51
|
Górska A, Baran E, Knapik-Kowalczuk J, Szafraniec-Szczęsny J, Paluch M, Kulinowski P, Mendyk A. Physically Cross-Linked PVA Hydrogels as Potential Wound Dressings: How Freezing Conditions and Formulation Composition Define Cryogel Structure and Performance. Pharmaceutics 2024; 16:1388. [PMID: 39598512 PMCID: PMC11597501 DOI: 10.3390/pharmaceutics16111388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Objectives: Hydrogels produced using the freeze-thaw method have demonstrated significant potential for wound management applications. However, their production requires precise control over critical factors including freezing temperature and the choice of matrix-forming excipients, for which no consensus on the optimal conditions currently exists. This study aimed to address this gap by evaluating the effects of the above-mentioned variables on cryogel performance. Methods: Mechanical properties, absorption capacity, and microstructure were assessed alongside advanced analyses using differential scanning calorimetry (DSC) and low-field nuclear magnetic resonance relaxometry (LF TD NMR). Results: The results demonstrated that fully hydrolyzed polyvinyl alcohol (PVA) with a molecular weight above 61,000 g/mol is essential for producing high-performance cryogels. Among the tested formulations, an 8% (w/w) PVA56-98 solution (Mw~195,000; DH = 98.0-98.8%) with 10% (w/w) propylene glycol (PG) provided the best balance of stretchability, durability, and low adhesion. Notably, while -25 °C is often used for cryogel preparation, freezing the gel precursor at -80 °C yielded superior results, producing materials with more open, interconnected structures and enhanced mechanical strength and elasticity-deviating from conventional practices. Conclusions: The designed cryogel prototypes exhibited functional properties comparable to or even surpassing commercial wound dressings, except for absorption capacity, which remained lower. Despite this, the cryogel prototypes demonstrated potential as wound dressings, particularly for use in dry or minimally exuding wounds. All in all, this study provides a comprehensive analysis of the physicochemical and functional properties of PVA cryogels, establishing a strong foundation for the development of advanced wound dressing systems.
Collapse
Affiliation(s)
- Anna Górska
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland;
| | - Ewelina Baran
- Institute of Technology, University of the National Education Commission, Podchorążych 2, 30-084 Kraków, Poland; (E.B.); (P.K.)
| | - Justyna Knapik-Kowalczuk
- Faculty of Science and Technology, Institute of Physics and SMCEBI, University of Silesia, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland; (J.K.-K.); (M.P.)
| | | | - Marian Paluch
- Faculty of Science and Technology, Institute of Physics and SMCEBI, University of Silesia, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland; (J.K.-K.); (M.P.)
| | - Piotr Kulinowski
- Institute of Technology, University of the National Education Commission, Podchorążych 2, 30-084 Kraków, Poland; (E.B.); (P.K.)
| | - Aleksander Mendyk
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland;
| |
Collapse
|
52
|
Liang X, Huang C, Liu H, Chen H, Shou J, Cheng H, Liu G. Natural hydrogel dressings in wound care: Design, advances, and perspectives. CHINESE CHEM LETT 2024; 35:109442. [DOI: 10.1016/j.cclet.2023.109442] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
|
53
|
Zamani S, Rezaei Kolarijani N, Naeiji M, Vaez A, Maghsoodifar H, Sadeghi Douki SAH, Salehi M. Development of carboxymethyl cellulose/gelatin hydrogel loaded with Omega-3 for skin regeneration. J Biomater Appl 2024; 39:377-395. [PMID: 39049504 DOI: 10.1177/08853282241265769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Hydrogels have several characteristics, including biocompatibility, physical similarity with the skin's extracellular matrix, and regeneration capacity. Cell migration and proliferation are facilitated by natural polymers such as gelatin (Gel) and carboxymethyl cellulose (CMC). Gelatin dressing acts as a structural framework for cell migration into the wound area, stimulating cell division and promoting granulation tissue formation. Omega-3 fatty acids from fish oil may prevent wound infection and improve the healing of wounds in the early stages. We studied the preparation of wound dressing containing Omega-3 and its ability to heal wounds. In this study, CMC-Gel hydrogels containing different concentrations of Omega-3 were investigated in full-thickness wounds. After the fabrication of the hydrogels by using surfactant (tween 20) and microemulsion method (oil in water), various tests such as SEM, Water uptake evaluation, weight loss, cell viability, blood compatibility, and in vivo study in rat cutaneous modeling during 14 days were performed to evaluate the properties of the fabricated hydrogels. The analysis of the hydrogels revealed that they possess porous structures with interconnected pores, with an average size of 83.23 ± 6.43 μm. The hydrogels exhibited a swelling capacity of up to 60% of their initial weight within 24 h, as indicated by the weight loss and swelling measurements. Cell viability study with the MTT technique showed that no cytotoxicity was observed at the recommended dosage, however, increasing the amount of omega-3 caused hemolysis, cell death, and inhibition of coagulation activity. An in vivo study in adult male rats with a full-thickness model showed greater than 91% improvement of the primary wound region after 2 weeks of treatment. Histological analysis demonstrated Omega-3 in hydrogels, which is a promising approach for topical skin treatment to prevent scar, and has shown efficacy as wound dressing by improving the repair process at the defect site.
Collapse
Affiliation(s)
- Sepehr Zamani
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Nariman Rezaei Kolarijani
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mahdi Naeiji
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hasan Maghsoodifar
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Majid Salehi
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Health Technology Incubator Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
54
|
El-Naggar ME, Wael K, Hemdan BA, Abdelgawad AM, Elsabee MZ, El-Zayat EM, Hady MA, Hashem MM. Chitosan microflower-embedded gelatin sponges for advanced wound management and hemostatic applications. Int J Biol Macromol 2024; 276:133749. [PMID: 38986976 DOI: 10.1016/j.ijbiomac.2024.133749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/27/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
The study explored the antimicrobial, antibiofilm, and hemostatic properties of chitosan microflowers (CMF) in sponge form. The main objective was to enhance the preparation of CMF by employing varying quantities of calcium chloride (CaCl2) and tripolyphosphate (TPP). CMF was then combined with gelatin (GE) in different proportions to produce three sponge samples: CMF0@GE, CMF1@GE, and CMF2@GE. The CMF had a morphology like that of a flower and produced surfaces with a porous sponge-like structure. The antibacterial activity, as determined by the zone of inhibition (ZOI), increased with greater doses of CMF. Among the tested samples, CMF2@GE had the greatest activity against Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus, and Enterococcus faecium. CMF2@GE successfully suppressed biofilm formation, decreased clotting time to an average of 212.67 s, and exhibited excellent biocompatibility by preserving over 90 % viability of human skin fibroblast cells at dosages below 100 μg/mL. The results indicated that gelatin sponges filled with CMF have considerable promise as flexible medical instruments for wound healing and infection control.
Collapse
Affiliation(s)
- Mehrez E El-Naggar
- Textile Research and Technology Institute, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - K Wael
- Biotechnology Department, Faculty of Science, Cairo University, Egypt
| | - Bahaa A Hemdan
- Water Pollution Research Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt.
| | - Abdelrahman M Abdelgawad
- Textile Research and Technology Institute, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt; Textile Engineering Chemistry and Science Department, Wilson College of Textiles, North Carolina State University, Raleigh, NC, USA
| | - M Z Elsabee
- Department of Chemistry, Faculty of Science, Cairo University, Egypt
| | - Emad M El-Zayat
- Molecular Physiology and Biotechnology, Zoology Department, Faculty of Sciences, Cairo University, Egypt
| | - Mayssa Abdel Hady
- Pharmaceutical Technology Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - M M Hashem
- Textile Research and Technology Institute, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
55
|
Ding Y, Zhu Z, Zhang X, Wang J. Novel Functional Dressing Materials for Intraoral Wound Care. Adv Healthc Mater 2024; 13:e2400912. [PMID: 38716872 DOI: 10.1002/adhm.202400912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Intraoral wounds represent a particularly challenging category of mucosal and hard tissue injuries, characterized by the unique structures, complex environment, and distinctive healing processes within the oral cavity. They have a common occurrence yet frequently inflict significant inconvenience and pain on patients, causing a serious decline in the quality of life. A variety of novel functional dressings specifically designed for the moist and dynamic oral environment have been developed and realized accelerated and improved wound healing. Thoroughly analyzing and summarizing these materials is of paramount importance in enhancing the understanding and proficiently managing intraoral wounds. In this review, the particular processes and unique characteristics of intraoral wound healing are firstly described. Up-to-date knowledge of various forms, properties, and applications of existing products are then intensively discussed, which are categorized into animal products, plant extracts, natural polymers, and synthetic products. To conclude, this review presents a comprehensive framework of currently available functional intraoral wound dressings, with an aim to provoke inspiration of future studies to design more convenient and versatile materials.
Collapse
Affiliation(s)
- Yutang Ding
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xin Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
56
|
Mc Larney BE, Sonay A, Apfelbaum E, Mostafa N, Monette S, Goerzen D, Aguirre N, Exner RM, Habjan C, Isaac E, Phung NB, Skubal M, Kim M, Ogirala A, Veach D, Heller DA, Grimm J. A pan-cancer dye for solid-tumour screening, resection and wound monitoring via short-wave and near-infrared fluorescence imaging. Nat Biomed Eng 2024; 8:1092-1108. [PMID: 39251765 PMCID: PMC11699565 DOI: 10.1038/s41551-024-01248-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/21/2024] [Indexed: 09/11/2024]
Abstract
The efficacy of fluorescence-guided surgery in facilitating the real-time delineation of tumours depends on the optical contrast of tumour tissue over healthy tissue. Here we show that CJ215-a commercially available, renally cleared carbocyanine dye sensitive to apoptosis, and with an absorption and emission spectra suitable for near-infrared fluorescence imaging (wavelengths of 650-900 nm) and shortwave infrared (SWIR) fluorescence imaging (900-1,700 nm)-can facilitate fluorescence-guided tumour screening, tumour resection and the assessment of wound healing. In tumour models of either murine or human-derived breast, prostate and colon cancers and of fibrosarcoma, and in a model of intraperitoneal carcinomatosis, imaging of CJ215 with ambient light allowed for the delineation of nearly all tumours within 24 h after intravenous injection of the dye, which was minimally taken up by healthy organs. At later timepoints, CJ215 provided tumour-to-muscle contrast ratios up to 100 and tumour-to-liver contrast ratios up to 18. SWIR fluorescence imaging with the dye also allowed for quantifiable non-contact wound monitoring through commercial bandages. CJ215 may be compatible with existing and emerging clinical solutions.
Collapse
Affiliation(s)
| | - Ali Sonay
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Elana Apfelbaum
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Pharmacology Program, Weill Cornell Medical College, New York, NY, USA
| | - Nermin Mostafa
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Sébastien Monette
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, NY, USA
| | - Dana Goerzen
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Nicole Aguirre
- Colorectal Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Rüdiger M. Exner
- Department of Radiology, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Christine Habjan
- Pharmacology Program, Weill Cornell Medical College, New York, NY, USA
| | - Elizabeth Isaac
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Pharmacology Program, Weill Cornell Medical College, New York, NY, USA
| | - Ngan Bao Phung
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Pharmacology Program, Weill Cornell Medical College, New York, NY, USA
| | - Magdalena Skubal
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Mijin Kim
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Anuja Ogirala
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Darren Veach
- Department of Radiology, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Department of Radiology, Weill Cornell Medical Center; New York, NY, USA
| | - Daniel A. Heller
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Pharmacology Program, Weill Cornell Medical College, New York, NY, USA
| | - Jan Grimm
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Pharmacology Program, Weill Cornell Medical College, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Department of Radiology, Weill Cornell Medical Center; New York, NY, USA
- Molecular Imaging Therapy Service, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| |
Collapse
|
57
|
Wu R, Li W, Yang P, Shen N, Yang A, Liu X, Ju Y, Lei L, Fang B. DNA hydrogels and their derivatives in biomedical engineering applications. J Nanobiotechnology 2024; 22:518. [PMID: 39210464 PMCID: PMC11360341 DOI: 10.1186/s12951-024-02791-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Deoxyribonucleotide (DNA) is uniquely programmable and biocompatible, and exhibits unique appeal as a biomaterial as it can be precisely designed and programmed to construct arbitrary shapes. DNA hydrogels are polymer networks comprising cross-linked DNA strands. As DNA hydrogels present programmability, biocompatibility, and stimulus responsiveness, they are extensively explored in the field of biomedicine. In this study, we provide an overview of recent advancements in DNA hydrogel technology. We outline the different design philosophies and methods of DNA hydrogel preparation, discuss its special physicochemical characteristics, and highlight the various uses of DNA hydrogels in biomedical domains, such as drug delivery, biosensing, tissue engineering, and cell culture. Finally, we discuss the current difficulties facing DNA hydrogels and their potential future development.
Collapse
Affiliation(s)
- Rui Wu
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Wenting Li
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences School of Basic Medicine, Peking Union Medical College, Beijing, 100000, China
| | - Pu Yang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Naisi Shen
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Anqi Yang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiangjun Liu
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yikun Ju
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
58
|
Borges A, Calvo MLM, Vaz JA, Calhelha RC. Enhancing Wound Healing: A Comprehensive Review of Sericin and Chelidonium majus L. as Potential Dressings. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4199. [PMID: 39274589 PMCID: PMC11395905 DOI: 10.3390/ma17174199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024]
Abstract
Wound healing, a complex physiological process orchestrating intricate cellular and molecular events, seeks to restore tissue integrity. The burgeoning interest in leveraging the therapeutic potential of natural substances for advanced wound dressings is a recent phenomenon. Notably, Sericin, a silk-derived protein, and Chelidonium majus L. (C. majus), a botanical agent, have emerged as compelling candidates, providing a unique combination of natural elements that may revolutionize conventional wound care approaches. Sericin, renowned for its diverse properties, displays unique properties that accelerate the wound healing process. Simultaneously, C. majus, with its diverse pharmacological compounds, shows promise in reducing inflammation and promoting tissue regeneration. As the demand for innovative wound care solutions increases, understanding the therapeutic potential of natural products becomes imperative. This review synthesizes current knowledge on Sericin and C. majus, envisioning their future roles in advancing wound management strategies. The exploration of these natural substances as constituents of wound dressings provides a promising avenue for developing sustainable, effective, and biocompatible materials that could significantly impact the field of wound healing.
Collapse
Affiliation(s)
- Ana Borges
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Investigación en Desarrollo y Evaluación de Formas Farmacéuticas y Sistemas de Liberación Controlada, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
| | - María Luisa Martín Calvo
- Grupo de Investigación en Fisiología y Farmacología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
| | - Josiana A Vaz
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C Calhelha
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
59
|
Yadav R, Kumar R, Kathpalia M, Ahmed B, Dua K, Gulati M, Singh S, Singh PJ, Kumar S, Shah RM, Deol PK, Kaur IP. Innovative approaches to wound healing: insights into interactive dressings and future directions. J Mater Chem B 2024; 12:7977-8006. [PMID: 38946466 DOI: 10.1039/d3tb02912c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The objective of this review is to provide an up-to-date and all-encompassing account of the recent advancements in the domain of interactive wound dressings. Considering the gap between the achieved and desired clinical outcomes with currently available or under-study wound healing therapies, newer more specific options based on the wound type and healing phase are reviewed. Starting from the comprehensive description of the wound healing process, a detailed classification of wound dressings is presented. Subsequently, we present an elaborate and significant discussion describing interactive (unconventional) wound dressings. Latter includes biopolymer-based, bioactive-containing and biosensor-based smart dressings, which are discussed in separate sections together with their applications and limitations. Moreover, recent (2-5 years) clinical trials, patents on unconventional dressings, marketed products, and other information on advanced wound care designs and techniques are discussed. Subsequently, the future research direction is highlighted, describing peptides, proteins, and human amniotic membranes as potential wound dressings. Finally, we conclude that this field needs further development and offers scope for integrating information on the healing process with newer technologies.
Collapse
Affiliation(s)
- Radhika Yadav
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Rohtash Kumar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Muskan Kathpalia
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Bakr Ahmed
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Monica Gulati
- Discipline of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sachin Singh
- Discipline of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Pushvinder Jit Singh
- Tynor Orthotics Private Limited, Janta Industrial Estate, Mohali 160082, Punjab, India
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Rohan M Shah
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora West, VIC 3083, Australia
| | - Parneet Kaur Deol
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India.
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
60
|
Wei C, Fu D, Ma T, Chen M, Wang F, Chen G, Wang Z. Sensing patches for biomarker identification in skin-derived biofluids. Biosens Bioelectron 2024; 258:116326. [PMID: 38696965 DOI: 10.1016/j.bios.2024.116326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 05/04/2024]
Abstract
In conventional clinical disease diagnosis and screening based on biomarker detection, most analysis samples are collected from serum, blood. However, these invasive collection methods require specific instruments, professionals, and may lead to infection risks. Additionally, the diagnosis process suffers from untimely results. The identification of skin-related biomarkers plays an unprecedented role in early disease diagnosis. More importantly, these skin-mediated approaches for collecting biomarker-containing biofluid samples are noninvasive or minimally invasive, which is more preferable for point-of-care testing (POCT). Therefore, skin-based biomarker detection patches have been promoted, owing to their unique advantages, such as simple fabrication, desirable transdermal properties and no requirements for professional medical staff. Currently, the skin biomarkers extracted from sweat, interstitial fluid (ISF) and wound exudate, are achieved with wearable sweat patches, transdermal MN patches, and wound patches, respectively. In this review, we detail these three types of skin patches in biofluids collection and diseases-related biomarkers identification. Patch classification and the corresponding manufacturing as well as detection strategies are also summarized. The remaining challenges in clinical applications and current issues in accurate detection are discussed for further advancement of this technology (Scheme 1).
Collapse
Affiliation(s)
- Chen Wei
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Danni Fu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Tianyue Ma
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Mo Chen
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Fangling Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Guojun Chen
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada.
| | - Zejun Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
61
|
Oliveira RN, Meleiro LADC, Quilty B, McGuinness GB. Release of natural extracts from PVA and PVA-CMC hydrogel wound dressings: a power law swelling/delivery. Front Bioeng Biotechnol 2024; 12:1406336. [PMID: 39165402 PMCID: PMC11333833 DOI: 10.3389/fbioe.2024.1406336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/05/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction PVA hydrogels present many characteristics of the ideal dressing, although without antimicrobial properties. The present work aims to study the physical, mechanical and release characteristics of hydrogel wound dressings loaded with either of two natural herbal products, sage extract and dragon's blood. Methods Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC) and tensile mechanical testing were used to investigate the structure and properties of the gels. Swelling and degradation tests were conducted according to ISO 10993-9. Release characteristics were studied using UV Spectrophotometry. Results PVA matrices incorporating sage extract or dragon's blood (DB) present hydrogen bonding between these components. PVA-CMC hydrogels containing sage present similar spectra to PVA-CMC alone, probably indicating low miscibility or interaction between the matrix and sage. The opposite is found for DB, which exhibits more pronounced interference with crystallinity than sage. DB and NaCMC negatively affect Young's modulus and failure strength. All samples appear to reach equilibrium swelling degree (ESD) in 24 h. The addition of DB and sage to PVA increases the gels' swelling capacity, indicating that the substances likely separate PVA chains. The inclusion of CMC contributes to high media uptake. The kinetics profile of media uptake for 4 days is described by a power-law model, which is correlated to the drug delivery mechanism. Discussion A PVA-CMC gel incorporating 15% DB, the highest amount tested, shows the most favorable characteristics for flavonoid delivery, as well as flexibility and swelling capacity.
Collapse
Affiliation(s)
- Renata Nunes Oliveira
- Chemical Engineering Department, Institute of Technology, Federal Rural University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Augusto da Cruz Meleiro
- Chemical Engineering Department, Institute of Technology, Federal Rural University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Brid Quilty
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | | |
Collapse
|
62
|
Savekar PL, Nadaf SJ, Killedar SG, Kumbar VM, Hoskeri JH, Bhagwat DA, Gurav SS. Citric acid cross-linked pomegranate peel extract-loaded pH-responsive β-cyclodextrin/carboxymethyl tapioca starch hydrogel film for diabetic wound healing. Int J Biol Macromol 2024; 274:133366. [PMID: 38914385 DOI: 10.1016/j.ijbiomac.2024.133366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Pomegranate peel extract (PPE) hydrogel films filled with citric acid (CA) and β-cyclodextrin-carboxymethyl tapioca starch (CMS) were designed mainly to prevent wound infections and speed up the healing process. FTIR and NMR studies corroborated the carboxymethylation of neat tapioca starch (NS). CMS exhibited superior swelling behavior than NS. The amount of CA and β-CD controlled the physicochemical parameters of developed PPE/CA/β-CD/CMS films. Optimized film (OF) exhibited acceptable swellability, wound fluid absorptivity, water vapor transmission rate, water contact angle, and mechanical properties. Biodegradable, biocompatible, and antibacterial films exhibited pH dependence in the release of ellagic acid for up to 24 h. In mice model, PPE/CA/β-CD/CMS hydrogel film treatment showed promising wound healing effects, including increased collagen deposition, reduced inflammation, activation of the Wingless-related integration site (wnt) pathway leading to cell division, proliferation, and migration to the wound site. The expression of the WNT3A gene did not show any significant differences among all the studied groups. Developed PPE-loaded CA/β-CD/CMS film promoted wound healing by epithelialization, granulation tissue thickness, collagen deposition, and angiogenesis, hence could be recommended as a biodegradable and antibacterial hydrogel platform to improve the cell proliferation during the healing of diabetic wounds.
Collapse
Affiliation(s)
- Pranav L Savekar
- Shivraj College of Pharmacy, Gadhinglaj 416502, Maharashtra, India
| | - Sameer J Nadaf
- Bharati Vidyapeeth College of Pharmacy, Palus 416310, Maharashtra, India.
| | - Suresh G Killedar
- Anandi Pharmacy College, Kalambe Tarf Kale 416205, Maharashtra, India
| | - Vijay M Kumbar
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education (KLE University), Nehru Nagar, Belagavi 590 010, Karnataka, India
| | - Joy H Hoskeri
- Department of Bioinformatics and Biotechnology, Karnataka State Akkamahadevi Women's University, Vijayapura, Karnataka, India
| | | | - Shailendra S Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Goa 403001, India.
| |
Collapse
|
63
|
Wu J, Li H, Zhang N, Zheng Q. Micelle-Containing Hydrogels and Their Applications in Biomedical Research. Gels 2024; 10:471. [PMID: 39057494 PMCID: PMC11276039 DOI: 10.3390/gels10070471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Hydrogels are one of the most commonly used materials in our daily lives, which possess crosslinked three-dimensional network structures and are capable of absorbing large amounts of fluid. Due to their outstanding properties, such as flexibility, tunability, and biocompatibility, hydrogels have been widely employed in biomedical research and clinics, especially in on-demand drug release. However, traditional hydrogels face various limitations, e.g., the delivery of hydrophobic drugs due to their highly hydrophilic interior environment. Therefore, micelle-containing hydrogels have been designed and developed, which possess both hydrophilic and hydrophobic microenvironments and enable the storage of diverse cargos. Based on the functionalities of micelles, these hydrogels can be classified into micelle-doped and chemically/physically crosslinked types, which were reported to be responsive to varied stimuli, including temperature, pH, irradiation, electrical signal, magnetic field, etc. Here, we summarize the research advances of micelle-containing hydrogels and provide perspectives on their applications in the biomedical field based on the recent studies from our own lab and others.
Collapse
Affiliation(s)
- Jinghua Wu
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Huapeng Li
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Nan Zhang
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
64
|
Liu WS, Chen Z, Lu ZM, Dong JH, Wu JH, Gao J, Deng D, Li M. Multifunctional hydrogels based on photothermal therapy: A prospective platform for the postoperative management of melanoma. J Control Release 2024; 371:406-428. [PMID: 38849093 DOI: 10.1016/j.jconrel.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/22/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024]
Abstract
Preventing the recurrence of melanoma after surgery and accelerating wound healing are among the most challenging aspects of melanoma management. Photothermal therapy has been widely used to treat tumors and bacterial infections and promote wound healing. Owing to its efficacy and specificity, it may be used for postoperative management of tumors. However, its use is limited by the uncontrollable distribution of photosensitizers and the likelihood of damage to the surrounding normal tissue. Hydrogels provide a moist environment with strong biocompatibility and adhesion for wound healing owing to their highly hydrophilic three-dimensional network structure. In addition, these materials serve as excellent drug carriers for tumor treatment and wound healing. It is possible to combine the advantages of both of these agents through different loading modalities to provide a powerful platform for the prevention of tumor recurrence and wound healing. This review summarizes the design strategies, research progress and mechanism of action of hydrogels used in photothermal therapy and discusses their role in preventing tumor recurrence and accelerating wound healing. These findings provide valuable insights into the postoperative management of melanoma and may guide the development of promising multifunctional hydrogels for photothermal therapy.
Collapse
Affiliation(s)
- Wen-Shang Liu
- Department of Dermatology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, People's Republic of China
| | - Zhuo Chen
- Department of Dermatology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, People's Republic of China
| | - Zheng-Mao Lu
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Jin-Hua Dong
- Women and Children Hospital Affiliated to Jiaxing University, 2468 Middle Ring Eastern Road, Jiaxing City, Zhejiang 314000, People's Republic of China
| | - Jin-Hui Wu
- Ophthalmology Department of the Third Affiliated Hospital of Naval Medical University, Shanghai 201805, People's Republic of China.
| | - Jie Gao
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, People's Republic of China; Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai 200433, People's Republic of China.
| | - Dan Deng
- Department of Dermatology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, People's Republic of China.
| | - Meng Li
- Department of Dermatology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, People's Republic of China.
| |
Collapse
|
65
|
Chin SW, Azman A, Tan JW. Incorporation of natural and synthetic polymers into honey hydrogel for wound healing: A review. Health Sci Rep 2024; 7:e2251. [PMID: 39015423 PMCID: PMC11250418 DOI: 10.1002/hsr2.2251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024] Open
Abstract
Background and Aims The difficulty in treating chronic wounds due to the prolonged inflammation stage has affected a staggering 6.5 million people, accompanied by 25 billion USD annually in the United States alone. A 1.9% rise in chronic wound prevalence among Medicare beneficiaries was reported from 2014 to 2019. Besides, the global wound care market values were anticipated to increase from USD 20.18 billion in 2022 to USD 30.52 billion in 2030, suggesting an expected rise in chronic wounds financial burdens. The lack of feasibility in using traditional dry wound dressings sparks hydrogel development as an alternative approach to tackling chronic wounds. Since ancient times, honey has been used to treat wounds, including burns, and ongoing studies have also demonstrated its wound-healing capabilities on cellular and animal models. However, the fluidity and low mechanical strength in honey hydrogel necessitate the incorporation of other polymers. Therefore, this review aims to unravel the characteristics and feasibility of natural (chitosan and gelatin) and synthetic (polyvinyl alcohol and polyethylene glycol) polymers to be incorporated in the honey hydrogel. Methods Relevant articles were identified from databases (PubMed, Google Scholar, and Science Direct) using keywords related to honey, hydrogel, and polymers. Relevant data from selected studies were synthesized narratively and reported following a structured narrative format. Results The importance of honey's roles and mechanisms of action in wound dressings were discussed. Notable studies concerning honey hydrogels with diverse polymers were also included in this article to provide a better perspective on fabricating customized hydrogel wound dressings for various types of wounds in the future. Conclusion Honey's incapability to stand alone in hydrogel requires the incorporation of natural and synthetic polymers into the hydrogel. With this review, it is hoped that the fabrication and commercialization of the desired honey composite hydrogel for wound treatment could be brought forth.
Collapse
Affiliation(s)
- Siau Wui Chin
- School of ScienceMonash University MalaysiaSubang JayaMalaysia
| | | | - Ji Wei Tan
- School of ScienceMonash University MalaysiaSubang JayaMalaysia
| |
Collapse
|
66
|
Wang H, Guo Y, Jiang Y, Ge Y, Wang H, Shi D, Zhang G, Zhao J, Kang Y, Wang L. Exosome-loaded biomaterials for tendon/ligament repair. BIOMATERIALS TRANSLATIONAL 2024; 5:129-143. [PMID: 39351162 PMCID: PMC11438604 DOI: 10.12336/biomatertransl.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/30/2024] [Accepted: 06/18/2024] [Indexed: 10/04/2024]
Abstract
Exosomes, a specialised type of extracellular vesicle, have attracted significant attention in the realm of tendon/ligament repair as a potential biologic therapeutic tool. While the competence of key substances responsible for the delivery function was gradually elucidated, series of shortcomings exemplified by the limited stability still need to be improved. Therefore, how to take maximum advantage of the biological characteristics of exosomes is of great importance. Recently, the comprehensive exploration and application of biomedical engineering has improved the availability of exosomes and revealed the future direction of exosomes combined with biomaterials. This review delves into the present application of biomaterials such as nanomaterials, hydrogels, and electrospun scaffolds, serving as the carriers of exosomes in tendon/ligament repair. By pinpointing and exploring their strengths and limitations, it offers valuable insights, paving the way the future direction of biomaterials in the application of exosomes in tendon/ligament repair in this field.
Collapse
Affiliation(s)
- Haohan Wang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yonglin Guo
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Jiang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Yingyu Ge
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanyi Wang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dingyi Shi
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoyang Zhang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinzhong Zhao
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhao Kang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liren Wang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
67
|
Petrovic B, Petrovic A, Bijelic K, Stanisic D, Mitrovic S, Jakovljevic V, Bolevich S, Glisovic Jovanovic I, Bradic J. From Nature to Healing: Development and Evaluation of Topical Cream Loaded with Pine Tar for Cutaneous Wound Repair. Pharmaceutics 2024; 16:859. [PMID: 39065556 PMCID: PMC11279966 DOI: 10.3390/pharmaceutics16070859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Despite the numerous efforts to find an appropriate therapeutic modality, diabetic wounds remain a global unsolved problem. Therefore, our study aimed to develop a topical formulation loaded with pine tar and to investigate its wound-healing capacity. After phytochemical profiling of pine tar, an oil-in-water emulsion with 1% pine tar was prepared. The physical, chemical, and microbiological stability of prepared pine tar cream (PTC) was assessed during six months. Additionally, safety potential was examined in healthy rats, while wound-healing potential was accessed by creating excision wounds in diabetic rats. Diabetic animals were divided into four groups: untreated or topically treated with either the cream base, PTC, or silver sulfadiazine cream. Wound healing was monitored at the following time points (0, 7, 14, and 21 days) through macroscopic, biochemical, and histological examinations. Our PTC formula showed good physicochemical properties and remained stable and compatible for cutaneous application. PTC showed a remarkable increase in wound closure rate and led to attenuation of morphological alterations in skin samples. These findings were associated with significantly improved redox status and enhanced hydroxyproline levels in PTC relative to the untreated and cream base groups. Our results demonstrated that PTC might serve as a promising tool for the management of diabetic wounds.
Collapse
Affiliation(s)
- Branislav Petrovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia;
| | - Anica Petrovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia;
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia;
| | - Katarina Bijelic
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia;
- Center for Medical and Pharmaceutical Investigations and Quality Control, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Dragana Stanisic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia;
| | - Slobodanka Mitrovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia;
| | - Vladimir Jakovljevic
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia;
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University, 119146 Moscow, Russia;
| | - Sergej Bolevich
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University, 119146 Moscow, Russia;
| | - Ivana Glisovic Jovanovic
- Orthopedic and Traumatology University Clinic, Clinical Center of Serbia, Dr Koste Todorovica 26, 11000 Belgrade, Serbia;
| | - Jovana Bradic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia;
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia;
| |
Collapse
|
68
|
Abri S, Durr H, Barton HA, Adkins-Travis K, Shriver LP, Pukale DD, Fulton JA, Leipzig ND. Chitosan-based multifunctional oxygenating antibiotic hydrogel dressings for managing chronic infection in diabetic wounds. Biomater Sci 2024; 12:3458-3470. [PMID: 38836321 PMCID: PMC11197983 DOI: 10.1039/d4bm00355a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/25/2024] [Indexed: 06/06/2024]
Abstract
Current treatment strategies for infection of chronic wounds often result in compromised healing and necrosis due to antibiotic toxicity, and underlying biomarkers affected by treatments are not fully known. Here, a multifunctional dressing was developed leveraging the unique wound-healing properties of chitosan, a natural polysaccharide known for its numerous benefits in wound care. The dressing consists of an oxygenating perfluorocarbon functionalized methacrylic chitosan (MACF) hydrogel incorporated with antibacterial polyhexamethylene biguanide (PHMB). A non-healing diabetic infected wound model with emerging metabolomics tools was used to explore the anti-infective and wound healing properties of the resultant multifunctional dressing. Direct bacterial bioburden assessment demonstrated superior antibacterial properties of hydrogels over a commercial dressing. However, wound tissue quality analyses confirmed that sustained PHMB for 21 days resulted in tissue necrosis and disturbed healing. Therefore, a follow-up comparative study investigated the best treatment course for antiseptic application ranging from 7 to 21 days, followed by the oxygenating chitosan-based MACF treatment for the remainder of the 21 days. Bacterial counts, tissue assessments, and lipidomics studies showed that 14 days of application of MACF-PHMB dressings followed by 7 days of MACF dressings provides a promising treatment for managing infected non-healing diabetic skin ulcers.
Collapse
Affiliation(s)
- Shahrzad Abri
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, USA.
| | - Hannah Durr
- Integrated Biosciences Program, Department of Biology, The University of Akron, Akron, Ohio 44325, USA
| | - Hazel A Barton
- Department of Geological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, USA
| | - Kayla Adkins-Travis
- Department of Chemistry, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | - Leah P Shriver
- Department of Chemistry, Washington University in Saint Louis, Saint Louis, MO 63130, USA
- Center for Proteomics, Metabolomics, and Isotope Tracing, Washington University in Saint Louis, Saint Louis, MO 63130, USA
- Department of Medicine, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | - Dipak D Pukale
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, USA.
| | - Judith A Fulton
- Summa Health System-Translational Research Center Akron, Akron, Ohio 44304, USA
- Northeast Ohio Medical University-REDIzone, Rootstown, Ohio 44272, USA
| | - Nic D Leipzig
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, USA.
- Integrated Biosciences Program, Department of Biology, The University of Akron, Akron, Ohio 44325, USA
| |
Collapse
|
69
|
Saberian M, Safari Roudsari R, Haghshenas N, Rousta A, Alizadeh S. How the combination of alginate and chitosan can fabricate a hydrogel with favorable properties for wound healing. Heliyon 2024; 10:e32040. [PMID: 38912439 PMCID: PMC11192993 DOI: 10.1016/j.heliyon.2024.e32040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
Wound management has always been a significant concern, particularly for men, and the search for effective wound dressings has led to the emergence of hydrogels as a promising solution. In recent years, hydrogels, with their unique properties, have gained considerable importance in wound management. Among the various types of hydrogels, those incorporating chitosan and alginate, two distinct chemical materials, have shown potential in accelerating wound healing. This review aims to discuss the desirable characteristics of an effective wound dressing, explore the alginate/chitosan-based hydrogels developed by different researchers, and analyze their effects on wound healing through in vitro and in vivo assessments. In vitro tests encompass a wide range of evaluations, including swelling capacity, degradation rate, porosity, Fourier Transform Infrared Spectroscopy, X-ray diffraction analysis, moisture vapor transmission rate, release studies, mechanical properties, microscopic observation, antibacterial properties, compatibility assessment, cell adhesion investigation, blood clotting capability, cell migration analysis, water contact angle determination, and structural stability. Furthermore, in vivo assessments encompass the examination of wound closure rate, modulation of gene expression, as well as histopathological and immunohistochemical studies.
Collapse
Affiliation(s)
- Mostafa Saberian
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Raha Safari Roudsari
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Haghshenas
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Rousta
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaban Alizadeh
- Department of Hematology and Blood Transfusion Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences. Tehran, Iran
| |
Collapse
|
70
|
Jin W, Shen S, Xu X, Xie X, Zhou X, Su X, Wu L, Wang S, Zhang L, Chen B, Yang F. All-in-one hydrogel patches with sprayed bFGF-loaded GelMA microspheres for infected wound healing studies. Int J Pharm 2024; 658:124205. [PMID: 38734278 DOI: 10.1016/j.ijpharm.2024.124205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
The current wound healing process faces numerous challenges such as bacterial infection, inflammation and oxidative stress. However, wound dressings used to promote wound healing, are not well suited to meet the clinical needs. Hyaluronic acid (HA) not only has excellent water absorption and good biocompatibility but facilitates cell function and tissue regeneration. Dopamine, on the other hand, increases the overall viscosity of the hydrogel and possesses antioxidant property. Furthermore, chitosan exhibits outstanding performance in antimicrobial, anti-inflammatory and antioxidant activities. Basic fibroblast growth factor (bFGF) is conducive to cell proliferation and migration, vascular regeneration and wound healing. Hence, we designed an all-in-one hydrogel patch containing dopamine and chitosan framed by hyaluronic acid (HDC) with sprayed gelatin methacryloyl (GelMA) microspheres loaded with bFGF (HDC-bFGF). The hydrogel patch exhibits excellent adhesive, anti-inflammatory, antioxidant and antibacterial properties. In vitro experiments, the HDC-bFGF hydrogel patch not only showed significant inhibitory effect on RAW cell inflammation and Staphylococcus aureus (S. aureus) growth but also effectively scavenged free radicals, in addition to promoting the migration of 3 T3 cells. In the mice acute infected wound model, the HDC-bFGF hydrogel patch adhered to the wound surface greatly accelerated the healing process via its anti-inflammatory and antioxidant activities, bacterial inhibition and pro-vascularization effects. Therefore, the multifunctional HDC-bFGF hydrogel patch holds great promise for clinical application.
Collapse
Affiliation(s)
- Wenzhang Jin
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Province Wenzhou 325000, PR China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310000, PR China
| | - Shuqi Shen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Xiaoniuyue Xu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Department of Hand Surgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Province Wenzhou 325000, PR China
| | - Xueting Xie
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Xingjian Zhou
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Xiang Su
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Province Wenzhou 325000, PR China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Lina Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Shunfu Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Lijiang Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Bicheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China.
| | - Fajing Yang
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Province Wenzhou 325000, PR China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China.
| |
Collapse
|
71
|
Fu X, Hu G, Abker AM, Oh DH, Ma M, Fu X. A Novel Food Bore Protein Hydrogel with Silver Ions for Promoting Burn Wound Healing. Macromol Biosci 2024; 24:e2300520. [PMID: 38412873 DOI: 10.1002/mabi.202300520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/31/2024] [Indexed: 02/29/2024]
Abstract
Hydrogels have emerged as a promising option for treating local scald wounds due to their unique physical and chemical properties. This study aims to evaluate the efficacy of ovalbumin/gelatin composite hydrogels in repairing deep II-degree scald wounds using a mouse dorsal skin model. Trauma tissues collected at various time points are analyzed for total protein content, hydroxyproline content, histological features, and expression of relevant markers. The results reveal that the hydrogel accelerates the healing process of scalded wounds, which is 17.27% higher than the control group. The hydrogel treatment also effectively prevents wound enlargement and redness of the edges caused by infection during the initial stage of scalding. The total protein and hydroxyproline content of the treated wounds are significantly elevated. Additionally, the hydrogel up-regulates the expression of VEGF (a crucial angiogenic factor) and down-regulates CD68 (a macrophage marker). In summary, this study provides valuable insights into the potential of multifunctional protein-based hydrogels in wound healing.
Collapse
Affiliation(s)
- Xiaowen Fu
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Gan Hu
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Adil M Abker
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
- Institute for Agro-Industries, Industrial Research and Consultancy Centre (IRCC), Khartoum, 400076, Sudan
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, 200701, South Korea
| | - Meihu Ma
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Xing Fu
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| |
Collapse
|
72
|
Zhang M, Li W, Yin L, Chen M, Zhang J, Li G, Zhao Y, Yang Y. Multifunctional double-network hydrogel with antibacterial and anti-inflammatory synergistic effects contributes to wound healing of bacterial infection. Int J Biol Macromol 2024; 271:132672. [PMID: 38810855 DOI: 10.1016/j.ijbiomac.2024.132672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
Wound infection not only hinders the time sequence of tissue repair, but also may lead to serious complications. Multifunctional wound dressings with biocompatibility, excellent mechanical properties and antibacterial properties can promote wound healing during skin infection and reduce the use of antibiotics. In this study, a multifunctional dual-network antibacterial hydrogel was constructed based on the electrostatic interaction of two polyelectrolytes, hydroxypropyl trimethyl ammonium chloride chitosan (HACC) and sodium alginate (SA). Attributing to the suitable physical crosslinking between HACC and SA, the hydrogel not only has good biocompatibility, mechanical property, but also has broad-spectrum antibacterial properties. In vivo results showed that the hydrogel could regulate M2 polarization, promote early vascular regeneration, and create a good microenvironment for wound healing. Therefore, this hydrogel is an effective multifunctional wound dressing. Consequently, we propose a novel hydrogel with combined elements to expedite the intricate repair of wound infection.
Collapse
Affiliation(s)
- Miao Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, PR China
| | - Wanhua Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, PR China
| | - Long Yin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, PR China
| | - Min Chen
- Medical School, Nantong University, Nantong 226001, PR China
| | - Jianye Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, PR China
| | - Guicai Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, PR China
| | - Yahong Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, PR China; Medical School, Nantong University, Nantong 226001, PR China.
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, PR China; Medical School, Nantong University, Nantong 226001, PR China.
| |
Collapse
|
73
|
Mahboubi Kancha M, Mehrabi M, Aghaie F, Bitaraf FS, Dehghani F, Bernkop-Schnürch A. Preparation and characterization of PVA/chitosan nanofibers loaded with Dragon's blood or poly helixan as wound dressings. Int J Biol Macromol 2024; 272:132844. [PMID: 38834119 DOI: 10.1016/j.ijbiomac.2024.132844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
Nanofibers have been investigated in regenerative medicine. Dragon's blood (DB)- and poly helixan PF (PHPF) are natural materials used in cosmetics. Herein, we generated DB- and PHPF-loaded polyvinyl alcohol/chitosan (PVA/CS/DB and PVA/CS/PHPF, respectively) nanofibers. PVA/CS/DB and PVA/CS/PHPF nanofibers had an average diameter of 547.5 ± 17.13 and 521 ± 24.67 nm, respectively as assessed by SEM, and a degradation rate of 43.1 and 47.6 % after 14 days, respectively. PVA/CS/DB and PVA/CS/PHPF nanofibers had a hemolysis rate of 0.10 and 0.39 %, respectively, and a water vapor transmission rate of ∼2200 g.m-2.day-1. These nanofibers exhibited favorable antimicrobial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis in vitro. PVA/CS/DB and PVA/CS/PHPF nanofibers demonstrated a sustained release of 77.91 and 76.55 % over 72 h. PVA/CS/DB and PVA/CS/PHPF nanofibers had a high rate of cytocompatibility and significantly improved the viability of NIH/3T3 cells as compared with free drugs or unloaded nanofibers. Histological inspection via H&E and Verhoeff's staining demonstrated PVA/CS/DB and PVA/CS/PHPF nanofibers enhanced the wound healing and damaged tissue recovery of unsplinted wound models by promoting epithelial layer formation, collagen deposition, and enhancing the presence of fibroblasts. Conclusively, PVA/CS/DB and PVA/CS/PHPF can be introduced as potential wound dressing candidates with favorable properties.
Collapse
Affiliation(s)
- Maral Mahboubi Kancha
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Faeze Aghaie
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Fatemeh Sadat Bitaraf
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Farzaneh Dehghani
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innsbruck 6020, Austria
| |
Collapse
|
74
|
Mishra A, Kushare A, Gupta MN, Ambre P. Advanced Dressings for Chronic Wound Management. ACS APPLIED BIO MATERIALS 2024; 7:2660-2676. [PMID: 38723276 DOI: 10.1021/acsabm.4c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Wound healing, particularly for chronic wounds, presents a considerable difficulty due to differences in biochemical and cellular processes that occur in different types of wounds. Recent technological breakthroughs have notably advanced the understanding of diagnostic and therapeutic approaches to wound healing. The evolution in wound care has seen a transition from traditional textile dressings to a variety of advanced alternatives, including self-healing hydrogels, hydrofibers, foams, hydrocolloids, environment responsive dressings, growth factor-based therapy, bioengineered skin substitutes, and stem cell and gene therapy. Technological advancements, such as 3D printing and electronic skin (e-skin) therapy, contribute to the customization of wound healing. Despite these advancements, effectively managing chronic wounds remains challenging. This necessitates the development of treatments that consider performance, risk-benefit balance, and cost-effectiveness. This review discusses innovative strategies for the healing of chronic wounds. Incorporating biomarkers into advanced dressings, coupled with corresponding biosensors and drug delivery formulations, enables the theranostic approach to the treatment of chronic wounds. Furthermore, integrating advanced dressings with power sources and user interfaces like near-field communication, radio frequency identification, and Bluetooth enhances real-time monitoring and on-demand drug delivery. It also provides a thorough evaluation of the advantages, patient compliance, costs, and durability of advanced dressings, emphasizing smart formulations and their preparation methods.
Collapse
Affiliation(s)
- Abhishek Mishra
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai 400098, India
| | - Aniket Kushare
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai 400098, India
| | - Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi 110016, India
| | - Premlata Ambre
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai 400098, India
| |
Collapse
|
75
|
Hu Y, Yu L, Dai Q, Hu X, Shen Y. Multifunctional antibacterial hydrogels for chronic wound management. Biomater Sci 2024; 12:2460-2479. [PMID: 38578143 DOI: 10.1039/d4bm00155a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Chronic wounds have gradually evolved into a global health challenge, comprising long-term non-healing wounds, local tissue necrosis, and even amputation in severe cases. Accordingly, chronic wounds place a considerable psychological and economic burden on patients and society. Chronic wounds have multifaceted pathogenesis involving excessive inflammation, insufficient angiogenesis, and elevated reactive oxygen species levels, with bacterial infection playing a crucial role. Hydrogels, renowned for their excellent biocompatibility, moisture retention, swelling properties, and oxygen permeability, have emerged as promising wound repair dressings. However, hydrogels with singular functions fall short of addressing the complex requirements associated with chronic wound healing. Hence, current research emphasises the development of multifunctional antibacterial hydrogels. This article reviews chronic wound characteristics and the properties and classification of antibacterial hydrogels, as well as their potential application in chronic wound management.
Collapse
Affiliation(s)
- Yungang Hu
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Lu Yu
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Qiang Dai
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Xiaohua Hu
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Yuming Shen
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| |
Collapse
|
76
|
Bîrcă AC, Gherasim O, Niculescu AG, Grumezescu AM, Vasile BȘ, Mihaiescu DE, Neacșu IA, Andronescu E, Trușcă R, Holban AM, Hudiță A, Croitoru GA. Infection-Free and Enhanced Wound Healing Potential of Alginate Gels Incorporating Silver and Tannylated Calcium Peroxide Nanoparticles. Int J Mol Sci 2024; 25:5196. [PMID: 38791232 PMCID: PMC11120750 DOI: 10.3390/ijms25105196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
The treatment of chronic wounds involves precise requirements and complex challenges, as the healing process cannot go beyond the inflammatory phase, therefore increasing the healing time and implying a higher risk of opportunistic infection. Following a better understanding of the healing process, oxygen supply has been validated as a therapeutic approach to improve and speed up wound healing. Moreover, the local implications of antimicrobial agents (such as silver-based nano-compounds) significantly support the normal healing process, by combating bacterial contamination and colonization. In this study, silver (S) and tannylated calcium peroxide (CaO2@TA) nanoparticles were obtained by adapted microfluidic and precipitation synthesis methods, respectively. After complementary physicochemical evaluation, both types of nanoparticles were loaded in (Alg) alginate-based gels that were further evaluated as possible dressings for wound healing. The obtained composites showed a porous structure and uniform distribution of nanoparticles through the polymeric matrix (evidenced by spectrophotometric analysis and electron microscopy studies), together with a good swelling capacity. The as-proposed gel dressings exhibited a constant and suitable concentration of released oxygen, as shown for up to eight hours (UV-Vis investigation). The biofilm modulation data indicated a synergistic antimicrobial effect between silver and tannylated calcium peroxide nanoparticles, with a prominent inhibitory action against the Gram-positive bacterial biofilm after 48 h. Beneficial effects in the human keratinocytes cultured in contact with the obtained materials were demonstrated by the performed tests, such as MTT, LDH, and NO.
Collapse
Affiliation(s)
- Alexandra Catalina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
- Center for Advanced Research on New Materials, Products and Innovative Processes—CAMPUS Research Institute, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania
| | - Oana Gherasim
- Lasers Department, National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Romania;
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.M.H.); (A.H.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.M.H.); (A.H.)
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
| | - Dan Eduard Mihaiescu
- Department of Organic Chemistry, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania;
| | - Ionela Andreea Neacșu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
| | - Roxana Trușcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
| | - Alina Maria Holban
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.M.H.); (A.H.)
- Department of Microbiology and Immunology, University of Bucharest, 077206 Bucharest, Romania
| | - Ariana Hudiță
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.M.H.); (A.H.)
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
| | - George-Alexandru Croitoru
- Department II, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania;
| |
Collapse
|
77
|
Alves P, Luzio D, de Sá K, Correia I, Ferreira P. Preparation of Gel Forming Polymer-Based Sprays for First Aid Care of Skin Injuries. Gels 2024; 10:297. [PMID: 38786214 PMCID: PMC11121244 DOI: 10.3390/gels10050297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Currently, there are several types of materials for the treatment of wounds, burns, and other topical injuries available on the market. The most used are gauzes and compresses due to their fluid absorption capacity; however, these materials adhere to the surface of the lesions, which can lead to further bleeding and tissue damage upon removal. In the present study, the development of a polymer-based gel that can be applied as a spray provides a new vision in injury protection, respecting the requirements of safety, ease, and quickness of both applicability and removal. The following polymeric sprays were developed to further obtain gels based on different polymers: hydroxypropyl cellulose (HPC), polyvinyl pyrrolidone (PVP) and hydroxypropyl methylcellulose (HPMC) using polyethylene glycol (PEG) as a plasticizer. The developed sprays revealed suitable properties for use in topical injuries. A protective film was obtained when sprayed on a surface through a casting mechanism. The obtained films adhered to the surface of biological tissue (pig muscle), turning into a gel when the exudate was absorbed, and proved to be washable with saline solution and contribute to the clotting process. Moreover, biocompatibility results showed that all materials were biocompatible, as cell viability was over 90% for all the materials.
Collapse
Affiliation(s)
- Patrícia Alves
- Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal; (P.A.); (D.L.); (I.C.)
| | - Diana Luzio
- Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal; (P.A.); (D.L.); (I.C.)
| | - Kevin de Sá
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilha, Portugal;
| | - Ilídio Correia
- Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal; (P.A.); (D.L.); (I.C.)
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilha, Portugal;
| | - Paula Ferreira
- Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal; (P.A.); (D.L.); (I.C.)
- Applied Research Institute, Polytechnic Institute of Coimbra, Rua da Misericórdia, Lagar dos Cortiços—S. Martinho do Bispo, 3045-093 Coimbra, Portugal
- Research Centre for Natural Resources, Environment and Society (CERNAS), Polytechnic Institute of Coimbra, 3045-601 Coimbra, Portugal
| |
Collapse
|
78
|
Li Z, Song P, Li G, Han Y, Ren X, Bai L, Su J. AI energized hydrogel design, optimization and application in biomedicine. Mater Today Bio 2024; 25:101014. [PMID: 38464497 PMCID: PMC10924066 DOI: 10.1016/j.mtbio.2024.101014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024] Open
Abstract
Traditional hydrogel design and optimization methods usually rely on repeated experiments, which is time-consuming and expensive, resulting in a slow-moving of advanced hydrogel development. With the rapid development of artificial intelligence (AI) technology and increasing material data, AI-energized design and optimization of hydrogels for biomedical applications has emerged as a revolutionary breakthrough in materials science. This review begins by outlining the history of AI and the potential advantages of using AI in the design and optimization of hydrogels, such as prediction and optimization of properties, multi-attribute optimization, high-throughput screening, automated material discovery, optimizing experimental design, and etc. Then, we focus on the various applications of hydrogels supported by AI technology in biomedicine, including drug delivery, bio-inks for advanced manufacturing, tissue repair, and biosensors, so as to provide a clear and comprehensive understanding of researchers in this field. Finally, we discuss the future directions and prospects, and provide a new perspective for the research and development of novel hydrogel materials for biomedical applications.
Collapse
Affiliation(s)
- Zuhao Li
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Peiran Song
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Guangfeng Li
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Yafei Han
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Xiaoxiang Ren
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
79
|
Sanjarnia P, Picchio ML, Polegre Solis AN, Schuhladen K, Fliss PM, Politakos N, Metterhausen L, Calderón M, Osorio-Blanco ER. Bringing innovative wound care polymer materials to the market: Challenges, developments, and new trends. Adv Drug Deliv Rev 2024; 207:115217. [PMID: 38423362 DOI: 10.1016/j.addr.2024.115217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/24/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
The development of innovative products for treating acute and chronic wounds has become a significant topic in healthcare, resulting in numerous products and innovations over time. The growing number of patients with comorbidities and chronic diseases, which may significantly alter, delay, or inhibit normal wound healing, has introduced considerable new challenges into the wound management scenario. Researchers in academia have quickly identified promising solutions, and many advanced wound healing materials have recently been designed; however, their successful translation to the market remains highly complex and unlikely without the contribution of industry experts. This review article condenses the main aspects of wound healing applications that will serve as a practical guide for researchers working in academia and industry devoted to designing, evaluating, validating, and translating polymer wound care materials to the market. The article highlights the current challenges in wound management, describes the state-of-the-art products already on the market and trending polymer materials, describes the regulation pathways for approval, discusses current wound healing models, and offers a perspective on new technologies that could soon reach consumers. We envision that this comprehensive review will significantly contribute to highlighting the importance of networking and exchanges between academia and healthcare companies. Only through the joint of these two actors, where innovation, manufacturing, regulatory insights, and financial resources act in harmony, can wound care products be developed efficiently to reach patients quickly and affordably.
Collapse
Affiliation(s)
- Pegah Sanjarnia
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Matías L Picchio
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain; Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CONICET, Güemes 3450, Santa Fe 3000, Argentina
| | - Agustin N Polegre Solis
- Beiersdorf AG, Research & Development Department, Beiersdorfstraße 1-9, 22529 Hamburg, Germany
| | - Katharina Schuhladen
- Beiersdorf AG, Research & Development Department, Beiersdorfstraße 1-9, 22529 Hamburg, Germany
| | - Patricia M Fliss
- Beiersdorf AG, Research & Development Department, Beiersdorfstraße 1-9, 22529 Hamburg, Germany
| | - Nikolaos Politakos
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Lutz Metterhausen
- Beiersdorf AG, Research & Development Department, Beiersdorfstraße 1-9, 22529 Hamburg, Germany
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Ernesto R Osorio-Blanco
- Beiersdorf AG, Research & Development Department, Beiersdorfstraße 1-9, 22529 Hamburg, Germany.
| |
Collapse
|
80
|
Anas Z, Hasan SFS, Moiz MA, Zuberi MAW, Shah HH, Ejaz A, Dave T, Panjwani MH, Rauf SA, Hussain MS, Waseem R. The role of hydrogels in the management of brain tumours: a narrative review. Ann Med Surg (Lond) 2024; 86:2004-2010. [PMID: 38576913 PMCID: PMC10990399 DOI: 10.1097/ms9.0000000000001809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/29/2024] [Indexed: 04/06/2024] Open
Abstract
Conventional therapeutic techniques for brain tumours have limitations and side effects, necessitating the need for alternative treatment options. MRI-monitored therapeutic hydrogel systems show potential as a non-surgical approach for brain tumour treatment. Hydrogels have unique physical and chemical properties that make them promising for brain tumour treatment, including the ability to encapsulate therapeutic agents, provide sustained and controlled drug release, and overcome the blood-brain barrier for better penetration. By combining hydrogel systems with MRI techniques, it is possible to develop therapeutic approaches that provide real-time monitoring and controlled release of therapeutic agents. Surgical resection remains important, but there is a growing need for alternative approaches that can complement or replace traditional methods. The objective of this comprehensive narrative review is to evaluate the potential of MRI-monitored therapeutic hydrogel systems in non-surgical brain tumour treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tirth Dave
- Bukovinian State Medical University, Chernivtsi, Ukraine
| | | | | | | | | |
Collapse
|
81
|
Olteanu G, Neacșu SM, Joița FA, Musuc AM, Lupu EC, Ioniță-Mîndrican CB, Lupuliasa D, Mititelu M. Advancements in Regenerative Hydrogels in Skin Wound Treatment: A Comprehensive Review. Int J Mol Sci 2024; 25:3849. [PMID: 38612660 PMCID: PMC11012090 DOI: 10.3390/ijms25073849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
This state-of-the-art review explores the emerging field of regenerative hydrogels and their profound impact on the treatment of skin wounds. Regenerative hydrogels, composed mainly of water-absorbing polymers, have garnered attention in wound healing, particularly for skin wounds. Their unique properties make them well suited for tissue regeneration. Notable benefits include excellent water retention, creating a crucially moist wound environment for optimal healing, and facilitating cell migration, and proliferation. Biocompatibility is a key feature, minimizing adverse reactions and promoting the natural healing process. Acting as a supportive scaffold for cell growth, hydrogels mimic the extracellular matrix, aiding the attachment and proliferation of cells like fibroblasts and keratinocytes. Engineered for controlled drug release, hydrogels enhance wound healing by promoting angiogenesis, reducing inflammation, and preventing infection. The demonstrated acceleration of the wound healing process, particularly beneficial for chronic or impaired healing wounds, adds to their appeal. Easy application and conformity to various wound shapes make hydrogels practical, including in irregular or challenging areas. Scar minimization through tissue regeneration is crucial, especially in cosmetic and functional regions. Hydrogels contribute to pain management by creating a protective barrier, reducing friction, and fostering a soothing environment. Some hydrogels, with inherent antimicrobial properties, aid in infection prevention, which is a crucial aspect of successful wound healing. Their flexibility and ability to conform to wound contours ensure optimal tissue contact, enhancing overall treatment effectiveness. In summary, regenerative hydrogels present a promising approach for improving skin wound healing outcomes across diverse clinical scenarios. This review provides a comprehensive analysis of the benefits, mechanisms, and challenges associated with the use of regenerative hydrogels in the treatment of skin wounds. In this review, the authors likely delve into the application of rational design principles to enhance the efficacy and performance of hydrogels in promoting wound healing. Through an exploration of various methodologies and approaches, this paper is poised to highlight how these principles have been instrumental in refining the design of hydrogels, potentially revolutionizing their therapeutic potential in addressing skin wounds. By synthesizing current knowledge and highlighting potential avenues for future research, this review aims to contribute to the advancement of regenerative medicine and ultimately improve clinical outcomes for patients with skin wounds.
Collapse
Affiliation(s)
- Gabriel Olteanu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (G.O.); (M.M.)
| | - Sorinel Marius Neacșu
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | - Florin Alexandru Joița
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | | | - Elena Carmen Lupu
- Department of Mathematics and Informatics, Faculty of Pharmacy, “Ovidius” University of Constanta, 900001 Constanta, Romania;
| | - Corina-Bianca Ioniță-Mîndrican
- Department of Toxicology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania;
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (G.O.); (M.M.)
| |
Collapse
|
82
|
Toufanian S, Mohammed J, Winterhelt E, Lofts A, Dave R, Coombes BK, Hoare T. A Nanocomposite Dynamic Covalent Cross-Linked Hydrogel Loaded with Fusidic Acid for Treating Antibiotic-Resistant Infected Wounds. ACS APPLIED BIO MATERIALS 2024; 7:1947-1957. [PMID: 38394042 DOI: 10.1021/acsabm.3c01293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is associated with high levels of morbidity and is considered a difficult-to-treat infection, often requiring nonstandard treatment regimens and antibiotics. Since over 40% of the emerging antibiotic compounds have insufficient solubility that limits their bioavailability and thus efficacy through oral or intravenous administration, it is crucial that alternative drug delivery products be developed for wound care applications. Existing effective treatments for soft tissue MRSA infections, such as fusidic acid (FA), which is typically administered orally, could also benefit from alternative routes of administration to improve local efficacy and bioavailability while reducing the required therapeutic dose. Herein, we report an antimicrobial poly(oligoethylene glycol methacrylate) (POEGMA)-based composite hydrogel loaded with fusidic acid-encapsulating self-assembled polylactic acid-b-poly(oligo(ethylene glycol) methyl ether methacrylate) (PLA-POEGMA) nanoparticles for the treatment of MRSA-infected skin wounds. The inclusion of the self-assembled nanoparticles (380 nm diameter when loaded with fusidic acid) does not alter the favorable mechanical properties and stability of the hydrogel in the context of its use as a wound dressing, while fusidic acid (FA) can be released from the hydrogel over ∼10 h via a diffusion-controlled mechanism. The antimicrobial studies demonstrate a clear zone of inhibition in vitro and a 1-2 order of magnitude inhibition of bacterial growth in vivo in an MRSA-infected full-thickness excisional murine wound model even at very low antibiotic doses. Our approach thus can both circumvent challenges in the local delivery of hydrophobic antimicrobial compounds and directly deliver antimicrobials into the wound to effectively combat methicillin-resistant infections using a fraction of the drug dose required using other clinically relevant strategies.
Collapse
Affiliation(s)
- Samaneh Toufanian
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Jody Mohammed
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Erica Winterhelt
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Andrew Lofts
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Ridhdhi Dave
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Brian K Coombes
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
83
|
Gou D, Qiu P, Wang Y, Hong F, Ren P, Cheng X, Wang L, Dou X, Liu T, Liu J, Zhang L, Zhao J. Multifunctional chitosan-based hydrogel wound dressing loaded with Acanthopanax senticosus and Osmundastrum cinnamomeum: Preparation, characterization and coagulation mechanism. J Mech Behav Biomed Mater 2024; 151:106384. [PMID: 38242071 DOI: 10.1016/j.jmbbm.2024.106384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/21/2024]
Abstract
Considerable potential exists for the development of natural polymer hydrogels that possess notable antibacterial and anti-inflammatory properties, along with excellent biocompatibility and mechanical attributes, to expedite the healing of skin wounds. Recent endeavors have focused on formulating an optimal hydrogel dressing for wound hemostasis and repair. In this pursuit, we have crafted a composite hydrogel using carboxymethyl chitosan and alginic acid, cross-linked with EDC/NHS, and enriched with extracts from Acanthopanax senticosus and Osmundastrum cinnamomeum. This synthesized hydrogel showcases commendable features, including significant swelling capacity (135 ± 3.6%), proficient water retention (94.421 ± 0.154%), and effective water vapor permeability (5845.011 ± 467.799 g/m2/d). Moreover, our drug-loaded hydrogels (CMCS/SA/AS/OC) have demonstrated remarkable efficacy in accelerating wound healing in both in vivo and in vitro models. On the 7th day, the wound healing rate reached 94.905% ± 0.498%, and by the 14th day, the wound was nearly fully healed (98.08% ± 0.323%) with the emergence of hair coverage. Furthermore, these hydrogels exhibited remarkable hemostatic properties, the platelet activity was 89.37% ± 1.29% and the platelet adhesion rate was 66.36% ± 1.42%. In order to elucidate the coagulation mechanism of the Acanthopanax senticosus and Osmundastrum cinnamomeum extracts, a network pharmacology approach was carried out. 41 active compounds and 107 potential therapeutic targets associated with these extracts were identified, revealing a total of 132 coagulation pathways. Platelet activation and complement and coagulation cascades pathways showed the highest levels of enrichment by KEGG analysis, serving as potential mechanisms through which the active components in AS/OC may facilitate coagulation by targeting relevant factors. In summary, our study has successfully developed an innovative drug-loaded hydrogel that not only enhances wound hemostasis and healing but also provides insights into the underlying mechanisms through network pharmacology. This work establishes a robust theoretical foundation for the medical application of our hydrogel.
Collapse
Affiliation(s)
- Dongxia Gou
- College of Food Science and Engineering, Changchun University, Changchun, 130022, China
| | - Peng Qiu
- College of Food Science and Engineering, Changchun University, Changchun, 130022, China
| | - Yufan Wang
- College of Food Science and Engineering, Changchun University, Changchun, 130022, China
| | - Fandi Hong
- College of Food Science and Engineering, Changchun University, Changchun, 130022, China
| | - Peirou Ren
- College of Food Science and Engineering, Changchun University, Changchun, 130022, China
| | - Xiaowen Cheng
- College of Food Science and Engineering, Changchun University, Changchun, 130022, China
| | - Lei Wang
- College of Food Science and Engineering, Changchun University, Changchun, 130022, China
| | - Xin Dou
- College of Food Science and Engineering, Changchun University, Changchun, 130022, China
| | - Tong Liu
- College of Food Science and Engineering, Changchun University, Changchun, 130022, China
| | - Jiaxin Liu
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, 130103, China
| | - Lihong Zhang
- College of Food Science and Engineering, Changchun University, Changchun, 130022, China
| | - Jun Zhao
- College of Food Science and Engineering, Changchun University, Changchun, 130022, China.
| |
Collapse
|
84
|
Wang X, Zhang Y, Song A, Wang H, Wu Y, Chang W, Tian B, Xu J, Dai H, Ma Q, Wang C, Zhou X. A Printable Hydrogel Loaded with Medicinal Plant Extract for Promoting Wound Healing. Adv Healthc Mater 2024; 13:e2303017. [PMID: 38273733 DOI: 10.1002/adhm.202303017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/16/2024] [Indexed: 01/27/2024]
Abstract
How to promote wound healing is still a major challenge in the healthcare while macrophages are a critical component of the healing process. Compared to various bioactive drugs, many plants have been reported to facilitate the wound healing process by regulating the immune response of wounds. In this work, a Three-dimensional (3D) printed hydrogel scaffold loaded with natural Centella asiatica extract (CA extract) is developed for wound healing. This CA@3D scaffold uses gelatin (Gel) and sodium alginate (SA) with CA extract as bio-ink for 3D printing. The CA extract contains a variety of bioactive compounds that make the various active ingredients in Centella asiatica work in concert. The printed CA@3D scaffold can fit the shape of wound, orchestrate the macrophages and immune responses within the wound, and promote wound healing compared to commercial wound dressings. The underlying mechanism of promoting wound healing is also illuminated by applying multi-omic analyses. Moreover, the CA extract loaded 3D scaffold also showed great ability to promote wound healing in diabetic chronic wounds. Due to its ease of preparation, low-cost, biosafety, and therapeutic outcomes, this work proposes an effective strategy for promoting chronic wound healing.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yue Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Anning Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Heng Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yi Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Wenju Chang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215123, China
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233004, China
| | - Bo Tian
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jialu Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Huaxing Dai
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Qingle Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xiaozhong Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
85
|
Feng K, Tang J, Qiu R, Wang B, Wang J, Hu W. Fabrication of a core-shell nanofibrous wound dressing with an antioxidant effect on skin injury. J Mater Chem B 2024; 12:2384-2393. [PMID: 38349135 DOI: 10.1039/d3tb02911e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Oxidative stress is one of the obstacles preventing wound regeneration, especially for chronic wounds. Herein, designing a wound dressing with an anti-oxidant function holds great appeal for enhancing wound regeneration. In this study, a biocompatible and degradable nanofiber with a core-shell structure was fabricated via coaxial electrospinning, in which polycaprolactone (PCL) was applied as the core structure, while the shell was composed of a mixture of silk fibroin (SF) and tocopherol acetate (TA). The electrospun PST nanofibers were proven to have a network structure with significantly enhanced mechanical properties. The PSTs exhibited a diameter distribution with an average of 321 ± 134 nm, and the water contact angle of their surface is 124 ± 2°. The PSTs also exhibited good tissue compatibility, which can promote the adhesion and proliferation of L929 cells. Besides, the dissolution of silk fibroin encourages the release of TA, which could play a synergistic effect and regulate the oxidative stress effect in the damaged area, for it promotes the adhesion and proliferation of skin fibroblasts (L929), reduces the cytotoxicity of hydrogen peroxide to cells, and lowers the level of reactive oxygen species. The animal experiment indicated that the PSTs would promote the reconstruction of skin. These nanofibers are expected to repair skin ulcers related to diabetes.
Collapse
Affiliation(s)
- Kexin Feng
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jinlan Tang
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Ruiyang Qiu
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Bin Wang
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, 518038, China.
| | - Jianglin Wang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Weikang Hu
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
86
|
Kammona O, Tsanaktsidou E, Kiparissides C. Recent Developments in 3D-(Bio)printed Hydrogels as Wound Dressings. Gels 2024; 10:147. [PMID: 38391477 PMCID: PMC10887944 DOI: 10.3390/gels10020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 02/24/2024] Open
Abstract
Wound healing is a physiological process occurring after the onset of a skin lesion aiming to reconstruct the dermal barrier between the external environment and the body. Depending on the nature and duration of the healing process, wounds are classified as acute (e.g., trauma, surgical wounds) and chronic (e.g., diabetic ulcers) wounds. The latter take several months to heal or do not heal (non-healing chronic wounds), are usually prone to microbial infection and represent an important source of morbidity since they affect millions of people worldwide. Typical wound treatments comprise surgical (e.g., debridement, skin grafts/flaps) and non-surgical (e.g., topical formulations, wound dressings) methods. Modern experimental approaches include among others three dimensional (3D)-(bio)printed wound dressings. The present paper reviews recently developed 3D (bio)printed hydrogels for wound healing applications, especially focusing on the results of their in vitro and in vivo assessment. The advanced hydrogel constructs were printed using different types of bioinks (e.g., natural and/or synthetic polymers and their mixtures with biological materials) and printing methods (e.g., extrusion, digital light processing, coaxial microfluidic bioprinting, etc.) and incorporated various bioactive agents (e.g., growth factors, antibiotics, antibacterial agents, nanoparticles, etc.) and/or cells (e.g., dermal fibroblasts, keratinocytes, mesenchymal stem cells, endothelial cells, etc.).
Collapse
Affiliation(s)
- Olga Kammona
- Chemical Process & Energy Resources Research Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece
| | - Evgenia Tsanaktsidou
- Chemical Process & Energy Resources Research Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece
| | - Costas Kiparissides
- Chemical Process & Energy Resources Research Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece
- Department of Chemical Engineering, Aristotle University of Thessaloniki, P.O. Box 472, 54124 Thessaloniki, Greece
| |
Collapse
|
87
|
Abu Bakar N, Mydin RBSMN, Yusop N, Matmin J, Ghazalli NF. Understanding the ideal wound healing mechanistic behavior using in silico modelling perspectives: A review. J Tissue Viability 2024; 33:104-115. [PMID: 38092620 DOI: 10.1016/j.jtv.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 03/17/2024]
Abstract
Complexity of the entire body precludes an accurate assessment of the specific contributions of tissues or cells during the healing process, which might be expensive and time consuming. Because of this, controlling the wound's size, depth, and dimensions may be challenging, and there is not yet an efficient and reliable chronic wound model representation. Furthermore, given the inherent challenges associated with conducting non-invasive in vivo investigations, it becomes peremptory to explore alternative methodologies for studying wound healing. In this context, biologically-realistic mathematical and computational models emerge as a valuable framework that can effectively address this need. Therefore, it might improve our approach to understanding the process at its core. This article will examines all facets of wound healing, including the kinds, pathways, and most current developments in wound treatment worldwide, particularly in silico modelling utilizing both mathematical and structure-based modelling techniques. It may be helpful to identify the crucial traits through the feedback loop of computer models and experimental investigations in order to build innovative therapies to cure wounds. Hence the effectiveness of personalised medicine and more targeted therapy in the healing of wounds may be enhanced by this interdisciplinary expertise.
Collapse
Affiliation(s)
- Norshamiza Abu Bakar
- School of Dental Sciences, Universiti Sains Malaysia, 16150, Kota Bharu, Kelantan, Malaysia
| | - Rabiatul Basria S M N Mydin
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Bertam, Kepala Batas, Pulau Pinang, Malaysia
| | - Norhayati Yusop
- Basic and Medical Sciences Department, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Juan Matmin
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Malaysia
| | - Nur Fatiha Ghazalli
- Basic and Medical Sciences Department, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.
| |
Collapse
|
88
|
Ding C, Liu X, Zhang S, Sun S, Yang J, Chai G, Wang N, Ma S, Ding Q, Liu W. Multifunctional hydrogel bioscaffolds based on polysaccharide to promote wound healing: A review. Int J Biol Macromol 2024; 259:129356. [PMID: 38218300 DOI: 10.1016/j.ijbiomac.2024.129356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/24/2023] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
Various types of skin wounds pose challenges in terms of healing and susceptibility to infection, which can have a significant impact on physical and mental well-being, and in severe cases, may result in amputation. Conventional wound dressings often fail to provide optimal support for these wounds, thereby impeding the healing process. As a result, there has been considerable interest in the development of multifunctional polymer matrix hydrogel scaffolds for wound healing. This review offers a comprehensive review of the characteristics of polysaccharide-based hydrogel scaffolds, as well as their applications in different types of wounds. Additionally, it evaluates the advantages and disadvantages associated with various types of multifunctional polymer and polysaccharide-based hydrogel scaffolds. The objective is to provide a theoretical foundation for the utilization of multifunctional hydrogel scaffolds in promoting wound healing.
Collapse
Affiliation(s)
- Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Xinglong Liu
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Shuai Zhang
- Jilin Agricultural University, Changchun 130118, China
| | - Shuwen Sun
- Jilin Agricultural University, Changchun 130118, China
| | - Jiali Yang
- Jilin Agricultural University, Changchun 130118, China
| | - Guodong Chai
- Jilin Agricultural University, Changchun 130118, China
| | - Ning Wang
- Jilin Agricultural University, Changchun 130118, China
| | - Shuang Ma
- Jilin Agricultural University, Changchun 130118, China
| | - Qiteng Ding
- Jilin Agricultural University, Changchun 130118, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, China.
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China.
| |
Collapse
|
89
|
Paula CTB, Leandro A, Pereira P, Coelho JFJ, Fonseca AC, Serra AC. Fast-Gelling Polyethylene Glycol/Polyethyleneimine Hydrogels Degradable by Visible-Light. Macromol Biosci 2024; 24:e2300289. [PMID: 37717210 DOI: 10.1002/mabi.202300289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/12/2023] [Indexed: 09/18/2023]
Abstract
The treatment of burn wounds remains a clinical challenge due to the need for repeated dressings changes. Therefore, the development of a dressing system that can be atraumatically removed from the wound bed can be considered a breakthrough and improve treatment times. In this work, the development of an injectable, fast-gelling hydrogel is proposed that can change its mechanical properties when exposed to visible light. The hydrogels are prepared by a "click" amino-yne reaction between poly(ethylene glycol) (PEG) functionalized with propiolic acid and the amino groups of poly(ethyleneimine) (PEI). The hydrogels exhibit a fast gelation time, which can be adjusted by changing the weight percentage and molecular weight of the precursors. They also exhibit good swelling ability and adhesion to living tissues. More importantly, their mechanical properties changed upon irradiation with green light. This loss of properties is achieved by a 1 O2 -mediated mechanism, as confirmed by the degradation of the β-aminoacrylate linker. Moreover, the in vitro cell compatibility results of the hydrogels and their degradation products show good cytocompatibility. Therefore, it is believed that these hydrogels can be considered as materials with great potential for an innovative strategy for the treatment of burn wounds.
Collapse
Affiliation(s)
- Carlos T B Paula
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, 3030-790, Portugal
- IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, Coimbra, 3030-199, Portugal
| | - Ana Leandro
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, 3030-790, Portugal
| | - Patrícia Pereira
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, 3030-790, Portugal
- IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, Coimbra, 3030-199, Portugal
| | - Jorge F J Coelho
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, 3030-790, Portugal
- IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, Coimbra, 3030-199, Portugal
| | - Ana C Fonseca
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, 3030-790, Portugal
| | - Arménio C Serra
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, 3030-790, Portugal
| |
Collapse
|
90
|
Che X, Zhao T, Hu J, Yang K, Ma N, Li A, Sun Q, Ding C, Ding Q. Application of Chitosan-Based Hydrogel in Promoting Wound Healing: A Review. Polymers (Basel) 2024; 16:344. [PMID: 38337233 DOI: 10.3390/polym16030344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/14/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Chitosan is a linear polyelectrolyte with active hydroxyl and amino groups that can be made into chitosan-based hydrogels by different cross-linking methods. Chitosan-based hydrogels also have a three-dimensional network of hydrogels, which can accommodate a large number of aqueous solvents and biofluids. CS, as an ideal drug-carrying material, can effectively encapsulate and protect drugs and has the advantages of being nontoxic, biocompatible, and biodegradable. These advantages make it an ideal material for the preparation of functional hydrogels that can act as wound dressings for skin injuries. This review reports the role of chitosan-based hydrogels in promoting skin repair in the context of the mechanisms involved in skin injury repair. Chitosan-based hydrogels were found to promote skin repair at different process stages. Various functional chitosan-based hydrogels are also discussed.
Collapse
Affiliation(s)
- Xueyan Che
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin City 132101, China
| | - Ting Zhao
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin City 132101, China
| | - Jing Hu
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin City 132101, China
| | - Kaicheng Yang
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin City 132101, China
| | - Nan Ma
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin City 132101, China
| | - Anning Li
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd., Dunhua 133000, China
| | - Qi Sun
- Jilin Zhengrong Pharmaceutical Development Co., Ltd., Dunhua 133700, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin City 132101, China
| | - Qiteng Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
91
|
Mc Larney B, Sonay A, Apfelbaum E, Mostafa N, Monette S, Goerzen D, Aguirre N, Isaac E, Phung N, Skubal M, Kim M, Ogirala A, Veach D, Heller D, Grimm J. A pan-cancer agent for screening, resection and wound monitoring via NIR and SWIR imaging. RESEARCH SQUARE 2024:rs.3.rs-3879635. [PMID: 38343820 PMCID: PMC10854300 DOI: 10.21203/rs.3.rs-3879635/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Fluorescence guided surgery (FGS) facilitates real time tumor delineation and is being rapidly established clinically. FGS efficacy is tied to the utilized dye and provided tumor contrast over healthy tissue. Apoptosis, a cancer hallmark, is a desirable target for tumor delineation. Here, we preclinically in vitro and in vivo, validate an apoptosis sensitive commercial carbocyanine dye (CJ215), with absorption and emission spectra suitable for near infrared (NIR, 650-900nm) and shortwave infrared (SWIR, 900-1700nm) fluorescence imaging (NIRFI, SWIRFI). High contrast SWIRFI for solid tumor delineation is demonstrated in multiple murine and human models including breast, prostate, colon, fibrosarcoma and intraperitoneal colorectal metastasis. Organ necropsy and imaging highlighted renal clearance of CJ215. SWIRFI and CJ215 delineated all tumors under ambient lighting with a tumor-to-muscle ratio up to 100 and tumor-to-liver ratio up to 18, from 24 to 168 h post intravenous injection with minimal uptake in healthy organs. Additionally, SWIRFI and CJ215 achieved non-contact quantifiable wound monitoring through commercial bandages. CJ215 provides tumor screening, guided resection, and wound healing assessment compatible with existing and emerging clinical solutions.
Collapse
Affiliation(s)
| | - Ali Sonay
- Memorial Sloan Kettering Cancer Center
| | | | | | | | | | | | | | | | | | - Mijin Kim
- Memorial Sloan Kettering Cancer Center
| | | | | | | | - Jan Grimm
- Memorial Sloan Kettering Cancer Center
| |
Collapse
|
92
|
Patenall BL, Carter KA, Ramsey MR. Kick-Starting Wound Healing: A Review of Pro-Healing Drugs. Int J Mol Sci 2024; 25:1304. [PMID: 38279304 PMCID: PMC10816820 DOI: 10.3390/ijms25021304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/28/2024] Open
Abstract
Cutaneous wound healing consists of four stages: hemostasis, inflammation, proliferation/repair, and remodeling. While healthy wounds normally heal in four to six weeks, a variety of underlying medical conditions can impair the progression through the stages of wound healing, resulting in the development of chronic, non-healing wounds. Great progress has been made in developing wound dressings and improving surgical techniques, yet challenges remain in finding effective therapeutics that directly promote healing. This review examines the current understanding of the pro-healing effects of targeted pharmaceuticals, re-purposed drugs, natural products, and cell-based therapies on the various cell types present in normal and chronic wounds. Overall, despite several promising studies, there remains only one therapeutic approved by the United States Food and Drug Administration (FDA), Becaplermin, shown to significantly improve wound closure in the clinic. This highlights the need for new approaches aimed at understanding and targeting the underlying mechanisms impeding wound closure and moving the field from the management of chronic wounds towards resolving wounds.
Collapse
Affiliation(s)
| | | | - Matthew R. Ramsey
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA (K.A.C.)
| |
Collapse
|
93
|
Tang Y, Shu X, He G, Zhang Y, Zhao Y, Yuan H, Yu J, Guo J, Chen Q. Vancomycin-loaded hydrogels with thermal-responsive, self-peeling, and sustainable antibacterial properties for wound dressing. J Mater Chem B 2024; 12:752-761. [PMID: 38165891 DOI: 10.1039/d3tb02084c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Wound dressings play an important role in wound healing. However, many wound dressings lack antibacterial properties and are difficult to remove from newly grown tissues, causing secondary wound injuries and repeated medical treatment. This study reports a new type of thermal-responsive hydrogel dressing consisting of vancomycin-loaded gelatin nanospheres (GNs) and poly((N-isopropylacrylamide)-co-N-(methylol acrylamide)) functional components that could impart self-peeling and sustainable antibacterial properties. SEM images showed that the prepared hydrogel possessed a porous microstructure and the homogeneous distribution of GNs in its network. Excellent swelling ratios and thermal-induced self-peeling characteristics were confirmed by qualitative analysis. The GNs not only enhanced the strain at break of the hydrogel, but also acted as drug carriers to slow down the drug release from the hydrogel, achieving sustainable antibacterial properties and balanced biocompatibility. Therefore, this vancomycin-loaded hydrogel with self-peeling characteristics provides an effective way of preventing wound infection and can be used as a novel platform for wide-ranging applications of wound dressings.
Collapse
Affiliation(s)
- Yun Tang
- School of Materials Science & Engineering, Xi'an University of Architecture & Technology, Xi'an, Shaanxi 710055, China
| | - Xinrui Shu
- School of Materials Science & Engineering, Xi'an University of Architecture & Technology, Xi'an, Shaanxi 710055, China
| | - Guandi He
- School of Queen Mary University of London Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yuhan Zhang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| | - Yonghe Zhao
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| | - Hudie Yuan
- School of Materials Science & Engineering, Xi'an University of Architecture & Technology, Xi'an, Shaanxi 710055, China
| | - Jingjie Yu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| | - Jiabao Guo
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| | - Qiang Chen
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
94
|
Kolipaka T, Pandey G, Abraham N, Srinivasarao DA, Raghuvanshi RS, Rajinikanth PS, Tickoo V, Srivastava S. Stimuli-responsive polysaccharide-based smart hydrogels for diabetic wound healing: Design aspects, preparation methods and regulatory perspectives. Carbohydr Polym 2024; 324:121537. [PMID: 37985111 DOI: 10.1016/j.carbpol.2023.121537] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/22/2023]
Abstract
Diabetes adversely affects wound-healing responses, leading to the development of chronic infected wounds. Such wound microenvironment is characterized by hyperglycaemia, hyperinflammation, hypoxia, variable pH, upregulation of matrix metalloproteinases, oxidative stress, and bacterial colonization. These pathological conditions pose challenges for the effective wound healing. Therefore, there is a paradigm shift in diabetic wound care management wherein abnormal pathological conditions of the wound microenvironment is used as a trigger for controlling the drug release or to improve properties of wound dressings. Hydrogels composed of natural polysaccharides showed tremendous potential as wound dressings as well as stimuli-responsive materials due to their unique properties such as biocompatibility, biodegradability, hydrophilicity, porosity, stimuli-responsiveness etc. Hence, polysaccharide-based hydrogels have emerged as advanced healthcare materials for diabetic wounds. In this review, we presented important aspects for the design of hydrogel-based wound dressings with an emphasis on biocompatibility, biodegradability, entrapment of therapeutic agents, moisturizing ability, swelling, and mechanical properties. Further, various crosslinking methods that enable desirable properties and stimuli responsiveness to the hydrogels have been mentioned. Subsequently, state-of-the-art developments in mono- and multi- stimuli-responsive hydrogels have been presented along with the case studies. Finally regulatory perspectives, challenges for the clinical translation and future prospects have been discussed.
Collapse
Affiliation(s)
- Tejaswini Kolipaka
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Noella Abraham
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rajeev Singh Raghuvanshi
- Central Drugs Standard Control Organization (CDSCO), Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, India
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Vidya Tickoo
- Department of Endocrinology, Yashoda Hospitals, Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
95
|
Moazzami Goudarzi Z, Zaszczyńska A, Kowalczyk T, Sajkiewicz P. Electrospun Antimicrobial Drug Delivery Systems and Hydrogels Used for Wound Dressings. Pharmaceutics 2024; 16:93. [PMID: 38258102 PMCID: PMC10818291 DOI: 10.3390/pharmaceutics16010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/25/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024] Open
Abstract
Wounds and chronic wounds can be caused by bacterial infections and lead to discomfort in patients. To solve this problem, scientists are working to create modern wound dressings with antibacterial additives, mainly because traditional materials cannot meet the general requirements for complex wounds and cannot promote wound healing. This demand is met by material engineering, through which we can create electrospun wound dressings. Electrospun wound dressings, as well as those based on hydrogels with incorporated antibacterial compounds, can meet these requirements. This manuscript reviews recent materials used as wound dressings, discussing their formation, application, and functionalization. The focus is on presenting dressings based on electrospun materials and hydrogels. In contrast, recent advancements in wound care have highlighted the potential of thermoresponsive hydrogels as dynamic and antibacterial wound dressings. These hydrogels contain adaptable polymers that offer targeted drug delivery and show promise in managing various wound types while addressing bacterial infections. In this way, the article is intended to serve as a compendium of knowledge for researchers, medical practitioners, and biomaterials engineers, providing up-to-date information on the state of the art, possibilities of innovative solutions, and potential challenges in the area of materials used in dressings.
Collapse
Affiliation(s)
| | | | - Tomasz Kowalczyk
- Laboratory of Polymers and Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland; (Z.M.G.); (A.Z.); (P.S.)
| | | |
Collapse
|
96
|
Foroozandeh A, Shakiba M, Zamani A, Tajiki A, Sheikhi M, Pourmadadi M, Pahnavar Z, Rahmani E, Aghababaei N, Amoli HS, Abdouss M. Electrospun nylon 6/hyaluronic acid/chitosan bioactive nanofibrous composite as a potential antibacterial wound dressing. J Biomed Mater Res B Appl Biomater 2024; 112:e35370. [PMID: 38247254 DOI: 10.1002/jbm.b.35370] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 09/18/2023] [Accepted: 11/24/2023] [Indexed: 01/23/2024]
Abstract
Hyaluronic acid (HA) and chitosan (CS), as natural biomaterials, display excellent biocompatibility and stimulate the growth and proliferation of fibroblasts. Furthermore, nylon 6 (N6) is a low-cost polymer with good compatibility with human tissues and high mechanical stability. In this study, HA and CS were applied to modify N6 nanofibrous mat (N6/HA/CS) for potential wound dressing. N6/HA/CS nanofibrous composite mats were developed using a simple one-step electrospinning technique at different CS concentrations of 1, 2, and 3 wt%. The results demonstrated that incorporating HA and CS into N6 resulted in increased hydrophilicity, as well as favorable physical and mechanical properties. In addition, the minimum inhibitory concentration and (MIC) optical density techniques were used to determine the antibacterial properties of N6/HA/CS nanofibrous composite mats, and the results demonstrated that the composites could markedly inhibit the growth of Gram-positive bacteria Staphylococcus aureus and Gram-negative bacteria Escherichia coli. Because of its superior mechanical properties, substantial antimicrobial effects, and hydrophilic surface, N6/HA/CS at 2 wt% of CS (N6/HA/CS2) was chosen as the most suitable nanofibrous mat. The swelling, porosity, gel content, and in vitro degradation studies imply that N6/HA/CS2 nanofibrous composite mat has proper moisture retention and biodegradability. Furthermore, the N6/HA/CS2 nanofibrous composite mat was discovered to be nontoxic to L929 fibroblast cells and to even improve cell proliferation. Based on the findings, this research offers a simple and rapid method for creating material that could be utilized as prospective wound dressings in clinical environments.
Collapse
Affiliation(s)
- Amin Foroozandeh
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | | | - Amirhosein Zamani
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Alireza Tajiki
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Mehdi Sheikhi
- Polymer Chemistry Research Laboratory, Department of Chemistry, University of Isfahan, Isfahan, Iran
| | - Mehrab Pourmadadi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Zohreh Pahnavar
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Erfan Rahmani
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | | | | | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
97
|
Wang SL, Li XW, Xu W, Yu QY, Fang SM. Advances of regenerated and functionalized silk biomaterials and application in skin wound healing. Int J Biol Macromol 2024; 254:128024. [PMID: 37972830 DOI: 10.1016/j.ijbiomac.2023.128024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
The cocoon silk of silkworms (Bombyx mori) has multiple potential applications in biomedicine due to its good biocompatibility, mechanical properties, degradability, and plasticity. Numerous studies have confirmed that silk material dressings are more effective than traditional ones in the skin wound healing process. Silk material research has recently moved toward functionalized biomaterials and achieved remarkable results. Herein, we summarize the recent advances in functionalized silk materials and their efficacy in skin wound healing. In particular, transgenic technology has realized the specific expression of human growth factors in the silk glands of the silkworms, which lays the foundation for fabricating novel and low-cost functionalized materials. Without a green and safe preparation process, the best raw silk materials cannot be made into medically safe products. Therefore, we provide an overview of green and gentle approaches for silk degumming and silk sericin (SS) extraction. Moreover, we summarize and discuss the processing methods of silk fibroin (SF) and SS materials and their potential applications, such as burns, diabetic wounds, and other wounds. This review aims to enhance our understanding of new advances and directions in silk materials and guide future biomedical research.
Collapse
Affiliation(s)
- Sheng-Lan Wang
- College of Life Science, China West Normal University, Nanchong 637002, Sichuan, China
| | - Xiao-Wei Li
- School of Life Sciences, Chongqing University, Chongqing 400044, PR China
| | - Wei Xu
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine, No. 40 Daomenkou St., District Yuzhong, Chongqing 400011, China
| | - Quan-You Yu
- School of Life Sciences, Chongqing University, Chongqing 400044, PR China
| | - Shou-Min Fang
- College of Life Science, China West Normal University, Nanchong 637002, Sichuan, China.
| |
Collapse
|
98
|
Cui H, Cai J, He H, Ding S, Long Y, Lin S. Tailored chitosan/glycerol micropatterned composite dressings by 3D printing for improved wound healing. Int J Biol Macromol 2024; 255:127952. [PMID: 37951437 DOI: 10.1016/j.ijbiomac.2023.127952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/26/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
Wound infection control is a primary clinical concern nowadays. Various innovative solutions have been developed to fabricate adaptable wound dressings with better control of infected wound healing. This work presents a facile approach by leveraging 3D printing to fabricate chitosan/glycerol into composite dressings with tailored micropatterns to improve wound healing. The bioinks of chitosan/glycerol were investigated as suitable for 3D printing. Then, three tailored micropatterns (i.e., sheet, strip, and mesh) with precise geometry control were 3D printed onto a commercial dressing to fabricate the micropatterned composite dressings. In vitro and in vivo studies indicate that these micropatterned dressings could speed up wound healing due to their increased water uptake capacity (up to ca. 16-fold@2 min), benign cytotoxicity (76.7 % to 90.4 % of cell viability), minor hemolytic activity (<1 %), faster blood coagulation effects (within 76.3 s), low blood coagulation index (14.5 % to 18.7 % @ 6 min), enhanced antibacterial properties (81.0 % to 86.1 % against S. aureus, 83.7 % to 96.5 % against E. coli), and effective inhibition of wound inflammation factors of IL-1β and TNF-α. Such tailored micropatterned composite dressing is facile to obtain, highly reproducible, and cost-efficient, making it a promising implication for improved and personalized contaminated wound healing.
Collapse
Affiliation(s)
- Haoran Cui
- Systems Engineering Institute, Academy of Military Sciences, Tianjin 300161, People's Republic of China
| | - Junjie Cai
- Systems Engineering Institute, Academy of Military Sciences, Tianjin 300161, People's Republic of China; Bethune International Peace Hospital, Shijiazhuang 050051, People's Republic of China
| | - Hanjiao He
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, People's Republic of China
| | - Sheng Ding
- Systems Engineering Institute, Academy of Military Sciences, Tianjin 300161, People's Republic of China
| | - Yi Long
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, People's Republic of China.
| | - Song Lin
- Systems Engineering Institute, Academy of Military Sciences, Tianjin 300161, People's Republic of China.
| |
Collapse
|
99
|
Teshima R, Osawa S, Yoshikawa M, Kawano Y, Otsuka H, Hanawa T. Low-adhesion and low-swelling hydrogel based on alginate and carbonated water to prevent temporary dilation of wound sites. Int J Biol Macromol 2024; 254:127928. [PMID: 37944721 DOI: 10.1016/j.ijbiomac.2023.127928] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/04/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Hydrogel-based wound dressings have been developed for rapid wound healing; however, their adhesive properties have not been adequately investigated. Excessive adhesion to the skin causes wound expansion and pain when hydrogels absorb exudates and swell at wound sites. Herein, we developed a low-adhesion and low-swelling hydrogel dressing using alginate, which is non-adhesive to cells and skin tissue, CaCO3, and carbonated water. The alginate/CaCO3 solution rapidly formed a hydrogel upon the addition of carbonated water, and the CO2 in the hydrogel diffused into the atmosphere, preventing acidification and obtaining a pH value suitable for wound healing. Remarkably, the skin adhesion and swelling of the hydrogel were 11.9- to 16.5-fold and 1.9-fold lower, respectively, than those of clinical low-adhesion hydrogel dressings. In vivo wound-healing tests in mice demonstrated its therapeutic efficacy, and the prepared hydrogel prevented temporary wound dilation during early healing. These results illustrate the importance of controlling skin adhesion and swelling in wound dressings and demonstrate the potential clinical applications of this wound-friendly hydrogel dressing.
Collapse
Affiliation(s)
- Ryota Teshima
- Department of Chemistry, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan.
| | - Shigehito Osawa
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan; Water Frontier Research Center (WaTUS), Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Miki Yoshikawa
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yayoi Kawano
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Hidenori Otsuka
- Department of Chemistry, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan; Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan; Water Frontier Research Center (WaTUS), Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Takehisa Hanawa
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
100
|
Swetha Menon NP, Kamaraj M, Anish Sharmila M, Govarthanan M. Recent progress in polysaccharide and polypeptide based modern moisture-retentive wound dressings. Int J Biol Macromol 2024; 256:128499. [PMID: 38048932 DOI: 10.1016/j.ijbiomac.2023.128499] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/05/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023]
Abstract
Wounds were considered as defects in the tissues of the human skin and wound healing is said to be a tedious process as there are possibilities of infection or inflammation due to microorganisms. Modern moisture-retentive wound dressing (MMRWD) is opening a new window toward wound therapy. It comprises different types of wound dressing that has classified based on their functionality. Selective polysaccharide-polypeptide fiber composite materials such as hydrogels, hydrocolloids, hydro fibers, transparent-film dressing, and alginate dressing are discussed in this review as a type of MMRWD. The highlight of this polysaccharide and polypeptide based MMRWD is that it supports and enhances the healing of different types of wounds by moisture absorption thus preventing infection. This study has given enlightenment on the application of selected polysaccharide and polypeptide based MMRWD that enhances wound healing actions still it has been observed that the composite wound healing dressing is more effective than the single one. The nano-sized materials (synthetic nano drugs and phyto drugs) were found to increase the efficiency of healing action while coated in the wound dressing material. Future research is required to find out more possibilities of the different composite types of wound dressing in the healing action.
Collapse
Affiliation(s)
- N P Swetha Menon
- Department of Fashion Designing, Faculty of Science and Humanities, SRM Institute of Science and Technology -Ramapuram, Chennai 600089, Tamil Nadu, India; Department of Fashion Design and Arts, Hindustan Institute of Technology and Science, Deemed to be University, Chennai 603103, Tamil Nadu, India
| | - M Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology -Ramapuram, Chennai 600089, Tamil Nadu, India; Life Science Division, Faculty of Health and Life Sciences, INTI International University, Nilai 71800, Malaysia.
| | - M Anish Sharmila
- Department of Fashion Design and Arts, Hindustan Institute of Technology and Science, Deemed to be University, Chennai 603103, Tamil Nadu, India.
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| |
Collapse
|