51
|
Sridharan B, Lim HG. Exosomes and ultrasound: The future of theranostic applications. Mater Today Bio 2023; 19:100556. [PMID: 36756211 PMCID: PMC9900624 DOI: 10.1016/j.mtbio.2023.100556] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Biomaterials and pertaining formulations have been very successful in various diagnostic and therapeutic applications because of its ability to overcome pharmacological limitations. Some of them have gained significant focus in the recent decade for their theranostic properties. Exosomes can be grouped as biomaterials, since they consist of various biological micro/macromolecules and possess all the properties of a stable biomaterial with size in nano range. Significant research has gone into isolation and exploitation of exosomes as potential theranostic agent. However, the limitations in terms of yield, efficacy, and target specificity are continuously being addressed. On the other hand, several nano/microformulations are responsive to physical or chemical alterations and were successfully stimulated by tweaking the physical characteristics of the surrounding environment they are in. Some of them are termed as photodynamic, sonodynamic or thermodynamic therapeutic systems. In this regard, ultrasound and acoustic systems were extensively studied for its ability towards altering the properties of the systems to which they were applied on. In this review, we have detailed about the diagnostic and therapeutic applications of exosomes and ultrasound separately, consisting of their conventional applications, drawbacks, and developments for addressing the challenges. The information were categorized into various sections that provide complete overview of the isolation strategies and theranostic applications of exosomes in various diseases. Then the ultrasound-based disease diagnosis and therapy were elaborated, with special interest towards the use of ultrasound in enhancing the efficacy of nanomedicines and nanodrug delivery systems, Finally, we discussed about the ability of ultrasound in enhancing the diagnostic and therapeutic properties of exosomes, which could be the future of theranostics.
Collapse
Affiliation(s)
| | - Hae Gyun Lim
- Corresponding author. Biomedical Ultrasound Lab, Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
52
|
Mirza S, Bhadresha K, Mughal MJ, McCabe M, Shahbazi R, Ruff P, Penny C. Liquid biopsy approaches and immunotherapy in colorectal cancer for precision medicine: Are we there yet? Front Oncol 2023; 12:1023565. [PMID: 36686736 PMCID: PMC9853908 DOI: 10.3389/fonc.2022.1023565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related deaths globally, with nearly half of patients detected in the advanced stages. This is due to the fact that symptoms associated with CRC often do not appear until the cancer has reached an advanced stage. This suggests that CRC is a cancer with a slow progression, making it curable and preventive if detected in its early stage. Therefore, there is an urgent clinical need to improve CRC early detection and personalize therapy for patients with this cancer. Recently, liquid biopsy as a non-invasive or nominally invasive approach has attracted considerable interest for its real-time disease monitoring capability through repeated sample analysis. Several studies in CRC have revealed the potential for liquid biopsy application in a real clinical setting using circulating RNA/miRNA, circulating tumor cells (CTCs), exosomes, etc. However, Liquid biopsy still remains a challenge since there are currently no promising results with high specificity and specificity that might be employed as optimal circulatory biomarkers. Therefore, in this review, we conferred the plausible role of less explored liquid biopsy components like mitochondrial DNA (mtDNA), organoid model of CTCs, and circulating cancer-associated fibroblasts (cCAFs); which may allow researchers to develop improved strategies to unravel unfulfilled clinical requirements in CRC patients. Moreover, we have also discussed immunotherapy approaches to improve the prognosis of MSI (Microsatellite Instability) CRC patients using neoantigens and immune cells in the tumor microenvironment (TME) as a liquid biopsy approach in detail.
Collapse
Affiliation(s)
- Sheefa Mirza
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Department of Internal Medicine, Common Epithelial Cancer Research Centre, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kinjal Bhadresha
- Hematology/Oncology Division, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Muhammed Jameel Mughal
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Science, The George Washington University, Washington, DC, United States
| | - Michelle McCabe
- Department of Anatomical Pathology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa
| | - Reza Shahbazi
- Hematology/Oncology Division, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Paul Ruff
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Department of Internal Medicine, Common Epithelial Cancer Research Centre, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Clement Penny
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Department of Internal Medicine, Common Epithelial Cancer Research Centre, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,*Correspondence: Clement Penny,
| |
Collapse
|
53
|
Mondal J, Pillarisetti S, Junnuthula V, Saha M, Hwang SR, Park IK, Lee YK. Hybrid exosomes, exosome-like nanovesicles and engineered exosomes for therapeutic applications. J Control Release 2023; 353:1127-1149. [PMID: 36528193 DOI: 10.1016/j.jconrel.2022.12.027] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/28/2022]
Abstract
Exosomes are endosome-derived nanovesicles involved in cellular communication. They are natural nanocarriers secreted by various cells, making them suitable candidates for diverse drug delivery and therapeutic applications from a material standpoint. They have a phospholipid bilayer decorated with functional molecules and an enclosed parental matrix, which has attracted interest in developing designer/hybrid engineered exosome nanocarriers. The structural versatility of exosomes allows the modification of their original configuration using various methods, including genetic engineering, chemical procedures, physical techniques, and microfluidic technology, to load exosomes with additional cargo for expanded biomedical applications. Exosomes show enormous potential for overcoming the limitations of conventional nanoparticle-based techniques in targeted therapy. This review highlights the exosome sources, characteristics, state of the art in the field of hybrid exosomes, exosome-like nanovesicles and engineered exosomes as potential cargo delivery vehicles for therapeutic applications.
Collapse
Affiliation(s)
- Jagannath Mondal
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea
| | - Shameer Pillarisetti
- Department of Biomedical Sciences and Biomedical Science Graduate Program (BMSGP), Chonnam National University Medical School, 160 Baekseo-ro, Gwangju 61469, Republic of Korea
| | | | - Monochura Saha
- Media lab, Massachusetts Institute of Technology (MIT), 75 Amherst Street, Cambridge 02139, USA
| | - Seung Rim Hwang
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and Biomedical Science Graduate Program (BMSGP), Chonnam National University Medical School, 160 Baekseo-ro, Gwangju 61469, Republic of Korea.
| | - Yong-Kyu Lee
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea; Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju 27470, Republic of Korea.
| |
Collapse
|
54
|
Amiri N, Mohammadi P, Allahgholi A, Salek F, Amini E. The potential of sertoli cells (SCs) derived exosomes and its therapeutic efficacy in male reproductive disorders. Life Sci 2022; 312:121251. [PMID: 36463941 DOI: 10.1016/j.lfs.2022.121251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
In the male reproductive system, seminiferous tubules in testis are lined by a complex stratified epithelium containing two distinct populations of cells, spermatogenic cells that develop into spermatozoa, and sertoli cells (SCs) that mainly support and nourish spermatogenic cell lineage as well as exerting powerful effect on men reproductive capacity. Different varieties of proteins, hormones, exosomes and growth factors are secreted by SCs. There are different kinds of junctions found between SCs called BTB. It was elucidated that complete absence of BTB or its dysfunction leads to infertility. To promote spermatogenesis, crosstalk of SCs with spermatogenic cells plays an important role. The ability of SCs to support germ cell productivity and development is related to its various products carrying out several functions. Exosomes (EXOs) are one of the main EVs with 30-100 nm size generating from endocytic pathway. They are produced in different parts of male reproductive system including epididymis, prostate and SCs. The most prominent characteristics of SC-based exosomes is considered mutual interaction of sertoli cells with spermatogonial stem cells and Leydig cells mainly through establishment of intercellular communication. Exosomes have gotten a lot of interest because of their role in pathobiological processes and as a cell free therapy which led to developing multiple exosome isolation methods based on different principles. Transmission of nucleic acids, proteins, and growth factors via SC-based exosomes and exosomal miRNAs are proved to have potential to be valuable biomarkers in male reproductive disease. Among testicular abnormalities, non-obstructive azoospermia and testicular cancer have been more contributed with SCs performance. The identification of key proteins and miRNAs involved in the signaling pathways related with spermatogenesis, can serve as diagnostic and regenerative targets in male infertility.
Collapse
Affiliation(s)
- Narjes Amiri
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran
| | - Paria Mohammadi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran
| | - Atefeh Allahgholi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran
| | - Farzaneh Salek
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Elaheh Amini
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| |
Collapse
|
55
|
Tenchov R, Sasso JM, Wang X, Liaw WS, Chen CA, Zhou QA. Exosomes─Nature's Lipid Nanoparticles, a Rising Star in Drug Delivery and Diagnostics. ACS NANO 2022; 16:17802-17846. [PMID: 36354238 PMCID: PMC9706680 DOI: 10.1021/acsnano.2c08774] [Citation(s) in RCA: 241] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/21/2022] [Indexed: 05/03/2023]
Abstract
Exosomes are a subgroup of nanosized extracellular vesicles enclosed by a lipid bilayer membrane and secreted by most eukaryotic cells. They represent a route of intercellular communication and participate in a wide variety of physiological and pathological processes. The biological roles of exosomes rely on their bioactive cargos, including proteins, nucleic acids, and lipids, which are delivered to target cells. Their distinctive properties─innate stability, low immunogenicity, biocompatibility, and good biomembrane penetration capacity─allow them to function as superior natural nanocarriers for efficient drug delivery. Another notably favorable clinical application of exosomes is in diagnostics. They hold various biomolecules from host cells, which are indicative of pathophysiological conditions; therefore, they are considered vital for biomarker discovery in clinical diagnostics. Here, we use data from the CAS Content Collection and provide a landscape overview of the current state and delineate trends in research advancement on exosome applications in therapeutics and diagnostics across time, geography, composition, cargo loading, and development pipelines. We discuss exosome composition and pathway, from their biogenesis and secretion from host cells to recipient cell uptake. We assess methods for exosome isolation and purification, their clinical applications in therapy and diagnostics, their development pipelines, the exploration goals of the companies, the assortment of diseases they aim to treat, development stages of their research, and publication trends. We hope this review will be useful for understanding the current knowledge in the field of medical applications of exosomes, in an effort to further solve the remaining challenges in fulfilling their potential.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Janet M. Sasso
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Xinmei Wang
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Wen-Shing Liaw
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Chun-An Chen
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Qiongqiong Angela Zhou
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| |
Collapse
|
56
|
Berlanga-Acosta J, Fernandez-Mayola M, Mendoza-Mari Y, Garcia-Ojalvo A, Martinez-Jimenez I, Rodriguez-Rodriguez N, Garcia del Barco Herrera D, Guillén-Nieto G. Cell-Free Filtrates (CFF) as Vectors of a Transmissible Pathologic Tissue Memory Code: A Hypothetical and Narrative Review. Int J Mol Sci 2022; 23:11575. [PMID: 36232877 PMCID: PMC9570059 DOI: 10.3390/ijms231911575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Cellular memory is a controversial concept representing the ability of cells to "write and memorize" stressful experiences via epigenetic operators. The progressive course of chronic, non-communicable diseases such as type 2 diabetes mellitus, cancer, and arteriosclerosis, is likely driven through an abnormal epigenetic reprogramming, fostering the hypothesis of a cellular pathologic memory. Accordingly, cultured diabetic and cancer patient-derived cells recall behavioral traits as when in the donor's organism irrespective to culture time and conditions. Here, we analyze the data of studies conducted by our group and led by a cascade of hypothesis, in which we aimed to validate the hypothetical existence and transmissibility of a cellular pathologic memory in diabetes, arteriosclerotic peripheral arterial disease, and cancer. These experiments were based on the administration to otherwise healthy animals of cell-free filtrates prepared from human pathologic tissue samples representative of each disease condition. The administration of each pathologic tissue homogenate consistently induced the faithful recapitulation of: (1) Diabetic archetypical changes in cutaneous arterioles and nerves. (2) Non-thrombotic arteriosclerotic thickening, collagenous arterial encroachment, aberrant angiogenesis, and vascular remodeling. (3) Pre-malignant and malignant epithelial and mesenchymal tumors in different organs; all evocative of the donor's tissue histopathology and with no barriers for interspecies transmission. We hypothesize that homogenates contain pathologic tissue memory codes represented in soluble drivers that "infiltrate" host's animal cells, and ultimately impose their phenotypic signatures. The identification and validation of the actors in behind may pave the way for future therapies.
Collapse
Affiliation(s)
- Jorge Berlanga-Acosta
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Ave. 31 S/N. e/ 158 and 190, Cubanacán, Playa, Havana 10600, Cuba
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Zhang J, Shi W, Qu D, Yu T, Qi C, Fu H. Extracellular vesicle therapy for traumatic central nervous system disorders. Stem Cell Res Ther 2022; 13:442. [PMID: 36056445 PMCID: PMC9438220 DOI: 10.1186/s13287-022-03106-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/31/2022] [Indexed: 11/10/2022] Open
Abstract
Traumatic central nervous system (CNS) disorders have catastrophic effects on patients, and, currently, there is no effective clinical treatment. Cell transplantation is a common treatment for traumatic CNS injury in animals. In recent years, an increasing number of studies have reported that the beneficial effect of transplanted cells for CNS repair is mediated primarily through the extracellular vesicles (EVs) secreted by the cells, in which microRNAs play a major role. Accordingly, numerous studies have evaluated the roles and applications of EVs secreted by different cell types in neurological diseases. Furthermore, due to their unique biological features, EVs are used as disease biomarkers and drug delivery systems for disease prevention and treatment. We discuss current knowledge related to EVs, focusing on the mechanism underlying their effects on traumatic CNS diseases, and summarize existing research on the potential clinical utility of EVs as disease biomarkers and drug delivery systems.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.,Medical Department of Qingdao University, Qingdao, China
| | - Weipeng Shi
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.,Medical Department of Qingdao University, Qingdao, China
| | - Di Qu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.,Medical Department of Qingdao University, Qingdao, China
| | - Tengbo Yu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Chao Qi
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| | - Haitao Fu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
58
|
Pérez-Macedonio CP, Flores-Alfaro E, Alarcón-Romero LDC, Vences-Velázquez A, Castro-Alarcón N, Martínez-Martínez E, Ramirez M. CD14 and CD26 from serum exosomes are associated with type 2 diabetes, exosomal Cystatin C and CD14 are associated with metabolic syndrome and atherogenic index of plasma. PeerJ 2022; 10:e13656. [PMID: 35846887 PMCID: PMC9285478 DOI: 10.7717/peerj.13656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 06/09/2022] [Indexed: 01/17/2023] Open
Abstract
Background Exosomes are microvesicles that actively participate in signaling mechanisms and depending on their content can contribute to the development of different pathologies, such as diabetes and cardiovascular disease. Objective The aim of this study was to evaluate the association of cystatin C, CD26, and CD14 proteins in serum exosomes from patients with Type 2 Diabetes (T2D), metabolic syndrome (MetS), and atherogenic index of plasma (AIP). Methods Serum exosomes were isolated by ultracentrifugation from 147 individuals with and without diabetes. Both anthropometric and metabolic parameters were registered from everyone. The levels of exosomal proteins cystatin C, CD26, and CD14 were quantified by ELISA. The association between protein levels and T2D or atherogenic risk factors was analyzed by linear regression and generalized regression models. Results We observed a significant correlation of increased glucose with elevated levels of Cystatin C, and an effect of T2D on the levels of CD26 (β = 45.8 pg/µg; p = 0.001) and CD14 (β = 168 pg/µg; p < 0.001) compared to subjects without T2D. CD14 was significantly related to T2D, metabolic syndrome, glucose, and the Atherogenic Index of Plasma (AIP). Additionally, we observed a significant effect of metabolic syndrome MetS on the increase of exosomal Cystatin C and CD14. Conclusions T2D may contribute to the increase of CD14 protein contained in exosomes, as well as to the predisposition of atherogenic events development due to its relationship with the increase in serum triglyceride concentrations and the AIP score. Finally, the increased levels of CD14 and Cystatin C in exosomes are related to MetS. The analysis of exosome contents of diabetic patients remains an incipient field, so extensive characterization is crucial for their use as biomarkers or to analyze their possible contribution to diabetic complications.
Collapse
Affiliation(s)
- Claudia Paola Pérez-Macedonio
- Laboratorio de Investigación en Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Eugenia Flores-Alfaro
- Laboratorio de Investigación en Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Luz del C. Alarcón-Romero
- Laboratorio de Investigación en Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Amalia Vences-Velázquez
- Laboratorio de Investigación en Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Natividad Castro-Alarcón
- Laboratorio de Investigación en Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Eduardo Martínez-Martínez
- Laboratorio del Metabolismo de RNA y Vesículas Extracelulares, Instituto Nacional de Medicina Genómica (INMEGEN), México, México
| | - Monica Ramirez
- CONACYT-Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| |
Collapse
|
59
|
Colorectal cancer-derived exosomes and modulation KRAS signaling. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 24:2074-2080. [PMID: 35789981 DOI: 10.1007/s12094-022-02877-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/13/2022] [Indexed: 10/17/2022]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide and one of the main causes of cancer-associated mortality. At the period of diagnosis, metastases to other tissues will be present in around 30% of CRC individuals. Individuals with CRC continue to have a poor prognosis despite advances in medication. There is a growing body of literature that CRC develops as a result of the aggregation of various mutations in tumor oncogenes or suppressor genes and that diagnosing cancer in its initial phases may assist in increasing the overall lifespan of individuals with the illness. On the other hand, tumor cells may discharge exosomes in response to oncogenic mutations. By Inhibiting signaling pathways, including the Kirsten rat sarcoma virus (KRAS) mechanism, which is important in a variety of cell activities, exosomes have been shown to cause colorectal cancer in animal studies. The purpose of this review was to summarize the latest discoveries on the modulation of KRAS signaling by exosomes extracted from colorectal cancer.
Collapse
|
60
|
Bharati S, Anjaly K, Thoidingjam S, Tiku AB. Oil Red O based method for exosome labelling and detection. Biochem Biophys Res Commun 2022; 611:179-182. [DOI: 10.1016/j.bbrc.2022.04.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 11/02/2022]
|
61
|
Gao H, Zhang L, Wang Z, Yan K, Zhao L, Xiao W. Research Progress on Transorgan Regulation of the Cardiovascular and Motor System through Cardiogenic Exosomes. Int J Mol Sci 2022; 23:ijms23105765. [PMID: 35628575 PMCID: PMC9146752 DOI: 10.3390/ijms23105765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
The heart is the core organ of the circulatory system. Through the blood circulation system, it has close contact with all tissues and cells in the body. An exosome is an extracellular vesicle enclosed by a phospholipid bilayer. A variety of heart tissue cells can secrete and release exosomes, which transfer RNAs, lipids, proteins, and other biomolecules to adjacent or remote cells, mediate intercellular communication, and regulate the physiological and pathological activities of target cells. Cardiogenic exosomes play an important role in regulating almost all pathological and physiological processes of the heart. In addition, they can also reach distant tissues and organs through the peripheral circulation, exerting profound influence on their functional status. In this paper, the composition and function of cardiogenic exosomes, the factors affecting cardiogenic exosomes and their roles in cardiovascular physiology and pathophysiology are discussed, and the close relationship between cardiovascular system and motor system is innovatively explored from the perspective of exosomes. This study provides a reference for the development and application of exosomes in regenerative medicine and sports health, and also provides a new idea for revealing the close relationship between the heart and other organ systems.
Collapse
|
62
|
Pivoting Novel Exosome-Based Technologies for the Detection of SARS-CoV-2. Viruses 2022; 14:v14051083. [PMID: 35632824 PMCID: PMC9148162 DOI: 10.3390/v14051083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
The National Institutes of Health (NIH) launched the Rapid Acceleration of Diagnostics (RADx) initiative to meet the needs for COVID-19 diagnostic and surveillance testing, and to speed its innovation in the development, commercialization, and implementation of new technologies and approaches. The RADx Radical (RADx-Rad) initiative is one component of the NIH RADx program which focuses on the development of new or non-traditional applications of existing approaches, to enhance their usability, accessibility, and/or accuracy for the detection of SARS-CoV-2. Exosomes are a subpopulation of extracellular vesicles (EVs) 30–140 nm in size, that are critical in cell-to-cell communication. The SARS-CoV-2 virus has similar physical and molecular properties as exosomes. Therefore, the novel tools and technologies that are currently in development for the isolation and detection of exosomes, may prove to be invaluable in screening for SARS-CoV-2 viral infection. Here, we describe how novel exosome-based technologies are being pivoted for the detection of SARS-CoV-2 and/or the diagnosis of COVID-19. Considerations for these technologies as they move toward clinical validation and commercially viable diagnostics is discussed along with their future potential. Ultimately, the technologies in development under the NIH RADx-Rad exosome-based non-traditional technologies toward multi-parametric and integrated approaches for SARS-CoV-2 program represent a significant advancement in diagnostic technology, and, due to a broad focus on the biophysical and biochemical properties of nanoparticles, the technologies have the potential to be further pivoted as tools for future infectious agents.
Collapse
|
63
|
Liang Y, Xu Y, Tong Y, Chen Y, Chen X, Wu S. Graphene-Based Electrochemical Sensor for Detection of Hepatocellular Carcinoma Markers. Front Chem 2022; 10:883627. [PMID: 35464224 PMCID: PMC9024117 DOI: 10.3389/fchem.2022.883627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/09/2022] [Indexed: 11/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a group of highly lethal malignant tumors that seriously threaten human health. The main way to improve the survival quality and reduce the mortality of HCC is early diagnosis and treatment. Therefore, it will be of great significance to explore new quantitative detection methods for HCC markers. With the rapid development of electrochemical biosensors and nanomaterials, electrochemical sensors based on graphene can detect tumor markers, with the advantages of simple operation, high detection sensitivity, and specificity. Combined with the published literature in recent years, the article briefly reviews the application of graphene-based electrochemical biosensors in the detection of HCC markers, including alpha-fetoprotein (AFP), Golgi protein-73 (GP73), exosomes, and microRNA-122 (miR-122).
Collapse
Affiliation(s)
- Ying Liang
- Center for Clinical Laboratory, General Hospital of the Yangtze River Shipping, Wuhan Brain Hospital, Wuhan, China
| | - Yuan Xu
- Center for Clinical Laboratory, Wuhan Hospital of Chinese Medicine, Wuhan, China
| | - Yaoyao Tong
- Center for Clinical Laboratory, General Hospital of the Yangtze River Shipping, Wuhan Brain Hospital, Wuhan, China
| | - Yue Chen
- Center for Clinical Laboratory, General Hospital of the Yangtze River Shipping, Wuhan Brain Hospital, Wuhan, China
| | - Xilu Chen
- Center for Clinical Laboratory, General Hospital of the Yangtze River Shipping, Wuhan Brain Hospital, Wuhan, China
| | - Shimin Wu
- Center for Clinical Laboratory, General Hospital of the Yangtze River Shipping, Wuhan Brain Hospital, Wuhan, China
- *Correspondence: Shimin Wu,
| |
Collapse
|
64
|
Sayad B, Mohseni Afshar Z, Mansouri F, Salimi M, Miladi R, Rahimi S, Rahimi Z, Shirvani M. Pregnancy, Preeclampsia, and COVID-19: Susceptibility and Mechanisms: A Review Study. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2022; 16:64-69. [PMID: 35639648 PMCID: PMC9108291 DOI: 10.22074/ijfs.2022.539768.1194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/07/2022] [Indexed: 11/22/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters cells through angiotensin converting enzyme 2 (ACE2), which expression of its gene increases during pregnancy that is resulted in an enhanced level of the ACE2 enzyme. It might enhance the risk of SARS-CoV-2 infection and its complications in the pregnant women. Although, pregnancy hypertensive disorders and severe infection with SARS-CoV-2 are correlated with high comorbidity, these two entities should be discriminated from each other. Also, there is a concern about the risk of preeclampsia and consequently severe coronavirus disease 2019 (COVID-19) development in the pregnant women. So, to answer these questions, in the present review the literature was surveyed. It seems there is higher severity of COVID-19 among pregnant women than non-pregnant women and more adverse pregnancy outcomes among pregnant women infected with SARS-CoV-2. In addition, an association between COVID-19 with preeclampsia and the role of preeclampsia and gestational hypertension as risk factors for SARS-CoV-2 infection and its complications is suggested. However, infection of the placenta and the SARS-CoV-2 vertical transmission is rare. Various mechanisms could explain the role of COVID-19 in the risk of preeclampsia and association between preeclampsia and COVID-19. Suggested mechanisms are included decreased ACE2 activity and imbalance between Ang II and Ang-(1-7) in preeclampsia, association of both of severe forms of COVID-19 and pregnancy hypertensive disorders with comorbidity, and interaction between immune system, inflammatory cytokines and the renin angiotensin aldosterone system and its contribution to the hypertension pathogenesis. It is concluded that preeclampsia and gestational hypertension might be risk factors for SARS-CoV-2 infection and its complications.
Collapse
Affiliation(s)
- Babak Sayad
- Infectious Diseases Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zeinab Mohseni Afshar
- Infectious Diseases Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Feizollah Mansouri
- Infectious Diseases Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Salimi
- Department of Internal Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ronak Miladi
- Infectious Diseases Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Somayeh Rahimi
- Department of Clinical Biochemistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh Rahimi
- Department of Clinical Biochemistry, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Behavioral Diseases Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maria Shirvani
- Infectious Diseases Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
65
|
Mourenza Á, Lorente-Torres B, Durante E, Llano-Verdeja J, Aparicio JF, Fernández-López A, Gil JA, Mateos LM, Letek M. Understanding microRNAs in the Context of Infection to Find New Treatments against Human Bacterial Pathogens. Antibiotics (Basel) 2022; 11:356. [PMID: 35326819 PMCID: PMC8944844 DOI: 10.3390/antibiotics11030356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
The development of RNA-based anti-infectives has gained interest with the successful application of mRNA-based vaccines. Small RNAs are molecules of RNA of <200 nucleotides in length that may control the expression of specific genes. Small RNAs include small interference RNAs (siRNAs), Piwi-interacting RNAs (piRNAs), or microRNAs (miRNAs). Notably, the role of miRNAs on the post-transcriptional regulation of gene expression has been studied in detail in the context of cancer and many other genetic diseases. However, it is also becoming apparent that some human miRNAs possess important antimicrobial roles by silencing host genes essential for the progress of bacterial or viral infections. Therefore, their potential use as novel antimicrobial therapies has gained interest during the last decade. The challenges of the transport and delivery of miRNAs to target cells are important, but recent research with exosomes is overcoming the limitations in RNA-cellular uptake, avoiding their degradation. Therefore, in this review, we have summarised the latest developments in the exosomal delivery of miRNA-based therapies, which may soon be another complementary treatment to pathogen-targeted antibiotics that could help solve the problem caused by multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Álvaro Mourenza
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (B.L.-T.); (E.D.); (J.L.-V.); (J.F.A.); (J.A.G.)
| | - Blanca Lorente-Torres
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (B.L.-T.); (E.D.); (J.L.-V.); (J.F.A.); (J.A.G.)
| | - Elena Durante
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (B.L.-T.); (E.D.); (J.L.-V.); (J.F.A.); (J.A.G.)
- L’Università di Urbino Carlo Bo, Via Aurelio Saffi, 2, 61029 Urbino, Italy
| | - Jesús Llano-Verdeja
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (B.L.-T.); (E.D.); (J.L.-V.); (J.F.A.); (J.A.G.)
| | - Jesús F. Aparicio
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (B.L.-T.); (E.D.); (J.L.-V.); (J.F.A.); (J.A.G.)
| | - Arsenio Fernández-López
- Departamento de Biología Molecular, Área de Biología Celular, Universidad de León, 24071 León, Spain;
- Instituto de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain
- Neural Therapies SL, Campus de Vegazana s/n, 24071 León, Spain
| | - José A. Gil
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (B.L.-T.); (E.D.); (J.L.-V.); (J.F.A.); (J.A.G.)
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, 24071 León, Spain
| | - Luis M. Mateos
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (B.L.-T.); (E.D.); (J.L.-V.); (J.F.A.); (J.A.G.)
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, 24071 León, Spain
| | - Michal Letek
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (B.L.-T.); (E.D.); (J.L.-V.); (J.F.A.); (J.A.G.)
- Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, 24071 León, Spain
| |
Collapse
|
66
|
Nikdoust F, Pazoki M, Mohammadtaghizadeh M, Aghaali MK, Amrovani M. Exosomes: Potential Player in Endothelial Dysfunction in Cardiovascular Disease. Cardiovasc Toxicol 2022; 22:225-235. [PMID: 34669097 PMCID: PMC8527819 DOI: 10.1007/s12012-021-09700-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/24/2021] [Indexed: 02/08/2023]
Abstract
Exosomes are spherical bilayer membrane vesicles with an average diameter of 40-100 nm. These particles perform a wide range of biological activities due to their contents, including proteins, nucleic acids, lipids, lncRNA, and miRNA. Exosomes are involved in inflammation induction, oxidative stress and apoptosis, which can be effective in endothelial dysfunction. Due to the induction of mentioned processes in the endothelial cells, the intercellular connections are destroyed, cell permeability increases and finally cell efficiency decreases and functional defects occur. Cardiovascular disease (CVDs) are of consequences of endothelial dysfunction. Thus by identifying the exosome signaling pathways, which induce inflammation, oxidative stress, and apoptosis, endothelial dysfunction and subsequently CVDs can be reduced; exosomes can be used for appropriate target therapy.
Collapse
Affiliation(s)
- Farahnaz Nikdoust
- Department of Cardiology, Shariati Hospital, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Pazoki
- Department of Cardiology, Rasoul Akram General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mahsa Karimzadeh Aghaali
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Amrovani
- High Institute for Education and Research in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
67
|
Hsu MT, Wang YK, Tseng YJ. Exosomal Proteins and Lipids as Potential Biomarkers for Lung Cancer Diagnosis, Prognosis, and Treatment. Cancers (Basel) 2022; 14:cancers14030732. [PMID: 35158999 PMCID: PMC8833740 DOI: 10.3390/cancers14030732] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Exosomes (or extracellular vesicles) are known to mediate intercellular communication and to transmit molecular signals between cells. Molecules carried by exosomes have their own molecular roles in affecting surrounding and distant environment, as well as recipient cells. Molecular components of exosomes can be used as cancer biomarkers for diagnosis and prognosis, being promising therapeutic targets for the interruption of cellular signals. Therefore, the understanding of the molecular compositions and their functional indications of exosomes has the potential to help doctors to diagnose and monitor diseases and to allow researchers to design and develop potential targeted therapies. This review aims to provide a comprehensive protein and lipid characterization of lung cancer exosomes and to explore their molecular functions and mechanisms regulating physiological and pathological processes. This organization offers informative insight for lung cancer diagnosis and treatment. Abstract Exosomes participate in cell–cell communication by transferring molecular components between cells. Previous studies have shown that exosomal molecules derived from cancer cells and liquid biopsies can serve as biomarkers for cancer diagnosis and prognosis. The exploration of the molecules transferred by lung cancer-derived exosomes can advance the understanding of exosome-mediated signaling pathways and mechanisms. However, the molecular characterization and functional indications of exosomal proteins and lipids have not been comprehensively organized. This review thoroughly collected data concerning exosomal proteins and lipids from various lung cancer samples, including cancer cell lines and cancer patients. As potential diagnostic and prognostic biomarkers, exosomal proteins and lipids are available for clinical use in lung cancer. Potential therapeutic targets are mentioned for the future development of lung cancer therapy. Molecular functions implying their possible roles in exosome-mediated signaling are also discussed. Finally, we emphasized the importance and value of lung cancer stem cell-derived exosomes in lung cancer therapy. In summary, this review presents a comprehensive description of the protein and lipid composition and function of lung cancer-derived exosomes for lung cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Ming-Tsung Hsu
- Genome and Systems Biology Degree Program, College of Life Science, Academia Sinica and National Taiwan University, Taipei 106319, Taiwan;
- Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei 106319, Taiwan;
| | - Yu-Ke Wang
- Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei 106319, Taiwan;
| | - Yufeng Jane Tseng
- Genome and Systems Biology Degree Program, College of Life Science, Academia Sinica and National Taiwan University, Taipei 106319, Taiwan;
- Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei 106319, Taiwan;
- Department of Computer Science and Information Engineering, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei 106319, Taiwan
- Correspondence:
| |
Collapse
|
68
|
Espeland K, Kleinauskas A, Juzenas P, Brech A, Darvekar S, Vasovic V, Warloe T, Christensen E, Jahnsen J, Peng Q. Photodynamic Effects with 5-Aminolevulinic Acid on Cytokines and Exosomes in Human Peripheral Blood Mononuclear Cells. Biomedicines 2022; 10:biomedicines10020232. [PMID: 35203441 PMCID: PMC8869139 DOI: 10.3390/biomedicines10020232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023] Open
Abstract
Photodynamic therapy (PDT) with 5-aminolevulinic acid (ALA), a precursor to the potent photosensitizer, protoporphyrin IX (PpIX), is an established modality for several malignant and premalignant diseases. This treatment is based on the light-activated PpIX in targeted lesions. Although numerous studies have confirmed the necrosis and apoptosis involved in the mechanism of action of this modality, little information is available for the change of exosome levels after treatment. We report from the first study on the effects of ALA-PDT on cytokines and exosomes of human healthy peripheral blood mononuclear cells (PBMCs). The treatment reduced the cytokines and exosomes studied, although there was variation among individual PBMC samples. This reduction is consistent with PDT-mediated survivals of subsets of PBMCs. More specifically, the ALA-PDT treatment apparently decreased all pro-inflammatory cytokines included, suggesting that this treatment may provide a strong anti-inflammatory effect. In addition, the treatment has decreased the levels of different types of exosomes, the HLA-DRDPDQ exosome in particular, which plays an important role in the rejection of organ transplantation as well as autoimmune diseases. These results may suggest future therapeutic strategies of ALA-PDT.
Collapse
Affiliation(s)
- Kristian Espeland
- Department of Gastroenterology, Akershus University Hospital, N-1478 Lorenskog, Norway;
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway; (A.K.); (P.J.); (S.D.); (V.V.); (T.W.); (E.C.)
- Institute of Clinical of Medicine, Faculty of Medicine, University of Oslo, N-0372 Oslo, Norway;
- Correspondence: (K.E.); (Q.P.)
| | - Andrius Kleinauskas
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway; (A.K.); (P.J.); (S.D.); (V.V.); (T.W.); (E.C.)
| | - Petras Juzenas
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway; (A.K.); (P.J.); (S.D.); (V.V.); (T.W.); (E.C.)
| | - Andreas Brech
- Institute of Clinical of Medicine, Faculty of Medicine, University of Oslo, N-0372 Oslo, Norway;
- Department of Molecular Cell Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, N-0372 Oslo, Norway
| | - Sagar Darvekar
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway; (A.K.); (P.J.); (S.D.); (V.V.); (T.W.); (E.C.)
| | - Vlada Vasovic
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway; (A.K.); (P.J.); (S.D.); (V.V.); (T.W.); (E.C.)
| | - Trond Warloe
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway; (A.K.); (P.J.); (S.D.); (V.V.); (T.W.); (E.C.)
| | - Eidi Christensen
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway; (A.K.); (P.J.); (S.D.); (V.V.); (T.W.); (E.C.)
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, N-7030 Trondheim, Norway
- Department of Dermatology, St. Olavs Hospital, Trondheim University Hospital, N-7030 Trondheim, Norway
| | - Jørgen Jahnsen
- Department of Gastroenterology, Akershus University Hospital, N-1478 Lorenskog, Norway;
- Institute of Clinical of Medicine, Faculty of Medicine, University of Oslo, N-0372 Oslo, Norway;
| | - Qian Peng
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway; (A.K.); (P.J.); (S.D.); (V.V.); (T.W.); (E.C.)
- Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China
- Correspondence: (K.E.); (Q.P.)
| |
Collapse
|
69
|
Ouerdane Y, Hassaballah MY, Nagah A, Ibrahim TM, Mohamed HAH, El-Baz A, Attia MS. Exosomes in Parkinson: Revisiting Their Pathologic Role and Potential Applications. Pharmaceuticals (Basel) 2022; 15:76. [PMID: 35056133 PMCID: PMC8778520 DOI: 10.3390/ph15010076] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by bradykinesia, rigidity, and tremor. Considerable progress has been made to understand the exact mechanism leading to this disease. Most of what is known comes from the evidence of PD brains' autopsies showing a deposition of Lewy bodies-containing a protein called α-synuclein (α-syn)-as the pathological determinant of PD. α-syn predisposes neurons to neurotoxicity and cell death, while the other associated mechanisms are mitochondrial dysfunction and oxidative stress, which are underlying precursors to the death of dopaminergic neurons at the substantia nigra pars compacta leading to disease progression. Several mechanisms have been proposed to unravel the pathological cascade of these diseases; most of them share a particular similarity: cell-to-cell communication through exosomes (EXOs). EXOs are intracellular membrane-based vesicles with diverse compositions involved in biological and pathological processes, which their secretion is driven by the NLR family pyrin domain-containing three proteins (NLRP3) inflammasome. Toxic biological fibrils are transferred to recipient cells, and the disposal of damaged organelles through generating mitochondrial-derived vesicles are suggested mechanisms for developing PD. EXOs carry various biomarkers; thus, they are promising to diagnose different neurological disorders, including neurodegenerative diseases (NDDs). As nanovesicles, the applications of EXOs are not only restricted as diagnostics but also expanded to treat NDDs as therapeutic carriers and nano-scavengers. Herein, the aim is to highlight the potential incrimination of EXOs in the pathological cascade and progression of PD and their role as biomarkers and therapeutic carriers for diagnosing and treating this neuro-debilitating disorder.
Collapse
Affiliation(s)
| | - Mohamed Y. Hassaballah
- Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (M.Y.H.); (A.N.); (H.A.H.M.); (A.E.-B.)
| | - Abdalrazeq Nagah
- Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (M.Y.H.); (A.N.); (H.A.H.M.); (A.E.-B.)
| | - Tarek M. Ibrahim
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Hosny A. H. Mohamed
- Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (M.Y.H.); (A.N.); (H.A.H.M.); (A.E.-B.)
| | - Areej El-Baz
- Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (M.Y.H.); (A.N.); (H.A.H.M.); (A.E.-B.)
| | - Mohamed S. Attia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| |
Collapse
|
70
|
Rezabakhsh A, Sadat‐Ebrahimi S, Ala A, Nabavi SM, Banach M, Ghaffari S. A close-up view of dynamic biomarkers in the setting of COVID-19: Striking focus on cardiovascular system. J Cell Mol Med 2022; 26:274-286. [PMID: 34894069 PMCID: PMC8743667 DOI: 10.1111/jcmm.17122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 10/15/2021] [Accepted: 12/01/2021] [Indexed: 01/08/2023] Open
Abstract
Based on the recent reports, cardiovascular events encompass a large portion of the mortality caused by the COVID-19 pandemic, which drawn cardiologists into the management of the admitted ill patients. Given that common laboratory values may provide key insights into the illness caused by the life-threatening SARS-CoV-2 virus, it would be more helpful for screening, clinical management and on-time therapeutic strategies. Commensurate with these issues, this review article aimed to discuss the dynamic changes of the common laboratory parameters during COVID-19 and their association with cardiovascular diseases. Besides, the values that changed in the early stage of the disease were considered and monitored during the recovery process. The time required for returning biomarkers to basal levels was also discussed. Finally, of particular interest, we tended to abridge the latest updates regarding the cardiovascular biomarkers as prognostic and diagnostic criteria to determine the severity of COVID-19.
Collapse
Affiliation(s)
- Aysa Rezabakhsh
- Cardiovascular Research CenterTabriz University of Medical SciencesTabrizIran
| | | | - Alireza Ala
- Emergency Medicine Research TeamTabriz University of Medical SciencesTabrizIran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and HypertensionMedical University of LodzLodzPoland
- Polish Mother’s Memorial Hospital Research Institute (PMMHRI)LodzPoland
| | - Samad Ghaffari
- Cardiovascular Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
71
|
Fu Y, Gao X, He GH, Chen S, Gu ZH, Zhang YL, Li LY. Protective effects of umbilical cord mesenchymal stem cell exosomes in a diabetic rat model through live retinal imaging. Int J Ophthalmol 2021; 14:1828-1833. [PMID: 34926195 DOI: 10.18240/ijo.2021.12.04] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/08/2021] [Indexed: 02/08/2023] Open
Abstract
AIM To assess the protective effect of human umbilical cord mesenchymal stem cell exosomes (hucMSC-Exs) in a diabetic rat model by using a variety of retinal bioassays. METHODS hucMSCs were subjected to differential ultracentrifugation for the collection of exosomes, and transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) using a NanoSight analysis system and Western blotting (WB) were used to analyze the expression of surface marker proteins such as CD63, CD9 and Calnexin. Streptozotocin (STZ) was injected into the intraperitoneal cavity to establish a diabetic model. Rats were divided into a normal group, diabetic group and hucMSC-Ex group. Fundus fluorescein angiography (FFA), optical coherence tomography (OCT) and other live imaging methods were used to observe the fundus of the rats. Finally, the eyeballs of rats from each group were collected for hematoxylin-eosin (HE) staining to further analyze the retinal structure. RESULTS Through TEM, NTA and WB, we successfully isolated hucMSC-Exs. Subsequent FFA and OCT confirmed that hucMSC-Exs effectively prevented early retinal vascular damage and thickening of the retina. Finally, HE staining of rat retinal sections revealed that exosomes effectively alleviated retinal structure disruption caused by diabetes. CONCLUSION hucMSC-Exs have a protective effect on the retina in diabetic rat through FFA, OCT and HE staining.
Collapse
Affiliation(s)
- Yan Fu
- Department of Ophthalmology, Baoding No.1 Central Hospital, Baoding 071000, Hebei Province, China.,Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China
| | - Xiang Gao
- College of Medicine, Nankai University, Tianjin 300071, China
| | - Guang-Hui He
- Tianjin Eye Hospital, Tianjin 300020, China.,Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China.,Ophthalmic Center of Xinjiang Production and Construction Corps Hospital, Urumqi 830002, Xinjiang Uygur Autonomous Region, China
| | - Song Chen
- College of Medicine, Nankai University, Tianjin 300071, China.,Tianjin Eye Hospital, Tianjin 300020, China.,Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China
| | - Zhao-Hui Gu
- Department of Ophthalmology, Baoding No.1 Central Hospital, Baoding 071000, Hebei Province, China
| | - Yue-Ling Zhang
- Department of Ophthalmology, Baoding No.1 Central Hospital, Baoding 071000, Hebei Province, China
| | - Li-Ying Li
- Department of Ophthalmology, Baoding No.1 Central Hospital, Baoding 071000, Hebei Province, China
| |
Collapse
|