51
|
Li J, Wang R, Shi W, Chen X, Yi J, Yang X, Jin S. Epigenetic regulation in radiation-induced pulmonary fibrosis. Int J Radiat Biol 2022; 99:384-395. [PMID: 35895014 DOI: 10.1080/09553002.2022.2089365] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
PURPOSE Radiation-induced pulmonary fibrosis (RIPF) is a common and serious adverse effect of radiotherapy for thoracic tumors, which occurs in the irreversible stage of radiation-induced lung injury (RILI) >6 months after irradiation. It is characterized by progressive and irreversible destruction of lung tissue and deterioration of lung function, which may impair quality of life and lead to respiratory failure and death. We hope this will draw attention to the involvement of epigenetics in the regulation of RIPF. CONCLUSIONS This review summarizes research progress on the role and mechanism of DNA methylation, noncoding RNA and RNA methylation in RIPF or RILI, and the possible role and mechanism of histone modification in RIPF. We have noticed that in tissue fibrosis, the epigenetic regulation mechanisms inside and outside the nucleus can influence each other. We speculate that RIPF may be regulated by an epigenetic regulatory network during its development, and believe that TGF-β, SNAIL, PTEN and EZH2 are four targets worthy of in-depth study.
Collapse
Affiliation(s)
- Jiale Li
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Rui Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Wen Shi
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Xiaoyi Chen
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Junxuan Yi
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Xiangshan Yang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Shunzi Jin
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
52
|
Yang C, Song C, Wang Y, Zhou W, Zheng W, Zhou H, Deng G, Li H, Xiao W, Yang Z, Kong L, Ge H, Song Y, Sun Y. Re-Du-Ning injection ameliorates radiation-induced pneumonitis and fibrosis by inhibiting AIM2 inflammasome and epithelial-mesenchymal transition. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154184. [PMID: 35665679 DOI: 10.1016/j.phymed.2022.154184] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/08/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Radiation-induced lung injury (RILI) is a common side effect in chest radiotherapy patients, and there is no good medicine to treat it. Re-Du-Ning (RDN) injection is a traditional Chinese medicine that is clinically used to treat upper respiratory tract infections and acute bronchitis. RDN has the advantage of high safety and mild side effects. The mechanism of most traditional Chinese medicine preparations is unknown. PURPOSE To illustrate the mechanisms of RDN for the treatment of RILI. METHODS Female C57BL/6 mice were used to establish a RILI model via irradiation, and RDN injection was intraperitoneally administered at doses of 5, 10, and 20 ml/kg. The cytokines were measured by ELISA and qPCR. The data related to Absent in melanoma 2 (AIM2) inflammasome were analyzed via ELISA and a network pharmacological approach. In addition, the data related to epithelial-mesenchymal transition (EMT) were analyzed via immunofluorescence, Western blotting, and a network pharmacological approach. RESULTS RDN robustly alleviated RILI. Meanwhile, RDN downregulated inflammatory cells' infiltration and the expression of pro-inflammatory cytokines, such as IL-1β, IL-6, and TNF-α. Next, the potential molecular mechanisms of RDN were predicted through network pharmacology analysis. RDN may ameliorate radiation pneumonitis (RP) by inhibiting AIM2-mediated pyroptosis. Moreover, RDN treatment inhibited EMT and phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT) pathway. The active compounds from Lonicera japonica Thunb. decreased the phosphorylation of Akt. CONCLUSION These findings demonstrate that RDN, as a traditional Chinese medicine preparation, will be a candidate drug for treating RILI.
Collapse
Affiliation(s)
- Chenxi Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Chenglin Song
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Yi Wang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 157 Daming Road, Nanjing, Jiangsu, 210012 China
| | - Wencheng Zhou
- Department of Pharmacy, First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou 310006, China
| | - Wei Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Han Zhou
- Department of Radiation Oncology, Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210002, China
| | - Guoliang Deng
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Haibo Li
- Jiangsu Kanion Pharmaceutical Co. Ltd. and State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co. Ltd. and State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China
| | - Zhongqi Yang
- Department of Geriatrics, First Affiliated Hospital of Guangzhou University of Chinese Medicine, 16 Jichang Road, Guangzhou, Guangdong 510405, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Huiming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| | - Yaohong Song
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 157 Daming Road, Nanjing, Jiangsu, 210012 China.
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| |
Collapse
|
53
|
Zhang XZ, Chen MJ, Fan PM, Su TS, Liang SX, Jiang W. Prediction of the Mechanism of Sodium Butyrate against Radiation-Induced Lung Injury in Non-Small Cell Lung Cancer Based on Network Pharmacology and Molecular Dynamic Simulations and Molecular Dynamic Simulations. Front Oncol 2022; 12:809772. [PMID: 35837112 PMCID: PMC9275827 DOI: 10.3389/fonc.2022.809772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundRadiation-induced lung injury (RILI) is a severe side effect of radiotherapy for non-small cell lung cancer (NSCLC) ,and one of the major hindrances to improve the efficacy of radiotherapy. Previous studies have confirmed that sodium butyrate (NaB) has potential of anti-radiation toxicity. However, the mechanism of the protective effect of NaB against RILI has not yet been clarified. This study aimed to explore the underlying protective mechanisms of NaB against RILI in NSCLC through network pharmacology, molecular docking, molecular dynamic simulations and in vivo experiments.MethodsThe predictive target genes of NaB were obtained from the PharmMapper database and the literature review. The involved genes of RILI and NSCLC were predicted using OMIM and GeneCards database. The intersectional genes of drug and disease were identified using the Venny tool and uploaded to the Cytoscape software to identify 5 core target genes of NaB associated with RILI. The correlations between the 5 core target genes and EGFR, PD-L1, immune infiltrates, chemokines and chemokine receptors were analyzed using TIMER 2.0, TIMER and TISIDB databases. We constructed the mechanism maps of the 3 key signaling pathways using the KEGG database based on the results of GO and KEGG analyses from Metascape database. The 5 core target genes and drug were docked using the AutoDock Vina tool and visualized using PyMOL software. GROMACS software was used to perform 100 ns molecular dynamics simulation. Irradiation-induced lung injury model in mice were established to assess the therapeutic effects of NaB.ResultsA total of 51 intersectional genes involved in NaB against RILI in NSCLC were identified. The 5 core target genes were AKT1, TP53, NOTCH1, SIRT1, and PTEN. The expressions of the 5 core target genes were significantly associated with EGFR, PD-L1, immune infiltrates, chemokines and chemokine receptors, respectively. The results from GO analysis of the 51 intersectional genes revealed that the biological processes were focused on the regulation of smooth muscle cell proliferation, oxidative stress and cell death, while the three key KEGG pathways were enriched in PI3K-Akt signal pathway, p53 signal pathway, and FOXO signal pathway. The docking of NaB with the 5 core target genes showed affinity and stability, especially AKT1. In vivo experiments showed that NaB treatment significantly protected mice from RILI, with reduced lung histological damage. In addition, NaB treatment significantly inhibited the PI3K/Akt signaling pathway.ConclusionsNaB may protect patients from RILI in NSCLC through multiple target genes including AKT1, TP53, NOTCH1, SIRT1 and PTEN, with multiple signaling pathways involving, including PI3K-Akt pathway, p53 pathway, and FOXO pathways. Our findings effectively provide a feasible theoretical basis to further elucidate the mechanism of NaB in the treatment of RILI.
Collapse
Affiliation(s)
- Xiao-zhen Zhang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Mao-jian Chen
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ping-ming Fan
- Department of Breast-Thoracic Tumor Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ting-shi Su
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Shi-xiong Liang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
- *Correspondence: Wei Jiang, ; Shi-xiong Liang,
| | - Wei Jiang
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
- *Correspondence: Wei Jiang, ; Shi-xiong Liang,
| |
Collapse
|
54
|
Li R, Jia Y, Kong X, Nie Y, Deng Y, Liu Y. Novel drug delivery systems and disease models for pulmonary fibrosis. J Control Release 2022; 348:95-114. [PMID: 35636615 DOI: 10.1016/j.jconrel.2022.05.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 12/19/2022]
Abstract
Pulmonary fibrosis (PF) is a serious and progressive lung disease which is possibly life-threatening. It causes lung scarring and affects lung functions including epithelial cell injury, massive recruitment of immune cells and abnormal accumulation of extracellular matrix (ECM). There is currently no cure for PF. Treatment for PF is aimed at slowing the course of the disease and relieving symptoms. Pirfenidone (PFD) and nintedanib (NDNB) are currently the only two FDA-approved oral medicines to slow down the progress of idiopathic pulmonary fibrosis, a specific type of PF. Novel drug delivery systems and therapies have been developed to improve the prognosis of the disease, as well as reduce or minimize the toxicities during drug treatment. The drug delivery routes for these therapies are various including oral, intravenous, nasal, inhalant, intratracheal and transdermal; although this is dependent on specific treatment mechanisms. In addition, researchers have also expanded current animal models that could not fully restore the clinicopathology, and developed a series of in vitro models such as organoids to study the pathogenesis and treatment of PF. This review describes recent advances on pathogenesis exploration, classifies and specifies the progress of drug delivery systems by their delivery routes, as well as an overview on the in vitro and in vivo models for PF research.
Collapse
Affiliation(s)
- Rui Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yizhen Jia
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaohan Kong
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yichu Nie
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan 528000, China
| | - Yang Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yang Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China; School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
55
|
Kim SY, Kim JM, Lee SR, Kim HJ, Lee JH, Choi HL, Lee YJ, Lee YS, Cho J. Efferocytosis and enhanced FPR2 expression following apoptotic cell instillation attenuate radiation-induced lung inflammation and fibrosis. Biochem Biophys Res Commun 2022; 601:38-44. [DOI: 10.1016/j.bbrc.2022.02.075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 12/13/2022]
|
56
|
Xu Y, Zhai D, Goto S, Zhang X, Jingu K, Li TS. Nicaraven mitigates radiation-induced lung injury by downregulating the NF-κB and TGF-β/Smad pathways to suppress the inflammatory response. JOURNAL OF RADIATION RESEARCH 2022; 63:158-165. [PMID: 34999842 PMCID: PMC8944328 DOI: 10.1093/jrr/rrab112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/16/2021] [Indexed: 06/14/2023]
Abstract
Radiation-induced lung injury (RILI) is commonly observed in patients receiving radiotherapy, and clinical prevention and treatment remain difficult. We investigated the effect and mechanism of nicaraven for mitigating RILI. C57BL/6 N mice (12-week-old) were treated daily with 6 Gy X-ray thoracic radiation for 5 days in sequences (cumulative dose of 30 Gy), and nicaraven (50 mg/kg) or placebo was injected intraperitoneally in 10 min after each radiation exposure. Mice were sacrificed and lung tissues were collected for experimental assessments at the next day (acute phase) or 100 days (chronic phase) after the last radiation exposure. Of the acute phase, immunohistochemical analysis of lung tissues showed that radiation significantly induced DNA damage of the lung cells, increased the number of Sca-1+ stem cells, and induced the recruitment of CD11c+, F4/80+ and CD206+ inflammatory cells. However, all these changes in the irradiated lungs were effectively mitigated by nicaraven administration. Western blot analysis showed that nicaraven administration effectively attenuated the radiation-induced upregulation of NF-κB, TGF-β, and pSmad2 in lungs. Of the chronic phase, nicaraven administration effectively attenuated the radiation-induced enhancement of α-SMA expression and collagen deposition in lungs. In conclusion we find that nicaraven can effectively mitigate RILI by downregulating NF-κB and TGF-β/pSmad2 pathways to suppress the inflammatory response in the irradiated lungs.
Collapse
Affiliation(s)
- Yong Xu
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Da Zhai
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Shinji Goto
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Xu Zhang
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Keiichi Jingu
- Department of Radiation Oncology, Graduate School of Medicine, Tohoku University, Sendai 980-8574, Japan
| | - Tao-Sheng Li
- Corresponding author: Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan. Tel: +81-95-819-7099; Fax: +81-95-819-7100, E-mail:
| |
Collapse
|
57
|
Sharma GP, Fish BL, Frei AC, Narayanan J, Gasperetti T, Scholler D, Pierce L, Szalewski N, Blue N, Medhora M, Himburg HA. Pharmacological ACE-inhibition Mitigates Radiation-Induced Pneumonitis by Suppressing ACE-expressing Lung Myeloid Cells. Int J Radiat Oncol Biol Phys 2022; 113:177-191. [PMID: 35093482 PMCID: PMC9018504 DOI: 10.1016/j.ijrobp.2022.01.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE Radiation-induced lung injury is a major dose-limiting toxicity for thoracic radiotherapy patients. In experimental models, treatment with angiotensin converting enzyme (ACE) inhibitors mitigates radiation pneumonitis; however, the mechanism of action is not well understood. Here, we evaluate the direct role of ACE inhibition on lung immune cells. METHODS AND MATERIALS ACE expression and activity were determined in the lung immune cell compartment of irradiated adult rats following either high dose fractionated radiation therapy (RT) to the right lung (5 fractions x 9 Gy) or a single dose of 13.5 Gy partial body irradiation (PBI). Mitigation of radiation-induced pneumonitis with the ACE-inhibitor lisinopril was evaluated in the 13.5 Gy rat PBI model. During pneumonitis, we characterized inflammation and immune cell content in the lungs and bronchoalveolar lavage fluid (BALF). In vitro mechanistic studies were performed using primary human monocytes and the human monocytic THP-1 cell line. RESULTS In both the PBI and fractionated RT models, radiation increased ACE activity in lung immune cells. Treatment with lisinopril improved survival during radiation pneumonitis (p=0.0004). Lisinopril abrogated radiation-induced increases in BALF MCP-1 (CCL2) and MIP-1α cytokine levels (p < 0.0001). Treatment with lisinopril reduced both ACE expression (p=0.006) and frequency of CD45+CD11b+ lung myeloid cells (p=0.004). In vitro, radiation injury acutely increased ACE activity (p=0.045) and reactive oxygen species (ROS) generation (p=0.004) in human monocytes, whereas treatment with lisinopril blocked radiation-induced increases in both ACE and ROS. Interestingly, radiation-induced ROS generation was blocked by pharmacological inhibition of either NADPH oxidase 2 (NOX2) (p=0.012) or the type 1 angiotensin receptor (AGTR1) (p=0.013). CONCLUSIONS These data demonstrate radiation-induced ACE activation within the immune compartment promotes the pathogenesis of radiation pneumonitis, while ACE inhibition suppresses activation of pro-inflammatory immune cell subsets. Mechanistically, our in vitro data demonstrate radiation directly activates the ACE/AGTR1 pathway in immune cells and promotes generation of ROS via Nox2.
Collapse
Affiliation(s)
- Guru Prasad Sharma
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Brian L Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Anne C Frei
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Jayashree Narayanan
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Tracy Gasperetti
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Dana Scholler
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Lauren Pierce
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Nathan Szalewski
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Noah Blue
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Heather A Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin.
| |
Collapse
|
58
|
Abstract
Understanding the pathophysiology of lung fibrosis is of paramount importance to elaborate targeted and effective therapies. As it onsets, the randomly accumulating extracellular matrix (ECM) breaks the symmetry of the branching lung structure. Interestingly, similar pathways have been reported for both idiopathic pulmonary fibrosis and radiation-induced lung fibrosis (RILF). Individuals suffering from the disease, the worldwide incidence of which is growing, have poor prognosis and a short mean survival time. In this context, mathematical and computational models have the potential to shed light on key underlying pathological mechanisms, shorten the time needed for clinical trials, parallelize hypotheses testing, and improve personalized drug development. Agent-based modeling (ABM) has proven to be a reliable and versatile simulation tool, whose features make it a good candidate for recapitulating emergent behaviors in heterogeneous systems, such as those found at multiple scales in the human body. In this paper, we detail the implementation of a 3D agent-based model of lung fibrosis using a novel simulation platform, namely, BioDynaMo, and prove that it can qualitatively and quantitatively reproduce published results. Furthermore, we provide additional insights on late-fibrosis patterns through ECM density distribution histograms. The model recapitulates key intercellular mechanisms, while cell numbers and types are embodied by alveolar segments that act as agents and are spatially arranged by a custom algorithm. Finally, our model may hold potential for future applications in the context of lung disorders, ranging from RILF (by implementing radiation-induced cell damage mechanisms) to COVID-19 and inflammatory diseases (such as asthma or chronic obstructive pulmonary disease).
Collapse
|
59
|
Chen ZY, Xiao HW, Dong JL, Li Y, Wang B, Fan SJ, Cui M. Gut Microbiota-Derived PGF2α Fights against Radiation-Induced Lung Toxicity through the MAPK/NF-κB Pathway. Antioxidants (Basel) 2021; 11:antiox11010065. [PMID: 35052569 PMCID: PMC8773112 DOI: 10.3390/antiox11010065] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/24/2021] [Accepted: 12/24/2021] [Indexed: 12/28/2022] Open
Abstract
Radiation pneumonia is a common and intractable side effect associated with radiotherapy for chest cancer and involves oxidative stress damage and inflammation, prematurely halting the remedy and reducing the life quality of patients. However, the therapeutic options for the complication have yielded disappointing results in clinical application. Here, we report an effective avenue for fighting against radiation pneumonia. Faecal microbiota transplantation (FMT) reduced radiation pneumonia, scavenged oxidative stress and improved lung function in mouse models. Local chest irradiation shifted the gut bacterial taxonomic proportions, which were preserved by FMT. The level of gut microbiota-derived PGF2α decreased following irradiation but increased after FMT. Experimental mice with PGF2α replenishment, via an oral route, exhibited accumulated PGF2α in faecal pellets, peripheral blood and lung tissues, resulting in the attenuation of inflammatory status of the lung and amelioration of lung respiratory function following local chest irradiation. PGF2α activated the FP/MAPK/NF-κB axis to promote cell proliferation and inhibit apoptosis with radiation challenge; silencing MAPK attenuated the protective effect of PGF2α on radiation-challenged lung cells. Together, our findings pave the way for the clinical treatment of radiotherapy-associated complications and underpin PGF2α as a gut microbiota-produced metabolite.
Collapse
Affiliation(s)
- Zhi-Yuan Chen
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300110, China; (Z.-Y.C.); (J.-L.D.); (Y.L.); (B.W.)
| | - Hui-Wen Xiao
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China;
| | - Jia-Li Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300110, China; (Z.-Y.C.); (J.-L.D.); (Y.L.); (B.W.)
| | - Yuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300110, China; (Z.-Y.C.); (J.-L.D.); (Y.L.); (B.W.)
| | - Bin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300110, China; (Z.-Y.C.); (J.-L.D.); (Y.L.); (B.W.)
| | - Sai-Jun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300110, China; (Z.-Y.C.); (J.-L.D.); (Y.L.); (B.W.)
- Correspondence: (S.-J.F.); (M.C.)
| | - Ming Cui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300110, China; (Z.-Y.C.); (J.-L.D.); (Y.L.); (B.W.)
- Correspondence: (S.-J.F.); (M.C.)
| |
Collapse
|
60
|
Zhang Z, Zhou J, Verma V, Liu X, Wu M, Yu J, Chen D. Crossed Pathways for Radiation-Induced and Immunotherapy-Related Lung Injury. Front Immunol 2021; 12:774807. [PMID: 34925345 PMCID: PMC8672113 DOI: 10.3389/fimmu.2021.774807] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
Radiation-induced lung injury (RILI) is a form of radiation damage to normal lung tissue caused by radiotherapy (RT) for thoracic cancers, which is most commonly comprised of radiation pneumonitis (RP) and radiation pulmonary fibrosis (RPF). Moreover, with the widespread utilization of immunotherapies such as immune checkpoint inhibitors as first- and second-line treatments for various cancers, the incidence of immunotherapy-related lung injury (IRLI), a severe immune-related adverse event (irAE), has rapidly increased. To date, we know relatively little about the underlying mechanisms and signaling pathways of these complications. A better understanding of the signaling pathways may facilitate the prevention of lung injury and exploration of potential therapeutic targets. Therefore, this review provides an overview of the signaling pathways of RILI and IRLI and focuses on their crosstalk in diverse signaling pathways as well as on possible mechanisms of adverse events resulting from combined radiotherapy and immunotherapy. Furthermore, this review proposes potential therapeutic targets and avenues of further research based on signaling pathways. Many new studies on pyroptosis have renewed appreciation for the value and importance of pyroptosis in lung injury. Therefore, the authors posit that pyroptosis may be the common downstream pathway of RILI and IRLI; discussion is also conducted regarding further perspectives on pyroptosis as a crucial signaling pathway in lung injury treatment.
Collapse
Affiliation(s)
- Zengfu Zhang
- Department of Radiation Oncology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Radiation Oncology, Laboratory of Radio-Immunology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jialin Zhou
- Department of Radiation Oncology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Radiation Oncology, Laboratory of Radio-Immunology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Vivek Verma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Xu Liu
- Department of Radiation Oncology, Laboratory of Radio-Immunology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Meng Wu
- Department of Radiation Oncology, Laboratory of Radio-Immunology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jinming Yu
- Department of Radiation Oncology, Laboratory of Radio-Immunology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Dawei Chen
- Department of Radiation Oncology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Radiation Oncology, Laboratory of Radio-Immunology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
61
|
Liu X, Shao C, Fu J. Promising Biomarkers of Radiation-Induced Lung Injury: A Review. Biomedicines 2021; 9:1181. [PMID: 34572367 PMCID: PMC8470495 DOI: 10.3390/biomedicines9091181] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022] Open
Abstract
Radiation-induced lung injury (RILI) is one of the main dose-limiting side effects in patients with thoracic cancer during radiotherapy. No reliable predictors or accurate risk models are currently available in clinical practice. Severe radiation pneumonitis (RP) or pulmonary fibrosis (PF) will reduce the quality of life, even when the anti-tumor treatment is effective for patients. Thus, precise prediction and early diagnosis of lung toxicity are critical to overcome this longstanding problem. This review summarizes the primary mechanisms and preclinical animal models of RILI reported in recent decades, and analyzes the most promising biomarkers for the early detection of lung complications. In general, ideal integrated models considering individual genetic susceptibility, clinical background parameters, and biological variations are encouraged to be built up, and more prospective investigations are still required to disclose the molecular mechanisms of RILI as well as to discover valuable intervention strategies.
Collapse
Affiliation(s)
- Xinglong Liu
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China;
| | - Chunlin Shao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China;
| | - Jiamei Fu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| |
Collapse
|
62
|
Cassatt DR, Gorovets A, Karimi-Shah B, Roberts R, Price PW, Satyamitra MM, Todd N, Wang SJ, Marzella L. A Trans-Agency Workshop on the Pathophysiology of Radiation-Induced Lung Injury. Radiat Res 2021; 197:415-433. [PMID: 34342637 DOI: 10.1667/rade-21-00127.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022]
Abstract
Research and development of medical countermeasures (MCMs) for radiation-induced lung injury relies on the availability of animal models with well-characterized pathophysiology, allowing effective bridging to humans. To develop useful animal models, it is important to understand the clinical condition, advantages and limitations of individual models, and how to properly apply these models to demonstrate MCM efficacy. On March 20, 2019, a meeting sponsored by the Radiation and Nuclear Countermeasures Program (RNCP) within the National Institute of Allergy and Infectious Diseases (NIAID) brought together medical, scientific and regulatory communities, including academic and industry subject matter experts, and government stakeholders from the Food and Drug Administration (FDA) and the Biomedical Advanced Research and Development Authority (BARDA), to identify critical research gaps, discuss current clinical practices for various forms of pulmonary damage, and consider available animal models for radiation-induced lung injury.
Collapse
Affiliation(s)
- David R Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), National Institutes of Health (NIH), Rockville, Maryland
| | - Alex Gorovets
- Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Banu Karimi-Shah
- Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Rosemary Roberts
- Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Paul W Price
- Office of Regulatory Affairs, Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Merriline M Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), National Institutes of Health (NIH), Rockville, Maryland
| | - Nushin Todd
- Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Sue-Jane Wang
- Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Libero Marzella
- Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland
| |
Collapse
|
63
|
Liu Y, Ding Y, Hou Y, Yu T, Nie H, Cui Y. The miR-130a-3p/TGF-βRII Axis Participates in Inhibiting the Differentiation of Fibroblasts Induced by TGF-β1. Front Pharmacol 2021; 12:732540. [PMID: 34393805 PMCID: PMC8355625 DOI: 10.3389/fphar.2021.732540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022] Open
Abstract
Pulmonary fibrosis (PF) is a chronic progressive interstitial lung disease that has a poor prognosis. Abnormal activation of transforming growth factor-β1 (TGF-β1) plays a crucial role in fibroblast differentiation. Mesenchymal stem cells (MSCs) are currently being considered for the treatment of PF, but the regulatory mechanisms are poorly understood. We co-cultured bone marrow-derived MSCs and mouse lung fibroblasts (MLg) in the presence of TGF-β1, and studied the protein/mRNA expression of fibrosis markers and related signaling pathways. The effects of miR-130a-3p and TGF-β receptor II (TGF-βRII) on the differentiation of MLg induced by TGF-β1 were studied using immunofluorescence assay, Western blot, and quantitative real-time PCR techniques, respectively. Our results showed that MSCs reversed the overexpression of fibrosis markers and TGF-β1/Smad signaling pathway proteins and mRNAs after TGF-β1 treatment and increased the level of miR-130a-3p. TGF-βRII was identified as a target of miR-130a-3p and was evaluated by dual-luciferase reporter assay. The miR-130a-3p/TGF-βRII axis could suppress the differentiation of lung fibroblasts via the TGF-β1/Smad signaling pathway, thereby reducing the process of PF.
Collapse
Affiliation(s)
- Yanhong Liu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Tong Yu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yong Cui
- Departments of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
64
|
Lei X, Du L, Yu W, Wang Y, Ma N, Qu B. GSTP1 as a novel target in radiation induced lung injury. J Transl Med 2021; 19:297. [PMID: 34238333 PMCID: PMC8268607 DOI: 10.1186/s12967-021-02978-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/04/2021] [Indexed: 12/14/2022] Open
Abstract
The glutathione S-transferase P1(GSTP1) is an isoenzyme in the glutathione-S transferases (GSTs) enzyme system, which is the most abundant GSTs expressed in adult lungs. Recent research shows that GSTP1 is closely related to the regulation of cell oxidative stress, inhibition of cell apoptosis and promotion of cytotoxic metabolism. Interestingly, there is evidence that GSTP1 single nucleotide polymorphisms (SNP) 105Ile/Val related to the risk of radiation induced lung injury (RILI) development, which strongly suggests that GSTP1 is closely associated with the occurrence and development of RILI. In this review, we discuss our understanding of the role of GSTP1 in RILI and its possible mechanism.
Collapse
Affiliation(s)
- Xiao Lei
- Department of Radiation Oncology, The Fifth Medical Center of the Chinese PLA General Hospital , Beijing, China
| | - Lehui Du
- Department of Radiation Oncology, The Fifth Medical Center of the Chinese PLA General Hospital , Beijing, China
| | - Wei Yu
- Department of Radiation Oncology, The Fifth Medical Center of the Chinese PLA General Hospital , Beijing, China
| | - Yao Wang
- Department of Radiation Oncology, The Fifth Medical Center of the Chinese PLA General Hospital , Beijing, China
| | - Na Ma
- Department of Radiation Oncology, The Fifth Medical Center of the Chinese PLA General Hospital , Beijing, China
| | - Baolin Qu
- Department of Radiation Oncology, The Fifth Medical Center of the Chinese PLA General Hospital , Beijing, China.
| |
Collapse
|
65
|
Ziegeltrum J, Galster M, Meyer C, Horneber M. Strahlentherapie-assoziierte Pneumonitiden. IM FOKUS ONKOLOGIE 2021. [PMCID: PMC8211967 DOI: 10.1007/s15015-021-3498-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jutta Ziegeltrum
- Klinik für Innere Medizin 3, Schwerpunkt Pneumologie, Abteilung für Strahlentherapie, Klinikum Nürnberg Nord, Prof.-Ernst-Nathan-Str. 1, 90419 Nürnberg, Germany
| | - Marco Galster
- Institut für Radiologie und Nuklearmedizin, Klinikum Nürnberg, Prof.-Ernst-Nathan-Str. 1, 90419 Nürnberg, Germany
| | - Christian Meyer
- Institut für Pathologie, Klinikum Nürnberg, Prof.-Ernst-Nathan-Str. 1, 90419 Nürnberg, Germany
| | - Markus Horneber
- Klinikum Nürnberg, Univ. Klinik f. Inn. Medizin 5, Paracelsus Med. Privatuniversität, Prof.-Ernst-Nathan-Str. 1, 90419 Nürnberg, Germany
| |
Collapse
|
66
|
Kiener M, Roldan N, Machahua C, Sengupta A, Geiser T, Guenat OT, Funke-Chambour M, Hobi N, Kruithof-de Julio M. Human-Based Advanced in vitro Approaches to Investigate Lung Fibrosis and Pulmonary Effects of COVID-19. Front Med (Lausanne) 2021; 8:644678. [PMID: 34026781 PMCID: PMC8139419 DOI: 10.3389/fmed.2021.644678] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/01/2021] [Indexed: 12/15/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused considerable socio-economic burden, which fueled the development of treatment strategies and vaccines at an unprecedented speed. However, our knowledge on disease recovery is sparse and concerns about long-term pulmonary impairments are increasing. Causing a broad spectrum of symptoms, COVID-19 can manifest as acute respiratory distress syndrome (ARDS) in the most severely affected patients. Notably, pulmonary infection with Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), the causing agent of COVID-19, induces diffuse alveolar damage (DAD) followed by fibrotic remodeling and persistent reduced oxygenation in some patients. It is currently not known whether tissue scaring fully resolves or progresses to interstitial pulmonary fibrosis. The most aggressive form of pulmonary fibrosis is idiopathic pulmonary fibrosis (IPF). IPF is a fatal disease that progressively destroys alveolar architecture by uncontrolled fibroblast proliferation and the deposition of collagen and extracellular matrix (ECM) proteins. It is assumed that micro-injuries to the alveolar epithelium may be induced by inhalation of micro-particles, pathophysiological mechanical stress or viral infections, which can result in abnormal wound healing response. However, the exact underlying causes and molecular mechanisms of lung fibrosis are poorly understood due to the limited availability of clinically relevant models. Recently, the emergence of SARS-CoV-2 with the urgent need to investigate its pathogenesis and address drug options, has led to the broad application of in vivo and in vitro models to study lung diseases. In particular, advanced in vitro models including precision-cut lung slices (PCLS), lung organoids, 3D in vitro tissues and lung-on-chip (LOC) models have been successfully employed for drug screens. In order to gain a deeper understanding of SARS-CoV-2 infection and ultimately alveolar tissue regeneration, it will be crucial to optimize the available models for SARS-CoV-2 infection in multicellular systems that recapitulate tissue regeneration and fibrotic remodeling. Current evidence for SARS-CoV-2 mediated pulmonary fibrosis and a selection of classical and novel lung models will be discussed in this review.
Collapse
Affiliation(s)
- Mirjam Kiener
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research DBMR, Urology Research Laboratory, University of Bern, Bern, Switzerland
- Alveolix AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Nuria Roldan
- Alveolix AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Carlos Machahua
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research DBMR, Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Arunima Sengupta
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Thomas Geiser
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research DBMR, Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Olivier Thierry Guenat
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Manuela Funke-Chambour
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research DBMR, Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nina Hobi
- Alveolix AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Marianna Kruithof-de Julio
- Department for BioMedical Research DBMR, Urology Research Laboratory, University of Bern, Bern, Switzerland
- Alveolix AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
- Organoid Core, Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
67
|
Luo M, Chen L, Zheng J, Wang Q, Huang Y, Liao F, Jiang Z, Zhang C, Shen G, Wu J, Wang Y, Wang Y, Leng Y, Han S, Zhang A, Wang Z, Shi C. Mitigation of radiation-induced pulmonary fibrosis by small-molecule dye IR-780. Free Radic Biol Med 2021; 164:417-428. [PMID: 33418112 DOI: 10.1016/j.freeradbiomed.2020.12.435] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/19/2020] [Accepted: 12/27/2020] [Indexed: 12/21/2022]
Abstract
Radiation-induced pulmonary fibrosis (RIPF) is a common complication during thoracic radiotherapy, but there are few effective treatments. Here, we identify IR-780, a mitochondria-targeted near-infrared (NIR) dye, can selectively accumulate in the irradiated lung tissues. Besides, IR-780 significantly alleviates radiation-induced acute lung injury and fibrosis. Furthermore, our results show that IR-780 prevents the differentiation of fibroblasts and the release of pro-fibrotic factors from alveolar macrophages induced by radiation. Besides, IR-780 downregulates the expression of glycolysis-associated genes, and 2-Deoxy-d-glucose (2-DG) also prevents the development of fibrosis in vitro, suggesting radioprotective effects of IR-780 on RIPF might be related to glycolysis regulation. Finally, IR-780 induces tumour cell apoptosis and enhances radiosensitivity in representative H460 and A549 cell lines. These findings indicate that IR-780 is a potential therapeutic small-molecule dye during thoracic radiotherapy.
Collapse
Affiliation(s)
- Min Luo
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China; Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Long Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Jiancheng Zheng
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Qing Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), 400038, Chongqing, China; Institute of Clinical Medicine, Southwest Medical University, 646000, Luzhou, China
| | - Yu Huang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Fengying Liao
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Zhongyong Jiang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Chi Zhang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Gufang Shen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Jie Wu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Yang Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Yawei Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Yu Leng
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, 401120, China
| | - Shiqian Han
- Institute of Tropical Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Aihua Zhang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Ziwen Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), 400038, Chongqing, China; Department of Cardiology, Geriatric Cardiovascular Disease Research and Treatment Center, 252 Hospital of PLA (82nd Group Army Hospital of PLA), 071000, Baoding, Hebei, China.
| | - Chunmeng Shi
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China; Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), 400038, Chongqing, China.
| |
Collapse
|
68
|
Liao Y, Wang D, Gu Z. Research Progress of Nanomaterials for Radioprotection. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21070319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
69
|
Wang D, Liu Z, Yan Z, Liang X, Liu X, Liu Y, Wang P, Bai C, Gu Y, Zhou PK. MiRNA-155-5p inhibits epithelium-to-mesenchymal transition (EMT) by targeting GSK-3β during radiation-induced pulmonary fibrosis. Arch Biochem Biophys 2020; 697:108699. [PMID: 33259794 DOI: 10.1016/j.abb.2020.108699] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023]
Abstract
Radiation-induced pulmonary fibrosis (RIPF) is a major lung complication in using radiotherapy to treat thoracic diseases. MicroRNAs (miRNAs) are reported to be the therapeutic targets for many diseases. However, the miRNAs involved in the pathogenesis of RIPF are rarely studied as potential therapeutic targets. Alveolar epithelial cells participate in RIPF formation by undergoing epithelial-mesenchymal transition (EMT). Here we demonstrated the critical role of miR-155-5p in radiation-induced EMT and RIPF. Using the previously established EMT cell model, we found that miR-155-5p was significantly down-regulated through high-throughput sequencing. Irradiation could decrease the expression of miR-155-5p in intro and in vivo, and it was inversely correlated to RIPF formation. Ectopic miR-155-5p expression inhibited radiation-induced-EMT in vitro and in vivo. Knockdown of glycogen synthase kinase-3β (GSK-3β), the functional target of miR-155-5p, reversed the induction of EMT and enhanced the phosphorylation of p65, a subunit of NF-κB, which were mediated by the down-regulation of miR-155-5p. Moreover, our finding demonstrated that ectopic miR-155-5p expression alleviated RIPF in mice by the GSK-3β/NF-κB pathway. Thus, radiation downregulates miR-155-5p in alveolar epithelial cells that induces EMT, which contributes to RIPF using GSK-3β/NF-κB pathway. Our observation provides further understanding on the regulation of RIPF and identifies potential therapeutic targets.
Collapse
Affiliation(s)
- Duo Wang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Zheng Liu
- School of Public Health, University of South China, Hengyang, Hunan Province, 421001, PR China
| | - Ziyan Yan
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Xinxin Liang
- School of Public Health, University of South China, Hengyang, Hunan Province, 421001, PR China
| | - Xiaochang Liu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; School of Public Health, University of South China, Hengyang, Hunan Province, 421001, PR China
| | - Yuhao Liu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Ping Wang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Chenjun Bai
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Yongqing Gu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; School of Public Health, University of South China, Hengyang, Hunan Province, 421001, PR China.
| | - Ping-Kun Zhou
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China.
| |
Collapse
|
70
|
The immuno-oncological challenge of COVID-19. ACTA ACUST UNITED AC 2020; 1:946-964. [DOI: 10.1038/s43018-020-00122-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
|
71
|
Lierova A, Kasparova J, Pejchal J, Kubelkova K, Jelicova M, Palarcik J, Korecka L, Bilkova Z, Sinkorova Z. Attenuation of Radiation-Induced Lung Injury by Hyaluronic Acid Nanoparticles. Front Pharmacol 2020; 11:1199. [PMID: 32903478 PMCID: PMC7435052 DOI: 10.3389/fphar.2020.01199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Therapeutic thorax irradiation as an intervention in lung cancer has its limitations due to toxic effects leading to pneumonitis and/or pulmonary fibrosis. It has already been confirmed that hyaluronic acid (HA), an extracellular matrix glycosaminoglycan, is involved in inflammation disorders and wound healing in lung tissue. We examined the effects after gamma irradiation of hyaluronic acid nanoparticles (HANPs) applied into lung prior to that irradiation in a dose causing radiation-induced pulmonary injuries (RIPI). Materials and Methods Biocompatible HANPs were first used for viability assay conducted on the J774.2 cell line. For in vivo experiments, HANPs were administered intratracheally to C57Bl/6 mice 30 min before thoracic irradiation by 17 Gy. Molecular, cellular, and histopathological parameters were measured in lung and peripheral blood at days 113, 155, and 190, corresponding to periods of significant morphological and/or biochemical alterations of RIPI. Results Modification of linear hyaluronic acid molecule into nanoparticles structure significantly affected the physiological properties and caused long-term stability against ionizing radiation. The HANPs treatments had significant effects on the expression of the cytokines and particularly on the pro-fibrotic signaling pathway in the lung tissue. The radiation fibrosis phase was altered significantly in comparison with a solely irradiated group. Conclusions The present study provides evidence that application of HANPs caused significant changes in molecular and cellular patterns associated with RIPI. These findings suggest that HANPs could diminish detrimental radiation-induced processes in lung tissue, thereby potentially decreasing the extracellular matrix degradation leading to lung fibrosis.
Collapse
Affiliation(s)
- Anna Lierova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Jitka Kasparova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technologies, University of Pardubice, Pardubice, Czechia
| | - Jaroslav Pejchal
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Klara Kubelkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Marcela Jelicova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Jiri Palarcik
- Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czechia
| | - Lucie Korecka
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technologies, University of Pardubice, Pardubice, Czechia
| | - Zuzana Bilkova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technologies, University of Pardubice, Pardubice, Czechia
| | - Zuzana Sinkorova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| |
Collapse
|