison, 5105 WIMR Madison, WI 53705, USA
| | - Susan L. Thibeault
- Department of Surgery, University of Wisconsin-Madison, 5103 WIMR, Madison, WI 53705, USA
| |
Collapse
|
63
|
Huang WY, Lin YS, Lin YC, Nieh S, Chang YM, Lee TY, Chen SF, Yang KD. Cancer-Associated Fibroblasts Promote Tumor Aggressiveness in Head and Neck Cancer through Chemokine Ligand 11 and C-C Motif Chemokine Receptor 3 Signaling Circuit. Cancers (Basel) 2022; 14:cancers14133141. [PMID: 35804913 PMCID: PMC9264987 DOI: 10.3390/cancers14133141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Certain tumor aggressiveness-associated mediators from cancer-associated fibroblasts (CAFs) in tumor microenvironment have been reported. Using gene expression analysis, we identified that CAFs overexpress Chemokine ligand 11 (CCL11), which is associated with tumor migration and invasion, increased expression of cancer stem cell properties, and induction of the epithelial-to-mesenchymal transition. Neutralization of CAF-induced CCL11 reversed the aggressive phenotype of cancer cells. Based on the immunohistochemical staining of clinical samples, we found that increased co-expression of CCL11 and its receptor, C-C Motif Chemokine Receptor 3 (CCR3), was associated with poor overall survival. Our results suggest that targeting CCL11-CCR3 signaling is a potential therapeutic strategy for patients with aggressive head and neck cancer. Abstract The tumor microenvironment (TME) plays a crucial role in tumor progression. One of its key stromal components, cancer-associated fibroblasts (CAFs), may crosstalk with cancer cells by secreting certain cytokines or chemokines. However, which important mediator(s) are released by CAFs, and the underlying molecular mechanism, remain largely unknown. In the present study, we isolated patient-derived CAFs and normal fibroblasts (NFs). Using microarray analysis, we detected chemokine ligand 11 (CCL11) overexpression in CAFs compared to NFs. CCL11 administration promoted the migration and invasion of head and neck cancer (HNC) cells with enhanced cancer stem cell-like properties and induction of epithelial-to-mesenchymal transition. Furthermore, neutralization of CCL11 activity reversed the aggressive phenotype of CAF-induced cancer cells. Confocal microscopy showed colocalization of CCL11 and CC chemokine receptor 3 (CCR3) on HNC cells. Moreover, immunohistochemical analysis of clinical samples from 104 patients with HNC showed that expression of CCL11 and CCR3 were significantly correlated with poor overall survival (p = 0.003 and 0.044, respectively). Collectively, CCL11 expressed on CAFs promotes HNC invasiveness, and neutralization of CCL11 reverses this effect. We propose that the CCL11/CCR3 signaling circuit is a potential target for optimizing therapeutic strategies against HNC.
Collapse
Affiliation(s)
- Wen-Yen Huang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Yaoh-Shiang Lin
- Department of Otorhinolaryngology, Head and Neck Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan;
| | - Yu-Chun Lin
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-C.L.); (S.N.); (Y.-M.C.)
| | - Shin Nieh
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-C.L.); (S.N.); (Y.-M.C.)
| | - Yi-Ming Chang
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-C.L.); (S.N.); (Y.-M.C.)
- Department of Pathology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Tsai-Yu Lee
- Division of Colon and Rectum Surgery, Department of Surgery, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei 105, Taiwan;
| | - Su-Feng Chen
- Department of Dentistry, School of Dentistry, China Medical University, Taichung 406, Taiwan
- Correspondence: (S.-F.C.); (K.D.Y.)
| | - Kuender D. Yang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Division of Medical Research, MacKay Children’s Hospital, Taipei 104, Taiwan
- Department of Immunology & Microbiology, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: (S.-F.C.); (K.D.Y.)
| |
Collapse
|
64
|
Nazarinia D, Behzadifard M, Gholampour J, Karimi R, Gholampour M. Eotaxin-1 (CCL11) in neuroinflammatory disorders and possible role in COVID-19 neurologic complications. Acta Neurol Belg 2022; 122:865-869. [PMID: 35690992 PMCID: PMC9188656 DOI: 10.1007/s13760-022-01984-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 05/18/2022] [Indexed: 12/20/2022]
Abstract
The related neurologic complications of SARS-CoV-2 infection in COVID-19 patients and survivors comprise symptoms including depression, anxiety, muscle pain, dizziness, headaches, fatigue, and anosmia/hyposmia that may continue for months. Recent studies have been demonstrated that chemokines have brain-specific attraction and effects such as chemotaxis, cell adhesion, modulation of neuroendocrine functions, and neuroinflammation. CCL11 is a member of the eotaxin family that is chemotactic agents for eosinophils and participate in innate immunity. Eotaxins may exert physiological and pathological functions in the central nerve system, and CCL11 may induce neuronal cytotoxicity effects by inducing the production of reactive oxygen species (ROS) in microglia cells. Plasma levels of CCL11 elevated in neuroinflammation and neurodegenerative disorders. COVID-19 patients display elevations in CCL11 levels. As CCL11 plays roles in physiosomatic and neuroinflammation, analyzing the level of this chemokine in COVID-19 patients during hospitalization and to predicting post-COVID-19-related neurologic complications may be worthwhile. Moreover, using chemokine modulators may be helpful in lessening the neurologic complications in such patients.
Collapse
Affiliation(s)
- Donya Nazarinia
- Department of Physiology, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Mahin Behzadifard
- Department of Physiology, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran.
| | - Javad Gholampour
- Department of Nursing, Faculty of Nursing and Midwifery, Mashhad Branch of Islamic Azad University, Mashhad, Iran
| | - Roqaye Karimi
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammadali Gholampour
- Department of Medicine, Lung Biology Center, Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| |
Collapse
|
65
|
Sakyi SA, Amoani B, Opoku S, Dzata L, Aniagyei W, Senu E, Dankwa K, Wilson MD. Assessing the role of eosinophil-mediated immune response markers in detecting hookworm infection: A case-control study in Kintampo, Ghana. Health Sci Rep 2022; 5:e674. [PMID: 35662977 PMCID: PMC9165202 DOI: 10.1002/hsr2.674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim Human hookworm disease caused by Ancylostoma duodenale and Necator americanus is a serious public health problem. Hookworm infection activates eosinophil‐mediated tissue inflammatory responses, involving the production of the eosinophil‐specific chemokine (eotaxin), recruitment of eosinophils, secretion of the cationic protein, and production of antiparasite immunoglobulin E (IgE). We investigated eosinophil‐mediated immune response as markers (CCL11, eosinophil cationic protein [ECP], and IgE) for detecting hookworm infection. Methods This case‐control study was carried out in hookworm endemic areas within the Kintampo North Municipality.Forty hookworm‐positive subjects and 36 apparently healthy individuals were recruited as cases and controls, respectively. Stool samples were collected for hookworm detection by the Kato–Katz technique and speciation by polymerase chain reaction. Approximately, 5 ml of intravenous blood was used to obtain plasma for the immunological assays. Results Of eosinophil‐mediated immune response markers studied, ECP and CCL11 were significantly higher among hookworm patients compared to controls. Increasing CCL11 (β = −0.81, p = 0.015) was associated with a significant decrease hookworm intensity. However, increasing eosinophil count (β = 0.62, p = 0.027) was associated with significant increase in hookworm intensity. In receiver operator characteristics analysis, ECP could significantly detect hookworm infection with a very high area under the curve (AUC) (AUC = 0.97, p < 0.0001). At a cutoff of 39.05, ECP was the best eosinophil‐mediated immune response marker for detecting hookworm infection with a sensitivity of 97.2%, specificity of 87.8%, a positive predictive value of 89.7%, and a negative predictive value of 96.6%. Conclusion ECP best predicts eosinophil‐mediated immune response for detecting hookworm infection, while CCL11 and eosinophil count better predict the intensity of hookworm. Moreover, the ECP level is a good indicator of hookworm infection and intensity and may require additional investigations to augment current hookworm diagnostic techniques.
Collapse
Affiliation(s)
- Samuel A Sakyi
- Department of Molecular Medicine, School of Medicine and Dentistry Kwame Nkrumah University of Science and Technology Kumasi Ghana
| | - Benjamin Amoani
- Department of Biomedical Science, School of Medicine and Dentistry University of Cape Coast Cape Coast Ghana
| | - Stephen Opoku
- Department of Molecular Medicine, School of Medicine and Dentistry Kwame Nkrumah University of Science and Technology Kumasi Ghana
| | - Lawrence Dzata
- Department of Microbiology and Immunology, School of Medical Sciences University of Cape Coast Cape Coast Ghana
| | - Wilfred Aniagyei
- Department of Biomedical Science, School of Medicine and Dentistry University of Cape Coast Cape Coast Ghana
| | - Ebenezer Senu
- Department of Molecular Medicine, School of Medicine and Dentistry Kwame Nkrumah University of Science and Technology Kumasi Ghana
| | - Kwabena Dankwa
- Department of Microbiology and Immunology, School of Medical Sciences University of Cape Coast Cape Coast Ghana
| | - Michael D Wilson
- Parasitology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences University of Ghana Legon Ghana
| |
Collapse
|
66
|
Renz-Polster H, Tremblay ME, Bienzle D, Fischer JE. The Pathobiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: The Case for Neuroglial Failure. Front Cell Neurosci 2022; 16:888232. [PMID: 35614970 PMCID: PMC9124899 DOI: 10.3389/fncel.2022.888232] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/13/2022] [Indexed: 12/20/2022] Open
Abstract
Although myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) has a specific and distinctive profile of clinical features, the disease remains an enigma because causal explanation of the pathobiological matrix is lacking. Several potential disease mechanisms have been identified, including immune abnormalities, inflammatory activation, mitochondrial alterations, endothelial and muscular disturbances, cardiovascular anomalies, and dysfunction of the peripheral and central nervous systems. Yet, it remains unclear whether and how these pathways may be related and orchestrated. Here we explore the hypothesis that a common denominator of the pathobiological processes in ME/CFS may be central nervous system dysfunction due to impaired or pathologically reactive neuroglia (astrocytes, microglia and oligodendrocytes). We will test this hypothesis by reviewing, in reference to the current literature, the two most salient and widely accepted features of ME/CFS, and by investigating how these might be linked to dysfunctional neuroglia. From this review we conclude that the multifaceted pathobiology of ME/CFS may be attributable in a unifying manner to neuroglial dysfunction. Because the two key features - post exertional malaise and decreased cerebral blood flow - are also recognized in a subset of patients with post-acute sequelae COVID, we suggest that our findings may also be pertinent to this entity.
Collapse
Affiliation(s)
- Herbert Renz-Polster
- Division of General Medicine, Center for Preventive Medicine and Digital Health Baden-Württemberg (CPD-BW), University Medicine Mannheim, Heidelberg University, Mannheim, Germany
| | - Marie-Eve Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec, Université Laval, Quebec, QC, Canada
- Département de Médecine Moléculaire, Université Laval, Quebec, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Dorothee Bienzle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Joachim E. Fischer
- Division of General Medicine, Center for Preventive Medicine and Digital Health Baden-Württemberg (CPD-BW), University Medicine Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
67
|
Vascular Endothelial Growth Factor as a Potential Biomarker of Neuroinflammation and Frontal Cognitive Impairment in Patients with Alcohol Use Disorder. Biomedicines 2022; 10:biomedicines10050947. [PMID: 35625687 PMCID: PMC9138236 DOI: 10.3390/biomedicines10050947] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 02/06/2023] Open
Abstract
(1) Background: Alcohol Use Disorder (AUD) is associated with functional disruption of several brain structures that may trigger cognitive dysfunction. One of the mechanisms of alcohol-associated cognitive impairment has been proposed to arise from its direct impact on the immune system, which culminates in the release of cytokines and chemokines which can eventually reach the brain. Alcohol can also disrupt the blood–brain barrier, facilitating the penetration of pro-inflammatory molecules throughout vascular endothelial growth factor A (VEGFA). Thus, alcohol-induced alterations in chemokines and VEGFA might contribute to the neuroinflammation and cognitive impairment associated with AUD. (2) Methods: The present cross-sectional study investigates whether patients with AUD (n = 86) present cognitive disability associated to alterations in plasma concentration of SDF-1, fractalkine, eotaxin, MCP-1, MIP-1α and VEGFA when compared to control subjects (n = 51). (3) Results: The analysis indicated that SDF-1 and MCP-1 concentrations were higher in AUD patients than in controls. Concentrations of VEGFA were higher in AUD patients with severe frontal deficits, and the score of frontal lobe functions was negatively correlated with VEGFA and fractalkine. Acute alcohol effects on VEGFA plasma levels in healthy volunteers demonstrated the induction of VEGFA release by heavy alcohol drinking. VEGFA was positively correlated with pro-inflammatory chemokines in AUD patients with frontal cognitive impairment. (4) Conclusions: we propose VEGFA/chemokine monitoring as biomarkers of potential cognitive impairment in AUD patients.
Collapse
|
68
|
Lepr + mesenchymal cells sense diet to modulate intestinal stem/progenitor cells via Leptin-Igf1 axis. Cell Res 2022; 32:670-686. [PMID: 35296796 DOI: 10.1038/s41422-022-00643-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Diet can impact on gut health and disease by modulating intestinal stem cells (ISCs). However, it is largely unknown if and how the ISC niche responds to diet and influences ISC function. Here, we demonstrate that Lepr+ mesenchymal cells (MCs) surrounding intestinal crypts sense diet change and provide a novel niche signal to maintain ISC and progenitor cell proliferation. The abundance of these MCs increases upon administration of a high-fat diet (HFD) but dramatically decreases upon fasting. Depletion of Lepr+ MCs resulted in fewer intestinal stem/progenitor cells, compromised the architecture of crypt-villus axis and impaired intestinal regeneration. Furthermore, we showed that IGF1 secreted by Lepr+ MCs is an important effector that promotes proliferation of ISCs and progenitor cells in the intestinal crypt. We conclude that Lepr+ MCs sense diet alterations and, in turn, modulate intestinal stem/progenitor cell function via a stromal IGF1-epithelial IGF1R axis. These findings reveal that Lepr+ MCs are important mediators linking systemic diet changes to local ISC function and might serve as a novel therapeutic target for gut diseases.
Collapse
|
69
|
Özaslan A, Güney E, Gülbahar Ö, Büyüktaskin D, Arslan B. Increased Serum Level of CCL5 in Children with Attention‑Deficit/Hyperactivity Disorder: First Results about Serum Chemokines. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2022; 20:109-117. [PMID: 35078953 PMCID: PMC8813316 DOI: 10.9758/cpn.2022.20.1.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/26/2020] [Accepted: 12/30/2020] [Indexed: 12/02/2022]
Abstract
Objective Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder and its aetiology is not fully understood. This study aimed to determine whether the CCL5 and CCL11 influence the ADHD aetiology by comparing serum CCL5 and CCL11 levels of children with ADHD and typical development. Methods This study included 45 (27 males, mean age = 8.9 ± 1.7 years) treatment-naive patients diagnosed with ADHD and 35 (20 males, mean age = 8.8 ± 1.6 years) healthy controls. Participants ranged in age between 6−12 years and completed the Conners Teacher Rating Scale that assesses ADHD presentation and severity. CCL5 and CCL11 serum levels were also measured using enzyme-linked immunosorbent assay kits. Results Significantly higher serum CCL5 levels were found in children with ADHD compared to healthy controls (p < 0.001). No significant difference was found between the mean serum CC11 level of the patients and controls (p = 0.93). In addition, there was no significant correlation between the serum CCL5 and CCL11 levels and predominant presentations of ADHD and disease severity. Conclusion This study suggests that there are higher levels of serum CCL5 in drug naive children with ADHD, this findings suggest that CCL5 might play a role in the pathophysiology of ADHD. Moreover, these changes in peripheral blood may have therapeutic value. In addition, these results help to understand the role of chemokines in elucidating the etiopathogenesis of ADHD. Our results can be considered as the first step in investigating the role of CCL5 in ADHD, and further research is needed to support these initial findings.
Collapse
Affiliation(s)
- Ahmet Özaslan
- Department of Child and Adolescent Psychiatry, Ankara, Turkey
| | - Esra Güney
- Department of Child and Adolescent Psychiatry, Ankara, Turkey
| | - Özlem Gülbahar
- Department of Medical Biochemistry, Gazi University Medical Faculty, Ankara, Turkey
| | - Dicle Büyüktaskin
- Department of Child and Adolescent Psychiatry, Ankara, Turkey
- Department of Child and Adolescent Psychiatry, Cizre State Hospital, Şırnak, Turkey
| | - Burak Arslan
- Department of Medical Biochemistry, Erciş Şehit Rıdvan Çevik State Hospital, Van, Turkey
| |
Collapse
|
70
|
Physical exercise is associated with a reduction in plasma levels of fractalkine, TGF-β1, eotaxin-1 and IL-6 in younger adults with mobility disability. PLoS One 2022; 17:e0263173. [PMID: 35113938 PMCID: PMC8812905 DOI: 10.1371/journal.pone.0263173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 01/13/2022] [Indexed: 11/24/2022] Open
Abstract
Mobility disability (MD) refers to substantial limitations in life activities that arise because of movement impairments. Although MD is most prevalent in older individuals, it can also affect younger adults. Increasing evidence suggests that inflammation can drive the development of MD and may need to be targeted for MD prevention. Physical exercise has anti-inflammatory properties and has been associated with MD prevention. However, no studies to date have examined whether exercise interventions affect the peripheral inflammatory status in younger adults with MD. To this end, we used blood samples from young and middle-aged adults with MD (N = 38; median age = 34 years) who participated in a 12-week intervention that included aerobic and resistance exercise training. A pre-post assessment of inflammatory biomarkers was conducted in plasma from two timepoints, i.e., before the exercise trial and at follow-up (3–7 days after the last exercise session). We successfully measured 15 inflammatory biomarkers and found that exercise was associated with a significant reduction in levels of soluble fractalkine, transforming growth factor beta 1 (TGF-β1), eotaxin-1 and interleukin (IL) 6 (corrected α = 0.004). We also found significant male-specific effects of exercise on (i) increasing IL-16 and (ii) decreasing vascular endothelial growth factor-A (VEGF-A). In line with our results, previous studies have also found that exercise can reduce levels of TGF-β1, eotaxin-1 and IL-6. However, our finding that exercise reduces plasma levels of fractalkine in younger adults with MD, as well as the sex-dependent findings, have not been previously reported and warrant replication in larger cohorts. Given the suggested role of inflammation in promoting MD development, our study provides additional support for the use of physical exercise as a treatment modality for MD.
Collapse
|
71
|
Navrazhina K, Garcet S, Frew JW, Zheng X, Coats I, Guttman-Yassky E, Krueger JG. The inflammatory proteome of hidradenitis suppurativa skin is more expansive than that of psoriasis vulgaris. J Am Acad Dermatol 2022; 86:322-330. [PMID: 34339761 PMCID: PMC8800946 DOI: 10.1016/j.jaad.2021.07.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/20/2021] [Accepted: 07/18/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Although hidradenitis suppurativa (HS) shares some transcriptomic and cellular infiltrate features with psoriasis, their skin proteome remains unknown. OBJECTIVE To define and compare inflammatory protein biomarkers of HS and psoriasis skin. METHODS We assessed 92 inflammatory biomarkers in HS (n = 13), psoriasis (n = 11), and control skin (n = 11) using Olink high-throughput proteomics. We also correlated HS skin and blood biomarkers using proteomics and RNA sequencing. RESULTS We identified 57 differentially expressed proteins (DEPs) in lesional psoriasis and 64 DEPs in lesional HS skin, compared to healthy controls. Both HS and psoriasis lesional skin demonstrated a significant upregulation of T helper 1 and T helper 17 proteins. Healthy-appearing perilesional HS skin had 63 DEPs compared to healthy controls. Nonlesional HS and psoriasis skin had 24 and 7 DEPs, respectively, compared to healthy controls. Tumor necrosis factor and 8 other proteins were significantly correlated with clinical severity in perilesional HS skin (2 cm from a nodule). LIMITATIONS Inclusion of only moderate-to-severe patients and the cohort size. CONCLUSION HS has a greater inflammatory profile and is more diffusely distributed compared with psoriasis. Proteins correlated with disease severity are potential disease mediators. Perilesional skin is comparably inflamed to lesional skin, suggesting the need to treat beyond skin nodules.
Collapse
Affiliation(s)
- Kristina Navrazhina
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, New York
| | - Sandra Garcet
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York
| | - John W Frew
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York
| | - Xiuzhong Zheng
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York
| | - Israel Coats
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York
| | - Emma Guttman-Yassky
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York.
| |
Collapse
|
72
|
Cytokines in the Brain and Neuroinflammation: We Didn’t Starve the Fire! Pharmaceuticals (Basel) 2022; 15:ph15020140. [PMID: 35215252 PMCID: PMC8878213 DOI: 10.3390/ph15020140] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
Abstract
In spite of the brain-protecting tissues of the skull, meninges, and blood-brain barrier, some forms of injury to or infection of the CNS can give rise to cerebral cytokine production and action and result in drastic changes in brain function and behavior. Interestingly, peripheral infection-induced systemic inflammation can also be accompanied by increased cerebral cytokine production. Furthermore, it has been recently proposed that some forms of psychological stress may have similar CNS effects. Different conditions of cerebral cytokine production and action will be reviewed here against the background of neuroinflammation. Within this context, it is important to both deepen our understanding along already taken paths as well as to explore new ways in which neural functioning can be modified by cytokines. This, in turn, should enable us to put forward different modes of cerebral cytokine production and action in relation to distinct forms of neuroinflammation.
Collapse
|
73
|
Huang MC, Chung RH, Lin PH, Kuo HW, Liu TH, Chen YY, Chen ACH, Liu YL. Increase in plasma CCL11 (Eotaxin-1) in patients with alcohol dependence and changes during detoxification. Brain Behav Immun 2022; 99:83-90. [PMID: 34571176 DOI: 10.1016/j.bbi.2021.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/25/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Alcohol is known to modulate the immune system. Neuroinflammatory cytokine dysregulation plays an essential role in the pathophysiology of alcohol dependence (AD). Preclinical studies have indicated that alcohol consumption upregulates the pro-inflammatory cytokine CC motif ligand 11 (CCL11, also known as eotaxin-1). We examined CCL11 levels in patients with AD and in mice administered alcohol. METHODS The plasma CCL11 levels of 151 patients with AD and 116 healthy controls were measured. In addition, we followed the CCL11 levels, alcohol cravings and psychological symptoms in patients with AD after 1 and 2 weeks of detoxification. Furthermore, we examined CCL11 changes in mice administered alcohol for 5 days. RESULTS CCL11 levels were higher in patients with AD than in controls and declined during detoxification. CCL11 levels were positively correlated with AD severity (p < 0.001). Furthermore, mice exposed to alcohol exhibited a higher CCL11 level. The receiver operating characteristic curve revealed that a CCL11 level of 72.5 pg/mL could significantly differentiate patients with AD from controls (area under the curve: 0.77; p < 0.001). Reductions in CCL11 levels during detoxification were correlated with reductions in alcohol craving, depression, and anxiety. CONCLUSIONS Our data from humans and mice suggest that chronic alcohol consumption is associated with an increase in CCL11 levels. CCL11 levels are correlated with AD severity and may be a potential indicator of AD. The CCL11 reduction after alcohol discontinuation is associated with alleviation of clinical symptoms. Collectively, our findings suggest that CCL11 is involved in the neurobiological mechanisms underlying AD.
Collapse
Affiliation(s)
- Ming-Chyi Huang
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Psychiatric Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Ren-Hua Chung
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Pei-Hsuan Lin
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan
| | - Hsiang-Wei Kuo
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Tung-Hsia Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Ya-Yun Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Andrew C H Chen
- Department of Psychiatry, the Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA; The Feinstein Institute for Medical Research, Donald and Barbara Zucker School of Medicine at Hofstra/ Northwell, Manhasset, NY, USA
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan; Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.
| |
Collapse
|
74
|
Camacho-Arroyo I, Flores-Ramos M, Mancilla-Herrera I, Cruz FMC, Hernández-Ruiz J, Diaz GP, Labonne BF, Del Pilar Meza-Rodríguez M, Gelman PL. Chemokine profile in women with moderate to severe anxiety and depression during pregnancy. BMC Pregnancy Childbirth 2021; 21:807. [PMID: 34863117 PMCID: PMC8642921 DOI: 10.1186/s12884-021-04225-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Background Cytokine levels have been extensively described in pregnant subjects under normal and pathological conditions, including mood-related disorders. Concerning chemokines, very few studies have reported their association with psychiatric disorders during pregnancy. Therefore, we explored the chemokine profile in women exhibiting anxiety and depression during late pregnancy in the present study. Methods One hundred twenty-six pregnant women in the 3rd trimester of pregnancy, displaying moderate to severe anxiety (ANX) alone and women exhibiting moderate to severe anxiety with comorbid depression (ANX + DEP), and 40 control pregnant women without affective disorders (CTRL) were evaluated through the Hamilton Anxiety Rating Scale (HARS) and the Hamilton Depression Rating Scale (HDRS). Serum chemokine levels of MCP-1 (CCL2), RANTES (CCL5), IP-10 (CXCL10), Eotaxin (CCL11), TARC (CCL17), MIP-1α (CCL3), MIP-1β (CCL4), MIG (CXCL9), MIP-3α (CCL20), ENA-78 (CXCL5), GROα (CXCL1), I-TAC (CXCL11) and IL-8 (CXCL8)] were measured by immunoassay. Clinical, biochemical, and sociodemographic parameters were correlated with HARS and HDRS score values. Results Serum levels of most chemokines were significantly higher in the ANX and in the ANX + DEP groups, when compared to the CTRL group. Positive correlations were observed between MIP-1α/CCL3, MIP-1β/CCL4, MCP-1/CCL2, MIP-3α/CCL20, RANTES/CCL5, Eotaxin/CCL11, and I-TAC/CXCL11 with high scores for anxiety (HARS) (p < 0.05) and for depression (HDRS) (p < 0.004). After controlling clinical measures for age + gwk + BMI, chemokines such as IL-8/CXCL8, MCP-1/CCL2 and MIP-1β/CCL4 were found associated with high scores for anxiety (p < 0.05) in the ANX group. TARC/CCL17 and Eotaxin/CCL11 showed significant associations with high scores for depression (p < 0.04) whereas, MCP-1/CCL2 and MIP-1α/CCL3 were significantly associated with high scores for anxiety (p < 0.05) in the ANX + DEP group. Using a multivariate linear model, high serum levels of MIP-1β/CCL4 and Eotaxin/CCL11 remained associated with depression (p < 0.01), while, IL-8/CXCL8, MIP-1β/CCL4, MCP-1/CCL2, and MIP-1α/CCL3 were associated with anxiety (p < 0.05) in the symptomatic groups. Conclusions Our data show that serum levels of distinct chemokines are increased in women exhibiting high levels of affective symptoms during late pregnancy. Our results suggest that increased levels of anxiety, depressive symptoms, and mood-related disorders may promote changes in specific functional chemokines associated with a chronic inflammatory process. If not controlled, it may lead to adverse obstetric and negative neonate outcomes, child development and neuropsychiatric alterations in the postnatal life. Highlights Chemokine levels increase in affective disorders during pregnancy.
Collapse
Affiliation(s)
- Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, (CD MX) 04510, Mexico City, Mexico
| | - Mónica Flores-Ramos
- Instituto Nacional de Psiquiatría, CD MX 14370, Mexico City, Mexico.,Consejo Nacional de Ciencia y Tecnología/CONACyT, CD MX 03940, Mexico City, Mexico
| | - Ismael Mancilla-Herrera
- Departamento de Neurociencias, Instituto Nacional de Perinatología, Av. Montes Urales # 800. Col. Lomas de Virreyes, CD MX 11000, Mexico City, Mexico
| | - Fausto Moisés Coronel Cruz
- Clinical Pharmacology Unit, Hospital General de México Dr. Eduardo Liceaga, CD MX 06720, Mexico City, Mexico
| | - Joselin Hernández-Ruiz
- Clinical Pharmacology Unit, Hospital General de México Dr. Eduardo Liceaga, CD MX 06720, Mexico City, Mexico.,División of Nephology and Hypertension, University of Utah, Salt Lake City, UT, 84112, USA
| | - Gabriela Pellón Diaz
- Departamento de Neurociencias, Instituto Nacional de Perinatología, Av. Montes Urales # 800. Col. Lomas de Virreyes, CD MX 11000, Mexico City, Mexico
| | - Blanca Farfán Labonne
- Departamento de Neurociencias, Instituto Nacional de Perinatología, Av. Montes Urales # 800. Col. Lomas de Virreyes, CD MX 11000, Mexico City, Mexico
| | - María Del Pilar Meza-Rodríguez
- Departamento de Neurociencias, Instituto Nacional de Perinatología, Av. Montes Urales # 800. Col. Lomas de Virreyes, CD MX 11000, Mexico City, Mexico
| | - Philippe Leff Gelman
- Departamento de Neurociencias, Instituto Nacional de Perinatología, Av. Montes Urales # 800. Col. Lomas de Virreyes, CD MX 11000, Mexico City, Mexico.
| |
Collapse
|
75
|
Effects of Importin α1/KPNA1 deletion and adolescent social isolation stress on psychiatric disorder-associated behaviors in mice. PLoS One 2021; 16:e0258364. [PMID: 34767585 PMCID: PMC8589199 DOI: 10.1371/journal.pone.0258364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/25/2021] [Indexed: 01/12/2023] Open
Abstract
Importin α1/KPNA1 is a member of the Importin α family widely present in the mammalian brain and has been characterized as a regulator of neuronal differentiation, synaptic functionality, and anxiety-like behavior. In humans, a de novo mutation of the KPNA1 (human Importin α5) gene has been linked with schizophrenia; however, the precise roles of KPNA1 in disorder-related behaviors are still unknown. Moreover, as recent studies have highlighted the importance of gene-environment interactions in the development of psychiatric disorders, we investigated the effects of Kpna1 deletion and social isolation stress, a paradigm that models social stress factors found in human patients, on psychiatric disorder-related behaviors in mice. Through assessment in a behavioral battery, we found that Kpna1 knockout resulted in the following behavioral phenotype: (1) decreased anxiety-like behavior in an elevated plus maze test, (2) short term memory deficits in novel object recognition test (3) impaired sensorimotor gating in a prepulse inhibition test. Importantly, exposure to social isolation stress resulted in additional behavioral abnormalities where isolated Kpna1 knockout mice exhibited: (1) impaired aversive learning and/or memory in the inhibitory avoidance test, as well as (2) increased depression-like behavior in the forced swim test. Furthermore, we investigated whether mice showed alterations in plasma levels of stress-associated signal molecules (corticosterone, cytokines, hormones, receptors), and found that Kpna1 knockout significantly altered levels of corticosterone and LIX (CXCL5). Moreover, significant decreases in the level of prolactin were found in all groups except for group-housed wild type mice. Our findings demonstrate that Kpna1 deletion can trigger widespread behavioral abnormalities associated with psychiatric disorders, some of which were further exacerbated by exposure to adolescent social isolation. The use of Kpna1 knockout mice as a model for psychiatric disorders may show promise for further investigation of gene-environment interactions involved in the pathogenesis of psychiatric disorders.
Collapse
|
76
|
Scabia G, Testa G, Scali M, Del Turco S, Desiato G, Berardi N, Sale A, Matteoli M, Maffei L, Maffei M, Mainardi M. Reduced ccl11/eotaxin mediates the beneficial effects of environmental stimulation on the aged hippocampus. Brain Behav Immun 2021; 98:234-244. [PMID: 34418501 DOI: 10.1016/j.bbi.2021.08.222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/15/2021] [Accepted: 08/13/2021] [Indexed: 02/08/2023] Open
Abstract
A deterioration in cognitive performance accompanies brain aging, even in the absence of neurodegenerative pathologies. However, the rate of cognitive decline can be slowed down by enhanced cognitive and sensorimotor stimulation protocols, such as environmental enrichment (EE). Understanding how EE exerts its beneficial effects on the aged brain pathophysiology can help in identifying new therapeutic targets. In this regard, the inflammatory chemokine ccl11/eotaxin-1 is a marker of aging with a strong relevance for neurodegenerative processes. Here, we demonstrate that EE in both elderly humans and aged mice decreases circulating levels of ccl11. Interfering, in mice, with the ccl11 decrease induced by EE ablated the beneficial effects on long-term memory retention, hippocampal neurogenesis, activation of local microglia and of ribosomal protein S6. On the other hand, treatment of standard-reared aged mice with an anti-ccl11 antibody resulted in EE-like improvements in spatial memory, hippocampal neurogenesis, and microglial activation. Taken together, our findings point to a decrease in circulating ccl11 concentration as a key mediator of the enhanced hippocampal function resulting from exposure to EE.
Collapse
Affiliation(s)
- Gaia Scabia
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Pisa, Italy; Obesity and Lipodystrophies Center at Pisa University Hospital, Pisa, Italy
| | - Giovanna Testa
- Laboratory of Biology "Bio@SNS", Scuola Normale Superiore, Pisa, Italy
| | - Manuela Scali
- Institute of Neuroscience, National Research Council (IN-CNR), Pisa, Italy
| | - Serena Del Turco
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Pisa, Italy
| | - Genni Desiato
- Institute of Neuroscience, National Research Council (IN-CNR), Milan, Italy; Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Nicoletta Berardi
- Institute of Neuroscience, National Research Council (IN-CNR), Pisa, Italy; Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA University of Florence, Florence, Italy
| | - Alessandro Sale
- Institute of Neuroscience, National Research Council (IN-CNR), Pisa, Italy
| | - Michela Matteoli
- Institute of Neuroscience, National Research Council (IN-CNR), Milan, Italy; Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Lamberto Maffei
- Laboratory of Biology "Bio@SNS", Scuola Normale Superiore, Pisa, Italy; Institute of Neuroscience, National Research Council (IN-CNR), Pisa, Italy
| | - Margherita Maffei
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Pisa, Italy; Obesity and Lipodystrophies Center at Pisa University Hospital, Pisa, Italy.
| | - Marco Mainardi
- Laboratory of Biology "Bio@SNS", Scuola Normale Superiore, Pisa, Italy; Institute of Neuroscience, National Research Council (IN-CNR), Pisa, Italy.
| | | |
Collapse
|
77
|
Dawidowski B, Górniak A, Podwalski P, Lebiecka Z, Misiak B, Samochowiec J. The Role of Cytokines in the Pathogenesis of Schizophrenia. J Clin Med 2021; 10:jcm10173849. [PMID: 34501305 PMCID: PMC8432006 DOI: 10.3390/jcm10173849] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Schizophrenia is a chronic mental illness of unknown etiology. A growing and compelling body of evidence implicates immunologic dysfunction as the key element in its pathomechanism. Cytokines, whose altered levels have been increasingly reported in various patient populations, are the major mediators involved in the coordination of the immune system. The available literature reports both elevated levels of proinflammatory as well as reduced levels of anti-inflammatory cytokines, and their effects on clinical status and neuroimaging changes. There is evidence of at least a partial genetic basis for the association between cytokine alterations and schizophrenia. Two other factors implicated in its development include early childhood trauma and disturbances in the gut microbiome. Moreover, its various subtypes, characterized by individual symptom severity and course, such as deficit schizophrenia, seem to differ in terms of changes in peripheral cytokine levels. While the use of a systematic review methodology could be difficult due to the breadth and diversity of the issues covered in this review, the applied narrative approach allows for a more holistic presentation. The aim of this narrative review was to present up-to-date evidence on cytokine dysregulation in schizophrenia, its effect on the psychopathological presentation, and links with antipsychotic medication. We also attempted to summarize its postulated underpinnings, including early childhood trauma and gut microbiome disturbances, and propose trait and state markers of schizophrenia.
Collapse
Affiliation(s)
- Bartosz Dawidowski
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (B.D.); (A.G.); (J.S.)
| | - Adrianna Górniak
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (B.D.); (A.G.); (J.S.)
| | - Piotr Podwalski
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (B.D.); (A.G.); (J.S.)
- Correspondence: ; Tel.: +48-510-091-466
| | - Zofia Lebiecka
- Department of Health Psychology, Pomeranian Medical University, 71-210 Szczecin, Poland;
| | - Błażej Misiak
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Medical University, 50-367 Wroclaw, Poland;
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (B.D.); (A.G.); (J.S.)
| |
Collapse
|
78
|
Zhao H, Zhang H, Liu S, Luo W, Jiang Y, Gao J. Association of Peripheral Blood Levels of Cytokines With Autism Spectrum Disorder: A Meta-Analysis. Front Psychiatry 2021; 12:670200. [PMID: 34276441 PMCID: PMC8283413 DOI: 10.3389/fpsyt.2021.670200] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/27/2021] [Indexed: 01/03/2023] Open
Abstract
Background: Although increasing evidence suggests an association between alterations in peripheral cytokines and autism spectrum disorder (ASD), a consensus is lacking. To determine whether abnormal cytokine profiles in peripheral blood were associated with ASD, we performed this systemic review and meta-analysis. Methods: A systematic literature search was conducted through the Embase, PubMed, Web of Knowledge, PsycINFO, and Cochrane databases up to 4 June 2020. Clinical studies exploring the aberration of peripheral cytokines of autistic patients and controls were included in our meta-analysis. We pooled extracted data using fixed- or random-effects models based on heterogeneity tests with Comprehensive Meta-analysis software. We converted standardized mean differences to Hedges' g statistic to obtain the effect sizes adjusted for sample size. Subgroup analyses, sensitivity analyses, meta-regression, and publication bias tests were also carried out. Results: Sixty-one articles (326 studies) were included to assess the association between 76 cytokines and ASD. We conducted our meta-analysis based on 37 cytokines with 289 studies. Since there were fewer than three studies on any of the other 39 cytokines, we only provided basic information for them. The levels of peripheral IL-6, IL-1β, IL-12p70, macrophage migration inhibitory factor (MIF), eotaxin-1, monocyte chemotactic protein-1 (MCP-1), IL-8, IL-7, IL-2, IL-12, tumor necrosis factor-α (TNF-α), IL-17, and IL-4 were defined as abnormal cytokines in the peripheral blood of ASD patients compared with controls. The other 24 cytokines did not obviously change in ASD patients compared with the controls. Conclusions: The findings of our meta-analysis strengthen the evidence for an abnormal cytokine profile in ASD. These abnormal cytokines may be potential biomarkers for the diagnosis and treatment of ASD in the future.
Collapse
Affiliation(s)
- Huaying Zhao
- Department of Rehabilitation Medicine, Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Hongqi Zhang
- Department of Pulmonary and Critical Care Medicine, Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Shijie Liu
- The 947th Hospital of Army, Kashi, China
| | - Wulin Luo
- Department of Medical Psychology and Neurology, The 947th Hospital of Army, Kashi, China
| | - Yongfeng Jiang
- Department of Rehabilitation Medicine, The 947th Hospital of Army, Kashi, China
| | - Junwei Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
79
|
Rebouças DB, Sartori JM, Librenza-Garcia D, Rabelo-da-Ponte FD, Massuda R, Czepielewski LS, Passos IC, Gama CS. Accelerated aging signatures in subjects with schizophrenia and their unaffected siblings. J Psychiatr Res 2021; 139:30-37. [PMID: 34022473 DOI: 10.1016/j.jpsychires.2021.04.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/10/2021] [Accepted: 04/25/2021] [Indexed: 01/19/2023]
Abstract
Schizophrenia (SZ) is a chronic debilitating disease. Subjects with SZ have significant shorter life expectancy. Growing evidence suggests that a process of pathological accelerated aging occurs in SZ, leading to early development of severe clinical diseases and worse morbimortality. Furthermore, unaffected relatives can share certain endophenotypes with subjects with SZ. We aim to characterize accelerated aging as a possible endophenotype of schizophrenia by using a machine learning (ML) model of peripheral biomarkers to accurately differentiate subjects with SZ (n = 35), their unaffected siblings (SB, n = 36) and healthy controls (HC, n = 47). We used a random forest algorithm that included biomarkers related to aging: eotaxins CCL-11 and CCL-24; the oxidative stress markers thiobarbituric acid-reactive substances (TBARS), protein carbonyl content (PCC), glutathione peroxidase (GPx); and telomere length (TL). The ML algorithm of biomarkers was able to distinguish individuals with SZ from HC with prediction accuracy of 79.7%, SZ from SB with 62.5% accuracy and SB from HC with 75.5% accuracy. These results support the hypothesis that a pathological accelerated aging might occur in SZ, and this pathological aging could be an endophenotype of the disease, once this profile was also observed in SB, suggesting that SB might suffer from an accelerated aging in some level.
Collapse
Affiliation(s)
- Diego Barreto Rebouças
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Juliana Mastella Sartori
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diego Librenza-Garcia
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Francisco Diego Rabelo-da-Ponte
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Raffael Massuda
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Psiquiatria, Universidade Federal do Paraná, Curitiba, Brazil
| | - Leticia Sanguinetti Czepielewski
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós- Graduação em Psicologia, Departamento de Psicologia do Desenvolvimento e da Personalidade, Instituto de Psicologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ives Cavalcante Passos
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Clarissa Severino Gama
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
80
|
Fucoxanthin Ameliorates Oxidative Stress and Airway Inflammation in Tracheal Epithelial Cells and Asthmatic Mice. Cells 2021; 10:cells10061311. [PMID: 34070405 PMCID: PMC8227140 DOI: 10.3390/cells10061311] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 12/12/2022] Open
Abstract
Fucoxanthin is isolated from brown algae and was previously reported to have multiple pharmacological effects, including anti-tumor and anti-obesity effects in mice. Fucoxanthin also decreases the levels of inflammatory cytokines in the bronchoalveolar lavage fluid (BALF) of asthmatic mice. The purpose of the present study was to investigate the effects of fucoxanthin on the oxidative and inflammatory responses in inflammatory human tracheal epithelial BEAS-2B cells and attenuated airway hyperresponsiveness (AHR), airway inflammation, and oxidative stress in asthmatic mice. Fucoxanthin significantly decreased monocyte cell adherence to BEAS-2B cells. In addition, fucoxanthin inhibited the production of pro-inflammatory cytokines, eotaxin, and reactive oxygen species in BEAS-2B cells. Ovalbumin (OVA)-sensitized mice were treated by intraperitoneal injections of fucoxanthin (10 mg/kg or 30 mg/kg), which significantly alleviated AHR, goblet cell hyperplasia and eosinophil infiltration in the lungs, and decreased Th2 cytokine production in the BALF. Furthermore, fucoxanthin significantly increased glutathione and superoxide dismutase levels and reduced malondialdehyde (MDA) levels in the lungs of asthmatic mice. These data demonstrate that fucoxanthin attenuates inflammation and oxidative stress in inflammatory tracheal epithelial cells and improves the pathological changes related to asthma in mice. Thus, fucoxanthin has therapeutic potential for improving asthma.
Collapse
|
81
|
Almulla AF, Al-Rawi KF, Maes M, Al-Hakeim HK. In schizophrenia, immune-inflammatory pathways are strongly associated with depressive and anxiety symptoms, which are part of a latent trait which comprises neurocognitive impairments and schizophrenia symptoms. J Affect Disord 2021; 287:316-326. [PMID: 33812245 DOI: 10.1016/j.jad.2021.03.062] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/13/2021] [Accepted: 03/19/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND The aim is to examine whether biomarkers of the immune-inflammatory response (IRS) and endogenous opioid (EOS) systems are associated with affective symptoms in schizophrenia. METHODS We recruited 115 schizophrenia patients and 43 healthy controls and assessed the Hamilton Depression (HDRS) and Anxiety (HAM-A) rating Scale scores as well as serum levels of interleukin (IL)-6, IL-10, eotaxin (CCL11), high mobility group box 1 (HMGB1), Dickkopf-related protein 1 (DKK1), and mu (MOR) and kappa (KOR) opioid receptors. RESULTS The HDRS and HAM-A scores are significantly and positively correlated with a) psychosis, hostility, excitation, mannerism, negative symptoms, psychomotor retardation, and formal thought disorders; and b) lowered scores on semantic and episodic memory, executive functions, and attention tests as measured with the Brief Assessment of Cognition in Psychiatry. Both HDRS and HAM-A are significantly increased in non-responders to treatment as compared with partial responders. Both affective scores are strongly associated with a latent vector extracted from all symptoms, reflecting overall severity of schizophrenia symptoms (OSOS), and neurocognitive test scores, reflecting a generalized cognitive decline (G-CoDe). The HDRS score was strongly and positively associated with IL-6, HMGB1, KOR, and MOR levels, and the HAM-A score with IL-6, IL-10, CCL11, HMGB1, KOR, and MOR levels. A single latent trait may be extracted from OSOS, G-CoDe, and the HDRS and HAMA scores, and this latent vector score is strongly predicted by HMGB1, MOR, and DKK1. CONCLUSION Immune-inflammatory and EOS pathways contribute to the phenome of schizophrenia, which comprises OSOS, affective, and physiosomatic symptoms, and G-CoDe.
Collapse
Affiliation(s)
- Abbas F Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq.
| | | | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria; IMPACT Strategic Research Centre, Deakin University, PO Box 281, Geelong, VIC, 3220, Australia.
| | | |
Collapse
|
82
|
Ruhanya V, Jacobs GB, Paul R, Joska J, Seedat S, Nyandoro G, Engelbrecht S, Glashoff RH. Plasma Cytokine Levels As Predictors of Global and Domain-Specific Human Immunodeficiency Virus-Associated Neurocognitive Impairment in Treatment-Naive Individuals. J Interferon Cytokine Res 2021; 41:153-160. [PMID: 33885338 DOI: 10.1089/jir.2020.0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Central nervous system dysfunction, associated with human immunodeficiency virus (HIV) infection, remains a significant clinical concern, affecting at least 50% of infected people. Imbalances in cytokine expression levels have been linked to HIV-associated neurocognitive disorders. The aim of this study was to evaluate plasma cytokine levels as predictor neurocognitive impairment in HIV infection using a multiplex profiling kit. Stepwise regression model was used to identify cytokine biomarkers of overall and domain-specific cognitive performance. Higher interleukin (IL)-2 (β = 0.04; P = 0.001) and eotaxin (β = 0.01; P = 0.017) were predictors of global neurocognitive, whereas higher IL-5 (β = 0.005; P = 0.007) was negative predictor of global cognitive deficit. IL-2 was a negative predictor of most cognitive domain functions, including recall (β = 0.24; P = 0.005), recognition (β = 0.04; P = 0.026), mental control (β = 0.38; P = 0.005), symbol search (β = -0.55; P = 0.001), and digital symbol (β = -0.79; P = 0.019). IL-6 was associated with 3 impaired domains, mental processing (β = -0.468; P = 0.027), recognition (β = -0.044; P = 0.012), and learning (β = 0.02668; P = 0.020) These results show that plasma cytokines/chemokines may serve as markers of neurocognitive impairment in HIV infection.
Collapse
Affiliation(s)
- Vurayai Ruhanya
- Division of Medical Virology, Stellenbosch University, Cape Town, South Africa.,Department of Medical Microbiology, University of Zimbabwe, Harare, Zimbabwe
| | - Graeme B Jacobs
- Division of Medical Virology, Stellenbosch University, Cape Town, South Africa
| | - Robert Paul
- Department of Psychology and Behavioral Neuroscience, University of Missouri-St. Louis, University Boulevard, St. Louis, Missouri, USA
| | - John Joska
- MRC Unit of Anxiety and Stress Disorders, Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Soraya Seedat
- MRC Unit of Anxiety and Stress Disorders, Department of Psychiatry, University of Stellenbosch, Cape Town, South Africa
| | - George Nyandoro
- Department of Medical Microbiology, University of Zimbabwe, Harare, Zimbabwe
| | - Susan Engelbrecht
- Division of Medical Virology, Stellenbosch University, Cape Town, South Africa.,National Health Laboratory Service (NHLS), Tygerberg Business Unity, Cape Town, South Africa
| | - Richard H Glashoff
- National Health Laboratory Service (NHLS), Tygerberg Business Unity, Cape Town, South Africa.,Division of Medical Microbiology, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
83
|
Gore Karaali M, Koku Aksu AE, Cin M, Leblebici C, Kara Polat A, Gurel MS. Tissue eosinophil levels as a marker of disease severity in bullous pemphigoid. Australas J Dermatol 2021; 62:e236-e241. [PMID: 33748980 DOI: 10.1111/ajd.13547] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/05/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Eosinophils play an important role in bullous pemphigoid (BP) pathogenesis. Although tissue infiltration with eosinophils has been known for a long time, there is a lack of knowledge about the relationship between tissue eosinophil levels and disease severity and clinical characteristics of the patients. METHODS Fifty-nine patients diagnosed with BP between January 2008 and December 2018 were reviewed. Haematoxylin-Eosin (H&E)-stained preparations were re-evaluated in terms of tissue eosinophil levels. For disease severity, Bullous Pemphigoid Disease Area Index (BPDAI) was used. The relationship between tissue eosinophil levels and disease severity and clinical features were evaluated. RESULTS Erosion/blister and urticaria/erythema BPDAI scores were higher in the group with high tissue eosinophil level than the group with low tissue eosinophil level. Tissue and peripheral blood eosinophil count were correlated with total urticaria/erythema BPDAI scores. There was no correlation between blood and tissue eosinophil count. The mortality rate was 64.7% vs 44.0% in the high vs low tissue eosinophil groups. Tissue eosinophil levels were high in patients with BP accompanying neurological disease. CONCLUSIONS Tissue eosinophil count and peripheral blood eosinophil count were correlated with disease severity in BP. Tissue eosinophil levels were also high in patients with BP accompanying neurological disease.
Collapse
Affiliation(s)
- Muge Gore Karaali
- Department of Dermatology, Mengücek Gazi Training and Research Hospital, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Ayse Esra Koku Aksu
- Department of Dermatology, University of Health Science (HSU) Istanbul Training and Research Hospital, Istanbul, Turkey
| | - Merve Cin
- Department of Pathology, University of Health Science (HSU) Istanbul Training and Research Hospital, Istanbul, Turkey
| | - Cem Leblebici
- Department of Pathology, University of Health Science (HSU) Istanbul Training and Research Hospital, Istanbul, Turkey
| | - Asude Kara Polat
- Department of Dermatology, University of Health Science (HSU) Istanbul Training and Research Hospital, Istanbul, Turkey
| | - Mehmet Salih Gurel
- Department of Dermatology, Göztepe Training and Research Hospital, Medeniyet University, Istanbul, Turkey
| |
Collapse
|
84
|
A peripheral inflammatory signature discriminates bipolar from unipolar depression: A machine learning approach. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110136. [PMID: 33045321 DOI: 10.1016/j.pnpbp.2020.110136] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/04/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Mood disorders (major depressive disorder, MDD, and bipolar disorder, BD) are considered leading causes of life-long disability worldwide, where high rates of no response to treatment or relapse and delays in receiving a proper diagnosis (~60% of depressed BD patients are initially misdiagnosed as MDD) contribute to a growing personal and socio-economic burden. The immune system may represent a new target to develop novel diagnostic and therapeutic procedures but reliable biomarkers still need to be found. METHODS In our study we predicted the differential diagnosis of mood disorders by considering the plasma levels of 54 cytokines, chemokines and growth factors of 81 BD and 127 MDD depressed patients. Clinical diagnoses were predicted also against 32 healthy controls. Elastic net models, including 5000 non-parametric bootstrapping procedure and inner and outer 10-fold nested cross-validation were performed in order to identify the signatures for the disorders. RESULTS Results showed that the immune-inflammatory signature classifies the two disorders with a high accuracy (AUC = 97%), specifically 92% and 86% respectively for MDD and BD. MDD diagnosis was predicted by high levels of markers related to both pro-inflammatory (i.e. IL-1β, IL-6, IL-7, IL-16) and regulatory responses (IL-2, IL-4, and IL-10), whereas BD by high levels of inflammatory markers (CCL3, CCL4, CCL5, CCL11, CCL25, CCL27, CXCL11, IL-9 and TNF-α). CONCLUSIONS Our findings provide novel tools for early diagnosis of BD, strengthening the impact of biomarkers research into clinical practice, and new insights for the development of innovative therapeutic strategies for depressive disorders.
Collapse
|
85
|
Liu WQ, Li WL, Ma SM, Liang L, Kou ZY, Yang J. Discovery of core gene families associated with liver metastasis in colorectal cancer and regulatory roles in tumor cell immune infiltration. Transl Oncol 2021; 14:101011. [PMID: 33450702 PMCID: PMC7810789 DOI: 10.1016/j.tranon.2021.101011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/01/2020] [Accepted: 01/04/2021] [Indexed: 01/21/2023] Open
Abstract
In this study, we aimed to uncover genes that drive the pathogenesis of liver metastasis in colorectal cancer (CRC), and identify effective genes that could serve as potential therapeutic targets for treating with colorectal liver metastasis patients based on two GEO datasets. Several bioinformatics approaches were implemented. First, differential expression analysis screened out key differentially expressed genes (DEGs) across the two GEO datasets. Based on gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, we identified the enrichment functions and pathways of the DEGs that were associated with liver metastasis in CRC. Second, immune infiltration analysis identified key immune signature gene sets associated with CRC liver metastasis, among which two key immune gene families (CD and CCL) identified as key DEGs were filtered by protein-protein interaction (PPI) network. Some of the members in these gene families were associated with disease free survival (DFS) or overall survival (OS) in two subtypes of CRC, namely COAD and READ. Finally, functional enrichment analysis of the two gene families and their neighboring genes revealed that they were closely associated with cytokine, leukocyte proliferation and chemotaxis. These results are valuable in comprehending the pathogenesis of liver metastasis in CRC, and are of seminal importance in understanding the role of immune tumor infiltration in CRC. Our study also identified potentially effective therapeutic targets for liver metastasis in CRC including CCL20, CCL24 and CD70.
Collapse
Affiliation(s)
- Wei-Qing Liu
- Department of Internal Medicine-Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, PR China
| | - Wen-Liang Li
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang road, Kunming, Yunnan 650032, PR China
| | - Shu-Min Ma
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang road, Kunming, Yunnan 650032, PR China
| | - Lei Liang
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang road, Kunming, Yunnan 650032, PR China
| | - Zhi-Yong Kou
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang road, Kunming, Yunnan 650032, PR China
| | - Jun Yang
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang road, Kunming, Yunnan 650032, PR China.
| |
Collapse
|
86
|
From Allergy to Cancer-Clinical Usefulness of Eotaxins. Cancers (Basel) 2021; 13:cancers13010128. [PMID: 33401527 PMCID: PMC7795139 DOI: 10.3390/cancers13010128] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Eotaxins are small proteins included in the group of chemokines. They act mainly on blood cells called eosinophils which are involved in the pathogenesis of inflammatory processes. This connection leads to involvement of eotaxins in the pathogenesis of all inflammatory related diseases, such as allergic diseases and cancer. This paper summarizes the current knowledge about eotaxins, showing their usefulness as markers that can be used not only in the detection of these diseases, but also to determine the effectiveness of treatment. Abstract Eotaxins are proteins which belong to the group of cytokines. These small molecules are secreted by cells that are mainly involved in immune-mediated reactions in the course of allergic diseases. Eotaxins were discovered in 1994 and their main role was considered to be the selective recruitment of eosinophils. As those blood cells are involved in the course of all inflammatory diseases, including cancer, we decided to perform an extensive search of the literature pertaining to our investigation via the MEDLINE/PubMed database. On the basis of available literature, we can assume that eotaxins can be used as markers for the detection and determination of origin or type of allergic disease. Many publications also confirm that eotaxins can be used in the determination of allergic disease treatment. Moreover, there are also studies indicating a connection between eotaxins and cancer. Some researchers revealed that CCL11 (C-C motif chemokine ligand 11, eotaxin-1) concentrations differed between the control and tested groups indicating their possible usefulness in cancer detection. Furthermore, some papers showed usefulness of eotaxins in determining the treatment efficacy as markers of decreasing inflammation. Therefore, in this paper we present the current knowledge on eotaxins in the course of allergic and cancerous diseases.
Collapse
|
87
|
Royds J, Cassidy H, Conroy MJ, Dunne MR, Lysaght J, McCrory C. Examination and characterisation of the effect of amitriptyline therapy for chronic neuropathic pain on neuropeptide and proteomic constituents of human cerebrospinal fluid. Brain Behav Immun Health 2021; 10:100184. [PMID: 34589721 PMCID: PMC8474617 DOI: 10.1016/j.bbih.2020.100184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/11/2020] [Accepted: 12/03/2020] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Amitriptyline is prescribed to reduce the intensity of chronic neuropathic pain. There is a paucity of validated in vivo evidence in humans regarding amitriptyline's mechanism of action. We examined the effect of amitriptyline therapy on cerebrospinal fluid (CSF) neuropeptides and proteome in patients with chronic neuropathic pain to identify potential mechanisms of action of amitriptyline. METHODS Patients with lumbar radicular neuropathic pain were selected for inclusion with clinical and radiological signs and a >50% reduction in pain in response to a selective nerve root block. Baseline (pre-treatment) and 8-week (post-treatment) pain scores with demographics were recorded. CSF samples were taken at baseline (pre-treatment) and 8 weeks after amitriptyline treatment (post-treatment). Proteome analysis was performed using mass spectrometry and secreted cytokines, chemokines and neurotrophins were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS A total of 9/16 patients experienced a >30% reduction in pain after treatment with amitriptyline and GO analysis demonstrated that the greatest modulatory effect was on immune system processes. KEGG analysis also identified a reduction in PI3K-Akt and MAPK signalling pathways in responders but not in non-responders. There was also a significant decrease in the chemokine eotaxin-1 (p = 0.02) and a significant increase in the neurotrophin VEGF-A (p = 0.04) in responders. CONCLUSION The CSF secretome and proteome was modulated in responders to amitriptyline verifying many pre-clinical and in vitro models. The predominant features were immunomodulation with a reduction in pro-inflammatory pathways of neuronal-glia communications and evidence of a neurotrophic effect.
Collapse
Affiliation(s)
- Jonathan Royds
- Department of Pain Medicine, St. James Hospital, Dublin and School of Medicine, Trinity College Dublin, Ireland
| | - Hilary Cassidy
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Melissa J. Conroy
- Department of Surgery, Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, Dublin 8, Ireland
- Trinity St James’s Cancer Institute, St James’s Hospital Dublin, Dublin 8, Ireland
| | - Margaret R. Dunne
- Department of Surgery, Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, Dublin 8, Ireland
- Trinity St James’s Cancer Institute, St James’s Hospital Dublin, Dublin 8, Ireland
| | - Joanne Lysaght
- Department of Surgery, Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, Dublin 8, Ireland
- Trinity St James’s Cancer Institute, St James’s Hospital Dublin, Dublin 8, Ireland
| | - Connail McCrory
- Department of Pain Medicine, St. James Hospital, Dublin and School of Medicine, Trinity College Dublin, Ireland
| |
Collapse
|
88
|
Rybtsova N, Berezina T, Kagansky A, Rybtsov S. Can Blood-Circulating Factors Unveil and Delay Your Biological Aging? Biomedicines 2020; 8:E615. [PMID: 33333870 PMCID: PMC7765271 DOI: 10.3390/biomedicines8120615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
According to the World Health Organization, the population of over 60 will double in the next 30 years in the developed countries, which will enforce a further raise of the retirement age and increase the burden on the healthcare system. Therefore, there is an acute issue of maintaining health and prolonging active working longevity, as well as implementation of early monitoring and prevention of premature aging and age-related disorders to avoid early disability. Traditional indicators of biological age are not always informative and often require extensive and expensive analysis. The study of blood factors is a simple and easily accessible way to assess individual health and supplement the traditional indicators of a person's biological age with new objective criteria. With age, the processes of growth and development, tissue regeneration and repair decline; they are gradually replaced by enhanced catabolism, inflammatory cell activity, and insulin resistance. The number of senescent cells supporting the inflammatory loop rises; cellular clearance by autophagy and mitophagy slows down, resulting in mitochondrial and cellular damage and dysfunction. Monitoring of circulated blood factors not only reflects these processes, but also allows suggesting medical intervention to prevent or decelerate the development of age-related diseases. We review the age-related blood factors discussed in recent publications, as well as approaches to slowing aging for healthy and active longevity.
Collapse
Affiliation(s)
- Natalia Rybtsova
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK;
| | - Tatiana Berezina
- Department of Scientific Basis of Extreme Psychology, Moscow State University of Psychology and Education, 127051 Moscow, Russia;
| | - Alexander Kagansky
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Stanislav Rybtsov
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK;
| |
Collapse
|
89
|
The regulatory role of SFRP5/WNT5A axis in allergic rhinitis through inhibiting JNK pathway activation and lowering mucin generation in human nasal epithelial cells. Exp Mol Pathol 2020; 118:104591. [PMID: 33285209 DOI: 10.1016/j.yexmp.2020.104591] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/17/2020] [Accepted: 12/01/2020] [Indexed: 12/29/2022]
Abstract
Allergic rhinitis (AR) is tightly associated with type 2 inflammation. SFRP5 combined with WNT5A mainly inhibits chronic inflammatory response, atherosclerosis, and other metabolic disorders. However, the effect of SFRP5/WNT5A axis on recombinant human interleukin-13 (rhIL-13)-induced inflammation has not been studied. In this study, we aimed to investigate whether secreted frizzled-related protein 5 (SFRP5) could modulate the production of cytokines relevant to eosinophil infiltration and mucin secretion through blocking the activation of Wnt family 5A (WNT5A) signaling pathway. A mouse model of AR demonstrated low expression of SFRP5 and high expression of WNT5A, and indicated that the number of eosinophil and goblet cells was increased, concomitant with elevated IL-13, colony stimulating factor 2 (CSF2), chemokine ligand 11 (CCL11), Mucin 4, and Mucin 5AC levels. Furthermore, lentivirus-SFRP5 overexpression up-regulated the expression of SFRP5 but down-regulated WNT5A level, and inhibited the activation of JNK pathway via decreasing p-JNK1/2 (Thr183/Tyr185) and p-c-Jun (Ser73) protein expressions in rhIL-13-treated human nasal epithelial cells (HNEpCs). Noticeably, SFRP5 overexpression markedly reduced rhIL-13-induced inflammatory protein and mucin generation through lowered CSF2, CCL11, Mucin 4, as well as Mucin 5AC levels. Taken together, these findings confirmed the regulatory role of SFRP5/WNT5A axis in rhIL-13-mediated inflammatory response in HNEpCs.
Collapse
|
90
|
CCL11 levels in drug-naive bipolar patients: The role of sex and smoking status. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2020. [DOI: 10.1016/j.jadr.2020.100002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
91
|
Pelisch N, Rosas Almanza J, Stehlik KE, Aperi BV, Kroner A. CCL3 contributes to secondary damage after spinal cord injury. J Neuroinflammation 2020; 17:362. [PMID: 33246483 PMCID: PMC7694914 DOI: 10.1186/s12974-020-02037-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
Background Secondary damage after spinal cord injury (SCI) is characterized by a cascade of events including hemorrhage, apoptosis, oxidative stress, and inflammation which increase the lesion size which can influence the functional impairment. Thus, identifying specific mechanisms attributed to secondary injury is critical in minimizing tissue damage and improving neurological outcome. In this work, we are investigating the role of CCL3 (macrophage inflammatory protein 1-α, MIP-1α), a chemokine involved in the recruitment of inflammatory cells, which plays an important role in inflammatory conditions of the central and peripheral nervous system. Methods A mouse model of lower thoracic (T11) spinal cord contusion injury was used. We assessed expression levels of CCL3 and its receptors on the mRNA and protein level and analyzed changes in locomotor recovery and the inflammatory response in the injured spinal cord of wild-type and CCL3−/− mice. Results The expression of CCL3 and its receptors was increased after thoracic contusion SCI in mice. We then examined the role of CCL3 after SCI and its direct influence on the inflammatory response, locomotor recovery and lesion size using CCL3−/− mice. CCL3−/− mice showed mild but significant improvement of locomotor recovery, a smaller lesion size and reduced neuronal damage compared to wild-type controls. In addition, neutrophil numbers as well as the pro-inflammatory cytokines and chemokines, known to play a deleterious role after SCI, were markedly reduced in the absence of CCL3. Conclusion We have identified CCL3 as a potential target to modulate the inflammatory response and secondary damage after SCI. Collectively, this study shows that CCL3 contributes to progressive tissue damage and functional impairment during secondary injury after SCI. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-020-02037-3.
Collapse
Affiliation(s)
- Nicolas Pelisch
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA
| | - Jose Rosas Almanza
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA
| | - Kyle E Stehlik
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA
| | - Brandy V Aperi
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA
| | - Antje Kroner
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA. .,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA. .,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
92
|
CCL-11 or Eotaxin-1: An Immune Marker for Ageing and Accelerated Ageing in Neuro-Psychiatric Disorders. Pharmaceuticals (Basel) 2020; 13:ph13090230. [PMID: 32887304 PMCID: PMC7558796 DOI: 10.3390/ph13090230] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022] Open
Abstract
Background: CCL-11 (eotaxin) is a chemokine with an important role in allergic conditions. Recent evidence indicates that CCL-11 plays a role in brain disorders as well. This paper reviews the associations between CCL-11 and aging, neurodegenerative, neuroinflammatory and neuropsychiatric disorders. Methods: Electronic databases were searched for original articles examining CCL-11 in neuropsychiatric disorders. Results: CCL-11 is rapidly transported from the blood to the brain through the blood-brain barrier. Age-related increases in CCL-11 are associated with cognitive impairments in executive functions and episodic and semantic memory, and therefore, this chemokine has been described as an “Endogenous Cognition Deteriorating Chemokine” (ECDC) or “Accelerated Brain-Aging Chemokine” (ABAC). In schizophrenia, increased CCL-11 is not only associated with impairments in cognitive functions, but also with key symptoms including formal thought disorders. Some patients with mood disorders and premenstrual syndrome show increased plasma CCL-11 levels. In diseases of old age, CCL-11 is associated with lowered neurogenesis and neurodegenerative processes, and as a consequence, increased CCL-11 increases risk towards Alzheimer’s disease. Polymorphisms in the CCL-11 gene are associated with stroke. Increased CCL-11 also plays a role in neuroinflammatory disease including multiple sclerosis. In animal models, neutralization of CCL-11 may protect against nigrostriatal neurodegeneration. Increased production of CCL-11 may be attenuated by glucocorticoids, minocycline, resveratrol and anti-CCL11 antibodies. Conclusions: Increased CCL-11 production during inflammatory conditions may play a role in human disease including age-related cognitive decline, schizophrenia, mood disorders and neurodegenerative disorders. Increased CCL-11 production is a new drug target in the treatment and prevention of those disorders.
Collapse
|
93
|
Comparing the effects of whey and casein supplementation on nutritional status and immune parameters in patients with chronic liver disease: a randomised double-blind controlled trial. Br J Nutr 2020; 125:768-779. [PMID: 32807252 DOI: 10.1017/s0007114520003219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protein supplementation may be beneficial for patients with chronic liver disease (CLD). This study compared the effects of whey protein isolate (WP) and casein (CA) supplementation on nutritional status and immune parameters of CLD patients who were randomly assigned to take 20 g of WP or CA twice per d as a supplement for 15 d. Body composition, muscle functionality and plasmatic immunomarkers were assessed before and after supplementation. Patients were also classified according to the model for end-stage liver disease (MELD) into less (MELD < 15) and more (MELD ≥ 15) severe disease groups. Malnutrition, determined by the Subjective Global Assessment at baseline, was observed in 57·4 % and 54·2 % of patients in the WP and CA groups, respectively (P = 0·649). Protein intake was lower at baseline in the WP group than in the CA group (P = 0·035), with no difference after supplementation (P = 0·410). Both the WP and CA MELD < 15 groups increased protein intake after supplementation according to the intragroup analysis. No differences were observed in body composition, muscle functionality, most plasma cytokines (TNF, IL-6, IL-1β and interferon-γ), immunomodulatory proteins (sTNFR1, sTNFR2, brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor) or immunomodulatory hormones (adiponectin, insulin and leptin) after supplementation in the WP groups at the two assessed moments. WP supplementation increased the levels of interferon-γ-induced protein-10/CXCL10 (P = 0·022), eotaxin-1/CCL11 (P = 0·031) and monocyte chemoattractant protein-1/CCL2 (P = 0·018) and decreased IL-5 (P = 0·027), including among those in the MELD ≥ 15 group, for whom IL-10 was also increased (P = 0·008). Thus, WP consumption by patients with CLD impacted the immunomodulatory responses when compared with CA with no impact on nutritional status.
Collapse
|
94
|
Misiak B, Bartoli F, Carrà G, Małecka M, Samochowiec J, Jarosz K, Banik A, Stańczykiewicz B. Chemokine alterations in bipolar disorder: A systematic review and meta-analysis. Brain Behav Immun 2020; 88:870-877. [PMID: 32278851 DOI: 10.1016/j.bbi.2020.04.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022] Open
Abstract
We aimed to perform a systematic review and meta-analysis of studies examining the levels of chemokines in peripheral blood of patients with bipolar disorder (BD) and healthy controls. Meta-analysis was based on random-effects models with Hedges' g as the effect size estimate. We included 13 eligible studies (1221 BD patients and 663 controls). The following chemokines were analysed: interleukin-8 (IL-8), monocyte-chemoattractant protein-1 (MCP-1), eotaxin-1, eotaxin-2 and interferon-γ-induced protein 10 (IP-10). The levels of IL-8 (N = 8, g = 0.26, 95%CI: 0.11-0.41, p < 0.001), MCP-1 (N = 8, g = 0.40, 95%CI: 0.18-0.63), eotaxin-1 (N = 3, g = 0.55, 95%CI: 0.21-0.89, p = 0.001) and IP-10 (N = 4, g = 0.95, 95%CI: 0.67-1.22, p < 0.001) were significantly higher in BD patients as compared with controls. Subgroup analyses revealed that elevated levels of IL-8 (N = 5, g = 0.75, 95%CI: 0.42-1.07, p < 0.001) and MCP-1 (N = 4, g = 0.57, 95%CI: 0.28-0.86, p < 0.001) appeared only in BD patients during their depressive phase. Illness duration was associated with significantly lower levels of IL-8 in meta-regression analysis. In turn, elevated levels of IP-10 were present during euthymia (N = 2, g = 0.76, 95%CI: 0.43-1.10, p < 0.001) but not depression (N = 2, g = 1.81, 95%CI: -0.16 to 3.77, p = 0.072). The analysis of eotaxin-1 levels was mainly based on studies of euthymic BD patients (N = 3). Our results suggest that chemokine alterations in BD might be related to mood state. Elevated levels of IL-8 and MCP-1 might be specific to depression. Available evidence indicates that increased levels of eotaxin-1 and IP-10 appear in euthymia; however, more studies are needed to address these alterations in other mood states.
Collapse
Affiliation(s)
- Błażej Misiak
- Department of Genetics, Wroclaw Medical University, Marcinkowskiego 1 Street, 50-368 Wroclaw, Poland.
| | - Francesco Bartoli
- Department of Medicine and Surgery, University of Milano Bicocca, Monza, Italy; Department of Mental Health & Addiction, ASST Nord Milano, Milano, Italy
| | - Giuseppe Carrà
- Department of Medicine and Surgery, University of Milano Bicocca, Monza, Italy; Department of Mental Health & Addiction, ASST Nord Milano, Milano, Italy; Division of Psychiatry, University College London, London, UK
| | - Monika Małecka
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10 Street, 50-367 Wroclaw, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Konrad Jarosz
- Department of Clinical Nursing, Pomeranian Medical University, Żołnierska 48 Street, 71-210 Szczecin, Poland
| | - Anna Banik
- Wroclaw Faculty of Psychology, SWPS University of Social Sciences and Humanities, Ostrowskiego 30b Street, 53-238 Wroclaw, Poland
| | - Bartłomiej Stańczykiewicz
- Department of Nervous System Diseases, Wroclaw Medical University, Bartla 5 Street, 51-618 Wroclaw, Poland
| |
Collapse
|
95
|
Ellegaard Nielsen J, Sofie Pedersen K, Vestergård K, Georgiana Maltesen R, Christiansen G, Lundbye-Christensen S, Moos T, Risom Kristensen S, Pedersen S. Novel Blood-Derived Extracellular Vesicle-Based Biomarkers in Alzheimer's Disease Identified by Proximity Extension Assay. Biomedicines 2020; 8:E199. [PMID: 32645971 PMCID: PMC7400538 DOI: 10.3390/biomedicines8070199] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
Easily accessible biomarkers for Alzheimer's dementia (AD) are lacking and established clinical markers are limited in applicability. Blood is a common biofluid for biomarker discoveries, and extracellular vesicles (EVs) may provide a matrix for exploring AD related biomarkers. Thus, we investigated proteins related to neurological and inflammatory processes in plasma and EVs. By proximity extension assay (PEA), 182 proteins were measured in plasma and EVs from patients with AD (n = 10), Mild Cognitive Impairment (MCI, n = 10), and healthy controls (n = 10). Plasma-derived EVs were enriched by 20,000× g, 1 h, 4 °C, and confirmed using nanoparticle tracking analysis (NTA), western blotting, and transmission electron microscopy with immunolabelling (IEM). Presence of CD9+ EVs was confirmed by western blotting and IEM. No group differences in particle concentration or size were detected by NTA. However, significant protein profiles were observed among subjects, particularly for EVs. Several proteins and their ratios could distinguish cognitively affected from healthy individuals. For plasma TGF-α│CCL20 (AUC = 0.96, 95% CI = 0.88-1.00, p = 0.001) and EVs CLEC1B│CCL11 (AUC = 0.95, 95% CI = 0.86-1.00, p = 0.001) showed diagnostic capabilities. Using PEA, we identified protein profiles capable of distinguishing healthy controls from AD patients. EVs provided additional biological information related to AD not observed in plasma alone.
Collapse
Affiliation(s)
- Jonas Ellegaard Nielsen
- Department of Clinical Medicine, Aalborg University, DK-9000 Aalborg, Denmark; (S.L.-C.); (S.R.K.)
- Department of Clinical Biochemistry, Aalborg University Hospital, DK-9000 Aalborg, Denmark
| | | | - Karsten Vestergård
- Department of Neurology, Aalborg University Hospital, DK-9000 Aalborg, Denmark;
| | - Raluca Georgiana Maltesen
- Department of Anaesthesia and Intensive Care, Aalborg University Hospital, DK-9000 Aalborg, Denmark;
| | - Gunna Christiansen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark;
- Department of Health Science and Technology, Aalborg University, DK-9220 Aalborg, Denmark;
| | - Søren Lundbye-Christensen
- Department of Clinical Medicine, Aalborg University, DK-9000 Aalborg, Denmark; (S.L.-C.); (S.R.K.)
- Unit of Clinical Biostatistics, Aalborg University Hospital, DK-9000 Aalborg, Denmark
| | - Torben Moos
- Department of Health Science and Technology, Aalborg University, DK-9220 Aalborg, Denmark;
| | - Søren Risom Kristensen
- Department of Clinical Medicine, Aalborg University, DK-9000 Aalborg, Denmark; (S.L.-C.); (S.R.K.)
- Department of Clinical Biochemistry, Aalborg University Hospital, DK-9000 Aalborg, Denmark
| | - Shona Pedersen
- Department of Clinical Medicine, Aalborg University, DK-9000 Aalborg, Denmark; (S.L.-C.); (S.R.K.)
- Department of Clinical Biochemistry, Aalborg University Hospital, DK-9000 Aalborg, Denmark
| |
Collapse
|
96
|
Li Y, Zhao Y, Qiu C, Yang Y, Liao G, Wu X, Zhang X, Zhang Q, Zhang R, Wang Z. Role of eotaxin-1/CCL11 in sepsis-induced myocardial injury in elderly patients. Aging (Albany NY) 2020; 12:4463-4473. [PMID: 32147601 PMCID: PMC7093174 DOI: 10.18632/aging.102896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/25/2020] [Indexed: 12/28/2022]
Abstract
Myocardial injury is a serious complication of sepsis. The present study aimed to identify potential biomarkers of sepsis-induced myocardial injury. Differentially expressed genes (DEGs) in patients and mice with sepsis-induced myocardial injury were identified via bioinformatic analysis. The identified DEG was tested in elderly patients with sepsis-induced myocardial injury. We identified 19 co-expressed DEGs. The most significant DEG was eotaxin-1/CCL11. We enrolled 25 controls without infections and 28 patients with sepsis-induced myocardial injury. Six of patients died within 30 days. Circulating eotaxin-1/CCL11 levels were significantly higher in patients with sepsis-induced myocardial injury than controls and were higher in non-survivors than survivors (both P < 0.01). Eotaxin-1/CCL11 was positively correlated with troponin I (r=0.48, P=0.01), B-type natriuretic peptide (BNP, r=0.44, P=0.02), and white blood cell (WBC) count (r=0.41, P=0.03). For the prediction of 30-day mortality, eotaxin-1/CCL11 had the greatest discriminatory ability (AUC 0.97) compared with troponin I (AUC 0.89), BNP (AUC 0.80), and WBC count (AUC 0.86). Taken together, eotaxin-1/CCL11 was upregulated in sepsis-injured myocardium and circulating eotaxin-1/CCL11 was a biomarker for predicting severity and mortality of elderly patients with sepsis-induced myocardial injury. These results suggest that eotaxin-1/CCL11 may become a useful biomarkers and potential therapeutic target for sepsis-induced myocardial injury.
Collapse
Affiliation(s)
- Ying Li
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan, China
| | - Youguang Zhao
- Department of Urology, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan, China
| | - Chenming Qiu
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan, China
| | - Yuanrui Yang
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan, China
| | - Guihua Liao
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan, China
| | - Xi Wu
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan, China
| | - Xiaowan Zhang
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan, China
| | - Qian Zhang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan, China
| | - Ru Zhang
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan, China
| | - Zhang Wang
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan, China
| |
Collapse
|
97
|
|
98
|
Valiati FE, Hizo GH, Pinto JV, Kauer-Sant`Anna M. The Possible Role of Telomere Length and Chemokines in the Aging Process: A Transdiagnostic Review in Psychiatry. CURRENT PSYCHIATRY RESEARCH AND REVIEWS 2019. [DOI: 10.2174/1573400515666190719155906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:Psychiatric disorders are common, reaching a worldwide prevalence of 29.2%. They are associated with a high risk of premature death and with accelerated aging in clinical, molecular and neuroimaging studies. Recently, there is strong evidence suggesting a possible role of telomere length and chemokines in aging processes in psychiatric disorders.Objective:We aimed to review the literature on telomere length and chemokines and its association with early aging in mental illnesses on a transdiagnostic approach.Results:The review highlights the association between psychiatric disorders and early aging. Several independent studies have reported shorter telomere length and dysregulations on levels of circulating chemokines in schizophrenia, bipolar disorder, major depressive disorder, and anxiety disorders, suggesting a complex interaction between these markers in a transdiagnostic level. However, studies have investigated the inflammatory markers and telomere shortening separately and associated with a particular diagnosis, rather than as a transdiagnostic biological feature.Conclusion:There is consistent evidence supporting the relationship between accelerated aging, telomere length, and chemokines in mental disorders, but they have been studied individually. Thus, more research is needed to improve the knowledge of accelerated senescence and its biomarkers in psychiatry, not only individually in each diagnosis, but also based on a transdiagnostic perspective. Moreover, further research should try to elucidate how the intricate association between the chemokines and telomeres together may contribute to the aging process in psychiatric disorders.
Collapse
Affiliation(s)
- Fernanda Endler Valiati
- Laboratory of Molecular Psychiatry, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Gabriel Henrique Hizo
- Laboratory of Molecular Psychiatry, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Jairo Vinícius Pinto
- Laboratory of Molecular Psychiatry, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Márcia Kauer-Sant`Anna
- Laboratory of Molecular Psychiatry, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
99
|
Milenkovic VM, Stanton EH, Nothdurfter C, Rupprecht R, Wetzel CH. The Role of Chemokines in the Pathophysiology of Major Depressive Disorder. Int J Mol Sci 2019; 20:E2283. [PMID: 31075818 PMCID: PMC6539240 DOI: 10.3390/ijms20092283] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/19/2022] Open
Abstract
Major depressive disorder (MDD) is a debilitating condition, whose high prevalence and multisymptomatic nature set its standing as a leading contributor to global disability. To better understand this psychiatric disease, various pathophysiological mechanisms have been proposed, including changes in monoaminergic neurotransmission, imbalance of excitatory and inhibitory signaling in the brain, hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis, and abnormalities in normal neurogenesis. While previous findings led to a deeper understanding of the disease, the pathogenesis of MDD has not yet been elucidated. Accumulating evidence has confirmed the association between chronic inflammation and MDD, which is manifested by increased levels of the C-reactive protein, as well as pro-inflammatory cytokines, such as Interleukin 1 beta, Interleukin 6, and the Tumor necrosis factor alpha. Furthermore, recent findings have implicated a related family of cytokines with chemotactic properties, known collectively as chemokines, in many neuroimmune processes relevant to psychiatric disorders. Chemokines are small (8-12 kDa) chemotactic cytokines, which are known to play roles in direct chemotaxis induction, leukocyte and macrophage migration, and inflammatory response propagation. The inflammatory chemokines possess the ability to induce migration of immune cells to the infection site, whereas their homeostatic chemokine counterparts are responsible for recruiting cells for their repair and maintenance. To further support the role of chemokines as central elements to healthy bodily function, recent studies suggest that these proteins demonstrate novel, brain-specific mechanisms including the modulation of neuroendocrine functions, chemotaxis, cell adhesion, and neuroinflammation. Elevated levels of chemokines in patient-derived serum have been detected in individuals diagnosed with major depressive disorder, bipolar disorder, and schizophrenia. Furthermore, despite the considerable heterogeneity of experimental samples and methodologies, existing biomarker studies have clearly demonstrated the important role of chemokines in the pathophysiology of psychiatric disorders. The purpose of this review is to summarize the data from contemporary experimental and clinical studies, and to evaluate available evidence for the role of chemokines in the central nervous system (CNS) under physiological and pathophysiological conditions. In light of recent results, chemokines could be considered as possible peripheral markers of psychiatric disorders, and/or targets for treating depressive disorders.
Collapse
Affiliation(s)
- Vladimir M Milenkovic
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, D-93053 Regensburg, Germany.
| | - Evan H Stanton
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, D-93053 Regensburg, Germany.
| | - Caroline Nothdurfter
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, D-93053 Regensburg, Germany.
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, D-93053 Regensburg, Germany.
| | - Christian H Wetzel
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, D-93053 Regensburg, Germany.
| |
Collapse
|
100
|
Weng YH, Chen WY, Lin YL, Wang JY, Chang MS. Blocking IL-19 Signaling Ameliorates Allergen-Induced Airway Inflammation. Front Immunol 2019; 10:968. [PMID: 31114590 PMCID: PMC6503049 DOI: 10.3389/fimmu.2019.00968] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/15/2019] [Indexed: 11/21/2022] Open
Abstract
Asthma is a chronic inflammatory disease of the airway. Its major symptoms are reversible breathing problems causing airway narrowing and obstruction. IL-19 is a member of the IL-10 family cytokines. We previously showed that IL-19 induces T-helper 2 (Th2) cytokines and that asthma patients had higher serum IL-19 levels. To further examine whether inhibiting IL-19 and its receptor (IL-20R1) protected rodents against asthma, we used Dermatophagoides pteronyssinus (Der p; house dust mites) to induce chronic airway inflammation in wild-type C57BL/6 and IL-20R1-deficient mice and then analyzed the effect of the IL-20R1 deficiency on the pathogenesis of asthma. We also examined whether inhibiting IL-19 and IL-20R1 ameliorated Der p-induced chronic asthma. Der p induced IL-19 in lung airway epithelial cells, type 2 alveolar cells, and alveolar macrophages. An IL-20R1 deficiency abolished IL-19-induced Th2 cell differentiation in vitro. Th2 cytokine expression, immune cell infiltration in the bronchoalveolar lavage, airway hyperresponsiveness (AHR), and bronchial wall thickening were lower in Der p-challenged IL-20R1-deficient mice. Anti-IL-20R1 monoclonal antibody (mAb) 51D and IL-19 polyclonal antibody (pAb) both ameliorated Der p-induced AHR, lung immune cell infiltration, bronchial wall thickening, and Th2 cytokine expression. Moreover, we confirmed that anti-IL-19 mAb (1BB1) attenuated lung inflammation in a rat ovalbumin-induced asthma model. This is the first report to show that inhibition of IL-19 by targeting IL-19 or IL-20R1 protected rodents from allergic lung inflammation. Our study suggests that targeting IL-19 signaling might be a novel therapeutic strategy for treating allergic asthma.
Collapse
Affiliation(s)
- Yun-Han Weng
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Yu Chen
- Kaohsiung Chang Gung Memorial Hospital, Institute for Translational Research in Biomedicine, Kaohsiung, Taiwan
| | - Yen-Lin Lin
- Institute of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiu-Yao Wang
- Institute of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pediatrics, College of Medical, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Shi Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|