51
|
Lu EMC. Three-Dimensional Organotypic Systems for Modelling and Understanding Molecular Regulation of Oral Dentogingival Tissues. Int J Mol Sci 2024; 25:11552. [PMID: 39519105 PMCID: PMC11546252 DOI: 10.3390/ijms252111552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/22/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Three-dimensional organotypic models benefit from the ability to mimic physiological cell-cell or cell-matrix interactions and therefore offer superior models for studying pathological or physiological conditions compared to 2D cultures. Organotypic models consisting of keratinocytes supported by fibroblasts embedded in collagen matrices have been utilised for the study of oral conditions. However, the provision of a suitable model for investigating the pathogenesis of periodontitis has been more challenging. Part of the complexity relates to the different regional epithelial specificities and connective tissue phenotypes. Recently, it was confirmed, using 3D organotypic models, that distinct fibroblast populations were implicated in the provision of specific inductive and directive influences on the overlying epithelia. This paper presents the organotypic model of the dentogingival junction (DGJ) constructed to demonstrate the differential fibroblast influences on the maintenance of regionally specific epithelial phenotypes. Therefore, the review aims are (1) to provide the biological basis underlying 3D organotypic cultures and (2) to comprehensively detail the experimental protocol for the construction of the organotypic cultures and the unique setup for the DGJ model. The latter is the first organotypic culture model used for the reconstruction of the DGJ and is recommended as a useful tool for future periodontal research.
Collapse
Affiliation(s)
- Emily Ming-Chieh Lu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK
| |
Collapse
|
52
|
Ding C, Yi Y, Cheng K, Wang Y, Wang S, Zhang M. Full life cycle green preparation of collagen-based food packaging films using Halocynthia roretzi as raw material. Food Chem 2024; 455:139943. [PMID: 38850993 DOI: 10.1016/j.foodchem.2024.139943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/19/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
The extraction of collagen for packaging films typically requires a time-consuming process and the use of substantial chemicals. Herein, we present a full life cycle green preparation method for rapidly producing collagen-based food packaging films using Halocynthia roretzi (HR), a collagen-rich marine organism, as raw material. We first prepared the micro/nano-sized collagen fibers from HR tissue by utilizing urea and sonication as effective hydrogen-bond breakers. Subsequently, the collagen fiber was rapidly fabricated into a film through vacuum filtration. The resulting collagen fiber film (CFF) exhibited a uniform and dense surface, along with good tensile properties, water resistance, and biodegradability. In addition, the deposition of chitosan (CS) on the surface of CFF resulted in a remarkable preservation effect for both strawberries and pork. This full life cycle preparation method for collagen-based films provides a promising and innovative approach to the sustainable preparation of food packaging films.
Collapse
Affiliation(s)
- Cuicui Ding
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, PR China; Institute of Food and Marine Bioresources, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, PR China
| | - Yifan Yi
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, PR China
| | - Kuan Cheng
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, PR China
| | - Yue Wang
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, PR China
| | - Shaoyun Wang
- Institute of Food and Marine Bioresources, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, PR China.
| | - Min Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
53
|
Barba-Rosado LV, Realpe MF, Valencia-Llano CH, López-Tenorio D, Piñeres-Ariza IE, Grande-Tovar CD. Tomographic and Electron Microscopy Description of Two Bone-Substitute Xenografts for the Preservation of Dental Alveoli. Int J Mol Sci 2024; 25:10942. [PMID: 39456723 PMCID: PMC11507575 DOI: 10.3390/ijms252010942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/27/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
After tooth extraction, bone levels in the alveoli decrease. Using a bone substitute can help minimize this bone loss. The substitute can be sourced from a human or animal donor or synthetically prepared. In this study, we aimed to address the following PICOS question: In patients needing dental alveolar preservation for implant placement, how does alveolar preservation using a bovine hydroxyapatite bone xenograft with collagen compare to a xenograft without collagen in terms of changes in alveolar height and width, bone density, and the characteristics of the bone tissue observed in biopsies taken at 6 months? We evaluated two xenograft-type bone substitutes for preserving post-extraction dental sockets using tomography and microscopy to answer that question. A total of 18 dental alveoli were studied: 11 preserved with a xenograft composed of apatite (InterOss) and 7 with a xenograft composed of apatite-collagen (InterOss Collagen). Tomographic controls were performed at 1 and 6 months, and microscopic studies were performed on 13 samples. The biopsies were examined with scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). A Multivariate Analysis of Variance (MANOVA) was conducted in the statistical analysis, revealing a significant increase in bone density over time (p = 0.04). Specifically, bone density increased from an average of 526.14 HU at 30 days to 721.96 HU at 60 days in collagen-free samples. However, no statistically significant differences in height or width were found between groups. The MANOVA results indicated that the overall model had a low predictive ability for height, width, and density variables (R-squared values were low), likely due to sample size limitations and the complexity of bone tissue dynamics. On the other hand, FTIR analysis revealed the presence of phosphate groups, carbonates, and amides I, II, and III, indicative of inorganic (hydroxyapatite) and organic (type I collagen) materials in the xenografts. TGA and DSC showed high thermal stability, with minimal mass loss below 150 °C. Finally, both xenografts were influential in alveolar bone regeneration after extraction without significant differences. The trend of increasing collagen density suggests an effect that requires further investigation. However, it is recommended that the sample size be increased to enhance the validity of the results.
Collapse
Affiliation(s)
- Lemy Vanessa Barba-Rosado
- Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia 081008, Colombia;
| | - Maria-Fernanda Realpe
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 760001, Colombia; (M.-F.R.); (C.-H.V.-L.); (D.L.-T.)
| | - Carlos-Humberto Valencia-Llano
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 760001, Colombia; (M.-F.R.); (C.-H.V.-L.); (D.L.-T.)
| | - Diego López-Tenorio
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 760001, Colombia; (M.-F.R.); (C.-H.V.-L.); (D.L.-T.)
| | - Ismael Enrique Piñeres-Ariza
- Grupo de Investigación Física de Materiales, Programa de Física, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia 081008, Colombia;
| | - Carlos David Grande-Tovar
- Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia 081008, Colombia;
| |
Collapse
|
54
|
Barzkar N, Attaran-Fariman G, Taheri A, Venmathi Maran BA. Extraction and characterization of collagen and gelatin from body wall of sea cucumbers Stichopus horrens and Holothuria arenicola. PeerJ 2024; 12:e18149. [PMID: 39399433 PMCID: PMC11471148 DOI: 10.7717/peerj.18149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/31/2024] [Indexed: 10/15/2024] Open
Abstract
Background Marine invertebrates, including sponges, molluscs, jellyfish, mussels, and sea cucumbers, are abundant sources of high-quality collagen and offer advantages such as availability, ease of processing, lower inflammatory response, and good metabolic compatibility. Approximately 70% of the total protein in the body wall of sea cucumbers is collagen. Gelatin is a water-soluble protein produced from heat-denatured collagen and has various industrial applications. Methods Pepsin-solubilized collagen was extracted from the body wall of two sea cucumber Stichopus horrens and Holothuria arenicola, species found in the Oman Sea and characterized with SDS-PAGE and amino acid composition. Then gelatin was extracted from pepsin-solubilized collagen of S. horrens and some rheological properties were measured. Results Amino acid composition and SDS-PAGE analysis showed that the collagen from both species was type I, with one α1 chain and β chains, with molecular weights of 125 and 250 kDa, respectively. Glycine was the most abundant amino acid in the collagen from both sea cucumber species. The pepsin-soluble collagens from both species had high levels of glycine, proline, alanine, glutamic acid, and hydroxyproline. The gelatin from S. horrens had a melting point of 30 °C and displayed exceptional thermal stability, surpassing that of mammalian gelatin. Its gelling point was 5 °C, like that of cold-water fish gelatin, with a viscosity of 2.065 cp-lower than mammal gelatins. These findings suggested that collagen and gelatin from sea cucumbers could be useful in nutraceutical, pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- Noora Barzkar
- Higher Institution Centre of Excellence, Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- Department of Marine Biology, Faculty of Marine Sciences, Chabahar Maritime University, Chabahar, Iran
| | - Gilan Attaran-Fariman
- Department of Marine Biology, Faculty of Marine Sciences, Chabahar Maritime University, Chabahar, Iran
| | - Ali Taheri
- Fisheries Department, Faculty of Marine Sciences, Chabahar Maritime University, Chabahar, Iran
| | | |
Collapse
|
55
|
Zhao Z, Yuwen W, Duan Z, Zhu C, Fan D. Novel Collagen Analogs with Multicopy Mucin-Type Sequences for Multifunctional Enhancement Properties Using SUMO Fusion Tags. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22173-22185. [PMID: 39318025 DOI: 10.1021/acs.jafc.4c07179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Multifunctional enhanced collagen materials in green biomanufacturing are highly desired yet challenging due to the poor comprehensive performance caused by the adoption of targeting monofunctional peptides. Herein, novel collagen analog design strategy using multicopy tandem of mucin-type sequence (GAPGAPGSQGAPGLQ) derived from human COL1α1 to construct basic building blocks is reported, in which SUMO tag is added to the N-terminal of the protein as a stabilizing core. In particular, novel collagen analogs (named S1506, S1511, S1523, and S1552) with multicopy mucin-type sequences (repeated 6, 11, 23, and 52 times), which were constructed in Escherichia coli, have distinct orientation preferences of functional enhancement (including cell proliferation, differentiation, migration, antioxidant activity, and anti-inflammatory property) compared to COL1α1 in HaCaT and THP-1 cell experiments due to variant three-dimensional structures (the different-length mucin-type polypeptide chains wind around central SUMO tag). Our findings suggest that the innovative protein design and synthesis approaches employed in the construction of these novel S15 proteins have the potential to advance the development of new types of recombinant collagen analogs.
Collapse
Affiliation(s)
- Zilong Zhao
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Shaanxi Key Laboratory of Biomaterials and Synthetic Biology, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China
| | - Weigang Yuwen
- Shaanxi Key Laboratory of Biomaterials and Synthetic Biology, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China
| | - Zhiguang Duan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Shaanxi Key Laboratory of Biomaterials and Synthetic Biology, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Shaanxi Key Laboratory of Biomaterials and Synthetic Biology, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Shaanxi Key Laboratory of Biomaterials and Synthetic Biology, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China
| |
Collapse
|
56
|
Vaivads M, Pilmane M. Distribution of Immunomodulation, Protection and Regeneration Factors in Cleft-Affected Bone and Cartilage. Diagnostics (Basel) 2024; 14:2217. [PMID: 39410621 PMCID: PMC11475217 DOI: 10.3390/diagnostics14192217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Craniofacial clefts can form a significant defect within bone and cartilage, which can negatively affect tissue homeostasis and the remodeling process. Multiple proteins can affect supportive tissue growth, while also regulating local immune response and tissue protection. Some of these factors, like galectin-10 (Gal-10), nuclear factor kappa-light-chain-enhancer of activated B cells protein 65 (NF-κB p65), heat shock protein 60 (HSP60) and 70 (HSP70) and cathelicidin (LL-37), have not been well studied in cleft-affected supportive tissue, while more known tissue regeneration regulators like type I collagen (Col-I) and bone morphogenetic proteins 2 and 4 (BMP-2/4) have not been assessed jointly with immunomodulation and protective proteins. Information about the presence and interaction of these proteins in cleft-affected supportive tissue could be helpful in developing biomaterials and improving cleft treatment. METHODS Two control groups and two cleft patient groups for bone tissue and cartilage, respectively, were organized with five patients in each group. Immunohistochemistry with the semiquantitative counting method was implemented to determine Gal-10-, NF-κB p65-, HSP60-, HSP70-, LL-37-, Col-I- and BMP-2/4-positive cells within the tissue. RESULTS Factor-positive cells were identified in each study group. Multiple statistically significant correlations were identified. CONCLUSIONS A significant increase in HSP70-positive chondrocytes in cleft patients could indicate that HSP70 might be reacting to stressors caused by the local tissue defect. A significant increase in Col-I-positive osteocytes in cleft patients might indicate increased bone remodeling and osteocyte activity due to the presence of a cleft. Correlations between factors indicate notable differences in molecular interactions within each group.
Collapse
Affiliation(s)
- Mārtiņš Vaivads
- Department of Morphology, Institute of Anatomy and Anthropology, Rīga Stradiņš University, Kronvalda Boulevard 9, LV-1010 Riga, Latvia;
| | | |
Collapse
|
57
|
Fazel Anvari Yazdi A, Tahermanesh K, Ejlali M, Babaei-Ghazvini A, Acharya B, Badea I, MacPhee DJ, Chen X. Comparative analysis of porcine-uterine decellularization for bioactive-molecule preservation and DNA removal. Front Bioeng Biotechnol 2024; 12:1418034. [PMID: 39416283 PMCID: PMC11480021 DOI: 10.3389/fbioe.2024.1418034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/27/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Decellularized uterine extracellular matrix has emerged as a pivotal focus in the realm of biomaterials, offering a promising source in uterine tissue regeneration, research on disease diagnosis and treatments, and ultimately uterine transplantation. In this study, we examined various protocols for decellularizing porcine uterine tissues, aimed to unravel the intricate dynamics of DNA removal, bioactive molecules preservation, and microstructural alterations. Methods Porcine uterine tissues were treated with 6 different, yet rigorously selected and designed, protocols with sodium dodecyl sulfate (SDS), Triton® X-100, peracetic acid + ethanol, and DNase I. After decellularization, we examined DNA quantification, histological staining (H&E and DAPI), glycosaminoglycans (GAG) assay, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and Thermogravimetric Analysis (TGA). Results A comparative analysis among all 6 protocols was conducted with the results demonstrating that all protocols achieved decellularization; while 0.1% SDS + 1% Triton® X-100, coupled with agitation, demonstrated the highest efficiency in DNA removal. Also, it was found that DNase I played a key role in enhancing the efficiency of the decellularization process by underscoring its significance in digesting cellular contents and eliminating cell debris by 99.79% (19.63 ± 3.92 ng/mg dry weight). Conclusions Our findings enhance the nuanced understanding of DNA removal, GAG preservation, microstructural alteration, and protein decomposition in decellularized uterine extracellular matrix, while highlighting the importance of decellularization protocols designed for intended applications. This study along with our findings represents meaningful progress for advancing the field of uterine transplantation and related tissue engineering/regenerative medicine.
Collapse
Affiliation(s)
| | - Kobra Tahermanesh
- Department of Obstetrics and Gynecology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Maryam Ejlali
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Amin Babaei-Ghazvini
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bishnu Acharya
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ildiko Badea
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Daniel J. MacPhee
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
58
|
Koo TH, Lee JK, Grogan SP, Ra HJ, D’Lima DD. Biocompatibility Study of Purified and Low-Temperature-Sterilized Injectable Collagen for Soft Tissue Repair: Intramuscular Implantation in Rats. Gels 2024; 10:619. [PMID: 39451272 PMCID: PMC11508103 DOI: 10.3390/gels10100619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The clinical application of collagen-based biomaterials is expanding rapidly, especially in tissue engineering and cosmetics. While oral supplements and injectable skin boosters are popular for enhancing skin health, clinical evidence supporting their effectiveness remains limited. Injectable products show potential in revitalizing skin, but safety concerns persist due to challenges in sterilization and the risk of biological contamination. Traditional methods of sterilization (heat and irradiation) can denature collagen. This study addresses these issues by introducing a novel technique: the double filtration and low-temperature steam sterilization of a collagen gel. In vitro tests documented the sterility and confirmed that the collagen did not show cytotoxicity, degradation, integrity, and viscosity characteristics changes after the processing and sterilization. The collagen gel induced new collagen expression and the proliferation of human dermal fibroblasts when the cells were cultured with the collagen gel. An in vivo study found no adverse effects in rats or significant lesions at the implantation site over 13 weeks. These results suggest that this novel method to process collagen gels is a safe and effective skin booster. Advanced processing methods are likely to mitigate the safety risks associated with injectable collagen products, though further research is needed to validate their biological effectiveness and clinical benefits.
Collapse
Affiliation(s)
- Tae-Hoon Koo
- D.med LLC, 111, Sagimakgol-ro, Jungwon-gu, Seongnam-si 13202, Gyeonggi-do, Republic of Korea;
| | - Jason K. Lee
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, 10666 N Torrey Pines Road, MS126, La Jolla, CA 92037, USA; (S.P.G.)
| | - Shawn P. Grogan
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, 10666 N Torrey Pines Road, MS126, La Jolla, CA 92037, USA; (S.P.G.)
| | - Ho Jong Ra
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, 10666 N Torrey Pines Road, MS126, La Jolla, CA 92037, USA; (S.P.G.)
| | - Darryl D. D’Lima
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, 10666 N Torrey Pines Road, MS126, La Jolla, CA 92037, USA; (S.P.G.)
| |
Collapse
|
59
|
Zhang J, Li J, Zhang Y, Zhao Y, Shen J, Du F, Chen Y, Li M, Wu X, Chen M, Xiao Z, Deng S. Bilayer hydrogel with a protective film and a regenerative hydrogel for effective diabetic wound treatment. Biomater Sci 2024; 12:5036-5051. [PMID: 39189321 DOI: 10.1039/d4bm00547c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Diabetic foot ulcers (DFUs) are one of the most serious complications of diabetes, often leading to necrosis and amputation. DFU is caused by the intricate diabetic microenvironment, including ischemia, hypoxia, hyperinflammation, reduced angiogenesis, and persistent infection. Traditional wound dressings made of single or mixed materials often struggle to meet all the requirements for effective diabetic wound healing. In contrast, multilayer dressings comprising more than single layers have the potential to address these challenges by combining their diverse chemical and physical properties. In this study, we developed a bilayer hydrogel comprising a GelMA-ALG-nano-ZnO protective film and a COL1-PRP regenerative hydrogel for facilitating diabetic wound healing. We demonstrated the protective properties against bacterial infection of the protective film, while highlighting the regenerative potential of the COL1-PRP hydrogel in promoting fibroblast and MUVEC migration, extracellular matrix secretion and deposition, and angiogenesis. Importantly, the bilayer hydrogel exhibited superior efficacy in promoting full-thickness wound healing in a diabetic rat model compared to its single-layer hydrogel counterparts. This multi-layer approach offers a promising strategy for addressing the complexities of diabetic foot treatment and improving clinical outcomes.
Collapse
Affiliation(s)
- Jinfeng Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Jing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Yang Zhang
- Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Southwest Medical University, Luzhou 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| |
Collapse
|
60
|
Wosicka-Frąckowiak H, Poniedziałek K, Woźny S, Kuprianowicz M, Nyga M, Jadach B, Milanowski B. Collagen and Its Derivatives Serving Biomedical Purposes: A Review. Polymers (Basel) 2024; 16:2668. [PMID: 39339133 PMCID: PMC11435467 DOI: 10.3390/polym16182668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Biomaterials have been the subject of extensive research, and their applications in medicine and pharmacy are expanding rapidly. Collagen and its derivatives stand out as valuable biomaterials due to their high biocompatibility, biodegradability, and lack of toxicity and immunogenicity. This review comprehensively examines collagen from various sources, its extraction and processing methods, and its structural and functional properties. Preserving the native state of collagen is crucial for maintaining its beneficial characteristics. The challenges associated with chemically modifying collagen to tailor its properties for specific clinical needs are also addressed. The review discusses various collagen-based biomaterials, including solutions, hydrogels, powders, sponges, scaffolds, and thin films. These materials have broad applications in regenerative medicine, tissue engineering, drug delivery, and wound healing. Additionally, the review highlights current research trends related to collagen and its derivatives. These trends may significantly influence future developments, such as using collagen-based bioinks for 3D bioprinting or exploring new collagen nanoparticle preparation methods and drug delivery systems.
Collapse
Affiliation(s)
- Hanna Wosicka-Frąckowiak
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (H.W.-F.); (K.P.); (S.W.); (M.K.); (M.N.)
| | - Kornelia Poniedziałek
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (H.W.-F.); (K.P.); (S.W.); (M.K.); (M.N.)
| | - Stanisław Woźny
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (H.W.-F.); (K.P.); (S.W.); (M.K.); (M.N.)
| | - Mateusz Kuprianowicz
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (H.W.-F.); (K.P.); (S.W.); (M.K.); (M.N.)
| | - Martyna Nyga
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (H.W.-F.); (K.P.); (S.W.); (M.K.); (M.N.)
- Chair and Department of Pharmaceutical Technology, Faculty of Pharmacy, Poznan University of Medical Sciences, ul. Rokietnicka 3, 60-806 Poznan, Poland;
| | - Barbara Jadach
- Chair and Department of Pharmaceutical Technology, Faculty of Pharmacy, Poznan University of Medical Sciences, ul. Rokietnicka 3, 60-806 Poznan, Poland;
| | - Bartłomiej Milanowski
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (H.W.-F.); (K.P.); (S.W.); (M.K.); (M.N.)
- Chair and Department of Pharmaceutical Technology, Faculty of Pharmacy, Poznan University of Medical Sciences, ul. Rokietnicka 3, 60-806 Poznan, Poland;
| |
Collapse
|
61
|
Maseko TE, Peterová E, Elkalaf M, Koutová D, Melek J, Staňková P, Špalková V, Matar R, Lotková H, Červinková Z, Kučera O. Collagen I Increases Palmitate-Induced Lipotoxicity in HepG2 Cells via Integrin-Mediated Death. Biomolecules 2024; 14:1179. [PMID: 39334945 PMCID: PMC11430893 DOI: 10.3390/biom14091179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Various strategies have been employed to improve the reliability of 2D, 3D, and co-culture in vitro models of nonalcoholic fatty liver disease, including using extracellular matrix proteins such as collagen I to promote cell adhesion. While studies have demonstrated the significant benefits of culturing cells on collagen I, its effects on the HepG2 cell line after exposure to palmitate (PA) have not been investigated. Therefore, this study aimed to assess the effects of PA-induced lipotoxicity in HepG2 cultured in the absence or presence of collagen I. HepG2 cultured in the absence or presence of collagen I was exposed to PA, followed by analyses that assessed cell proliferation, viability, adhesion, cell death, mitochondrial respiration, reactive oxygen species production, gene and protein expression, and triacylglycerol accumulation. Culturing HepG2 on collagen I was associated with increased cell proliferation, adhesion, and expression of integrin receptors, and improved cellular spreading compared to culturing them in the absence of collagen I. However, PA-induced lipotoxicity was greater in collagen I-cultured HepG2 than in those cultured in the absence of collagen I and was associated with increased α2β1 receptors. In summary, the present study demonstrated for the first time that collagen I-cultured HepG2 exhibited exacerbated cell death following exposure to PA through integrin-mediated death. The findings from this study may serve as a caution to those using 2D models or 3D scaffold-based models of HepG2 in the presence of collagen I.
Collapse
Affiliation(s)
- Tumisang Edward Maseko
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (T.E.M.); (M.E.); (J.M.); (P.S.); (V.Š.); (R.M.); (H.L.); (Z.Č.)
| | - Eva Peterová
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (E.P.); (D.K.)
| | - Moustafa Elkalaf
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (T.E.M.); (M.E.); (J.M.); (P.S.); (V.Š.); (R.M.); (H.L.); (Z.Č.)
| | - Darja Koutová
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (E.P.); (D.K.)
| | - Jan Melek
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (T.E.M.); (M.E.); (J.M.); (P.S.); (V.Š.); (R.M.); (H.L.); (Z.Č.)
| | - Pavla Staňková
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (T.E.M.); (M.E.); (J.M.); (P.S.); (V.Š.); (R.M.); (H.L.); (Z.Č.)
| | - Veronika Špalková
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (T.E.M.); (M.E.); (J.M.); (P.S.); (V.Š.); (R.M.); (H.L.); (Z.Č.)
| | - Reem Matar
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (T.E.M.); (M.E.); (J.M.); (P.S.); (V.Š.); (R.M.); (H.L.); (Z.Č.)
| | - Halka Lotková
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (T.E.M.); (M.E.); (J.M.); (P.S.); (V.Š.); (R.M.); (H.L.); (Z.Č.)
| | - Zuzana Červinková
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (T.E.M.); (M.E.); (J.M.); (P.S.); (V.Š.); (R.M.); (H.L.); (Z.Č.)
| | - Otto Kučera
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic; (T.E.M.); (M.E.); (J.M.); (P.S.); (V.Š.); (R.M.); (H.L.); (Z.Č.)
| |
Collapse
|
62
|
Miranda-Muñoz K, Midkiff K, Woessner A, Afshar-Mohajer M, Zou M, Pollock E, Gonzalez-Nino D, Prinz G, Hutchinson L, Li R, Kompalage K, Culbertson CT, Tucker RJ, Coetzee H, Tsai T, Powell J, Almodovar J. A Multicomponent Microneedle Patch for the Delivery of Meloxicam for Veterinary Applications. ACS NANO 2024; 18:25716-25739. [PMID: 39225687 DOI: 10.1021/acsnano.4c08072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This study evaluates the use of poly(vinyl alcohol), collagen, and chitosan blends for developing a microneedle patch for the delivery of meloxicam (MEL). Results confirm successful MEL encapsulation, structural integrity, and chemical stability even after ethylene oxide sterilization. Mechanical testing indicates the patch has the required properties for effective skin penetration and drug delivery, as demonstrated by load-displacement curves showing successful penetration of pig ear surfaces at 3N of normal load. In vitro imaging confirms the microneedle patch penetrates the pig's ear cadaver skin effectively and uniformly, with histological evaluation revealing the sustained presence and gradual degradation of microneedles within the skin. Additionally, in vitro drug diffusion experiments utilizing ballistic gel suggest that microneedles commence dissolution almost immediately upon insertion into the gel, steadily releasing the drug over 24 h. Furthermore, the microneedle patch demonstrates ideal drug release capabilities, achieving nearly 100% release of meloxicam content from a single patch within 18 h. Finally, in vivo studies using pigs demonstrate the successful dissolution and transdermal drug delivery efficacy of biodegradable microneedle patches delivering meloxicam in a porcine model, with over 70% of microneedles undergoing dissolution after 3 days. While low detectable meloxicam concentrations were observed in the bloodstream, high levels were detected in the ear tissue, confirming the release and diffusion of the drug from microneedles. This work highlights the potential of microneedle patches for controlled drug release in veterinary applications.
Collapse
Affiliation(s)
- Katherine Miranda-Muñoz
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Kirsten Midkiff
- Department of Animal Sciences, University of Arkansas, B110 Agriculture, Food and Life Sciences Building, Fayetteville, Arkansas 72701, United States
| | - Alan Woessner
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Arkansas Integrative Metabolic Research Center, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Mahyar Afshar-Mohajer
- Department of Mechanical Engineering, University of Arkansas, 204 Mechanical Engineering Building, Fayetteville, Arkansas 72701, United States
| | - Min Zou
- Department of Mechanical Engineering, University of Arkansas, 204 Mechanical Engineering Building, Fayetteville, Arkansas 72701, United States
| | - Erik Pollock
- Department of Biological Sciences, University of Arkansas, Fayetteville, Science Engineering Building, Fayetteville, Arkansas 72701, United States
| | - David Gonzalez-Nino
- Department of Civil Engineering, University of Arkansas, 4190 Bell Engineering Center, Fayetteville, Arkansas 72701, United States
| | - Gary Prinz
- Department of Civil Engineering, University of Arkansas, 4190 Bell Engineering Center, Fayetteville, Arkansas 72701, United States
| | - Lillian Hutchinson
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, Arkansas 72701, United States
| | - Ruohan Li
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, Arkansas 72701, United States
| | - Kushan Kompalage
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, 213 CBC Building, 1212 Mid-Campus Dr North, Manhattan, Kansas 66506, United States
| | - Christopher T Culbertson
- Department of Chemistry, Kansas State University, 228 Coles Hall, 1710 Denison Ave, Manhattan, Kansas 66506, United States
| | - Ryan Jared Tucker
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, 213 CBC Building, 1212 Mid-Campus Dr North, Manhattan, Kansas 66506, United States
| | - Hans Coetzee
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, 213 CBC Building, 1212 Mid-Campus Dr North, Manhattan, Kansas 66506, United States
| | - Tsung Tsai
- Department of Animal Sciences, University of Arkansas, B110 Agriculture, Food and Life Sciences Building, Fayetteville, Arkansas 72701, United States
| | - Jeremy Powell
- Department of Animal Sciences, University of Arkansas, B110 Agriculture, Food and Life Sciences Building, Fayetteville, Arkansas 72701, United States
| | - Jorge Almodovar
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
63
|
Cárdenas-Sandoval RP, Bernal-Bernal LD, Cabrera-Salazar S, Gómez-Ramírez DM, González-Ballesteros LM, Hooker-Mendoza KM, Ospina-Piedrahíta LN, Hernández-Charry CX, Ardila-Rojas G, Velásquez-Durán AM, Cucarián-Hurtado JD, Ondo-Méndez AO, Barbosa-Santibañez J, Carvajal-Calderón LL, Navarrete-Jimenez ML. In-vitro study on type I collagen synthesis in low-level laser therapy on the early ligament fibroblasts' healing process. Lasers Med Sci 2024; 39:225. [PMID: 39207591 PMCID: PMC11362177 DOI: 10.1007/s10103-024-04151-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Low-level Laser Therapy (LLLT) has demonstrated its potential in promoting fiber matrix maturation, collagen synthesis, and fibroblast proliferation, contributing to tissue regeneration. Our study aimed to investigate the impact of LLLT on collagen type I synthesis, cell proliferation, and viability in human ligament fibroblasts derived from the Anterior Cruciate Ligament (ACL). METHODS Tissue samples were obtained from individuals undergoing arthroscopic ACL reconstruction surgery. Primary human fibroblasts were isolated, and immunohistochemical assays confirmed their characteristics. LLLT at 850 nm was administered in three groups: Low dose (1.0 J/cm²), High dose (5.0 J/cm²), and Control (0.0 J/cm²). Cell viability was calculated using a membrane integrity assay, proliferation was determined by automated counting, and collagen type I concentration in cell culture was measured using an immunoassay. RESULTS Fibroblasts showed decreased viability after low and high doses of LLLT, increased proliferation at the low dose, and increased collagen synthesis at the high dose on day 10 for both sexes after treatment. CONCLUSION Our study demonstrated that LLLT may improve the early ligament healing process by increasing cell proliferation at the low dose and enhancing collagen type I synthesis at the high dose in human ligament fibroblasts.
Collapse
Affiliation(s)
- R P Cárdenas-Sandoval
- Rehabilitation Science Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia.
| | - L D Bernal-Bernal
- Rehabilitation Science Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - S Cabrera-Salazar
- Rehabilitation Science Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - D M Gómez-Ramírez
- Rehabilitation Science Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - L M González-Ballesteros
- Rehabilitation Science Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - K M Hooker-Mendoza
- Rehabilitation Science Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - L N Ospina-Piedrahíta
- Rehabilitation Science Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - C X Hernández-Charry
- Rehabilitation Science Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - G Ardila-Rojas
- Rehabilitation Science Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - A M Velásquez-Durán
- Rehabilitation Science Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - J D Cucarián-Hurtado
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - A O Ondo-Méndez
- Clinical Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | | | | | - M L Navarrete-Jimenez
- Department of Microbiology, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
64
|
Rahman TT, Wood N, Akib YM, Qin H, Pei Z. Experimental Study on Compatibility of Human Bronchial Epithelial Cells in Collagen-Alginate Bioink for 3D Printing. Bioengineering (Basel) 2024; 11:862. [PMID: 39329604 PMCID: PMC11429095 DOI: 10.3390/bioengineering11090862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/29/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
This paper reports an experimental study on the compatibility of human bronchial epithelial (HBE) cells in a collagen-alginate bioink. The compatibility was assessed using the culture well method with three bioink compositions prepared from a 10% alginate solution and neutralized TeloCol-10 mg/mL collagen stock solution. Cell viability, quantified by (live cell count-dead cell count)/live cell count within the HBE cell-laden hydrogel, was evaluated using the live/dead assay method from Day 0 to Day 6. Experimental results demonstrated that the collagen-alginate 4:1 bioink composition exhibited the highest cell viability on Day 6 (85%), outperforming the collagen-alginate 1:4 bioink composition and the alginate bioink composition, which showed cell viability of 75% and 45%, respectively. Additionally, the live cell count was highest for the collagen-alginate 4:1 bioink composition on Day 0, a trend that persisted through Days 1 to 6, underscoring its superior performance in maintaining cell viability and promoting cell proliferation. These findings show that the compatibility of HBE cells with the collagen-alginate 4:1 bioink composition was higher compared with the other two bioink compositions.
Collapse
Affiliation(s)
- Taieba Tuba Rahman
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA; (Y.M.A.); (Z.P.)
| | - Nathan Wood
- Department of Biology, Texas A&M University, College Station, TX 77843, USA; (N.W.); (H.Q.)
| | - Yeasir Mohammad Akib
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA; (Y.M.A.); (Z.P.)
| | - Hongmin Qin
- Department of Biology, Texas A&M University, College Station, TX 77843, USA; (N.W.); (H.Q.)
| | - Zhijian Pei
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA; (Y.M.A.); (Z.P.)
| |
Collapse
|
65
|
Balcı Ş, Ergüden B. Gold Nanoparticles and Antimicrobial Peptides: A Novel Combination. ChemistrySelect 2024; 9. [DOI: 10.1002/slct.202401793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/21/2024] [Indexed: 09/14/2024]
Abstract
AbstractThis article examines the diverse conjugation forms of AMP‐AuNP nanostructures that arise from the amalgamation of antimicrobial peptides (AMPs) and gold nanoparticles (AuNPs), as well as their prospective utility in the field of biomedicine. AMPs are a class of naturally occurring microbicidal compounds that are recognized for their wide range of inhibitory effects and distinctive modes of operation. The utilization of AuNPs in diverse biomedical applications is facilitated through the application of nanotechnology. AMP‐AuNP nanostructures exhibit diverse features through the utilization of molecular linkage techniques. The aforementioned qualities encompass the ability to expedite the process of wound healing, facilitate precise targeting through the incorporation of DNA aptamers, serve as a means for bacterial imaging, enable the use of photothermal therapy, and contribute to the advancement of prospective treatments for fungal infections. The utilization of these synthesized antimicrobial gold nanostructures in many biomedical applications holds significant promise for advancing treatments and enhancing disease management.
Collapse
Affiliation(s)
- Şule Balcı
- Gebze Technical University Department of Bioengineering Kocaeli TURKEY
| | - Bengü Ergüden
- Gebze Technical University Department of Bioengineering Kocaeli TURKEY
| |
Collapse
|
66
|
Abedi M, Shafiee M, Afshari F, Mohammadi H, Ghasemi Y. Collagen-Based Medical Devices for Regenerative Medicine and Tissue Engineering. Appl Biochem Biotechnol 2024; 196:5563-5603. [PMID: 38133881 DOI: 10.1007/s12010-023-04793-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
Assisted reproductive technologies are key to solving the problems of aging and organ defects. Collagen is compatible with living tissues and has many different chemical properties; it has great potential for use in reproductive medicine and the engineering of reproductive tissues. It is a natural substance that has been used a lot in science and medicine. Collagen is a substance that can be obtained from many different animals. It can be made naturally or created using scientific methods. Using pure collagen has some drawbacks regarding its physical and chemical characteristics. Because of this, when collagen is processed in various ways, it can better meet the specific needs as a material for repairing tissues. In simpler terms, collagen can be used to help regenerate bones, cartilage, and skin. It can also be used in cardiovascular repair and other areas. There are different ways to process collagen, such as cross-linking it, making it more structured, adding minerals to it, or using it as a carrier for other substances. All of these methods help advance the field of tissue engineering. This review summarizes and discusses the current progress of collagen-based materials for reproductive medicine.
Collapse
Affiliation(s)
- Mehdi Abedi
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran.
- Research and Development Department, Danesh Salamat Kowsar Co., P.O. Box 7158186496, Shiraz, Iran.
| | - Mina Shafiee
- Research and Development Department, Danesh Salamat Kowsar Co., P.O. Box 7158186496, Shiraz, Iran
| | - Farideh Afshari
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Medical Sciences and Technology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamidreza Mohammadi
- Research and Development Department, Danesh Salamat Kowsar Co., P.O. Box 7158186496, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
67
|
Ivarsson J, Bennett A, Ferrara F, Strauch R, Vallase A, Iorizzo M, Pecorelli A, Lila MA, Valacchi G. Gut-derived wild blueberry phenolic acid metabolites modulate extrinsic cutaneous damage. Food Funct 2024; 15:7849-7864. [PMID: 38962816 DOI: 10.1039/d4fo01874e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
As the first line of defense, the skin is equipped with various physiological mechanisms positioned to prevent incoming oxidative damage from numerous environmental insults. With persistent exposure to the environment, understanding ways to augment the skin defenses is paramount in protecting from premature aging. In this study, we investigated the ability of five dietary phenolic metabolites, typically found in the bloodstream after wild blueberry consumption, to successfully defend the skin from UV light exposure in a novel ex vivo co-culture model of human skin explants and primary endothelial cells. Skin explants, placed in transwell inserts, were exposed to UV, and subsequently co-cultured with endothelial cells. When the endothelial cells had been pretreated with the bioactive metabolites at physiological concentrations (hippuric acid 3000 nM, isoferulic acid 1000 nM, salicylic acid 130 nM, benzoic acid 900 nM, α-hydroxyhippuric acid 400 nM) cutaneous damage was prevented on the co-cultured with UV-challenged skin explants. Co-culture with non-pretreated endothelial cells did not protect skin explants. Specifically, the pretreatment was able to reduce skin lipid peroxidation (measured as 4-hydroxynonenal protein adducts), and pro-inflammatory enzymes such as cyclooxygenase 2 (COX-2) and NADPH oxidase 4 (NOX-4). Furthermore, pretreatment with the metabolites prevented UV-induced release of inflammatory cytokines such as IL-1β and IL-8 as well as nitric oxides (NO) levels. In addition, the metabolites showed an impressive ability to prevent the loss of cutaneous structural proteins including involucrin and collagen type 1. Of note, endothelial cells cultured with UV exposed skin explants exhibited increased oxidative stress demonstrated by heme oxygenase-1 (HO-1) up-regulation which was significantly prevented in the metabolite treated models. These findings highlight the ability of dietary polyphenolic metabolites to improve cutaneous defenses against extrinsic stressors.
Collapse
Affiliation(s)
- John Ivarsson
- Department of Animal Science, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA.
- Department of Food Bioprocessing & Nutrition Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
| | - Abby Bennett
- Department of Food Bioprocessing & Nutrition Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Renee Strauch
- Department of Food Bioprocessing & Nutrition Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
| | - Andrea Vallase
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Massimo Iorizzo
- Department of Horticultural Science, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
| | - Alessandra Pecorelli
- Department of Food Bioprocessing & Nutrition Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Mary Ann Lila
- Department of Food Bioprocessing & Nutrition Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
| | - Giuseppe Valacchi
- Department of Animal Science, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA.
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
- Kyung Hee University, Department of Food and Nutrition, Seoul, South Korea
| |
Collapse
|
68
|
Tkachev S, Chepelova N, Galechyan G, Ershov B, Golub D, Popova E, Antoshin A, Giliazova A, Voloshin S, Efremov Y, Istranova E, Timashev P. Three-Dimensional Cell Culture Micro-CT Visualization within Collagen Scaffolds in an Aqueous Environment. Cells 2024; 13:1234. [PMID: 39120266 PMCID: PMC11311787 DOI: 10.3390/cells13151234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/15/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024] Open
Abstract
Among all of the materials used in tissue engineering in order to develop bioequivalents, collagen shows to be the most promising due to its superb biocompatibility and biodegradability, thus becoming one of the most widely used materials for scaffold production. However, current imaging techniques of the cells within collagen scaffolds have several limitations, which lead to an urgent need for novel methods of visualization. In this work, we have obtained groups of collagen scaffolds and selected the contrasting agents in order to study pores and patterns of cell growth in a non-disruptive manner via X-ray computed microtomography (micro-CT). After the comparison of multiple contrast agents, a 3% aqueous phosphotungstic acid solution in distilled water was identified as the most effective amongst the media, requiring 24 h of incubation. The differences in intensity values between collagen fibers, pores, and masses of cells allow for the accurate segmentation needed for further analysis. Moreover, the presented protocol allows visualization of porous collagen scaffolds under aqueous conditions, which is crucial for the multimodal study of the native structure of samples.
Collapse
Affiliation(s)
- Sergey Tkachev
- Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| | - Natalia Chepelova
- Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| | - Gevorg Galechyan
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| | - Boris Ershov
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| | - Danila Golub
- Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| | - Elena Popova
- Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| | - Artem Antoshin
- Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| | - Aliia Giliazova
- Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| | - Sergei Voloshin
- Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| | - Yuri Efremov
- Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| | - Elena Istranova
- Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, Moscow 119991, Russia
| |
Collapse
|
69
|
Liamri JN, Humardani FM, Chandra G, Mulyanata LT, Kok T, Irawati F, Sulistomo HW, Reichetzeder C, Dwi Putra SE. Exploring the impact of diabetes on aging: insights from TERT and COL1A1 methylation. Turk J Biol 2024; 48:257-266. [PMID: 39296334 PMCID: PMC11407328 DOI: 10.55730/1300-0152.2701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/23/2024] [Accepted: 06/26/2024] [Indexed: 09/21/2024] Open
Abstract
Background/aim Aging, a multifaceted biological process, leads to diminished physical performance, especially in older adults with diabetes, where a mismatch between biological and chronological age is noticeable. Numerous studies have demonstrated that diabetes accelerates aging at the cellular and organ levels. Notable aging markers are telomerase reverse transcriptase (TERT), related to telomere length, and type 1 chain collagen (COL1A1), a key component of skin collagen. Additionally, age-related methylation increases, as revealed through methylation analysis, augmenting aspects of aging. However, the detailed interplay between aging and diabetes, particularly regarding methylation, remains underexplored and warrants further study to elucidate the biological links between the two. Materials and methods In this study, we elucidate the modulatory influence of diabetes on the aging process, focusing specifically on the modifications in TERT in the kidney and COL1A1 in the skin using mice of Swiss Webster strain as the diabetes model. Specimens were categorized into three distinct chronological cohorts: chronologically young (16 weeks; n = 5), chronologically old (40 weeks; n = 5), and a periodically assessed group (16 weeks; n = 30), from which five mice were systematically sacrificed on a weekly basis. Results Our findings reveal a marked impact of diabetes on the methylation statuses of TERT and COL1A1, characterized by an elevation in methylation levels within the periodic group (1st-6th week) and a simultaneous, progressive attenuation in the expression of TERT and COL1A1 genes. Conclusion The observed alterations in the methylation levels of TERT and COL1A1 propound the hypothesis that diabetes potentially expedites the aging process, concomitantly impinging on the production of TERT and COL1A, ostensibly through the mechanism of promoter gene hypermethylation.
Collapse
Affiliation(s)
| | - Farizky Martriano Humardani
- Faculty of Biotechnology, University of Surabaya, Surabaya, Indonesia
- Department of Biomedical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Faculty of Medicine, University of Surabaya, Surabaya, Indonesia
- Bioinformatics Research Center, Indonesia Bioinformatics and Biomolecular, Malang, Indonesia
| | - Giovani Chandra
- Faculty of Biotechnology, University of Surabaya, Surabaya, Indonesia
| | | | - Tjie Kok
- Faculty of Biotechnology, University of Surabaya, Surabaya, Indonesia
| | - Fenny Irawati
- Faculty of Biotechnology, University of Surabaya, Surabaya, Indonesia
| | | | - Christoph Reichetzeder
- Institute of Clinical Research and Systems Medicine, Health and Medical University, Potsdam, Germany
| | | |
Collapse
|
70
|
Ngan Giang N, Le LTT, Ngoc Chien P, Trinh TTT, Thi Nga P, Zhang XR, Jin YX, Zhou SY, Han J, Nam SY, Heo CY. Assessment of inflammatory suppression and fibroblast infiltration in tissue remodelling by supercritical CO 2 acellular dermal matrix (scADM) utilizing Sprague Dawley models. Front Bioeng Biotechnol 2024; 12:1407797. [PMID: 38978716 PMCID: PMC11228881 DOI: 10.3389/fbioe.2024.1407797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/06/2024] [Indexed: 07/10/2024] Open
Abstract
Human skin-derived ECM aids cell functions but can trigger immune reactions; therefore it is addressed through decellularization. Acellular dermal matrices (ADMs), known for their regenerative properties, are used in tissue and organ regeneration. ADMs now play a key role in plastic and reconstructive surgery, enhancing aesthetics and reducing capsular contracture risk. Innovative decellularization with supercritical carbon dioxide preserves ECM quality for clinical use. The study investigated the cytotoxicity, biocompatibility, and anti-inflammatory properties of supercritical CO2 acellular dermal matrix (scADM) in vivo based on Sprague Dawley rat models. Initial experiments in vitro with fibroblast cells confirmed the non-toxic nature of scADM and demonstrated cell infiltration into scADMs after incubation. Subsequent tests in vitro revealed the ability of scADM to suppress inflammation induced by lipopolysaccharides (LPS) presenting by the reduction of pro-inflammatory cytokines TNF-α, IL-6, IL-1β, and MCP-1. In the in vivo model, histological assessment of implanted scADMs in 6 months revealed a decrease in inflammatory cells, confirmed further by the biomarkers of inflammation in immunofluorescence staining. Besides, an increase in fibroblast infiltration and collagen formation was observed in histological staining, which was supported by various biomarkers of fibroblasts. Moreover, the study demonstrated vascularization and macrophage polarization, depicting increased endothelial cell formation. Alteration of matrix metalloproteinases (MMPs) was analyzed by RT-PCR, indicating the reduction of MMP2, MMP3, and MMP9 levels over time. Simultaneously, an increase in collagen deposition of collagen I and collagen III was observed, verified in immunofluorescent staining, RT-PCR, and western blotting. Overall, the findings suggested that scADMs offer significant benefits in improving outcomes in implant-based procedures as well as soft tissue substitution.
Collapse
Affiliation(s)
- Nguyen Ngan Giang
- Department of Medical Device Development, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Linh Thi Thuy Le
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Faculty of Medical Technology, Haiphong University of Medicine and Pharmacy, Haiphong, Vietnam
| | - Pham Ngoc Chien
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Korean Institute of Nonclinical Study, H&Bio Co., Ltd., Seongnam, Republic of Korea
| | - Thuy-Tien Thi Trinh
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Korean Institute of Nonclinical Study, H&Bio Co., Ltd., Seongnam, Republic of Korea
| | - Pham Thi Nga
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Korean Institute of Nonclinical Study, H&Bio Co., Ltd., Seongnam, Republic of Korea
| | - Xin Rui Zhang
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yong Xun Jin
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Shu Yi Zhou
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | | | - Sun Young Nam
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Chan Yeong Heo
- Department of Medical Device Development, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Korean Institute of Nonclinical Study, H&Bio Co., Ltd., Seongnam, Republic of Korea
- Department of Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
71
|
Croteau D, Buckley M, Mantay M, Brannan C, Roy A, Barbaro B, Griffiths S. A Novel Dehydrated Human Umbilical Cord Particulate Medical Device: Matrix Characterization, Performance, and Biocompatibility for the Management of Acute and Chronic Wounds. Bioengineering (Basel) 2024; 11:588. [PMID: 38927824 PMCID: PMC11200885 DOI: 10.3390/bioengineering11060588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic wounds present a significant socioeconomic burden forecasted to increase in prevalence and cost. Minimally manipulated human placental tissues have been increasingly employed and proven to be advantageous in the treatment of chronic wounds, showing improved clinical outcomes and cost-effectiveness. However, technological advances have been constrained by minimal manipulation and homologous use criteria. This study focuses on the characterization of a novel dehydrated human umbilical cord particulate (dHUCP) medical device, which offers a unique allogeneic technological advancement and the first human birth tissue device for wound management. Characterization analyses illustrated a complex extracellular matrix composition conserved in the dHUCP device compared to native umbilical cord, with abundant collagens and glycosaminoglycans imbibing an intricate porous scaffold. Dermal fibroblasts readily attached to the intact scaffold of the dHUCP device. Furthermore, the dHUCP device elicited a significant paracrine proliferative response in dermal fibroblasts, in contrast to fibrillar collagen, a prevalent wound device. Biocompatibility testing in a porcine full-thickness wound model showed resorption of the dHUCP device and normal granulation tissue maturation during healing. The dHUCP device is a promising advancement in wound management biomaterials, offering a unique combination of structural complexity adept for challenging wound topographies and a microenvironment supportive of tissue regeneration.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sarah Griffiths
- Research and Development, Stimlabs LLC, 1225 Northmeadow Parkway, Suite 104, Roswell, GA 30076, USA
| |
Collapse
|
72
|
Baba Ismail YM, Reinwald Y, Ferreira AM, Bretcanu O, Dalgarno K, El Haj AJ. Manufacturing of 3D-Printed Hybrid Scaffolds with Polyelectrolyte Multilayer Coating in Static and Dynamic Culture Conditions. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2811. [PMID: 38930181 PMCID: PMC11205028 DOI: 10.3390/ma17122811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Three-dimensional printing (3DP) has emerged as a promising method for creating intricate scaffold designs. This study assessed three 3DP scaffold designs fabricated using biodegradable poly(lactic) acid (PLA) through fused deposition modelling (FDM): mesh, two channels (2C), and four channels (4C). To address the limitations of PLA, such as hydrophobic properties and poor cell attachment, a post-fabrication modification technique employing Polyelectrolyte Multilayers (PEMs) coating was implemented. The scaffolds underwent aminolysis followed by coating with SiCHA nanopowders dispersed in hyaluronic acid and collagen type I, and finally crosslinked the outermost coated layers with EDC/NHS solution to complete the hybrid scaffold production. The study employed rotating wall vessels (RWVs) to investigate how simulating microgravity affects cell proliferation and differentiation. Human mesenchymal stem cells (hMSCs) cultured on these scaffolds using proliferation medium (PM) and osteogenic media (OM), subjected to static (TCP) and dynamic (RWVs) conditions for 21 days, revealed superior performance of 4C hybrid scaffolds, particularly in OM. Compared to commercial hydroxyapatite scaffolds, these hybrid scaffolds demonstrated enhanced cell activity and survival. The pre-vascularisation concept on 4C hybrid scaffolds showed the proliferation of both HUVECs and hMSCs throughout the scaffolds, with a positive expression of osteogenic and angiogenic markers at the early stages.
Collapse
Affiliation(s)
- Yanny Marliana Baba Ismail
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Penang, Malaysia
- Guy Hilton Research Centre, Institute for Science and Technology in Medicine, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent ST4 7QB, UK
- School of Mechanical and Systems Engineering, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK
| | - Yvonne Reinwald
- Guy Hilton Research Centre, Institute for Science and Technology in Medicine, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent ST4 7QB, UK
- School of Science & Technology, Department of Engineering, Nottingham Trent University, Clifton Campus, Nottingham NG1 18NS, UK
- Medical Technology Innovation Facility, Nottingham Trent University, Clifton Campus, Nottingham NG1 18NS, UK
| | - Ana Marina Ferreira
- School of Mechanical and Systems Engineering, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK
| | - Oana Bretcanu
- School of Mechanical and Systems Engineering, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK
| | - Kenneth Dalgarno
- School of Mechanical and Systems Engineering, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK
| | - Alicia J. El Haj
- Guy Hilton Research Centre, Institute for Science and Technology in Medicine, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent ST4 7QB, UK
- Institute of Translational Medicine, Heritage Building (Old Queen Elizabeth Hospital), Mindelsohn Way, Birmingham B15 2TH, UK
| |
Collapse
|
73
|
Sun Y, Sun K, Ma Z, Zhang X, Du X, Jia Y, Zhu Y, Inam M, Gao Y, Basang W. miR-122-5p Promotes Cowshed Particulate Matter2.5-Induced Apoptosis in NR8383 by Targeting COL4A1. TOXICS 2024; 12:386. [PMID: 38922066 PMCID: PMC11209608 DOI: 10.3390/toxics12060386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024]
Abstract
It is well known that Particulate Matter2.5 (PM2.5) has a major adverse effect on the organism. However, the health hazards of livestock farm PM2.5 to humans and animals are not yet known, and the role of miRNAs in the cellular damage induced by livestock farm PM2.5 is also unclear. Therefore, our study used cowshed PM2.5 to stimulate rat alveolar macrophage NR8383 to construct an in vitro injury model to investigate the effect of miR-122-5p on PM2.5-induced apoptosis in the NR8383. The level of apoptosis was quantified by flow cytometry and Hoechst 33342/PI double staining. Furthermore, the potential target gene Collagen type IV alpha (COL4A1) of miR-122-5p was identified through the use of bioinformatics methods. The results demonstrated a decline in cell viability and an increase in apoptosis with rising PM2.5 concentrations and exposure durations. The transfection of miR-122-5p mimics resulted in an upregulation of the pro-apoptotic protein Bcl-xL/Bcl-2 and activation of cleaved caspase-3 while inhibiting the anti-apoptotic protein B-cell lymphoma-2. The experimental data indicate that miR-122-5p is involved in the apoptotic process by targeting COL4A1. Furthermore, the overexpression of COL4A1 was observed to enhance the PM2.5-activated PI3K/AKT/NF-κB signaling pathway, which contributed to the inhibition of apoptosis. This finding offers a promising avenue for the development of therapeutic strategies aimed at mitigating cellular damage induced by PM2.5 exposure.
Collapse
Affiliation(s)
- Yize Sun
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.S.)
| | - Ke Sun
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.S.)
| | - Zhenhua Ma
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.S.)
| | - Xiqing Zhang
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.S.)
| | - Xiaohui Du
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.S.)
| | - Yunna Jia
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.S.)
| | - Yanbin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa 850009, China
| | - Muhammad Inam
- Department of Zoology, Shaheed Benazir Bhutto University Sheringal, Dir Upper 18050, Pakistan
| | - Yunhang Gao
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.S.)
| | - Wangdui Basang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa 850009, China
| |
Collapse
|
74
|
Lee H, Ye S, Kim J, Jun SH, Kang NG. Improvement in Facial Wrinkles Using Materials Enhancing PPARGC1B Expression Related to Mitochondrial Function. Curr Issues Mol Biol 2024; 46:5037-5051. [PMID: 38920974 PMCID: PMC11202557 DOI: 10.3390/cimb46060302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024] Open
Abstract
Skin aging is an unavoidable natural phenomenon caused by intrinsic and extrinsic factors. In modern society, the pursuit of a wrinkle-free and aesthetically appealing face has gained considerable prominence. Numerous studies have aimed at mitigating the appearance of facial wrinkles. Antiaging research focused on regulating the function of mitochondria, the main reactive oxygen species-generating organelles, has been extensively conducted. In this study, we investigated the correlation between facial wrinkles and the expression of PPARGC1B, considering the association of this gene with mitochondrial function, to identify its potential as a target for exploring antiaging cosmetic materials. We elucidated the role of PPARGC1B in the skin and identified five bioactive materials that modulated its expression. The effectiveness of these materials was verified through in vitro experiments on human dermal fibroblasts. We prepared cosmetic formulations incorporating the five materials and confirmed their ability to enhance dermal collagen in three-dimensional skin models and reduce facial wrinkles under the eyes and nasolabial fold areas in human subjects. The study findings have significant implications for developing novel antiaging cosmetic formulations by reinforcing mitochondrial functions.
Collapse
Affiliation(s)
| | | | | | - Seung-Hyun Jun
- LG Household & Health Care (LG H&H) R&D Center, Seoul 07795, Republic of Korea; (H.L.); (S.Y.); (J.K.)
| | - Nae-Gyu Kang
- LG Household & Health Care (LG H&H) R&D Center, Seoul 07795, Republic of Korea; (H.L.); (S.Y.); (J.K.)
| |
Collapse
|
75
|
Zhang K, Zhao C, Liu K, Feng R, Zhao Y, Zong Y, Du R. Oral Administration of Deer Bone Collagen Peptide Can Enhance the Skin Hydration Ability and Antioxidant Ability of Aging Mice Induced by D-Gal, and Regulate the Synthesis and Degradation of Collagen. Nutrients 2024; 16:1548. [PMID: 38892482 PMCID: PMC11174718 DOI: 10.3390/nu16111548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Skin problems caused by aging have attracted much attention, and marine collagen peptides have been proved to improve these problems, while mammalian collagen peptides are rarely reported. In this study, fermented deer bone collagen peptide (FCP) and non-fermented deer bone collagen peptide (NCP) were extracted from fermented and non-fermented deer bone, respectively, and their peptide sequences and differential proteins were analyzed using LC-MS/MS technology. After they were applied to aging mice induced with D-gal, the skin hydration ability, antioxidant ability, collagen synthesis, and degradation ability of the mice were studied. The results show that FCP and NCP are mainly peptides that constitute type Ⅰ collagen, and their peptide segments are different. In vivo experiments show that FCP and NCP can improve the richness of collagen fibers in the skin of aging mice; improve the hydration ability of skin; promote the activity of antioxidant-related enzymes; and also show that through the TGF-β and MAPK pathways, the synthesis and degradation of collagen in skin are regulated. These results show that deer bone collagen peptide can improve skin problems caused by aging, promote skin hydration and antioxidant capacity of aging mice, and regulate collagen synthesis and degradation through the MAPK pathway.
Collapse
Affiliation(s)
- Ke Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (K.Z.); (C.Z.); (K.L.); (R.F.); (Y.Z.)
| | - Chenxu Zhao
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (K.Z.); (C.Z.); (K.L.); (R.F.); (Y.Z.)
| | - Kaiyue Liu
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (K.Z.); (C.Z.); (K.L.); (R.F.); (Y.Z.)
| | - Ruyi Feng
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (K.Z.); (C.Z.); (K.L.); (R.F.); (Y.Z.)
| | - Yan Zhao
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (K.Z.); (C.Z.); (K.L.); (R.F.); (Y.Z.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
| | - Ying Zong
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (K.Z.); (C.Z.); (K.L.); (R.F.); (Y.Z.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
| | - Rui Du
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (K.Z.); (C.Z.); (K.L.); (R.F.); (Y.Z.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality and Safety, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
76
|
Doodmani SM, Bagheri A, Natouri O, Nobakht A, Saghebasl S. Electrospinning-netting of spider-inspired polycaprolactone/collagen nanofiber-nets incorporated with Propolis extract for enhanced wound healing applications. Int J Biol Macromol 2024; 267:131452. [PMID: 38593895 DOI: 10.1016/j.ijbiomac.2024.131452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024]
Abstract
Nanofibers hold significant promise for wound healing applications, but their potential is limited by their large diameter. To overcome this limitation, the development of nanofibrous systems with refined nanonets (approximately 20 nm in diameter) represents a notable improvement. In this study, a composite of polycaprolactone/collagen (PCLC) nano-fiber/nets (NFNs) was fabricated using benign solvents (acetic acid and formic acid) via the electro-spinning/netting (ESN) technique, harnessing the regenerative potential of collagen as a biological macromolecule. Additionally, to enhance the natural attributes of the NFNs structure, Propolis extract, renowned for its wound healing properties, was incorporated. Five ESN solutions were prepared: PCL, PCLC, PCLC/Pro 5 %, PCLC/Pro 10 %, and PCLC/Pro 15 %. NaCl salt was introduced into all ESN solutions to improve nanonets formation. FE-SEM imaging demonstrated successful nano-net formation in all ESN solutions except for the PCL formulation. The fabricated scaffolds exhibited spider-like nanonets with the addition of collagen and further enhanced nano-net formation with Propolis incorporation. Trunk nanofibers showed filamentous structures without any beads, with an average diameter of 164-728 nm, while the diameter of branched fibers (nanonets) was approximately 20 nm. WVTR values of the NFNs were comparable to commercial dressings such as Tegaderm. The results also demonstrated the potent cytoprotective effects of Propolis-loaded NFNs in a dose-dependent manner. Furthermore, the viability of HFF-2 cells after 72 h of culture on PCLC NFNs significantly increased compared to PCL nanofibers. The highest cell viability was observed in PCLC/Pro 15 % nanofibers after 24, 48, and 72 h of cell culture, indicating the proliferative effect of Propolis extract in nanoformulated form. Additionally, the scaffolds exhibited a hemocompatibility of <3 %, further highlighting their potential in wound healing therapeutics.
Collapse
Affiliation(s)
- Seyed Mohammad Doodmani
- Department of Pathobiology, Faculty of Specialized Veterinary Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Afsaneh Bagheri
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Ozra Natouri
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Research Center of Biosciences & Biotechnology (RCBB), University of Tabriz, Tabriz, Iran
| | - Abbas Nobakht
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; Research Center of Biosciences & Biotechnology (RCBB), University of Tabriz, Tabriz, Iran.
| | - Solmaz Saghebasl
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51548/53431, Iran.
| |
Collapse
|
77
|
Kaboodkhani R, Mehrabani D, Moghaddam A, Salahshoori I, Khonakdar HA. Tissue engineering in otology: a review of achievements. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1105-1153. [PMID: 38386362 DOI: 10.1080/09205063.2024.2318822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Tissue engineering application in otology spans a distance from the pinna to auditory nerve covered with specialized tissues and functions such as sense of hearing and aesthetics. It holds the potential to address the barriers of lack of donor tissue, poor tissue match, and transplant rejection through provision of new and healthy tissues similar to the host and possesses the capacity to renew, to regenerate, and to repair in-vivo and was shown to be a bypasses for any need to immunosuppression. This review aims to investigate the application of tissue engineering in otology and to evaluate the achievements and challenges in external, middle and inner ear sections. Since gaining the recent knowledge and training on use of different scaffolds is essential for otology specialists and who look for the recovery of ear function and aesthetics of patients, it is shown in this review how utilizing tissue engineering and cell transplantation, regenerative medicine can provide advancements in hearing and ear aesthetics to fit different patients' needs.
Collapse
Affiliation(s)
- Reza Kaboodkhani
- Otorhinolaryngology Research Center, Department of Otorhinolaryngology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Davood Mehrabani
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | | | | | - Hossein Ali Khonakdar
- Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
78
|
Tan SH, Liu S, Teoh SH, Bonnard C, Leavesley D, Liang K. A sustainable strategy for generating highly stable human skin equivalents based on fish collagen. BIOMATERIALS ADVANCES 2024; 158:213780. [PMID: 38280287 DOI: 10.1016/j.bioadv.2024.213780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/20/2023] [Accepted: 01/17/2024] [Indexed: 01/29/2024]
Abstract
Tissue engineered skin equivalents are increasingly recognized as potential alternatives to traditional skin models such as human ex vivo skin or animal skin models. However, most of the currently investigated human skin equivalents (HSEs) are constructed using mammalian collagen which can be expensive and difficult to extract. Fish skin is a waste product produced by fish processing industries and identified as a cost-efficient and sustainable source of type I collagen. In this work, we describe a method for generating highly stable HSEs based on fibrin fortified tilapia fish collagen. The fortified fish collagen (FFC) formulation is optimized to enable reproducible fabrication of full-thickness HSEs that undergo limited contraction, facilitating the incorporation of human donor-derived skin cells and formation of biomimetic dermal and epidermal layers. The morphology and barrier function of the FFC HSEs are compared with a commercial skin model and validated with immunohistochemical staining and transepithelial electrical resistance testing. Finally, the potential of a high throughput screening platform with FFC HSE is explored by scaling down its fabrication to 96-well format.
Collapse
Affiliation(s)
- Shi Hua Tan
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Shaoqiong Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Swee Hin Teoh
- College of Materials Science and Engineering, Hunan University, People's Republic of China
| | - Carine Bonnard
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore; Skin Research Institute of Singapore (SRIS), Singapore
| | | | - Kun Liang
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore; Skin Research Institute of Singapore (SRIS), Singapore.
| |
Collapse
|
79
|
Zimmerling A, Zhou Y, Chen X. Synthesis of Alginate/Collagen Bioink for Bioprinting Respiratory Tissue Models. J Funct Biomater 2024; 15:90. [PMID: 38667547 PMCID: PMC11050917 DOI: 10.3390/jfb15040090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/17/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Synthesis of bioinks for bioprinting of respiratory tissue requires considerations related to immunogenicity, mechanical properties, printability, and cellular compatibility. Biomaterials can be tailored to provide the appropriate combination of these properties through the synergy of materials with individual pros and cons. Sodium alginate, a water-soluble polymer derived from seaweed, is a cheap yet printable biomaterial with good structural properties; however, it lacks physiological relevance and cell binding sites. Collagen, a common component in the extra cellular matrix of many tissues, is expensive and lacks printability; however, it is highly biocompatible and exhibits sites for cellular binding. This paper presents our study on the synthesis of bioinks from alginate and collagen for use in bioprinting respiratory tissue models. Bioinks were synthesized from 40 mg/mL (4%) alginate and 3 mg/mL (0.3%) collagen in varying ratios (1:0, 4:1, 3:1, 2:1, and 1:1); then examined in terms of rheological properties, printability, compressive, and tensile properties and cellular compatibility. The results illustrate that the ratio of alginate to collagen has a profound impact on bioink performance and that, among the examined ratios, the 3:1 ratio is the most appropriate for use in bioprinting respiratory tissue scaffolds.
Collapse
Affiliation(s)
- Amanda Zimmerling
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK S7N 5A9, Canada
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada;
| | - Yan Zhou
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada;
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK S7N 5A9, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
80
|
Wu Q, Guo Y, Li H, Zhang D, Wang S, Hou J, Cheng N, Huang M, Luo L, Li Y, Zhao Y, Tan H, Jin C. Recombinant human collagen I/carboxymethyl chitosan hydrogel loaded with long-term released hUCMSCs derived exosomes promotes skin wound repair. Int J Biol Macromol 2024; 265:130843. [PMID: 38484819 DOI: 10.1016/j.ijbiomac.2024.130843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Stem cell exosomes are beneficial in accelerating wound repair. However, the therapeutic function is limited due to its rapid clearance in vivo. To improve the functionality of exosomes in cutaneous wound healing, a novel hydrogel was designed and fabricated by recombinant human collagen I and carboxymethyl chitosan loaded with exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSCs), named as the rhCol I/CMC-Exos hydrogel. METHODS Exosomes were extracted from hUCMSCs and were characterizated by TEM (Transmission Electron Microscopy), and biomarker detection. The rhCol I hydrogel, rhCol I/carboxymethyl chitosan (rhCol I/CMC) hydrogel and the rhCol I/CMC-Exos hydrogel composites were cross-linked by genipin. These materials were assessed and compared for their physical characteristics, including cross-sectional morphology, porosity, pore distribution, and hydrophilicity. Cell biocompatibility on biomaterials was investigated using scanning electron microscopy and CFDA staining, as well as assessed in vivo through histological examination of major organs in mice. Effects of the hydrogel composite on wound healing were further evaluated by using the full-thickness skin defect mice model. RESULTS Successful extraction of hUCMSCs-derived exosomes was confirmed by TEM,Western Blotting and flow cytometry. The synthesized rhCol I/CMC-Exos hydrogel composite exhibited cytocompatibility and promoted cell growth in vitro. The rhCol I/CMC-Exos hydrogel showed sustained release of exosomes. In the mice full skin-defects model, the rhCol I/CMC-Exos-treated group showed superior wound healing efficiency, with 15 % faster wound closure compared to controls. Histological examinations revealed thicker dermis formation and more balanced collagen deposition in wounds treated with rhCol I/CMC-Exos hydrogel. Mechanistically, the application of rhCol I/CMC-Exos hydrogel increased fibroblasts proliferation, alleviated inflammation responses as well as promoted angiogenesis, thereby was beneficial in promoting skin wound healing and regeneration. CONCLUSION Our study, for the first time, introduced recombinant human Collagen I in fabricating a novel hydrogel loaded with hUCMSCs-derived exosomes, which effectively promoted skin wound closure and regeneration, demonstrating a great potential in severe skin wound healing treatment.
Collapse
Affiliation(s)
- Qiong Wu
- The First Affiliated Hospital of Northwest University, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, Faculty of Life Sciences, Northwest University, Xi'an, Shaanxi Province 710069, PR China
| | - Yayuan Guo
- School of Stomatology, Xi'an Medical University, Xi'an 710021, PR China
| | - Hongwei Li
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, 710032, PR China
| | - Dan Zhang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, Faculty of Life Sciences, Northwest University, Xi'an, Shaanxi Province 710069, PR China
| | - Shixu Wang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, Faculty of Life Sciences, Northwest University, Xi'an, Shaanxi Province 710069, PR China
| | - Jianing Hou
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, Faculty of Life Sciences, Northwest University, Xi'an, Shaanxi Province 710069, PR China
| | - Nanqiong Cheng
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, Faculty of Life Sciences, Northwest University, Xi'an, Shaanxi Province 710069, PR China
| | - Mengfei Huang
- Shanghai Shengran Biotechnology Co., Ltd, Shanghai, PR China
| | - Linna Luo
- Shaanxi HuiKang Bio-Tech Co., LTD, Xi'an, PR China
| | - Yuan Li
- Shaanxi HuiKang Bio-Tech Co., LTD, Xi'an, PR China
| | - Yurong Zhao
- Shaanxi Center for Drug and Vaccine Inspection, Xi'an, PR China
| | - Hong Tan
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, Faculty of Life Sciences, Northwest University, Xi'an, Shaanxi Province 710069, PR China.
| | - Changxin Jin
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China.
| |
Collapse
|
81
|
Ansari MM, Ghosh M, Lee DS, Son YO. Senolytic therapeutics: An emerging treatment modality for osteoarthritis. Ageing Res Rev 2024; 96:102275. [PMID: 38494091 DOI: 10.1016/j.arr.2024.102275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/15/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Osteoarthritis (OA), a chronic joint disease affecting millions of people aged over 65 years, is the main musculoskeletal cause of diminished joint mobility in the elderly. It is characterized by lingering pain and increasing deterioration of articular cartilage. Aging and accumulation of senescent cells (SCs) in the joints are frequently associated with OA. Apoptosis resistance; irreversible cell cycle arrest; increased p16INK4a expression, secretion of senescence-associated secretory phenotype factors, senescence-associated β-galactosidase levels, secretion of extracellular vesicles, and levels of reactive oxygen and reactive nitrogen species; and mitochondrial dysregulation are some common changes in cellular senescence in joint tissues. Development of OA correlates with an increase in the density of SCs in joint tissues. Senescence-associated secretory phenotype has been linked to OA and cartilage breakdown. Senolytics and therapeutic pharmaceuticals are being focused upon for OA management. SCs can be selectively eliminated or killed by senolytics to halt the pathogenesis and progression of OA. Comprehensive understanding of how aging affects joint dysfunction will benefit OA patients. Here, we discuss age-related mechanisms associated with OA pathogenesis and senolytics as an emerging modality in the management of age-related SCs and pathogenesis of OA in preclinical and clinical studies.
Collapse
Affiliation(s)
- Md Meraj Ansari
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea; Department of Biotechnology, School of Bio, Chemical and Processing Engineering (SBCE), Kalasalingam Academy of Research and Education, Krishnankoil 626126, India
| | - Dong-Sun Lee
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si 63243, Republic of Korea; Bio-Health Materials Core-Facility Center, Jeju National University, Jeju 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea; Practical Translational Research Center, Jeju National University, Jeju 63243, Republic of Korea.
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si 63243, Republic of Korea; Bio-Health Materials Core-Facility Center, Jeju National University, Jeju 63243, Republic of Korea; Practical Translational Research Center, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
82
|
Tvaroška I. Glycosylation Modulates the Structure and Functions of Collagen: A Review. Molecules 2024; 29:1417. [PMID: 38611696 PMCID: PMC11012932 DOI: 10.3390/molecules29071417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Collagens are fundamental constituents of the extracellular matrix and are the most abundant proteins in mammals. Collagens belong to the family of fibrous or fiber-forming proteins that self-assemble into fibrils that define their mechanical properties and biological functions. Up to now, 28 members of the collagen superfamily have been recognized. Collagen biosynthesis occurs in the endoplasmic reticulum, where specific post-translational modification-glycosylation-is also carried out. The glycosylation of collagens is very specific and adds β-d-galactopyranose and β-d-Glcp-(1→2)-d-Galp disaccharide through β-O-linkage to hydroxylysine. Several glycosyltransferases, namely COLGALT1, COLGALT2, LH3, and PGGHG glucosidase, were associated the with glycosylation of collagens, and recently, the crystal structure of LH3 has been solved. Although not fully understood, it is clear that the glycosylation of collagens influences collagen secretion and the alignment of collagen fibrils. A growing body of evidence also associates the glycosylation of collagen with its functions and various human diseases. Recent progress in understanding collagen glycosylation allows for the exploitation of its therapeutic potential and the discovery of new agents. This review will discuss the relevant contributions to understanding the glycosylation of collagens. Then, glycosyltransferases involved in collagen glycosylation, their structure, and catalytic mechanism will be surveyed. Furthermore, the involvement of glycosylation in collagen functions and collagen glycosylation-related diseases will be discussed.
Collapse
Affiliation(s)
- Igor Tvaroška
- Institute of Chemistry, Slovak Academy of Sciences, 845 38 Bratislava, Slovakia
| |
Collapse
|
83
|
Ribeiro M, Simões M, Vitorino C, Mascarenhas-Melo F. Hydrogels in Cutaneous Wound Healing: Insights into Characterization, Properties, Formulation and Therapeutic Potential. Gels 2024; 10:188. [PMID: 38534606 DOI: 10.3390/gels10030188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Hydrogels are polymeric materials that possess a set of characteristics meeting various requirements of an ideal wound dressing, making them promising for wound care. These features include, among others, the ability to absorb and retain large amounts of water and the capacity to closely mimic native structures, such as the extracellular matrix, facilitating various cellular processes like proliferation and differentiation. The polymers used in hydrogel formulations exhibit a broad spectrum of properties, allowing them to be classified into two main categories: natural polymers like collagen and chitosan, and synthetic polymers such as polyurethane and polyethylene glycol. This review offers a comprehensive overview and critical analysis of the key polymers that can constitute hydrogels, beginning with a brief contextualization of the polymers. It delves into their function, origin, and chemical structure, highlighting key sources of extraction and obtaining. Additionally, this review encompasses the main intrinsic properties of these polymers and their roles in the wound healing process, accompanied, whenever available, by explanations of the underlying mechanisms of action. It also addresses limitations and describes some studies on the effectiveness of isolated polymers in promoting skin regeneration and wound healing. Subsequently, we briefly discuss some application strategies of hydrogels derived from their intrinsic potential to promote the wound healing process. This can be achieved due to their role in the stimulation of angiogenesis, for example, or through the incorporation of substances like growth factors or drugs, such as antimicrobials, imparting new properties to the hydrogels. In addition to substance incorporation, the potential of hydrogels is also related to their ability to serve as a three-dimensional matrix for cell culture, whether it involves loading cells into the hydrogel or recruiting cells to the wound site, where they proliferate on the scaffold to form new tissue. The latter strategy presupposes the incorporation of biosensors into the hydrogel for real-time monitoring of wound conditions, such as temperature and pH. Future prospects are then ultimately addressed. As far as we are aware, this manuscript represents the first comprehensive approach that brings together and critically analyzes fundamental aspects of both natural and synthetic polymers constituting hydrogels in the context of cutaneous wound healing. It will serve as a foundational point for future studies, aiming to contribute to the development of an effective and environmentally friendly dressing for wounds.
Collapse
Affiliation(s)
- Mariana Ribeiro
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- CISUC-Center for Informatics and Systems, University of Coimbra, Pinhal de Marrocos, 3030-290 Coimbra, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Department of Chemistry, University of Coimbra, 3000-535 Coimbra, Portugal
| | - Marco Simões
- CISUC-Center for Informatics and Systems, University of Coimbra, Pinhal de Marrocos, 3030-290 Coimbra, Portugal
- CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Department of Chemistry, University of Coimbra, 3000-535 Coimbra, Portugal
- CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Filipa Mascarenhas-Melo
- Higher School of Health, Polytechnic Institute of Guarda, Rua da Cadeia, 6300-307 Guarda, Portugal
- REQUIMTE/LAQV, Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
84
|
Selvaraj V, Sekaran S, Dhanasekaran A, Warrier S. Type 1 collagen: Synthesis, structure and key functions in bone mineralization. Differentiation 2024; 136:100757. [PMID: 38437764 DOI: 10.1016/j.diff.2024.100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/02/2024] [Accepted: 02/26/2024] [Indexed: 03/06/2024]
Abstract
Collagen is a highly abundant protein in the extracellular matrix of humans and mammals, and it plays a critical role in maintaining the body's structural integrity. Type I collagen is the most prevalent collagen type and is essential for the structural integrity of various tissues. It is present in nearly all connective tissues and is the main constituent of the interstitial matrix. Mutations that affect collagen fiber formation, structure, and function can result in various bone pathologies, underscoring the significance of collagen in sustaining healthy bone tissue. Studies on type 1 collagen have revealed that mutations in its encoding gene can lead to diverse bone diseases, such as osteogenesis imperfecta, a disorder characterized by fragile bones that are susceptible to fractures. Knowledge of collagen's molecular structure, synthesis, assembly, and breakdown is vital for comprehending embryonic and foetal development and several aspects of human physiology. In this review, we summarize the structure, molecular biology of type 1 collagen, its biomineralization and pathologies affecting bone.
Collapse
Affiliation(s)
- Vimalraj Selvaraj
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology-Madras, Chennai, 600 036, Tamil Nadu, India.
| | - Saravanan Sekaran
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, Tamil Nadu, India.
| | | | - Sudha Warrier
- Department of Biotechnology, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, 600116, Tamil Nadu, India
| |
Collapse
|
85
|
Kohoolat G, Alizadeh P, Motesadi Zarandi F, Rezaeipour Y. A ternary composite hydrogel based on sodium alginate, carboxymethyl cellulose and copper-doped 58S bioactive glass promotes cutaneous wound healing in vitro and in vivo. Int J Biol Macromol 2024; 259:129260. [PMID: 38199544 DOI: 10.1016/j.ijbiomac.2024.129260] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Hydrogels offer a novel approach to wound repair. In this study, we synthesized a ternary composite using sodium alginate (SA), carboxymethyl cellulose (CMC) and copper-doped 58S bioactive glass (BG). According to our mechanical testing results, the composite made of 7 wt% CMC and 7 wt% BG (SA-7CMC-7BG) showed optimal properties. In addition, our in vitro studies revealed the biocompatibility and bioactivity of SA-7CMC-7BG, with a negative zeta potential of -31.7 mV. Scanning electron microscope (SEM) images showed 273-μm-diameter pores, cell adhesion, and anchoring. The SA-7CMC-7BG closed 90.4 % of the mechanical scratch after 2 days. An in vivo wound model using Wistar rats showed that SA-7CMC-7BG promoted wound healing, with 85.57 % of the wounds healed after 14 days. Treatment with the SA-7CMC-7BG hydrogel caused a 1.6-, 65-, and 1.87-fold increase in transforming growth factor beta (TGF-β), Col I, and vascular endothelial growth factor (VEGF) expression, respectively that prevents fibrosis and promotes angiogenesis. Furthermore, interleukin 1β (IL-1β) expression was downregulated by 1.61-fold, indicating an anti-inflammatory effect of SA-7CMC-7BG. We also observed an increase in epidermal thickness, the number of fibroblast cells, and collagen deposition, which represent complementary pathology results confirming the effectiveness of the SA-7CMC-7BG hydrogel in cutaneous wound healing.
Collapse
Affiliation(s)
- Ghazaleh Kohoolat
- Department of Materials Science & Engineering, Faculty of Engineering & Technology, Tarbiat Modares University, P. O. Box: 14115-143, Tehran, Iran
| | - Parvin Alizadeh
- Department of Materials Science & Engineering, Faculty of Engineering & Technology, Tarbiat Modares University, P. O. Box: 14115-143, Tehran, Iran.
| | - Fatemeh Motesadi Zarandi
- Department of Materials Science & Engineering, Faculty of Engineering & Technology, Tarbiat Modares University, P. O. Box: 14115-143, Tehran, Iran
| | - Yashar Rezaeipour
- Department of Materials Science & Engineering, Faculty of Engineering & Technology, Tarbiat Modares University, P. O. Box: 14115-143, Tehran, Iran
| |
Collapse
|
86
|
Park EH, Lee I, Park GC, Lee SJ, Kim KJ, Yun J, Kim DO. Anti-photoaging effects of canola meal extract on human dermal fibroblasts against UVB-induced oxidative stress. Food Sci Biotechnol 2024; 33:667-676. [PMID: 38274185 PMCID: PMC10805684 DOI: 10.1007/s10068-023-01379-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/06/2023] [Accepted: 06/25/2023] [Indexed: 01/27/2024] Open
Abstract
Canola meal, a by-product of canola oil processing, is a source of bioactive compounds that show antioxidant and skin anti-aging effects through upcycling (i.e., creative reuse). Here we describe the antioxidant and skin anti-aging effects of canola meal extract (CME) obtained by upcycling canola meal. The antioxidant capacity of CME is due in part to its antioxidative phenolics. Seven phenolics, including sinapine and sinapic acid, in CME were identified using ultra-high-performance liquid chromatography-Orbitrap mass spectrometry. Addition of CME (1000 μg/mL) to human dermal fibroblast neonatal cells significantly (p < 0.05) reduced matrix metalloproteinase-12 production and increased pro-collagen Ι alpha 1 content in response to ultraviolet B-induced oxidative stress compared with cells without CME. These results suggest that CME can serve as a functional food ingredient with antioxidant capacity and anti-aging effects on the skin.
Collapse
Affiliation(s)
- Eun-Ha Park
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104 Republic of Korea
| | - Inil Lee
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104 Republic of Korea
- Re&C Bio, Cheongju, 28106 Republic of Korea
| | - Gi-Cheol Park
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104 Republic of Korea
| | - Seung-Ju Lee
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104 Republic of Korea
| | - Kwan Joong Kim
- Bioinformatics and Molecular Design Research Center, Incheon, 21983 Republic of Korea
| | - Jisuk Yun
- Re&C Bio, Cheongju, 28106 Republic of Korea
| | - Dae-Ok Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104 Republic of Korea
| |
Collapse
|
87
|
Ge Y, Wang Z, Chen X, Wang W, Liu Z, Sun H, Zhang L. Comparative Toxicological Effects of Perfluorooctane Sulfonate and Its Alternative 6:2 Chlorinated Polyfluorinated Ether Sulfonate on Earthworms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:170-181. [PMID: 37861387 DOI: 10.1002/etc.5774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/14/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023]
Abstract
High levels of 6:2 chlorinated polyfluorinated ether sulfonate (F-53B), which is a substitute for perfluorooctane sulfonate (PFOS), are detected in various environmental matrices, wildlife, and humans. Chlorinated polyfluorinated ether sulfonate has received increased attention due to its potential risk to ecosystems. However, its toxicity in the soil organisms remains unclear. In the present study, a comparative investigation was conducted on the toxicities of 6:2 Chlorinated polyfluorinated ether sulfonate (F-53B) and PFOS to the earthworm Eisenia. fetida. F-53B was significantly more acutely toxic to earthworms than PFOS, with median lethal concentrations of 1.43 and 1.83 mmol/kg dry soil (~816 and 984 mg/kg dry soil), respectively. Although both F-53B and PFOS, at 0.4 mmol/kg dry soil (=228 and 215 mg/kg dry soil) caused oxidative stress in earthworms, as evidenced by increased superoxide dismutase, peroxidase, and catalase activities as well as malondialdehyde level, the stress caused by F-53B was higher than that caused by PFOS. In transcriptomic and metabolomic studies, negative effects of PFOS and F-53B were observed on several metabolic processes in earthworms, including protein digestion and amino acid absorption, lipid metabolism, and the immune response. Compared with PFOS, F-53B exhibited a weaker disruption of lipid metabolism, comparable potency for toxicity to the immune response, and a stronger potency in extracellular matrix destruction along with apoptosis and ferroptosis induction. Hence, our data suggest that F-53B is more toxic than PFOS to earthworms. The findings provide some new insights into the potential toxicity of F-53B to soil organisms. Environ Toxicol Chem 2024;43:170-181. © 2023 SETAC.
Collapse
Affiliation(s)
- Yanhui Ge
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
| | - Zhan Wang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
| | - Xuelu Chen
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
| | - Wen Wang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
| | - Zhenying Liu
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Lianying Zhang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| |
Collapse
|
88
|
Salvatore L, Russo F, Natali ML, Rajabimashhadi Z, Bagheri S, Mele C, Lionetto F, Sannino A, Gallo N. On the effect of pepsin incubation on type I collagen from horse tendon: Fine tuning of its physico-chemical and rheological properties. Int J Biol Macromol 2024; 256:128489. [PMID: 38043667 DOI: 10.1016/j.ijbiomac.2023.128489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Type I collagen is commonly recognized as the gold standard biomaterial for the manufacturing of medical devices for health-care related applications. In recent years, with the final aim of developing scaffolds with optimal bioactivity, even more studies focused on the influence of processing parameters on collagen properties, since processing can strongly affect the architecture of collagen at various length scales and, consequently, scaffolds macroscopic performances. The ability to finely tune scaffold properties in order to closely mimic the tissues' hierarchical features, preserving collagen's natural conformation, is actually of great interest. In this work, the effect of the pepsin-based extraction step on the material final properties was investigated. Thus, the physico-chemical properties of fibrillar type I collagens upon being extracted under various conditions were analyzed in depth. Correlations of collagen structure at the supramolecular scale with its microstructural properties were done, confirming the possibility of tuning rheological, viscoelastic and degradation properties of fibrillar type I collagen.
Collapse
Affiliation(s)
- Luca Salvatore
- Typeone Biomaterials Srl, Via Europa 167, Calimera, 73021 Lecce, Italy.
| | - Francesca Russo
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | | | - Zahra Rajabimashhadi
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Sonia Bagheri
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Claudio Mele
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Francesca Lionetto
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Nunzia Gallo
- Typeone Biomaterials Srl, Via Europa 167, Calimera, 73021 Lecce, Italy; Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
89
|
Sasidharan A. Fish Structural Proteins. FISH STRUCTURAL PROTEINS AND ITS DERIVATIVES: FUNCTIONALITY AND APPLICATIONS 2024:19-34. [DOI: 10.1007/978-981-97-2562-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
90
|
Wang J, Qin W, Zhong Y, Hu H, Yang J, Huang H, Huang N, Liu S, Li J, Zheng L, Qin A, Lu Z. Injectable collagen hydrogel combines human umbilical cord mesenchymal stem cells to promote endometrial regeneration in rats with thin endometrium. Int J Biol Macromol 2024; 254:127591. [PMID: 37884246 DOI: 10.1016/j.ijbiomac.2023.127591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/10/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
The regeneration of thin endometrium still remains as a great challenge in the field of reproductive medicine. Stem cells-based therapy has been considered as a promising strategy for the restoration of thin endometrium. However, the low transplantation and retention rate of stem cells and loss of stemness due to in vitro expansion limits the therapeutic efficacy. In our study, we combined collagen hydrogel and human umbilical cord mesenchymal stem cells (uMSCs) for improving the regeneration of thin endometrium, by using the potent pluripotency and low immunogenicity of uMSCs and collagen hydrogel that promotes the anchorage and proliferation of stem cells. Results showed that collagen hydrogel has favorable biocompatibility and the capacity to enhance the cell viability and expression of stemness-associated genes (including organic cation/carnitine transporter4 (Oct-4), Nanog homeobox (Nanog) and SRY-box transcription factor 2 (SOX2)) of uMSCs. The combination of collagen hydrogel and uMSCs prolonged the retention time of the constructs in the uterine cavity and improved endometrial thickness compared with uMSCs alone, leading to increase the fertility of the rats with thin endometrium. These highlighted therapeutic prospects of collagen hydrogel combined with uMSCs for the minimally invasive therapy of thin endometrium in the clinic.
Collapse
Affiliation(s)
- Jiawei Wang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Weili Qin
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yanping Zhong
- Institute of Life Science, Guangxi Medical University, Nanning 530021, China
| | - Hao Hu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Regenerative Medicine, The First Afliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Junxu Yang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Regenerative Medicine, The First Afliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Hanji Huang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Institute of Life Science, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Regenerative Medicine, The First Afliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Nanchang Huang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Regenerative Medicine, The First Afliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Shuhan Liu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Regenerative Medicine, The First Afliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jiaxu Li
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Institute of Life Science, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Regenerative Medicine, The First Afliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Aiping Qin
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Zhenhui Lu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Institute of Life Science, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Regenerative Medicine, The First Afliated Hospital of Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
91
|
Hossain KR, Akter S, Nanjeba M, Mahmud MA. Properties and Performance of Biopolymers in Textile Applications. BIOPOLYMERS IN THE TEXTILE INDUSTRY 2024:41-86. [DOI: 10.1007/978-981-97-0684-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
92
|
Laasri I, Bakkali M, Mejias L, Laglaoui A. Marine collagen: Unveiling the blue resource-extraction techniques and multifaceted applications. Int J Biol Macromol 2023; 253:127253. [PMID: 37806417 DOI: 10.1016/j.ijbiomac.2023.127253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Marine organisms such as fish and shellfish are composed of compounds with properties and characteristics that have been proven useful in a variety of sectors such as cosmetics, healthcare (wound healing), food industries, and tissue engineering. Collagen extraction from fish waste as a "blue resource" has attracted research attention over the past decade. Around 75 % of fish waste contains a high concentration of collagen. This has driven research in the conversion of these low-cost by-products into valuable products. Collagen extracted by acidic or/and enzymatic methods is gaining a lot of attention today due to its low cost and high yield. Fermentation and enzymatic hydrolysis stand out as one of the most environmentally sustainable and ecologically friendly methods for collagen extraction. Because of its great biocompatibility, excellent bioactivity, and low antigenicity, marine collagen is receiving more attention. Furthermore, collagen-derived peptides may exhibit interesting antioxidant activity, potent antihypertensive activity, and antimicrobial activity against different strains of bacteria. This review focuses on the advancements in extraction and detection methods of marine collagen, both from a technological and legislative standpoint, in addition to exploring its diverse range of application domains.
Collapse
Affiliation(s)
- Ikhlas Laasri
- Abdelmalek Essaadi university, Faculty of Sciences and Technology, Tangier, Morocco; BETA Technological Centre, University of Vic-UCC, Vic, Barcelona 08500, Spain.
| | - Mohammed Bakkali
- Abdelmalek Essaadi university, Faculty of Sciences and Technology, Tangier, Morocco
| | - Laura Mejias
- BETA Technological Centre, University of Vic-UCC, Vic, Barcelona 08500, Spain
| | - Amin Laglaoui
- Abdelmalek Essaadi university, Faculty of Sciences and Technology, Tangier, Morocco
| |
Collapse
|
93
|
Taher Mohamed SA, Emin N. Effects of using collagen and aloe vera grafted fibroin scaffolds on osteogenic differentiation of rat bone marrow mesenchymal stem cells in SBF-enriched cell culture medium. Biomed Mater 2023; 19:015011. [PMID: 38055984 DOI: 10.1088/1748-605x/ad12e2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
In the study, collagen and aloe vera were grafted onto silk fibroin with two different methods, and 3D-microporous scaffolds (1F5C4A1 and 2F5C4A1) were formed by lyophilization. Three osteogenic cultures were started by seeding rat bone marrow mesenchymal stem cells (MSCs) and pre-induced MSC (osteoblast (OB)) on biopolymeric scaffolds. The osteogenic medium was enriched with 10% (v/v) simulated body fluid (SBF) to promote mineralization and osteogenic differentiation in one of the MSC cultures and the OB culture. X-ray diffraction (XRD), scanning electron microscopy (SEM), scanning electron microscopy- energy dispersive spectrum (SEM-EDS) analyses on cellular samples and histochemical (alizarin red, safranin-O, alcian blue) and immunohistochemical (anti-collagen-1, anti-osteocalcin, anti-osteopontin) staining showed that bone-like mineralization was occurred by both chemically and cellular activity. In addition, pre-osteogenic induction of MSCs in 2D-cultured was found to promote osteogenesis more rapidly when started 3D-cultured. These results indicated that enrichment of the cell culture medium with SBF is sufficient forin vitromineralization rather than using high concentrations of SBF. The findings showed that OB cells on the 2F5C4A1 scaffold obtained the best osteogenic activity. Still, other culture media with 10% SBF content could be used for bone tissue engineering under osteogenic induction.
Collapse
Affiliation(s)
- Salma A Taher Mohamed
- Material Science and Engineering Department, Institute of Science and Technology, Kastamonu University, Kastamonu, Turkey
| | - Nuray Emin
- Material Science and Engineering Department, Institute of Science and Technology, Kastamonu University, Kastamonu, Turkey
- Biomedical Engineering Department, Engineering and Architecture Faculty, Kastamonu University, Kastamonu, Turkey
| |
Collapse
|
94
|
Quaratesi I, Micu MC, Rebba E, Carsote C, Proietti N, Di Tullio V, Porcaro R, Badea E. Cleaner Leather Tanning and Post-Tanning Processes Using Oxidized Alginate as Biodegradable Tanning Agent and Nano-Hydroxyapatite as Potential Flame Retardant. Polymers (Basel) 2023; 15:4676. [PMID: 38139929 PMCID: PMC10747597 DOI: 10.3390/polym15244676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
In this study, sodium alginate (SA) was oxidized with potassium periodate to produce an alginate-based tanning agent. Using OSA as a biodegradable tanning agent and a nano-hydroxyapatite (nano-HAp) low concentration suspension to give flame retardancy to leather, eco-design concepts were applied to establish a chrome-, aldehyde-, and phenol-free tanning process. Micro-DSC, 1H unilateral nuclear magnetic resonance (NMR), attenuated total reflection mode Fourier transform infrared spectroscopy (FTIR-ATR), and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS) were used to investigate the complex matrix collagen-OSA-nano-HAp. Micro-differential scanning calorimetry (micro-DSC) was used to assess OSA's ability to interact with collagen and stabilize the collagen-OSA matrix, while 1H unilateral (NMR) was used to investigate the aqueous environment and its limitations around collagen molecules caused by their association with OSA and nano-HAp. Industrial standard tests were used to assess the mechanical properties and fire resistance of the new leather prototype. The findings reported here indicate that both OSA and nano-HAp are suitable alternatives for cleaner tanning technologies and more sustainable leather.
Collapse
Affiliation(s)
- Ilaria Quaratesi
- National Research and Development Institute for Textile and Leather (INCDTP), Research Institute for Leather and Footwear Branch (ICPI), Ion Minulescu Str. 93, 031215 Bucharest, Romania; (I.Q.); (M.C.M.)
| | - Maria Cristina Micu
- National Research and Development Institute for Textile and Leather (INCDTP), Research Institute for Leather and Footwear Branch (ICPI), Ion Minulescu Str. 93, 031215 Bucharest, Romania; (I.Q.); (M.C.M.)
| | - Erica Rebba
- Department of Chemistry, NIS Interdepartmental and INSTM Reference Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy;
| | - Cristina Carsote
- National Museum of Romanian History, Calea Victoriei Str. 12, 030026 Bucharest, Romania;
| | - Noemi Proietti
- Istituto di Scienze del Patrimonio Culturale (ISPC), Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca di Roma 1, 00015 Monterotondo, RM, Italy; (N.P.); (V.D.T.)
| | - Valeria Di Tullio
- Istituto di Scienze del Patrimonio Culturale (ISPC), Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca di Roma 1, 00015 Monterotondo, RM, Italy; (N.P.); (V.D.T.)
| | - Rita Porcaro
- KEMIA TAU SRL, Via Torino 56/64, 10040 La Cassa, TO, Italy;
| | - Elena Badea
- National Research and Development Institute for Textile and Leather (INCDTP), Research Institute for Leather and Footwear Branch (ICPI), Ion Minulescu Str. 93, 031215 Bucharest, Romania; (I.Q.); (M.C.M.)
- Department of Chemistry, Faculty of Sciences, University of Craiova, Calea Bucuresti Str. 107 I, 200512 Craiova, Romania
| |
Collapse
|
95
|
Munir S, Yue W, Li J, Yu X, Ying T, Liu R, You J, Xiong S, Hu Y. Effects of Phenolics on the Physicochemical and Structural Properties of Collagen Hydrogel. Polymers (Basel) 2023; 15:4647. [PMID: 38139899 PMCID: PMC10747534 DOI: 10.3390/polym15244647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
In the current era, the treatment of collagen hydrogels with natural phenolics for the improvement in physicochemical properties has been the subject of considerable attention. The present research aimed to fabricate collagen hydrogels cross-linked with gallic acid (GA) and ellagic acid (EA) at different concentrations depending on the collagen dry weight. The structural, enzymatic, thermal, morphological, and physical properties of the native collagen hydrogels were compared with those of the GA/EA cross-linked hydrogels. XRD and FTIR spectroscopic analyses confirmed the structural stability and reliability of the collagen after treatment with either GA or EA. The cross-linking also significantly contributed to the improvement in the storage modulus, of 435 Pa for 100% GA cross-linked hydrogels. The thermal stability was improved, as the highest residual weight of 43.8% was obtained for the hydrogels cross-linked with 50% GA in comparison with all the other hydrogels. The hydrogels immersed in 30%, 50%, and 100% concentrations of GA also showed improved swelling behavior and porosity, and the highest resistance to type 1 collagenase (76.56%), was obtained for 50% GA cross-linked collagen hydrogels. Moreover, GA 100% and EA 100% obtained the highest denaturation temperatures (Td) of 74.96 °C and 75.78 °C, respectively. In addition, SEM analysis was also carried out to check the surface morphology of the pristine collagen hydrogels and the cross-linked collagen hydrogels. The result showed that the hydrogels cross-linked with GA/EA were denser and more compact. However, the improved physicochemical properties were probably due to the formation of hydrogen bonds between the phenolic hydroxyl groups of GA and EA and the nitrogen atoms of the collagen backbone. The presence of inter- and intramolecular cross-links between collagen and GA or EA components and an increased density of intermolecular bonds suggest potential hydrogen bonding or hydrophobic interactions. Overall, the present study paves the way for further investigations in the field by providing valuable insights into the GA/EA interaction with collagen molecules.
Collapse
Affiliation(s)
- Sadia Munir
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.M.); (X.Y.); (T.Y.); (R.L.); (J.Y.); (S.X.)
| | - Wei Yue
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.M.); (X.Y.); (T.Y.); (R.L.); (J.Y.); (S.X.)
| | - Jinling Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.M.); (X.Y.); (T.Y.); (R.L.); (J.Y.); (S.X.)
| | - Xiaoyue Yu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.M.); (X.Y.); (T.Y.); (R.L.); (J.Y.); (S.X.)
| | - Tianhao Ying
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.M.); (X.Y.); (T.Y.); (R.L.); (J.Y.); (S.X.)
| | - Ru Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.M.); (X.Y.); (T.Y.); (R.L.); (J.Y.); (S.X.)
| | - Juan You
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.M.); (X.Y.); (T.Y.); (R.L.); (J.Y.); (S.X.)
| | - Shanbai Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.M.); (X.Y.); (T.Y.); (R.L.); (J.Y.); (S.X.)
| | - Yang Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.M.); (X.Y.); (T.Y.); (R.L.); (J.Y.); (S.X.)
- Bioactive Peptide Technology Hubei Engineering Research Center, Jingzhou 434000, China
| |
Collapse
|
96
|
Cho AY, Lee HJ. Investigating the Impact of Mechanical Properties and Cell-Collagen Interaction on NIH3T3 Function: A Comparative Study on Different Substrates and Culture Environments. Gels 2023; 9:922. [PMID: 38131908 PMCID: PMC10742811 DOI: 10.3390/gels9120922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
This study investigates the intricate dynamics of matrix stiffness, substrate composition, and cell-cell interactions and elucidates their cumulative effects on fibroblast behavior in different culture contexts. Three primary substrate types were examined: non-coated, collagen-coated, and collagen hydrogel, within both two-dimensional (2D) monolayer and three-dimensional (3D) spheroid cultures. The research provides several key insights. First, 3D spheroid culture, which promotes robust cell-cell interactions, emerges as a critical factor in maintaining fibroblast functionality. Second, substrate stiffness significantly influences results, with the soft collagen hydrogel showing superior support for fibroblast function. Notably, fibroblasts cultured on collagen hydrogel in 2D exhibit comparable functionality to those in 3D, highlighting the importance of substrate mechanical properties. Third, surface composition, as exemplified by collagen coating, showed a limited effect compared to the other factors studied. These findings provide a basis for innovative applications in regenerative medicine, tissue engineering, and drug testing models, and offer valuable insights into harnessing the potential of fibroblasts and advancing biomedical sciences.
Collapse
Affiliation(s)
| | - Hyun Jong Lee
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Republic of Korea;
| |
Collapse
|
97
|
Patricelli C, Lehmann P, Oxford JT, Pu X. Doxorubicin-induced modulation of TGF-β signaling cascade in mouse fibroblasts: insights into cardiotoxicity mechanisms. Sci Rep 2023; 13:18944. [PMID: 37919370 PMCID: PMC10622533 DOI: 10.1038/s41598-023-46216-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023] Open
Abstract
Doxorubicin (DOX)-induced cardiotoxicity has been widely observed, yet the specific impact on cardiac fibroblasts is not fully understood. Additionally, the modulation of the transforming growth factor beta (TGF-β) signaling pathway by DOX remains to be fully elucidated. This study investigated DOX's ability to modulate the expression of genes and proteins involved in the TGF-β signaling cascade in mouse fibroblasts from two sources by assessing the impact of DOX treatment on TGF-β inducible expression of pivotal genes and proteins within fibroblasts. Mouse embryonic fibroblasts (NIH3T3) and mouse primary cardiac fibroblasts (CFs) were treated with DOX in the presence of TGF-β1 to assess changes in protein levels by western blot and changes in mRNA levels by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Our results revealed a dose-dependent reduction in cellular communication network factor 2 (CCN2) protein levels upon DOX treatment in both NIH3T3 and CFs, suggesting an antifibrotic activity by DOX in these fibroblasts. However, DOX only inhibited the TGF-β1 induced expression of COL1 in NIH3T3 cells but not in CFs. In addition, we observed that DOX treatment reduced the expression of BMP1 in NIH3T3 but not primary cardiac fibroblasts. No significant changes in SMAD2 protein expression and phosphorylation in either cells were observed after DOX treatment. Finally, DOX inhibited the expression of Atf4 gene and increased the expression of Cdkn1a, Id1, Id2, Runx1, Tgfb1, Inhba, Thbs1, Bmp1, and Stat1 genes in NIH3T3 cells but not CFs, indicating the potential for cell-specific responses to DOX and its modulation of the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Conner Patricelli
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID, 83725-1512, USA
| | - Parker Lehmann
- Idaho College of Osteopathic Medicine, Meridian, ID, 83642-8046, USA
| | - Julia Thom Oxford
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID, 83725-1512, USA
- Biomolecular Research Center, Boise State University, Boise, ID, 83725-1511, USA
- Department of Biological Sciences, Boise State University, Boise, ID, 83725-1515, USA
| | - Xinzhu Pu
- Biomolecular Research Center, Boise State University, Boise, ID, 83725-1511, USA.
- Department of Biological Sciences, Boise State University, Boise, ID, 83725-1515, USA.
| |
Collapse
|
98
|
Gresita A, Raja I, Petcu E, Hadjiargyrou M. Collagen-Coated Hyperelastic Bone Promotes Osteoblast Adhesion and Proliferation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6996. [PMID: 37959593 PMCID: PMC10649997 DOI: 10.3390/ma16216996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023]
Abstract
Successfully reconstructing bone and restoring its dynamic function represents a significant challenge for medicine. Critical size defects (CSDs), resulting from trauma, tumor removal, or degenerative conditions, do not naturally heal and often require complex bone grafting. However, these grafts carry risks, such as tissue rejection, infections, and surgical site damage, necessitating the development of alternative treatments. Three-dimensional and four-dimensional printed synthetic biomaterials represent a viable alternative, as they carry low production costs and are highly reproducible. Hyperelastic bone (HB), a biocompatible synthetic polymer consisting of 90% hydroxyapatite and 10% poly(lactic-co-glycolic acid, PLGA), was examined for its potential to support cell adhesion, migration, and proliferation. Specifically, we seeded collagen-coated HB with MG-63 human osteosarcoma cells. Our analysis revealed robust cell adhesion and proliferation over 7 days in vitro, with cells forming uniform monolayers on the external surface of the scaffold. However, no cells were present on the core of the fibers. The cells expressed bone differentiation markers on days 3 and 5. By day 7, the scaffold began to degrade, developing microscopic fissures and fragmentation. In summary, collagen-coated HB scaffolds support cell adhesion and proliferation but exhibit reduced structural support after 7 days in culture. Nevertheless, the intricate 3D architecture holds promise for cellular migration, vascularization, and early osteogenesis.
Collapse
Affiliation(s)
- Andrei Gresita
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (A.G.); (I.R.); (E.P.)
| | - Iman Raja
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (A.G.); (I.R.); (E.P.)
| | - Eugen Petcu
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (A.G.); (I.R.); (E.P.)
| | - Michael Hadjiargyrou
- Department of Biological & Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
| |
Collapse
|
99
|
Palladino S, Schwab A, Copes F, D'Este M, Candiani G, Mantovani D. Development of a hyaluronic acid-collagen bioink for shear-induced fibers and cells alignment. Biomed Mater 2023; 18:065017. [PMID: 37751763 DOI: 10.1088/1748-605x/acfd77] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/26/2023] [Indexed: 09/28/2023]
Abstract
Human tissues are characterized by complex composition and cellular and extracellular matrix (ECM) organization at microscopic level. In most of human tissues, cells and ECM show an anisotropic arrangement, which confers them specific properties.In vitro, the ability to closely mimic this complexity is limited. However, in the last years, extrusion bioprinting showed a certain potential for aligning cells and biomolecules, due to the application of shear stress during the bio-fabrication process. In this work, we propose a strategy to combine collagen (col) with tyramine-modified hyaluronic acid (THA) to obtain a printable col-THA bioink for extrusion bioprinting, solely-based on natural-derived components. Collagen fibers formation within the hybrid hydrogel, as well as collagen distribution and spatial organization before and after printing, were studied. For the validation of the biological outcome, fibroblasts were selected as cellular model and embedded in the col-THA matrix. Cell metabolic activity and cell viability, as well as cell distribution and alignment, were studied in the bioink before and after bioprinting. Results demonstrated successful collagen fibers formation within the bioink, as well as collagen anisotropic alignment along the printing direction. Furthermore, results revealed suitable biological properties, with a slightly reduced metabolic activity at day 1, fully recovered within the first 3 d post-cell embedding. Finally, results showed fibroblasts elongation and alignment along the bioprinting direction. Altogether, results validated the potential to obtain collagen-based bioprinted constructs, with both cellular and ECM anisotropy, without detrimental effects of the fabrication process on the biological outcome. This bioink can be potentially used for a wide range of applications in tissue engineering and regenerative medicine in which anisotropy is required.
Collapse
Affiliation(s)
- Sara Palladino
- Laboratory for Biomaterials and Bioengineering, CRC-Tier I, Dept Min-Met-Materials Eng and Regenerative Medicine, CHU de Québec, Laval University, Quebec City, Canada
- genT_LΛB, Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy
| | | | - Francesco Copes
- Laboratory for Biomaterials and Bioengineering, CRC-Tier I, Dept Min-Met-Materials Eng and Regenerative Medicine, CHU de Québec, Laval University, Quebec City, Canada
| | | | - Gabriele Candiani
- genT_LΛB, Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, CRC-Tier I, Dept Min-Met-Materials Eng and Regenerative Medicine, CHU de Québec, Laval University, Quebec City, Canada
| |
Collapse
|
100
|
Evans D, Barcons AM, Basit RH, Adams C, Chari DM. Evaluating the Feasibility of Hydrogel-Based Neural Cell Sprays. J Funct Biomater 2023; 14:527. [PMID: 37888192 PMCID: PMC10607175 DOI: 10.3390/jfb14100527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Neurological injuries have poor prognoses with serious clinical sequelae. Stem cell transplantation enhances neural repair but is hampered by low graft survival (ca. 80%) and marker expression/proliferative potential of hydrogel-sprayed astrocytes was retained. Combining a cell spray format with polymer encapsulation technologies could form the basis of a non-invasive graft delivery method, offering potential advantages over current cell delivery approaches.
Collapse
Affiliation(s)
- Daisy Evans
- Keele University School of Medicine, Keele University, Staffordshire ST5 5BG, UK;
| | - Aina Mogas Barcons
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson’s Disease Centre, University of Oxford, Oxford OX1 3AZ, UK;
| | - Raja Haseeb Basit
- Department of General Surgery, Queen Elizabeth Hospital, Birmingham B15 2GW, UK;
| | - Christopher Adams
- Neural Tissue Engineering, School of Life Sciences, Keele University, Staffordshire ST5 5BG, UK;
| | - Divya Maitreyi Chari
- Neural Tissue Engineering, School of Life Sciences, Keele University, Staffordshire ST5 5BG, UK;
| |
Collapse
|