51
|
Oboňová B, Habala L, Litecká M, Herich P, Bilková A, Bilka F, Horváth B. Antimicrobially Active Zn(II) Complexes of Reduced Schiff Bases Derived from Cyclohexane-1,2-diamine and Fluorinated Benzaldehydes-Synthesis, Crystal Structure and Bioactivity. Life (Basel) 2023; 13:1516. [PMID: 37511891 PMCID: PMC10381420 DOI: 10.3390/life13071516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
A series of Schiff base ligands obtained by the condensation of trans-cyclohexane-1,2-diamine and fluorinated benzaldehydes were prepared, followed by their reduction with NaBH4. The reduced ligands were employed in the synthesis of zinc complexes of the general formula [ZnCl2(L)]. The structures of both the original and the reduced Schiff bases, as well as of the zinc complexes, were characterized by single-crystal X-ray analysis, along with NMR and IR spectroscopy. The antimicrobial activities of the reduced Schiff bases and their zinc complexes were evaluated in vitro against E. coli, S. aureus, and C. albicans. The compounds containing the 4-(trifluoromethylphenyl) moiety showed marked antibacterial activity. Interestingly, the antimicrobial effect of the zinc complex with this moiety was significantly higher than that of the corresponding free reduced ligand, comparable with ciprofloxacin used as standard. Thus, a synergic effect upon the complexation with zinc can be inferred.
Collapse
Affiliation(s)
- Bianka Oboňová
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Ladislav Habala
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Miroslava Litecká
- Department of Materials Chemistry, Institute of Inorganic Chemistry of the CAS, Husinec-Řež č.p. 1001, 250 68 Řež, Czech Republic
| | - Peter Herich
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
- Department of Physical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Andrea Bilková
- Department of Cellular and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - František Bilka
- Department of Cellular and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Branislav Horváth
- NMR Laboratory, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| |
Collapse
|
52
|
Swikriti, Babbar R, Saini D, Rawat R, Chigurupati S, Felemban SG, Vargas-De-La-Cruz C, Behl T. Design and synthesis of neoteric benzylidene amino-benzimidazole scaffolds for antioxidant and anti-inflammatory activity. Future Med Chem 2023; 15:813-828. [PMID: 37350114 DOI: 10.4155/fmc-2023-0058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/02/2023] [Indexed: 06/24/2023] Open
Abstract
Aim: To design a series of neoteric benzylidene amino-benzimidazole derivatives and to synthesize and evaluate them for anti-inflammatory and antioxidant potential. Methods: The designed target scaffolds were synthesized and appraised for in vitro antioxidant action and in vivo anti-inflammatory potential. AutoDock Vina software was employed for design; the Mannich reaction was used for synthesis; and antioxidant and anti-inflammatory potential were demonstrated by the 2,2-diphenyl-1-picryl hydrazyl free-radical scavenging assay and carrageenan-induced paw edema method, respectively. Results: Methyl-incorporating molecules 3-(2-((2-methylbenzylidene)amino)-1H-benzo[d]imidazol-1-yl)-1-phenylpropan-1-one (6c) and 3-(2-((4-methylbenzylidene)amino-1H-benzo[d]imidazol-1-yl)-1-phenylpropan-1-one (6j) showed remarkable antioxidant and anti-inflammatory action, followed by compounds 6f, 6e and 6i containing 3-CH3, 2-OH, 4-F substituents, respectively. Conclusion: The designed analogs were dynamically confined within the active site of cyclooxygenase-2, and in vitro and in vivo results agreed with molecular docking studies.
Collapse
Affiliation(s)
- Swikriti
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Distt. Patiala, 140401, India
- Department of Pharmaceutical Chemistry, Akal College of Pharmacy & Technical Education, Mastuana Sahib, Sangrur, 148001, India
| | - Ritchu Babbar
- Department of Pharmaceutical Chemistry, Akal College of Pharmacy & Technical Education, Mastuana Sahib, Sangrur, 148001, India
| | - Deepika Saini
- Lloyd Institute of Management & Technology, Plot No. 11, Knowledge Park-II, Greater Noida, 201306, India
| | - Ravi Rawat
- School of Health Sciences & Technology, UPES University, Dehradun, 248007, India
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, 52571, Kingdom of Saudi Arabia
- University Center for Research & Development (UCRD), Chandigarh University, Gharuan, 140413, Punjab, India
| | - Shatha G Felemban
- Department of Medical Laboratory Science, Fakeeh College for Medical Sciences, Jeddah, 21461, Kingdom of Saudi Arabia
| | - Celia Vargas-De-La-Cruz
- Department of Pharmacology, Bromatology & Toxicology, Faculty of Pharmacy & Biochemistry, Universidad Nacional Mayor de San Marcos, Lima, 150001, Peru
- E-Health Research Center, Universidad de Ciencias y Humanidades, Lima, 15001, Peru
| | - Tapan Behl
- School of Health Sciences & Technology, UPES University, Dehradun, 248007, India
| |
Collapse
|
53
|
Orta-Rivera AM, Meléndez-Contés Y, Medina-Berríos N, Gómez-Cardona AM, Ramos-Rodríguez A, Cruz-Santiago C, González-Dumeng C, López J, Escribano J, Rivera-Otero JJ, Díaz-Rivera J, Díaz-Vélez SC, Feliciano-Delgado Z, Tinoco AD. Copper-Based Antibiotic Strategies: Exploring Applications in the Hospital Setting and the Targeting of Cu Regulatory Pathways and Current Drug Design Trends. INORGANICS 2023; 11:252. [PMID: 39381734 PMCID: PMC11460770 DOI: 10.3390/inorganics11060252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Classical antibacterial drugs were designed to target specific bacterial properties distinct from host human cells to maximize potency and selectivity. These designs were quite effective as they could be easily derivatized to bear next-generation drugs. However, the rapid mutation of bacteria and their associated acquired drug resistance have led to the rise of highly pathogenic superbug bacterial strains for which treatment with first line drugs is no match. More than ever, there is a dire need for antibacterial drug design that goes beyond conventional standards. Taking inspiration by the body's innate immune response to employ its own supply of labile copper ions in a toxic attack against pathogenic bacteria, which have a very low Cu tolerance, this review article examines the feasibility of Cu-centric strategies for antibacterial preventative and therapeutic applications. Promising results are shown for the use of Cu-containing materials in the hospital setting to minimize patient bacterial infections. Studies directed at disrupting bacterial Cu regulatory pathways elucidate new drug targets that can enable toxic increase of Cu levels and perturb bacterial dependence on iron. Likewise, Cu intracellular chelation/prochelation strategies effectively induce bacterial Cu toxicity. Cu-based small molecules and nanoparticles demonstrate the importance of the Cu ions in their mechanism and display potential synergism with classical drugs.
Collapse
|
54
|
Ugwu DI, Conradie J. Metal complexes derived from bidentate ligands: Synthesis, catalytic and biological applications. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
55
|
Tatarusanu SM, Sava A, Profire BS, Pinteala T, Jitareanu A, Iacob AT, Lupascu F, Simionescu N, Rosca I, Profire L. New Smart Bioactive and Biomimetic Chitosan-Based Hydrogels for Wounds Care Management. Pharmaceutics 2023; 15:pharmaceutics15030975. [PMID: 36986836 PMCID: PMC10060009 DOI: 10.3390/pharmaceutics15030975] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Wound management represents a continuous challenge for health systems worldwide, considering the growing incidence of wound-related comorbidities, such as diabetes, high blood pressure, obesity, and autoimmune diseases. In this context, hydrogels are considered viable options since they mimic the skin structure and promote autolysis and growth factor synthesis. Unfortunately, hydrogels are associated with several drawbacks, such as low mechanical strength and the potential toxicity of byproducts released after crosslinking reactions. To overcome these aspects, in this study new smart chitosan (CS)-based hydrogels were developed, using oxidized chitosan (oxCS) and hyaluronic acid (oxHA) as nontoxic crosslinkers. Three active product ingredients (APIs) (fusidic acid, allantoin, and coenzyme Q10), with proven biological effects, were considered for inclusion in the 3D polymer matrix. Therefore, six API-CS-oxCS/oxHA hydrogels were obtained. The presence of dynamic imino bonds in the hydrogels' structure, which supports their self-healing and self-adapting properties, was confirmed by spectral methods. The hydrogels were characterized by SEM, swelling degree, pH, and the internal organization of the 3D matrix was studied by rheological behavior. Moreover, the cytotoxicity degree and the antimicrobial effects were also investigated. In conclusion, the developed API-CS-oxCS/oxHA hydrogels have real potential as smart materials in wound management, based on their self-healing and self-adapting properties, as well as on the benefits of APIs.
Collapse
Affiliation(s)
- Simona-Maria Tatarusanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, 16 Universitatii Street, 700115 Iași, Romania
- Research & Development Department, Antibiotice Company, 1 ValeaLupului Street, 707410 Iasi, Romania
| | - Alexandru Sava
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, 16 Universitatii Street, 700115 Iași, Romania
| | - Bianca-Stefania Profire
- Department of Internal Medicine, Faculty of Medicine, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, 16 Universitatii Street, 700115 Iași, Romania
| | - Tudor Pinteala
- Department of Orthopedics and Traumatology, Faculty of Medicine, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, 16 Universitatii Street, 700115 Iași, Romania
| | - Alexandra Jitareanu
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, 16 Universitatii Street, 700115 Iași, Romania
| | - Andreea-Teodora Iacob
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, 16 Universitatii Street, 700115 Iași, Romania
| | - Florentina Lupascu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, 16 Universitatii Street, 700115 Iași, Romania
| | - Natalia Simionescu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "PetruPoni" Institute of Macromolecular Chemistry, 41A GrigoreGhica-Voda Alley, 700487 Iasi, Romania
| | - Irina Rosca
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "PetruPoni" Institute of Macromolecular Chemistry, 41A GrigoreGhica-Voda Alley, 700487 Iasi, Romania
| | - Lenuta Profire
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, 16 Universitatii Street, 700115 Iași, Romania
| |
Collapse
|
56
|
Synthesis and Biological Evaluation of New Schiff Bases Derived from 4-Amino-5-(3-fluorophenyl)-1,2,4-triazole-3-thione. Molecules 2023; 28:molecules28062718. [PMID: 36985690 PMCID: PMC10057893 DOI: 10.3390/molecules28062718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
The treatment of infectious diseases is a challenging issue faced by the medical community. The emergence of drug-resistant strains of bacteria and fungi is a major concern. Researchers and medical professionals are working to develop new and innovative treatments for infectious diseases. Schiff bases are one a promising class of compounds. In this work, new derivatives were obtained of the 4-amino-5-(3-fluorophenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione reaction, with corresponding benzaldehydes with various substituents at position 4. The antibacterial and antifungal activities of all synthesized compounds were tested. Several new substances have shown moderate antifungal activity against Candida spp. The highest activity directed against C. albicans was shown by compound RO4, with a 4-methoxyphenyl moiety and an MIC value of 62.5 µg/mL. In order to check the toxicity of the synthesized compounds, their effect on cell lines was examined. Additionally, we tried to elucidate the mechanism of the antibacterial and antifungal activity of the tested compounds using molecular docking to topoisomerase IV, D-Alanyl-D-Alanine Ligase, and dihydrofolate reductase.
Collapse
|
57
|
Mohammed Abduljleel A, Saleh Alshawi JM, Ali Hussein K, Ismael SMH. Synthesis, characterization, biological studies and DFT study of Schiff Bases and their complexes derived from aromatic diamine compounds with cobalt (II). BIONATURA 2023. [DOI: 10.21931/rb/2023.08.01.61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Based on vanillin and diamine compounds (ortho phenylene diamine, meta phenylene diamine, 3,4- diamine toluene), derivation of two new Schiff base ligands (L1 and L2) was done, after which synthesis and treatment with Co (II) chloride was performed at a metal-to-ligand ratio of 1:1 to get two new complexes, i.e. [CoL3(H2O)2]Cl2 and [CoL1(H2O)2]Cl2. These complexes and ligands were characterized by employing NMR, IR, atomic absorption, UV visible absorption, molecular weight determination, molar conductance, and magnetic measurement techniques. As per the data, the ligands were found to be bidentate ligands that were linked to two azomethine nitrogen sites. It was suggested that these complexes were paramagnetic electrolyte compounds that possessed coordination number four. Screening of the ligands and metal complexes was done to assess their antimicrobial activities against gram-negative and gram-positive bacteria, which was found to show biological activity. Calculations using quantum chemistry were done to examine the molecule geometry. The investigation includes several quantum chemical characteristics derived from frontier molecular orbitals.
Keywords: Schiff bases, transition metal complexes, vanillin, diamine aromatic compounds, antibacterial activity, DFT study.
Collapse
Affiliation(s)
| | | | - kawkab Ali Hussein
- Department of Chemistry, College of Education for Pure Sciences, University of Basrah, Basrah, 61004 Iraq
| | - Sadiq M-H. Ismael
- Department of Chemistry, College of Education for Pure Sciences, University of Basrah, Basrah, 61004 Iraq
| |
Collapse
|
58
|
Ease to Challenges in Achieving Successful Synthesized Schiff Base, Chirality, and Application as Antibacterial Agent. BIOMED RESEARCH INTERNATIONAL 2023. [DOI: 10.1155/2023/1626488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
This study reports how to overcome the challenges experienced in achieving successful synthesized Schiff base via types of Schiff base (chiral and achiral), synthesis, nature of products, and its antibacterial applications. Schiff base is a versatile ligand which is useful in asymmetric reactions to prepare chiral catalysts. It is also used in symmetric reactions to prepare achiral compounds. In line with the achiral compounds, conventional (room temperature and refluxing) and microwave irradiation methods are the two main types of methods to synthesize achiral Schiff base as reported in this review. Among various experimental approaches, this study supports the green chemistry microwave approach to synthesize Schiff base because of its benefits environmental sustainability. Problems relating to the nature of products formed from the synthesized Schiff bases were examined and resolved. Herein, the products could either be solid (crystals, powder, and precipitate), oily, or viscous (sticky) products. Some familiar characterization techniques used to identify and confirm the successful syntheses of Schiff bases, such as solubility test, melting point (MP), Fourier transform infrared (FTIR), ultraviolet-visible (UV-Vis), and nuclear magnetic resonance (NMR, 1H NMR, and 13C NMR), were discussed. In addition, the antibacterial studies on Schiff base and corresponding metal complexes confirmed their biological relevance to the human.
Collapse
|
59
|
Balitaan JNI, Luo WJ, Su YW, Yu CY, Wu TY, Chang CA, Jia HW, Lin SR, Hsiao CD, Yeh JM. Healing Wounds Efficiently with Biomimetic Soft Matter: Injectable Self-Healing Neutral Glycol Chitosan/Dibenzaldehyde-Terminated Poly(ethylene glycol) Hydrogel with Inherent Antibacterial Properties. ACS APPLIED BIO MATERIALS 2023; 6:552-565. [PMID: 36759183 DOI: 10.1021/acsabm.2c00859] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The high prevalence of acquiring skin wounds, along with the emergence of antibiotic-resistant strains that lead to infections, impose a threat to the physical, mental, and socioeconomic health of society. Among the wide array of wound dressings developed, hydrogels are regarded as a biomimetic soft matter of choice owing to their ability to provide a moist environment ideal for healing. Herein, neutral glycol chitosan (GC) was cross-linked via imine bonds with varying concentrations of dibenzaldehyde-terminated polyethylene glycol (DP) to give glycol chitosan/dibenzaldehyde-terminated polyethylene glycol hydrogels (GC/DP). These dynamic Schiff base linkages (absorption peak at 1638 cm-1) within the hydrogel structure endowed their ability to recover from damage as characterized by high-low strain exposure in continuous step strain rheology. Along with their good injectability and biodegradability, the hydrogels exhibited remarkable inhibition against E. coli, P. aeruginosa, and S. aureus. GC/DP hydrogels demonstrated high LC50 values in vivo using zebrafish embryos as a model system due to their relative biocompatibility and a remarkable 93.4 ± 0.88% wound contraction at 30-dpw against 49.1 ± 3.40% of the control. To the best of our knowledge, this is the first study that developed injectable glycol chitosan/dibenzaldehyde-terminated polyethylene glycol self-healing hydrogels for application in wound healing with intrinsic bacteriostatic properties against the three bacteria.
Collapse
|
60
|
Zhou XM, Hu YY, Fang B, Zhou CH. Benzenesulfonyl thiazoloimines as unique multitargeting antibacterial agents towards Enterococcus faecalis. Eur J Med Chem 2023; 248:115088. [PMID: 36623329 DOI: 10.1016/j.ejmech.2023.115088] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023]
Abstract
New efficient antimicrobial agents are urgently needed to combat invasive multidrug-resistant pathogens infections. Structurally unique benzenesulfonyl thiazoloimines (BSTIs) were exploited as novel potential antibacterial victors to confront terrific drug resistance. Some developed BSTIs exerted effectively antimicrobial efficacy against the tested strains. Notably, 2-pyridyl BSTI 14d exhibited good antibacterial activity against E. faecalis with MIC value of 1 μg/mL, which was superior to sulfathiazole and norfloxacin. The most active compound 14d not only showed rapid bactericidal properties and impeded E. faecalis biofilm formation to effectually relieve the development of drug resistance, but also performed low toxicity toward human red blood cells, human normal squamous epithelial cells and human non-neoplastic colon epithelial cells. Mechanistic investigation demonstrated that molecule 14d could exert efficient membrane destruction leading to the leakage of intracellular materials and metabolism inhibition, cause oxidative damage of E. faecalis through accumulation of excess reactive oxygen species and reduction of glutathione activity, and intercalate into DNA to hinder replication of DNA. Molecular docking indicated that the formation of 14d-dihydrofolate synthetase supramolecular complex could hinder the function of this enzyme. ADME analysis displayed that compound 14d possessed promising pharmacokinetic properties. These findings suggested that the newly developed benzenesulfonyl thiazoloimines with multitargeting antibacterial potential provided a new possibility for evading resistance.
Collapse
Affiliation(s)
- Xue-Mei Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yuan-Yuan Hu
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Bo Fang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, PR China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
61
|
Marjanović JS, Ćoćić D, Caković AZ, Petrović N, Kosanić M, Kostić MD, Divac VM. Seleno‐L‐cystine and Vanillin Schiff's base: Synthesis, Reaction Mechanism and Biological activity. ChemistrySelect 2023. [DOI: 10.1002/slct.202204603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jovana S Marjanović
- Department of Chemistry Faculty of Science University of Kragujevac Radoja Domanovica 12 34 000 Kragujevac Serbia
| | - Dušan Ćoćić
- Department of Chemistry Faculty of Science University of Kragujevac Radoja Domanovica 12 34 000 Kragujevac Serbia
| | - Angelina Z Caković
- Department of Chemistry Faculty of Science University of Kragujevac Radoja Domanovica 12 34 000 Kragujevac Serbia
| | - Nevena Petrović
- Department of Biology and Ecology Faculty of Science University of Kragujevac Radoja Domanovica 12 34 000 Kragujevac Serbia
| | - Marijana Kosanić
- Department of Biology and Ecology Faculty of Science University of Kragujevac Radoja Domanovica 12 34 000 Kragujevac Serbia
| | - Marina D Kostić
- Institute for Information Technologies Kragujevac University of Kragujevac Jovana Cvijića bb 34 000 Kragujevac Serbia
| | - Vera M Divac
- Department of Chemistry Faculty of Science University of Kragujevac Radoja Domanovica 12 34 000 Kragujevac Serbia
| |
Collapse
|
62
|
Catalano A, Mariconda A, Sinicropi MS, Ceramella J, Iacopetta D, Saturnino C, Longo P. Biological Activities of Ruthenium NHC Complexes: An Update. Antibiotics (Basel) 2023; 12:365. [PMID: 36830276 PMCID: PMC9952499 DOI: 10.3390/antibiotics12020365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Ruthenium N-heterocyclic carbene (NHC) complexes have unique physico-chemical properties as catalysts and a huge potential in medicinal chemistry and pharmacology, exhibiting a variety of notable biological activities. In this review, the most recent studies on ruthenium NHC complexes are summarized, focusing specifically on antimicrobial and antiproliferative activities. Ruthenium NHC complexes are generally active against Gram-positive bacteria, such as Bacillus subtilis, Staphylococcus aureus, Micrococcus luteus, Listeria monocytogenes and are seldom active against Gram-negative bacteria, including Salmonella typhimurium, Pseudomonas aeruginosa and Escherichia coli and fungal strains of Candida albicans. The antiproliferative activity was tested against cancer cell lines of human colon, breast, cervix, epidermis, liver and rat glioblastoma cell lines. Ruthenium NHC complexes generally demonstrated cytotoxicity higher than standard anticancer drugs. Further studies are needed to explore the mechanism of action of these interesting compounds.
Collapse
Affiliation(s)
- Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | | | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
63
|
Waziri I, Yusuf TL, Akintemi E, Kelani MT, Muller A. Spectroscopic, crystal structure, antimicrobial and antioxidant evaluations of new Schiff base compounds: An experimental and theoretical study. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
64
|
Sharma S, Vashishtha M. Evaluation of optimized molecular structure-antimicrobial and antioxidant efficacy relationship of Schiff bases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20874-20886. [PMID: 36260232 DOI: 10.1007/s11356-022-23633-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The synthesis, reactivity, structure, antimicrobial potential, and antioxidant property of some Schiff bases were extensively studied experimentally and theoretically using the B3LYP method of DFT (density functional theory). Schiff bases formed with the interaction of salicylaldehyde and amino alcohols in a 1:1 molar ratio in ethanol. The physicochemical and spectroscopic investigations decide the plausible structure of these newly synthesized Schiff bases. The computational study can assess the molecular orbitals, chemical reactivity, stability, and molecular electrostatic potential of Schiff bases. The thermodynamic parameters and optimized structures of Schiff bases in the gaseous state investigated by the B3LYP method of DFT. The evaluation of Schiff bases possesses antimicrobial resistance against gram-negative (Pseudomonas aeruginosa) and (Bacillus cereus)gram-positive bacterial strains as well as fungal strains (Candida albicans and Penicillium chrysogeum). The MIC (minimum inhibitory concentration) of all Schiff bases against Bacillus cereus was found in the range of 250 to 1200 µg. The MIC values of L1H, L2H, and L3H against Penicillium chrysogeum were 400, 600, and 800 µg, respectively, whereas the MIC value of L1H against Candida albicans was 600 µg. The free radical scavenging activity by the DPPH method was used to access potential antioxidant activity in Schiff bases.
Collapse
Affiliation(s)
- Shobhana Sharma
- Department of Chemistry, S.S. Jain Subodh P.G. College, Jaipur, 302004, India
| | | |
Collapse
|
65
|
Improving the antimicrobial activity of old antibacterial drug mafenide: Schiff bases and their bioactivity targeting resistant pathogens. Future Med Chem 2023; 15:255-274. [PMID: 36891917 DOI: 10.4155/fmc-2022-0259] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Background: Increasing rates of acquired resistance have justified the critical need for novel antimicrobial drugs. One viable concept is the modification of known drugs. Methods & results: 21 mafenide-based compounds were prepared via condensation reactions and screened for antimicrobial efficacy, which demonstrated promising activity against both Gram-positive and Gram-negative pathogens, pathogenic fungi and mycobacterial strains (minimum inhibitory concentrations from 3.91 μM). Importantly, they retained activity against a panel of superbugs (methicillin- and vancomycin-resistant staphylococci, enterococci, multidrug-resistant Mycobacterium tuberculosis) without any cross-resistance. Unlike mafenide, most of its imines were bactericidal. Toxicity to HepG2 cells was also investigated. Conclusion: Schiff bases were significantly more active than the parent drug, with iodinated salicylidene and 5-nitrofuran/thiophene-methylidene scaffolds being preferred in identifying the most promising drug candidates.
Collapse
|
66
|
Vashistha A, Kumar S, Kirar S, Sharma N, Das B, Banerjee UC, Pawar SV, Kumar R, Yadav AK. Synthesis, biological evaluation and in silico studies of 2-aminoquinolines and 1-aminoisoquinolines as antimicrobial agents. Comput Biol Chem 2023; 102:107807. [PMID: 36587565 DOI: 10.1016/j.compbiolchem.2022.107807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
The current study reports synthesis of 2-aminoquinolines and 1-aminoisoquinolines derivatives and their characterization. Further, in vitro studies were conducted to determine antimicrobial activities. Compound 3 h showed maximum activity against B. subtilis (IC50: 0.10±0.02 µM) and E. coli (IC50: 0.13±0.01 µM) whereas compound 3i showed higher antimicrobial activity against E. coli (IC50: 0.11±0.01) and C. viswanathii (IC50: 0.10±0.05 µM). Safety profiles of the most potent derivatives were evaluated utilizing cell viability assay using RAW 264.7 and HeLa cell lines and in vitro hemolytic assay was carried out freshly isolated RBC from healthy rat. Furthermore, in silico studies, like molecular docking, binding free energy calculations and ADME predictions were done to get the best lead candidates. Additionally, molecular dynamic simulation for 100 ns was performed to know stability of protein and ligand complex. The active compounds were found to be non-toxic and non-hemolytic and hold great promise to become newer antimicrobial agents.
Collapse
Affiliation(s)
- Aditi Vashistha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Sunil Kumar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Seema Kirar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India
| | - Nikhil Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Bhanuranjan Das
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), India
| | | | - Sandip V Pawar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Rajnish Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), India
| | - Ashok Kumar Yadav
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
67
|
Hosny S, Ragab MS, Abd El-Baki RF. Synthesis of a new sulfadimidine Schiff base and their nano complexes as potential anti-COVID-19 and anti-cancer activity. Sci Rep 2023; 13:1502. [PMID: 36707628 PMCID: PMC9880939 DOI: 10.1038/s41598-023-28402-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/18/2023] [Indexed: 01/29/2023] Open
Abstract
The primary objective of this study was to describe the cytotoxicity on HEPG-2 cells and to study the COVID‑19 activities of the novel H2L ligand and its Cr and Cu nano-complexes. As well as exploring the chemistry of the prepared nano-complexes. In this paper novel Schiff base, N-(4, 6-dimethyl pyrimidin-2-yl)-4-(((2-hydroxyl naphthalene-1-y l) methylene) amino) benzene-sulfonamidesulfonyl) amide has been synthesized. The novel Schiff base H2L is used to synthesize novel nano and micro-complexes with CrCl2.6H2O and CuCl2.2H2O. The prepared ligand and micro complexes were interpreted by different spectroscopic techniques. The nano-sized Cr and Cu complexes were synthesized in an environmentally friendly manner using Coriandrum sativum (CS) media extract in ethanol. The structure, morphologies and particle size of the nano-sized complexes were determined using FT-IR, TEM, and PXRD. The results showed that the nano-domain complexes are on the Sub-nano scale. Furthermore, using TGA, we studied the effect of heat on the size of newly prepared nano-complexes. Experimental data were supported by DFT calculations. The findings revealed that the metal complexes investigated are more stable than the free ligand H2L. The antitumor activity was examined before and after heating the nano-complexes at 200 °C. The results reveal the Cr nano complex, after heating, exhibited strong antitumor activity with IC50 value (3.349 μg/ml). The tested Cu nano-complex shows good DNA cleavage. The liver cancer and COVID19 proteins were examined using molecular docking to identify the potential binding energy of inhibitors.
Collapse
Affiliation(s)
- Shimaa Hosny
- Department of Chemistry, Faculty of Science, New Valley University, Alkharga, 72511, Egypt.
| | - Mona S Ragab
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Randa F Abd El-Baki
- Department of Chemistry, Faculty of Science, New Valley University, Alkharga, 72511, Egypt
| |
Collapse
|
68
|
Pinheiro AC, Nunes IJ, Ferreira WV, Tomasini PP, Trindade C, Martins CC, Wilhelm EA, Oliboni RDS, Netz PA, Stieler R, Casagrande ODL, Saffi J. Antioxidant and Anticancer Potential of the New Cu(II) Complexes Bearing Imine-Phenolate Ligands with Pendant Amine N-Donor Groups. Pharmaceutics 2023; 15:pharmaceutics15020376. [PMID: 36839698 PMCID: PMC9960331 DOI: 10.3390/pharmaceutics15020376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Cu(II) complexes bearing NNO-donor Schiff base ligands (2a, b) have been synthesized and characterized. The single crystal X-ray analysis of the 2a complex revealed that a mononuclear and a dinuclear complex co-crystallize in the solid state. The electronic structures of the complexes are optimized by Density Functional Theory (DFT) calculations. The monomeric nature of 2a and 2b species is maintained in solution. Antioxidant activities of the ligands (1a, b) and Cu(II) complexes (2a, b) were determined by in vitro assays such as 1,1-diphenyl-2-picrylhydrazyl free radicals (DPPH.) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radicals (ABTS+). Our results demonstrated that 2a showed better antioxidant activity. MTT assays were performed to assess the toxicity of ligands and Cu(II) complexes in V79 cells. The antiproliferative activity of compounds was tested against two human tumor cell lines: MCF-7 (breast adenocarcinoma) and SW620 (colorectal carcinoma) and on MRC-5 (normal lung fibroblast). All compounds showed high cytotoxicity in the all-cell lines but showed no selectivity for tumor cell lines. Antiproliferative activity by clonogenic assay 2b showed a more significant inhibitory effect on the MCF-7 cell lines than on MRC-5. DNA damage for the 2b compound at 10 µM concentration was about three times higher in MCF-7 cells than in MRC-5 cells.
Collapse
Affiliation(s)
- Adriana Castro Pinheiro
- Laboratory of Genetic Toxicology, Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
- Group of Catalysis of Theoretical Studies, Center of Chemical, Pharmaceutical and Food Science Center, Federal University of Pelotas (UFPel), Pelotas 96160-000, RS, Brazil
| | - Ianka Jacondino Nunes
- Group of Catalysis of Theoretical Studies, Center of Chemical, Pharmaceutical and Food Science Center, Federal University of Pelotas (UFPel), Pelotas 96160-000, RS, Brazil
| | - Wesley Vieira Ferreira
- Group of Catalysis of Theoretical Studies, Center of Chemical, Pharmaceutical and Food Science Center, Federal University of Pelotas (UFPel), Pelotas 96160-000, RS, Brazil
| | - Paula Pellenz Tomasini
- Laboratory of Genetic Toxicology, Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
| | - Cristiano Trindade
- Laboratory of Genetic Toxicology, Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - Carolina Cristóvão Martins
- Laboratory in Biochemical Pharmacology, Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas (UFPel), Pelotas 96160-000, RS, Brazil
| | - Ethel Antunes Wilhelm
- Laboratory in Biochemical Pharmacology, Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas (UFPel), Pelotas 96160-000, RS, Brazil
| | - Robson da Silva Oliboni
- Group of Catalysis of Theoretical Studies, Center of Chemical, Pharmaceutical and Food Science Center, Federal University of Pelotas (UFPel), Pelotas 96160-000, RS, Brazil
| | - Paulo Augusto Netz
- Grupo de Química Teórica, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, RS, Brazil
| | - Rafael Stieler
- Laboratory of Molecular Catalysis, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, RS, Brazil
| | - Osvaldo de Lazaro Casagrande
- Laboratory of Molecular Catalysis, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, RS, Brazil
| | - Jenifer Saffi
- Laboratory of Genetic Toxicology, Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
- Correspondence:
| |
Collapse
|
69
|
New N4-Donor Ligands as Supramolecular Guests for DNA and RNA: Synthesis, Structural Characterization, In Silico, Spectrophotometric and Antimicrobial Studies. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010400. [PMID: 36615615 PMCID: PMC9823393 DOI: 10.3390/molecules28010400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023]
Abstract
The present work reports the synthesis of new N4-donor compounds carrying p-xylyl spacers in their structure. Different Schiff base aliphatic N-donors were obtained synthetically and subsequently evaluated for their ability to interact with two models of nucleic acids: calf-thymus DNA (CT-DNA) and the RNA from yeast Saccharomyces cerevisiae (herein simply indicated as RNA). In more detail, by condensing p-xylylenediamine and a series of aldehydes, we obtained the following Schiff base ligands: 2-thiazolecarboxaldehyde (L1), pyridine-2-carboxaldehyde (L2), 5-methylisoxazole-3-carboxaldehyde (L3), 1-methyl-2-imidazolecarboxaldehyde (L4), and quinoline-2-carboxaldehyde (L5). The structural characterisation of the ligands L1-L5 (X-ray, 1H NMR, 13C NMR, elemental analysis) and of the coordination polymers {[CuL1]PF6}n (herein referred to as Polymer1) and {[AgL1]BF4}n, (herein referred to as Polymer2, X-ray, 1H NMR, ESI-MS) is herein described in detail. The single crystal X-ray structures of complexes Polymer1 and Polymer2 were also investigated, leading to the description of one-dimensional coordination polymers. The spectroscopic and in silico evaluation of the most promising compounds as DNA and RNA binders, as well as the study of the influence of the 1D supramolecular polymers Polymer1 and Polymer2 on the proliferation of Escherichia coli bacteria, were performed in view of their nucleic acid-modulating and antimicrobial applications. Spectroscopic measurements (UV-Vis) combined with molecular docking calculations suggest that the thiazolecarboxaldehyde derivative L1 is able to bind CT-DNA with a mechanism different from intercalation involving the thiazole ring in the molecular recognition and shows a binding affinity with DNA higher than RNA. Finally, Polymer2 was shown to slow down the proliferation of bacteria much more effectively than the free Ag(I) salt.
Collapse
|
70
|
Ragab SS, Abdelraof M, Elrashedy AA, Sweed AM. Design, Synthesis, Molecular Dynamic Simulation Studies, and Antibacterial Evaluation of New Spirocyclic Aminopyrimidines. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
71
|
Unprecedented bi- and trinuclear palladium(II)-sodium complexes from a salophen-type Schiff base: Synthesis, characterization, thermal behavior, and in vitro biological activities. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
72
|
Design, synthesis and antimicrobial activity of novel quinoline-2-one hybrids as promising DNA gyrase and topoisomerase IV inhibitors. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
73
|
Rajimon K, Elangovan N, Amir Khairbek A, Thomas R. Schiff bases from chlorine substituted anilines and salicylaldehyde: Synthesis, characterization, fluorescence, thermal features, biological studies and electronic structure investigations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
74
|
Evaluation of Aminoacetophenoneoxime derivatives of oxime Schiff bases as a new antimicrobial agent. World J Microbiol Biotechnol 2022; 38:257. [DOI: 10.1007/s11274-022-03423-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
|
75
|
Synthesis and computational investigation of N,N-dimethyl-4-[(Z)-(phenylimino)methyl] aniline derivatives: Biological and quantitative structural activity relationship studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
76
|
Elucidation for coordination features of N-(benzothiazol-2-yl)-3-oxo-3-(2-(3-phenylallylidene)hydrazineyl)propanamide on Co2+, Ni2+and Cu2+: Structural description, DFT geometry optimization, cyclic voltammetry and biological inspection. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
77
|
Noreen S, Sumrra SH, Chohan ZH, Mustafa G, Imran M. Synthesis, characterization, molecular docking and network pharmacology of bioactive metallic sulfonamide-isatin ligands against promising drug targets. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
78
|
Sinicropi MS, Ceramella J, Iacopetta D, Catalano A, Mariconda A, Rosano C, Saturnino C, El-Kashef H, Longo P. Metal Complexes with Schiff Bases: Data Collection and Recent Studies on Biological Activities. Int J Mol Sci 2022; 23:14840. [PMID: 36499170 PMCID: PMC9739361 DOI: 10.3390/ijms232314840] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
Metal complexes play a crucial role in pharmaceutical sciences owing to their wide and significant activities. Schiff bases (SBs) are multifaceted pharmacophores capable of forming chelating complexes with various metals in different oxidation states. Complexes with SBs are extensively studied for their numerous advantages, including low cost and simple synthetic strategies. They have been reported to possess a variety of biological activities, including antimicrobial, anticancer, antioxidant, antimalarial, analgesic, antiviral, antipyretic, and antidiabetic ones. This review summarizes the most recent studies on the antimicrobial and antiproliferative activities of SBs-metal complexes. Moreover, recent studies regarding mononuclear and binuclear complexes with SBs are described, including antioxidant, antidiabetic, antimalarial, antileishmanial, anti-Alzheimer, and catecholase activities.
Collapse
Affiliation(s)
- Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | | | - Camillo Rosano
- Proteomics and Mass Spectrometry Unit, IRCCS Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genoa, Italy
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Hussein El-Kashef
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
79
|
Ilchenko NO, Sudarikov DV, Rumyantcev RV, Baidamshina DR, Zakarova ND, Yahia MN, Kayumov AR, Kutchin AV, Rubtsova SA. Synthesis and Antimicrobial Activity of Sulfenimines Based on Pinane Hydroxythiols. Antibiotics (Basel) 2022; 11:1548. [PMID: 36358203 PMCID: PMC9686613 DOI: 10.3390/antibiotics11111548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/15/2023] Open
Abstract
The widespread presence of multidrug-resistant pathogenic microorganisms challenges the development of novel chemotype antimicrobials, insensitive to microbial tools of resistance. To date, various monoterpenoids have been shown as potential antimicrobials. Among many classes of molecules with antimicrobial activity, terpenes and terpenoids are an attractive basis for the design of antimicrobials because of their low toxicity and availability for various modifications. In this work, we report on the synthesis of sulfenimines from chiral trifluoromethylated and non-fluorinated pinane-type thiols. Final compounds were obtained with yields of up to 81%. Among the 13 sulfenimines obtained, 3 compounds were able to repress the growth of both bacteria (S. aureus, both MSSA and MRSA; P. aeruginosa) and fungi (C. albicans) with an MIC of 8-32 µg/mL. Although compounds exhibited relatively high cytotoxicity (the therapeutic index of 3), their chemotype can be used as a starter point for the development of disinfectants and antiseptics for targeting multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Nikita O. Ilchenko
- Institute of Chemistry, Federal Research Centre “Komi Scientific Centre”, Ural Branch of the Russian Academy of Sciences, Pervomayskaya St. 48, 167000 Syktyvkar, Komi Republic, Russia
| | - Denis V. Sudarikov
- Institute of Chemistry, Federal Research Centre “Komi Scientific Centre”, Ural Branch of the Russian Academy of Sciences, Pervomayskaya St. 48, 167000 Syktyvkar, Komi Republic, Russia
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Roman V. Rumyantcev
- G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina St., 603950 Nizhny Novgorod, Russia
| | - Diana R. Baidamshina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Nargiza D. Zakarova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Monyr Nait Yahia
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Airat R. Kayumov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Aleksandr V. Kutchin
- Institute of Chemistry, Federal Research Centre “Komi Scientific Centre”, Ural Branch of the Russian Academy of Sciences, Pervomayskaya St. 48, 167000 Syktyvkar, Komi Republic, Russia
| | - Svetlana A. Rubtsova
- Institute of Chemistry, Federal Research Centre “Komi Scientific Centre”, Ural Branch of the Russian Academy of Sciences, Pervomayskaya St. 48, 167000 Syktyvkar, Komi Republic, Russia
| |
Collapse
|
80
|
Synthesis and Structural investigation of o-Vanillin scaffold Schiff base metal complexes: Biomolecular interaction and molecular docking studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
81
|
Pharmaceutical Properties of Macrocyclic Schiff Base Transition Metal Complexes: Urgent Need in Today’s World. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
82
|
Catalano A, Iacopetta D, Ceramella J, Maio ACD, Basile G, Giuzio F, Bonomo MG, Aquaro S, Walsh TJ, Sinicropi MS, Saturnino C, Geronikaki A, Salzano G. Are Nutraceuticals Effective in COVID-19 and Post-COVID Prevention and Treatment? Foods 2022; 11:2884. [PMID: 36141012 PMCID: PMC9498392 DOI: 10.3390/foods11182884] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
The beginning of the end or the end of the beginning? After two years mastered by coronavirus disease 19 (COVID-19) pandemic, we are now witnessing a turnaround. The reduction of severe cases and deaths from COVID-19 led to increasing importance of a new disease called post-COVID syndrome. The term post-COVID is used to indicate permanency of symptoms in patients who have recovered from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Immune, antiviral, antimicrobial therapies, as well as ozone therapy have been used to treat COVID-19 disease. Vaccines have then become available and administered worldwide to prevent the insurgence of the disease. However, the pandemic is not over yet at all given the emergence of new omicron variants. New therapeutic strategies are urgently needed. In this view, great interest was found in nutraceutical products, including vitamins (C, D, and E), minerals (zinc), melatonin, probiotics, flavonoids (quercetin), and curcumin. This review summarizes the role of nutraceuticals in the prevention and/or treatment of COVID-19 disease and post-COVID syndrome.
Collapse
Affiliation(s)
- Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Azzurra Chiara De Maio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Giovanna Basile
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Federica Giuzio
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | | | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Thomas J. Walsh
- Center for Innovative Therapeutics and Diagnostics, Richmond, VA 23223, USA
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Giovanni Salzano
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| |
Collapse
|
83
|
Diana R, Gentile FS, Carella A, Di Costanzo L, Panunzi B. Insights into Two Novel Orthopalladated Chromophores with Antimicrobial Activity against Escherichia coli. Molecules 2022; 27:6060. [PMID: 36144794 PMCID: PMC9504776 DOI: 10.3390/molecules27186060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Advanced chromophoric tools, besides being biologically active, need to meet the expectations of the technological demands including stability, colour retention, and proper solubility for their target. Many coordination compounds of conjugated ligands are antibacterial dyes, able to combine a strong dyeing performance with a useful biological activity. Specifically, palladium (II) complexes of Schiff base ligands are known for their relevant activity against common bacteria. In this article, we report the synthesis and comprehensive experimental and theoretical characterization of two novel Pd(II) chromophore complexes obtained from a cyclopalladated Schiff base as two different chelating azo dyes. The antibacterial response of these two novel complexes was tested against the ubiquitous Escherichia coli bacterium in an aqueous medium and revealed a noteworthy antimicrobial activity, higher than when compared with their uncoordinated biologically active ligands.
Collapse
Affiliation(s)
- Rosita Diana
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, 100, 80055 Portici, Italy
| | - Francesco Silvio Gentile
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Antonio Carella
- Department of Chemical Sciences, University of Napoli Federico II, Strada Comunale Cinthia, 26, 80126 Napoli, Italy
| | - Luigi Di Costanzo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, 100, 80055 Portici, Italy
| | - Barbara Panunzi
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, 100, 80055 Portici, Italy
| |
Collapse
|
84
|
Blackwelder LA, Kelley AR, Balaich GJ, Jefferies LR. 2,2'-{(1 E,1' E)-[Ethane-1,2-diylbis(aza-nylyl-idene)]bis-(methanylyl-idene)}bis-(4-iodo-phenol). IUCRDATA 2022; 7:x220895. [PMID: 36337458 PMCID: PMC9635427 DOI: 10.1107/s2414314622008951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022] Open
Abstract
The title compound, C20H14I2N2O2, a di-iodo-Schiff base, crystallizes in space group Pbca with one mol-ecule per asymmetric unit. The mol-ecular structure reveals two intra-molecular O-H⋯N hydrogen bonds that give the mol-ecule a twisted structure with non-coplanar rings. In the crystal structure, the mol-ecular packing is stabilized by π-π stacking, hydrogen- and halogen-bonding (C-H⋯I; O⋯I) inter-actions.
Collapse
Affiliation(s)
| | | | - Gary J. Balaich
- Department of Chemistry, US Air Force Academy, CO, 80840, USA
| | | |
Collapse
|
85
|
Jiang J, Liu B, Liu Y, Jing C, You Z. SYNTHESES, CRYSTAL STRUCTURES AND UREASE INHIBITORY ACTIVITIES OF ZnII AND NiII COMPLEXES DERIVED FROM 4,4′-DIMETHOXY-2,2′-(PROPANE-1,3- DIYLDIIMINODIMETHYLENE)DIPHENOL. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622080182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
86
|
Synthesis and Antimicrobial Action of Ninhydrin, Isatin, and 5-Acetyl-4-Hydroxy-1,3-Thiazine-2,6-Dione Derivatives Against Staphylococcus aureus and Pseudomonas aeruginosa Opportunistic Microflora. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02682-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
87
|
Elantabli FM, El‐Medani SM, Kozakiewicz‐Piekarz A, Ramadan RM. New transition metal complexes of 1‐phenyl‐2‐((quinolin‐2‐ylmethylene)amino)ethan‐1‐ol Schiff base: Spectroscopic, X‐ray, DFT, Hirshfeld surface analysis, biological, and molecular docking studies. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Fatma M. Elantabli
- Chemistry Department, Faculty of Science El‐Fayoum University El‐Fayoum Egypt
| | - Samir M. El‐Medani
- Chemistry Department, Faculty of Science El‐Fayoum University El‐Fayoum Egypt
| | - Anna Kozakiewicz‐Piekarz
- Department of Biomedical Chemistry and Polymers, Faculty of Chemistry Nicolaus Copernicus University in Toruń Toruń Poland
| | - Ramadan M. Ramadan
- Chemistry Department, Faculty of Science Ain Shams University Cairo Egypt
| |
Collapse
|
88
|
Shekhar S, Sharma S, Okolie JA, Kumar A, Sharma B, Meena MK, Bhagi AK, Sarkar A. Synthesis, structural elucidation, biological screening, and DFT calculations of Cu (II), Ni (II), Mn (II), and Co (II) complexes of 20
Z
‐
N
‐((
Z
)‐2‐(6‐nitrobenzo[
d
]thiazol‐2‐ylimino)‐1,2‐diphenylethylidene)‐5‐nitrobenzo[
d
]thiazol‐2‐amine Schiff base ligand. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shashank Shekhar
- Department of Chemistry Netaji Subhas University of Technology Delhi India
| | - Shreya Sharma
- Department of Chemistry Netaji Subhas University of Technology Delhi India
| | | | - Amit Kumar
- Department of Chemistry, Dayal Singh College University of Delhi India
| | - Bhasha Sharma
- Department of Chemistry, Shivaji College, Raja Garden, Ring Road, New Delhi‐110027 University of Delhi India
| | - Mahendra Kumar Meena
- Department of Chemistry, Shivaji College, Raja Garden, Ring Road, New Delhi‐110027 University of Delhi India
| | - Ajay Kumar Bhagi
- Department of Chemistry, Dayal Singh College University of Delhi India
| | - Anjana Sarkar
- Department of Chemistry Netaji Subhas University of Technology Delhi India
| |
Collapse
|
89
|
Sinicropi MS, Iacopetta D, Ceramella J, Catalano A, Mariconda A, Pellegrino M, Saturnino C, Longo P, Aquaro S. Triclosan: A Small Molecule with Controversial Roles. Antibiotics (Basel) 2022; 11:735. [PMID: 35740142 PMCID: PMC9220381 DOI: 10.3390/antibiotics11060735] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/23/2022] Open
Abstract
Triclosan (TCS), a broad-spectrum antimicrobial agent, has been widely used in personal care products, medical products, plastic cutting boards, and food storage containers. Colgate Total® toothpaste, containing 10 mM TCS, is effective in controlling biofilm formation and maintaining gingival health. Given its broad usage, TCS is present ubiquitously in the environment. Given its strong lipophilicity and accumulation ability in organisms, it is potentially harmful to biohealth. Several reports suggest the toxicity of this compound, which is inserted in the class of endocrine disrupting chemicals (EDCs). In September 2016, TCS was banned by the U.S. Food and Drug Administration (FDA) and the European Union in soap products. Despite these problems, its application in personal care products within certain limits is still allowed. Today, it is still unclear whether TCS is truly toxic to mammals and the adverse effects of continuous, long-term, and low concentration exposure remain unknown. Indeed, some recent reports suggest the use of TCS as a repositioned drug for cancer treatment and cutaneous leishmaniasis. In this scenario it is necessary to investigate the advantages and disadvantages of TCS, to understand whether its use is advisable or not. This review intends to highlight the pros and cons that are associated with the use of TCS in humans.
Collapse
Affiliation(s)
- Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.M.); (C.S.)
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.M.); (C.S.)
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| |
Collapse
|
90
|
Simultaneous Release of Silver Ions and 10–Undecenoic Acid from Silver Iron–Oxide Nanoparticles Impregnated Membranes. MEMBRANES 2022; 12:membranes12060557. [PMID: 35736264 PMCID: PMC9227798 DOI: 10.3390/membranes12060557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/01/2022] [Accepted: 05/23/2022] [Indexed: 01/27/2023]
Abstract
The bio-medical benefits of silver ions and 10–undecenoic acid in various chemical-pharmaceutical preparations are indisputable, thus justifying numerous research studies on delayed and/or controlled release. This paper presents the effect of the polymer matrix in the simultaneous release of silver ions and 10–undecenoic acid in an aqueous medium of controlled pH and ionic strength. The study took into consideration polymeric matrices consisting of cellulose acetate (CA) and polysulfone (PSf), which were impregnated with oxide nanoparticles containing silver and 10–undecenoic acid. The studied oxide nanoparticles are nanoparticles of iron and silver oxides obtained by an accessible electrochemical method. The obtained results show that silver can be released, simultaneously with 10–undecenoic acid, from an impregnated polymeric membrane, at concentrations that ensure the biocidal and fungicidal capacity. Concentrations of active substances can be controlled by choosing the polymer matrix or, in some cases, by changing the pH of the target medium. In the studied case, higher concentrations of silver ions are released from the polysulfone matrix, while higher concentrations of 10–undecenoic acid are released from the cellulose acetate matrix. The results of the study show that a correlation can be established between the two released target substances, which is dependent on the solubility of the organic compound in the aqueous medium and the interaction of this compound with the silver ions. The ability of 10–undecenoic acid to interact with the silver ion, both through the carboxyl and alkene groups, contributes to the increase in the content of the silver ions transported in the aqueous medium.
Collapse
|
91
|
Rusanov DA, Zou J, Babak MV. Biological Properties of Transition Metal Complexes with Metformin and Its Analogues. Pharmaceuticals (Basel) 2022; 15:ph15040453. [PMID: 35455450 PMCID: PMC9031419 DOI: 10.3390/ph15040453] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022] Open
Abstract
Metformin is a widely prescribed medication for the treatment and management of type 2 diabetes. It belongs to a class of biguanides, which are characterized by a wide range of diverse biological properties, including anticancer, antimicrobial, antimalarial, cardioprotective and other activities. It is known that biguanides serve as excellent N-donor bidentate ligands and readily form complexes with virtually all transition metals. Recent evidence suggests that the mechanism of action of metformin and its analogues is linked to their metal-binding properties. These findings prompted us to summarize the existing data on the synthetic strategies and biological properties of various metal complexes with metformin and its analogues. We demonstrated that coordination of biologically active biguanides to various metal centers often resulted in an improved pharmacological profile, including reduced drug resistance as well as a wider spectrum of activity. In addition, coordination to the redox-active metal centers, such as Au(III), allowed for various activatable strategies, leading to the selective activation of the prodrugs and reduced off-target toxicity.
Collapse
Affiliation(s)
- Daniil A. Rusanov
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China; (D.A.R.); (J.Z.)
- Laboratory of Medicinal Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Avenue 47, 119991 Moscow, Russia
| | - Jiaying Zou
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China; (D.A.R.); (J.Z.)
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Maria V. Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China; (D.A.R.); (J.Z.)
- Correspondence:
| |
Collapse
|
92
|
Iacopetta D, Ceramella J, Catalano A, Saturnino C, Pellegrino M, Mariconda A, Longo P, Sinicropi MS, Aquaro S. COVID-19 at a Glance: An Up-to-Date Overview on Variants, Drug Design and Therapies. Viruses 2022; 14:573. [PMID: 35336980 PMCID: PMC8950852 DOI: 10.3390/v14030573] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a member of the Coronavirus family which caused the worldwide pandemic of human respiratory illness coronavirus disease 2019 (COVID-19). Presumably emerging at the end of 2019, it poses a severe threat to public health and safety, with a high incidence of transmission, predominately through aerosols and/or direct contact with infected surfaces. In 2020, the search for vaccines began, leading to the obtaining of, to date, about twenty COVID-19 vaccines approved for use in at least one country. However, COVID-19 continues to spread and new genetic mutations and variants have been discovered, requiring pharmacological treatments. The most common therapies for COVID-19 are represented by antiviral and antimalarial agents, antibiotics, immunomodulators, angiotensin II receptor blockers, bradykinin B2 receptor antagonists and corticosteroids. In addition, nutraceuticals, vitamins D and C, omega-3 fatty acids and probiotics are under study. Finally, drug repositioning, which concerns the investigation of existing drugs for new therapeutic target indications, has been widely proposed in the literature for COVID-19 therapies. Considering the importance of this ongoing global public health emergency, this review aims to offer a synthetic up-to-date overview regarding diagnoses, variants and vaccines for COVID-19, with particular attention paid to the adopted treatments.
Collapse
Affiliation(s)
- Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.S.S.); (S.A.)
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.S.S.); (S.A.)
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (C.S.); (A.M.)
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.S.S.); (S.A.)
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (C.S.); (A.M.)
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.S.S.); (S.A.)
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.S.S.); (S.A.)
| |
Collapse
|
93
|
Hricovíni M, Asher JR, Hricovíni M. A study of the photochemical behaviour and relaxation mechanisms of anti– syn isomerisation around quinazolinone –N–N bonds. RSC Adv 2022; 12:27442-27452. [DOI: 10.1039/d2ra04529j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/17/2022] [Indexed: 11/21/2022] Open
Abstract
High-resolution NMR experiments revealed that differently substituted quinazolinone-based Schiff bases undergo anti to syn isomerisation on exposure to ultraviolet light in DMSO solution.
Collapse
Affiliation(s)
- Michal Hricovíni
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovak Republic
| | - James R. Asher
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 36 Bratislava, Slovak Republic
- Faculty of Natural Sciences, Department of Inorganic Chemistry, Comenius University, Mlynská Dolina, CH2, 84215, Bratislava, Slovak Republic
| | - Miloš Hricovíni
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovak Republic
| |
Collapse
|