51
|
Virgilio T, Bordini J, Cascione L, Sartori G, Latino I, Molina Romero D, Leoni C, Akhmedov M, Rinaldi A, Arribas AJ, Morone D, Seyed Jafari SM, Bersudsky M, Ottolenghi A, Kwee I, Chiaravalli AM, Sessa F, Hunger RE, Bruno A, Mortara L, Voronov E, Monticelli S, Apte RN, Bertoni F, Gonzalez SF. Subcapsular Sinus Macrophages Promote Melanoma Metastasis to the Sentinel Lymph Nodes via an IL1α-STAT3 Axis. Cancer Immunol Res 2022; 10:1525-1541. [PMID: 36206577 PMCID: PMC9716256 DOI: 10.1158/2326-6066.cir-22-0225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/18/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
During melanoma metastasis, tumor cells originating in the skin migrate via lymphatic vessels to the sentinel lymph node (sLN). This process facilitates tumor cell spread across the body. Here, we characterized the innate inflammatory response to melanoma in the metastatic microenvironment of the sLN. We found that macrophages located in the subcapsular sinus (SS) produced protumoral IL1α after recognition of tumoral antigens. Moreover, we confirmed that the elimination of LN macrophages or the administration of an IL1α-specific blocking antibody reduced metastatic spread. To understand the mechanism of action of IL1α in the context of the sLN microenvironment, we applied single-cell RNA sequencing to microdissected metastases obtained from animals treated with the IL1α-specific blocking antibody. Among the different pathways affected, we identified STAT3 as one of the main targets of IL1α signaling in metastatic tumor cells. Moreover, we found that the antitumoral effect of the anti-IL1α was not mediated by lymphocytes because Il1r1 knockout mice did not show significant differences in metastasis growth. Finally, we found a synergistic antimetastatic effect of the combination of IL1α blockade and STAT3 inhibition with stattic, highlighting a new immunotherapy approach to preventing melanoma metastasis.
Collapse
Affiliation(s)
- Tommaso Virgilio
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Joy Bordini
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,GenomSys SA, Lugano, Switzerland
| | - Luciano Cascione
- Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Giulio Sartori
- Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Irene Latino
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Daniel Molina Romero
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Graduate School Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Cristina Leoni
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Murodzhon Akhmedov
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,BigOmics Analytics, Lugano, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Alberto J. Arribas
- Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Diego Morone
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - S. Morteza Seyed Jafari
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marina Bersudsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Aner Ottolenghi
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ivo Kwee
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,BigOmics Analytics, Lugano, Switzerland
| | - Anna Maria Chiaravalli
- Unit of Pathology, ASST dei Sette Laghi, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Fausto Sessa
- Unit of Pathology, ASST dei Sette Laghi, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Robert E. Hunger
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Antonino Bruno
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry, and Immunology, IRCCS MultiMedica, Milan, Italy.,Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Lorenzo Mortara
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Elena Voronov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Silvia Monticelli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Ron N. Apte
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Francesco Bertoni
- Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland.,Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland
| | - Santiago F. Gonzalez
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Corresponding Author: Santiago F. Gonzalez, Institute for Research in Biomedicine, via Francesco Chiesa 5. CH-6500 Bellinzona. Switzerland. Phone: +41 58 666 7226; E-mail:
| |
Collapse
|
52
|
Wagstaff W, Mwamba RN, Grullon K, Armstrong M, Zhao P, Hendren-Santiago B, Qin KH, Li AJ, Hu DA, Youssef A, Reid RR, Luu HH, Shen L, He TC, Haydon RC. Melanoma: Molecular genetics, metastasis, targeted therapies, immunotherapies, and therapeutic resistance. Genes Dis 2022; 9:1608-1623. [PMID: 36157497 PMCID: PMC9485270 DOI: 10.1016/j.gendis.2022.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/29/2022] [Accepted: 04/10/2022] [Indexed: 02/07/2023] Open
Abstract
Cutaneous melanoma is a common cancer and cases have steadily increased since the mid 70s. For some patients, early diagnosis and surgical removal of melanomas is lifesaving, while other patients typically turn to molecular targeted therapies and immunotherapies as treatment options. Easy sampling of melanomas allows the scientific community to identify the most prevalent mutations that initiate melanoma such as the BRAF, NRAS, and TERT genes, some of which can be therapeutically targeted. Though initially effective, many tumors acquire resistance to the targeted therapies demonstrating the need to investigate compensatory pathways. Immunotherapies represent an alternative to molecular targeted therapies. However, inter-tumoral immune cell populations dictate initial therapeutic response and even tumors that responded to treatment develop resistance in the long term. As the protocol for combination therapies develop, so will our scientific understanding of the many pathways at play in the progression of melanoma. The future direction of the field may be to find a molecule that connects all of the pathways. Meanwhile, noncoding RNAs have been shown to play important roles in melanoma development and progression. Studying noncoding RNAs may help us to understand how resistance - both primary and acquired - develops; ultimately allow us to harness the true potential of current therapies. This review will cover the basic structure of the skin, the mutations and pathways responsible for transforming melanocytes into melanomas, the process by which melanomas metastasize, targeted therapeutics, and the potential that noncoding RNAs have as a prognostic and treatment tool.
Collapse
Affiliation(s)
- William Wagstaff
- The Pritzker School of Medicine, and the Medical Scientist Training Program, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rimel N. Mwamba
- The Pritzker School of Medicine, and the Medical Scientist Training Program, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Karina Grullon
- The Pritzker School of Medicine, and the Medical Scientist Training Program, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Mikhayla Armstrong
- The Pritzker School of Medicine, and the Medical Scientist Training Program, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Bryce Hendren-Santiago
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kevin H. Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Alexander J. Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Daniel A. Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Andrew Youssef
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Le Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
53
|
Adrenal and ureteral metastasis of malignant melanoma: A case report and review of the literature. Urol Case Rep 2022; 45:102286. [DOI: 10.1016/j.eucr.2022.102286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/19/2022] Open
|
54
|
Zhao L, Xie H, Li J. Red Blood Cell Membrane-Camouflaged Gold Nanoparticles for Treatment of Melanoma. JOURNAL OF ONCOLOGY 2022; 2022:3514984. [PMID: 36276288 PMCID: PMC9586750 DOI: 10.1155/2022/3514984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 07/22/2023]
Abstract
Background Patients with melanoma have poor response and low long-term survival to conventional cisplatin (CP). Recently, biomimetic nanoparticles have played a significant role in tumor therapy. The purpose of this study was to mechanistically evaluate the effect of red blood cell membrane camouflaged gold nanoparticles loaded with CP (RBCm@AuNPs-CP) on enhancing chemotherapy in melanoma. Methods Treated B16-F10 cells with RBCm@AuNPs-CP, the antimelanoma effect in vitro was explored by detecting cell viability, apoptosis rate, level of reactive oxygen species (ROS), and singlet oxygen. RBCm@AuNPs-CP was injected into the melanoma-bearing mice via tail vein, and the target-ability, therapeutic effect, and toxicity were detected in melanoma tumor-bearing mice. Results RBCm@AuNPs-CP had an antiproliferation and apoptosis-inducing effect on B16-F10 cells, which might be mediated by oxidative stress of ROS, and its effect was significantly enhanced compared with the CP treatment group. In vivo experiments suggested the same outcome, with better target-ability of RBCm@AuNPs-CP. Conclusion The erythrocyte camouflage nanosystem RBCm@AuNPs-CP exhibited well passive tumor target-ability and promoted apoptosis of melanocytes by inducing ROS. RBCm@AuNPs-CP as a novel safe and effective targeted drug delivery system may provide a promising choice for the treatment of melanoma.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
55
|
Golloshi R, Playter C, Freeman TF, Das P, Raines TI, Garretson JH, Thurston D, McCord RP. Constricted migration is associated with stable 3D genome structure differences in cancer cells. EMBO Rep 2022; 23:e52149. [PMID: 35969179 PMCID: PMC9535800 DOI: 10.15252/embr.202052149] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 01/14/2023] Open
Abstract
To spread from a localized tumor, metastatic cancer cells must squeeze through constrictions that cause major nuclear deformations. Since chromosome structure affects nucleus stiffness, gene regulation, and DNA repair, here, we investigate the relationship between 3D genome structure and constricted migration in cancer cells. Using melanoma (A375) cells, we identify phenotypic differences in cells that have undergone multiple rounds of constricted migration. These cells display a stably higher migration efficiency, elongated morphology, and differences in the distribution of Lamin A/C and heterochromatin. Hi-C experiments reveal differences in chromosome spatial compartmentalization specific to cells that have passed through constrictions and related alterations in expression of genes associated with migration and metastasis. Certain features of the 3D genome structure changes, such as a loss of B compartment interaction strength, are consistently observed after constricted migration in clonal populations of A375 cells and in MDA-MB-231 breast cancer cells. Our observations suggest that consistent types of chromosome structure changes are induced or selected by passage through constrictions and that these may epigenetically encode stable differences in gene expression and cellular migration phenotype.
Collapse
Affiliation(s)
- Rosela Golloshi
- Biochemistry & Cellular and Molecular Biology DepartmentUniversity of TennesseeKnoxvilleTNUSA
| | - Christopher Playter
- Biochemistry & Cellular and Molecular Biology DepartmentUniversity of TennesseeKnoxvilleTNUSA
| | - Trevor F Freeman
- Biochemistry & Cellular and Molecular Biology DepartmentUniversity of TennesseeKnoxvilleTNUSA
| | - Priyojit Das
- UT‐ORNL Graduate School of Genome Science and TechnologyUniversity of TennesseeKnoxvilleTNUSA
| | - Thomas Isaac Raines
- Biochemistry & Cellular and Molecular Biology DepartmentUniversity of TennesseeKnoxvilleTNUSA
| | - Joshua H Garretson
- Biochemistry & Cellular and Molecular Biology DepartmentUniversity of TennesseeKnoxvilleTNUSA
| | - Delaney Thurston
- Biochemistry & Cellular and Molecular Biology DepartmentUniversity of TennesseeKnoxvilleTNUSA
| | - Rachel Patton McCord
- Biochemistry & Cellular and Molecular Biology DepartmentUniversity of TennesseeKnoxvilleTNUSA
| |
Collapse
|
56
|
Maksimaityte V, Reivytyte R, Milaknyte G, Mickys U, Razanskiene G, Stundys D, Kazenaite E, Valantinas J, Stundiene I. Metastatic multifocal melanoma of multiple organ systems: A case report. World J Clin Cases 2022; 10:10136-10145. [PMID: 36246820 PMCID: PMC9561590 DOI: 10.12998/wjcc.v10.i28.10136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/05/2022] [Accepted: 07/31/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Malignant melanoma is becoming more common among middle-aged individuals all over the world. Melanoma metastasis can be found in various organs, although metastases to the spleen and stomach are rare. Herein we present a rare metastatic multifocal melanoma, clinically and histologically mimicking lymphoma, with metastases of multiple organs.
CASE SUMMARY A 46-year-old Caucasian male with a history of nodular cutaneous malignant melanoma was presented with nausea, general weakness, shortness of breath, abdominal enlargement, and night sweating. The abdominal ultrasound revealed enlarged liver and spleen with multiple lesions. Computed tomography demonstrated multiple lesions in the lungs, liver, spleen, subcutaneous tissue, bones and a pathological lymphadenopathy of the neck. Trephine biopsy and the biopsy from the enlarged lymph node were taken. Tumor cells showed diffuse or partial positivity for melanocytic markers, such as microphthalmia - associated transcription factor, S100, HMB45 and Melan-A. The tumor harbored BRAF V600E mutation, demonstrated by immunohistochemical labelling for BRAF V600E and detected by real-time polymerase chain reaction test. Having combined all the findings, a diagnosis was made of a metastatic multifocal melanoma of the stomach, duodenum, liver, spleen, lungs, lymph nodes and bones. The patient refused treatment and died a week later.
CONCLUSION This case report highlights the clinical relevance of rare metastatic multifocal melanoma of multiple organ systems.
Collapse
Affiliation(s)
- Vaidota Maksimaityte
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
| | - Rosita Reivytyte
- Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
| | - Gabriele Milaknyte
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
| | - Ugnius Mickys
- Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
| | - Gintare Razanskiene
- Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
| | - Domantas Stundys
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
| | - Edita Kazenaite
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
| | - Jonas Valantinas
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
| | - Ieva Stundiene
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
| |
Collapse
|
57
|
A preclinical model of cutaneous melanoma based on reconstructed human epidermis. Sci Rep 2022; 12:16269. [PMID: 36175453 PMCID: PMC9522649 DOI: 10.1038/s41598-022-19307-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 08/26/2022] [Indexed: 11/08/2022] Open
Abstract
Malignant melanoma is among the tumor entities with the highest increase of incidence worldwide. To elucidate melanoma progression and develop new effective therapies, rodent models are commonly used. While these do not adequately reflect human physiology, two-dimensional cell cultures lack crucial elements of the tumor microenvironment. To address this shortcoming, we have developed a melanoma skin equivalent based on an open-source epidermal model. Melanoma cell lines with different driver mutations were incorporated into these models forming distinguishable tumor aggregates within a stratified epidermis. Although barrier properties of the skin equivalents were not affected by incorporation of melanoma cells, their presence resulted in a higher metabolic activity indicated by an increased glucose consumption. Furthermore, we re-isolated single cells from the models to characterize the proliferation state within the respective model. The applicability of our model for tumor therapeutics was demonstrated by treatment with a commonly used v-raf murine sarcoma viral oncogene homolog B (BRAF) inhibitor vemurafenib. This selective BRAF inhibitor successfully reduced tumor growth in the models harboring BRAF-mutated melanoma cells. Hence, our model is a promising tool to investigate melanoma development and as a preclinical model for drug discovery.
Collapse
|
58
|
Mazurkiewicz J, Simiczyjew A, Dratkiewicz E, Kot M, Pietraszek-Gremplewicz K, Wilk D, Ziętek M, Matkowski R, Nowak D. Melanoma stimulates the proteolytic activity of HaCaT keratinocytes. Cell Commun Signal 2022; 20:146. [PMID: 36123693 PMCID: PMC9484146 DOI: 10.1186/s12964-022-00961-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/20/2022] [Indexed: 11/21/2022] Open
Abstract
Background Keratinocytes constitute a major part of the melanoma microenvironment, considering their protective role towards melanocytes in physiological conditions. However, their interactions with tumor cells following melanomagenesis are still unclear. Methods We used two in vitro models (melanoma-conditioned media and indirect co-culture of keratinocytes with melanoma cells on Transwell inserts) to activate immortalized keratinocytes towards cancer-associated ones. Western Blotting and qPCR were used to evaluate keratinocyte markers and mediators of cell invasiveness on protein and mRNA expression level respectively. The levels and activity of proteases and cytokines were analysed using gelatin-FITC staining, gelatin zymography, chemiluminescent enzymatic test, as well as protein arrays. Finally, to further study the functional changes influenced by melanoma we assessed the rate of proliferation of keratinocytes and their invasive abilities by employing wound healing assay and the Transwell filter invasion method. Results HaCaT keratinocytes activated through incubation with melanoma-conditioned medium or indirect co-culture exhibit properties of less differentiated cells (downregulation of cytokeratin 10), which also prefer to form connections with cancer cells rather than adjacent keratinocytes (decreased level of E-cadherin). While they express only a small number of cytokines, the variety of secreted proteases is quite prominent especially considering that several of them were never reported as a part of secretome of activated keratinocytes’ (e.g., matrix metalloproteinase 3 (MMP3), ADAM metallopeptidase with thrombospondin type 1 motif 1). Activated keratinocytes also seem to exhibit a high level of proteolytic activity mediated by MMP9 and MMP14, reduced expression of TIMPs (tissue inhibitor of metalloproteinases), upregulation of ERK activity and increased levels of MMP expression regulators-RUNX2 and galectin 3. Moreover, cancer-associated keratinocytes show slightly elevated migratory and invasive abilities, however only following co-culture with melanoma cells on Transwell inserts. Conclusions Our study offers a more in-depth view of keratinocytes residing in the melanoma niche, drawing attention to their unique secretome and mediators of invasive abilities, factors which could be used by cancer cells to support their invasion of surrounding tissues. Video abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00961-w.
Collapse
Affiliation(s)
- Justyna Mazurkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland.
| | - Aleksandra Simiczyjew
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Ewelina Dratkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Magdalena Kot
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | | | - Dominika Wilk
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Marcin Ziętek
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, 53-413, Wrocław, Poland.,Wroclaw Comprehensive Cancer Center, Plac Hirszfelda 12, 53-413, Wrocław, Poland
| | - Rafał Matkowski
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, 53-413, Wrocław, Poland.,Wroclaw Comprehensive Cancer Center, Plac Hirszfelda 12, 53-413, Wrocław, Poland
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| |
Collapse
|
59
|
Diagnosis and Pattern Identification of Intrathoracic Malignant Melanoma Metastasis: A Retrospective Single Center Analysis. Diagnostics (Basel) 2022; 12:diagnostics12092254. [PMID: 36140655 PMCID: PMC9497793 DOI: 10.3390/diagnostics12092254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/11/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
The lung is a frequent site of secondary malignancies. Melanoma is a malignant tumor originating from melanocytes, that accounts for the majority of death related to skin cancers. In advanced stages, it can also present with intrathoracic metastasis, particularly in the lungs, but infrequent intrathoracic manifestations are possible. A retrospective analysis of the cases referred to the pulmonary endoscopy unit of the hospital of Reggio Emilia in the last 10 years (since December 2012) was carried out, discovering 17 cases of melanoma metastasis with thoracic localizations, either with or without a diagnosis of primary melanoma. Four repetitive patterns of clinical-radiological presentation have been identified and described through the same number of paradigmatic clinical cases: nodal involvement (35%), lung mass(es) (41%), diffuse pulmonary involvement (12%), and pleural involvement (12%). These different presentations imply the use of different diagnostic techniques, with an overall high diagnostic yield (87.5%). Finally, a brief analysis of survival based on the pattern of presentation has been performed, finding no statistically significant differences between the four groups at metastasis diagnosis (p-value = 0.06, median survival of respectively 54, 8, 9, and 26 months from metastasis diagnosis), while there is a significant difference considering patients with lung involvement versus nodal/pleural involvement (p = 0.01).
Collapse
|
60
|
Mitochondrial Protein Cox7b Is a Metabolic Sensor Driving Brain-Specific Metastasis of Human Breast Cancer Cells. Cancers (Basel) 2022; 14:cancers14184371. [PMID: 36139533 PMCID: PMC9497206 DOI: 10.3390/cancers14184371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Distant metastases are detrimental for cancer patients, but the increasingly early detection of tumors offers a chance for metastasis prevention. Importantly, cancers do not metastasize randomly: depending on the type of cancer, metastatic progenitor cells have a predilection for well-defined organs. This has been theorized by Stephen Paget, who proposed the “seed-and-soil hypothesis”, according to which metastatic colonization occurs only when the needs of a given metastatic progenitor cell (the seed) match with the resources provided by a given organ (the soil). Here, we propose to explore the seed-and-soil hypothesis in the context of cancer metabolism, thus hypothesizing that metastatic progenitor cells must be capable of detecting the availability of metabolic resources in order to home in a secondary organ. If true, it would imply the existence of metabolic sensors. Using human triple-negative MDA-MB-231 breast cancer cells and two independent brain-seeking variants as models, we report that cyclooxygenase 7b (Cox7b), a structural component of Complex IV of the mitochondrial electron transport chain, belongs to a probably larger family of proteins responsible for breast cancer brain tropism in mice. For metastasis prevention therapy, this proof-of-principle study opens a quest for the identification of therapeutically targetable metabolic sensors that drive cancer organotropism.
Collapse
|
61
|
Vajta Gomez JP, Parkash O, Jospeh R, Arangan J, Magno W, Chowdhury M, Borz-Baba C, Medrano C. The Great Mimicker: Cutaneous Metastatic Melanoma Presenting as a Non-resolving Pleural Effusion. Cureus 2022; 14:e28320. [PMID: 36158413 PMCID: PMC9499834 DOI: 10.7759/cureus.28320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Abstract
Although melanoma starts as a local disease, it can metastasize to other sites of the body including the lung, brain, liver, and intestines. However, pleural involvement is a rare presentation. Here, we present a case of a 57-year-old man with a history of stage IIA cutaneous melanoma, that relapsed 3 years after cutaneous resection, presenting with a non-resolving pleural effusion. Pleural fluid analysis was consistent with an exudative effusion, and pleural biopsy confirmed metastatic melanoma. The patient was treated with dual therapy of ipilimumab and nivolumab, as per National Comprehensive Cancer Network guidelines, with good response. Thus, we recommend having a high index of clinical suspicion for metastatic pleural melanoma when a patient with a history of cutaneous melanoma presents with a non-resolving pleural effusion.
Collapse
|
62
|
Li AA, Zhang Y, Tong WL, Chen JW, Huang SH, Liu JM, Liu ZL. Identification of a Novel Pyroptosis-Related Gene Signature Indicative of Disease Prognosis and Treatment Response in Skin Cutaneous Melanoma. Int J Gen Med 2022; 15:6145-6163. [PMID: 35855761 PMCID: PMC9288220 DOI: 10.2147/ijgm.s367693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/22/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Pyroptosis plays an important role in the occurrence and progression of many tumors; however, the specific mechanisms involved remain unknown. Here, we construct a pyroptosis-related gene signature that can be used to predict survival prognosis of skin cutaneous melanoma (SKCM) and provide guidance for clinical treatment. Methods By integrating data from the two databases from the GTEx and TCGA, differentially expressed genes (DEGs) from normal tissues and skin cutaneous tumor tissues were identified. The main signaling pathways and function enrichment of these differential genes were determined. Univariate and multivariate COX regression analysis, and risk score analysis were used to construct a signature to assess its predictive value for overall survival. The mRNA expression of these five genes in melanoma cells was determined by quantitative polymerase chain reaction (qPCR). The pRRophetic algorithm was used to estimate the half-maximal inhibitory concentration (IC50) of chemotherapy drugs in SKCM patients. The expression of multiple immune checkpoint genes also was evaluated. Results Sixteen DEGs associated with pyroptosis in SKCM and normal skin tissues were identified. Of these, 12 pyroptosis-related DEGs were associated with the prognosis of SKCM. A five-gene signature (GSDMA, GSDMC, IL-18, NLRP6, and AIM2) model was constructed. Patients were divided into high-risk and low-risk groups using the risk scores. Of these, the high-risk group had a worse survival prognosis. There are significant differences in the predicted sensitivity of the high-risk and low-risk groups to chemotherapeutic drugs. In addition, compared with the high-risk group, the low-risk group showed higher expression of PD-1, PDL-1, CTLA-4, LAG-3, and VSIR. Conclusion In this study, we constructed a novel prognostic pyroptosis-related gene-signature for SKCM. These genes showed good predictive value for patient prognosis and could provide guidance for better treatment of SKCM patients.
Collapse
Affiliation(s)
- An-An Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Yu Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Wei-Lai Tong
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Jiang-Wei Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Shan-Hu Huang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Jia-Ming Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Zhi-Li Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
63
|
Madani A, Omar NE, Mustafa G, Petkar M, Mohamed S, Al kuwari M, Karim SA, Mohsen R. Cardiac Metastases from Choroidal Melanoma. Clin Case Rep 2022; 10:e6080. [PMID: 35865765 PMCID: PMC9290777 DOI: 10.1002/ccr3.6080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 05/25/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022] Open
Abstract
In patients with uveal melanoma, cardiac metastases can present without any symptoms. It is becoming more common than previously thought and highlights the importance of routine surveillance after definitive treatment.
Collapse
Affiliation(s)
- Ammar Madani
- Department of Medical Oncology, National Centre for Cancer Care and ResearchHamad Medical CorporationDohaQatar
| | - Nabil E. Omar
- Pharmacy Department, National Centre for Cancer Care and ResearchHamad Medical CorporationDohaQatar
| | - Ghulam Mustafa
- Department of Nuclear Medicine, National Centre for Cancer Care and ResearchHamad Medical CorporationDohaQatar
| | - Mahir Petkar
- Department of PathologyHamad Medical CorporationDohaQatar
| | - Samah Mohamed
- Department of RadiologyHamad Medical CorporationDohaQatar
| | | | | | - Reyad Mohsen
- Department of Medical Oncology, National Centre for Cancer Care and ResearchHamad Medical CorporationDohaQatar
| |
Collapse
|
64
|
Casalou C, Moreiras H, Mayatra JM, Fabre A, Tobin DJ. Loss of 'Epidermal Melanin Unit' Integrity in Human Skin During Melanoma-Genesis. Front Oncol 2022; 12:878336. [PMID: 35574390 PMCID: PMC9097079 DOI: 10.3389/fonc.2022.878336] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Cutaneous melanoma can be a most challenging neoplasm of high lethality, in part due to its extreme heterogeneity and characteristic aggressive and invasive nature. Indeed, its moniker 'the great masquerader' reflects that not all melanomas are created equal in terms of their originating cellular contexts, but also that melanoma cells in the malignant tumor can adopt a wide range of different cell states and variable organotropism. In this review, we focus on the early phases of melanomagenesis by discussing how the originating pigment cell of the melanocyte lineage can be influenced to embark on a wide range of tumor fates with distinctive microanatomical pathways. In particular, we assess how cells of the melanocyte lineage can differ by maturation status (stem cell; melanoblast; transiently amplifying cell; differentiated; post-mitotic; terminally-differentiated) as well as by micro-environmental niche (in the stratum basale of the epidermis; within skin appendages like hair follicle, eccrine gland, etc). We discuss how the above variable contexts may influence the susceptibility of the epidermal-melanin unit (EMU) to become unstable, which may presage cutaneous melanoma development. We also assess how unique features of follicular-melanin unit(s) (FMUs) can, by contrast, protect melanocytes from melanomagenesis. Lastly, we postulate how variable melanocyte fates in vitiligo, albinism, psoriasis, and alopecia areata may provide new insights into immune-/non immune-mediated outcomes for melanocytes in cutaneous melanin units.
Collapse
Affiliation(s)
- Cristina Casalou
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
| | - Hugo Moreiras
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
| | - Jay M Mayatra
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
| | - Aurelie Fabre
- Department of Histopathology, St Vincent's University Hospital, Dublin, Ireland.,UCD School of Medicine, University College Dublin, Dublin, Ireland.,The Conway Institute of Biomedical and Biomolecular Science, University College Dublin, Dublin, Ireland
| | - Desmond J Tobin
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland.,The Conway Institute of Biomedical and Biomolecular Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
65
|
Feng S, Zhou Y, Huang H, Lin Y, Zeng Y, Han S, Huang K, Liu Q, Zhu W, Yuan Z, Liang B. Nobiletin Induces Ferroptosis in Human Skin Melanoma Cells Through the GSK3β-Mediated Keap1/Nrf2/HO-1 Signalling Pathway. Front Genet 2022; 13:865073. [PMID: 35350242 PMCID: PMC8957809 DOI: 10.3389/fgene.2022.865073] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/21/2022] [Indexed: 12/19/2022] Open
Abstract
Melanoma is an aggressive malignant skin tumour with an increasing global incidence. However, current treatments have limitations owing to the acquired tumour drug resistance. Ferroptosis is a recently discovered form of programmed cell death characterised by iron accumulation and lipid peroxidation and plays a critical role in tumour growth inhibition. Recently, ferroptosis inducers have been regarded as a promising therapeutic strategy to overcome apoptosis resistance in tumour cells. In this study, we reported that nobiletin, a natural product isolated from citrus peel, and exhibited antitumour activity by inducing ferroptosis in melanoma cells. Subsequently, we further explored the potential mechanism of nobiletin-induced ferroptosis, and found that the expression level of glycogen synthase kinase 3β (GSK3β) in the skin tissue of patients with melanoma was significantly reduced compared to that in the skin of normal tissue. Additionally, nobiletin increased GSK3β expression in melanoma cells. Moreover, the level of Kelch-like Ech-associated protein-1 (Keap1) was increased, while the level of nuclear factor erythroid 2-related factor 2 (Nrf2), and haem oxygenase-1 (HO-1) was decreased in nobiletin-treated melanoma cells, suggesting that the antioxidant defence system was downregulated. Furthermore, knockdown of GSK3β significantly reduced nobiletin-induced ferroptosis and upregulated the Keap1/Nrf2/HO-1 signalling pathway, while the opposite was observed in cells overexpressing GSK3β. In addition, molecular docking assay results indicated that nobiletin showed strong binding affinities for GSK3β, Keap1, Nrf2, and HO-1. Taken together, our results demonstrated that nobiletin could induce ferroptosis by regulating the GSK3β-mediated Keap1/Nrf2/HO-1 signalling pathway in human melanoma cells. Hence, nobiletin stands as a promising drug candidate for melanoma treatment with development prospects.
Collapse
Affiliation(s)
- Senling Feng
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongheng Zhou
- Department of Pharmacy, The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongliang Huang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ying Lin
- Guangdong Provincial Clinical Research Center for Chinese Medicine Dermatology, Department of Dermatology, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Yifeng Zeng
- Department of Pharmacy, The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shanshan Han
- Guangdong Provincial Clinical Research Center for Chinese Medicine Dermatology, Department of Dermatology, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Kaikai Huang
- Guangdong Provincial Clinical Research Center for Chinese Medicine Dermatology, Department of Dermatology, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Quanzhi Liu
- Guangdong Provincial Clinical Research Center for Chinese Medicine Dermatology, Department of Dermatology, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Wenting Zhu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhongwen Yuan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Baoying Liang
- Guangdong Provincial Clinical Research Center for Chinese Medicine Dermatology, Department of Dermatology, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
66
|
Hartmann T, Perron R, Razavi M. Utilization of Nanoparticles, Nanodevices, and Nanotechnology in the Treatment Course of Cutaneous Melanoma. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Thomas Hartmann
- College of Medicine University of Central Florida Orlando FL 32827 USA
| | - Rebecca Perron
- College of Medicine University of Central Florida Orlando FL 32827 USA
| | - Mehdi Razavi
- College of Medicine University of Central Florida Orlando FL 32827 USA
- Biionix™ (Bionic Materials, Implants & Interfaces) Cluster Department of Internal Medicine College of Medicine University of Central Florida Orlando FL 32827 USA
- Department of Materials Science and Engineering University of Central Florida Orlando FL 32816 USA
| |
Collapse
|
67
|
Imaging of Oligometastatic Disease. Cancers (Basel) 2022; 14:cancers14061427. [PMID: 35326586 PMCID: PMC8946296 DOI: 10.3390/cancers14061427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary The imaging of oligometastatic disease (OMD) is challenging as it requires precise loco-regional staging and whole-body assessment. The combination of imaging modalities is often required. The more accurate imaging tool will be selected according to tumor type, the timing with regard to measurement and treatment, metastatic location, and the patient’s individual risk for metastasis. The most commonly used modalities are contrast-enhanced computed tomography (CT), magnetic resonance imaging and metabolic and receptor-specific imaging, particularly, 18F-fluorodesoxyglucose positron emission tomography/CT, used alone or in combination. Abstract Oligometastatic disease (OMD) is an emerging state of disease with limited metastatic tumor burden. It should be distinguished from polymetastatic disease due the potential curative therapeutic options of OMD. Imaging plays a pivotal role in the diagnosis and follow-up of patients with OMD. The imaging tools needed in the case of OMD will differ according to different parameters, which include primary tumor type, timing between measurement and treatment, potential metastatic location and the patient’s individual risk for metastasis. In this article, OMD is defined and the use of different imaging modalities in several oncologic situations are described in order to better understand OMD and its specific implication for radiologists.
Collapse
|
68
|
Garcia MG, Deng Y, Murray C, Reyes RM, Padron A, Bai H, Kancharla A, Gupta H, Shen-Orr S, Curiel TJ. Immune checkpoint expression and relationships to anti-PD-L1 immune checkpoint blockade cancer immunotherapy efficacy in aged versus young mice. AGING AND CANCER 2022; 3:68-83. [PMID: 36876140 PMCID: PMC9980712 DOI: 10.1002/aac2.12045] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Introduction Aging is the biggest cancer risk, and immune checkpoint (IC) inhibition (ICI) is a revolutionary cancer immunotherapy approach. Nonetheless, there are limited preclinical/clinical data regarding aging effects on ICI outcomes or age effects on IC expression in different organs or tumors. Methods Flow cytometry assessed IC on immune and non-immune cells in various organs in young and aged BL6 mice. Comparisons: aged versus young naïve WT versus interferon-γ KO mice and WT challenged with B16F10 melanoma and treated with αPD-1 or αPD-L1 ICI. We co-cultured young and aged T cells and myeloid cells in vitro and used OMIQ analyses to test cell-cell interactions. Results αPD-1 ICI treated melanoma in young and aged hosts, whereas αPD-L1 ICI was only effective in young. We found considerable, previously undescribed age effects on expression of various IC molecules participating in the ICI treatment, including PD-1, PD-L1, PD-L2, and CD80, in distinct organs and in the tumor. These data help explain differential ICI efficacy in young and aged hosts. Host interferon-γ influenced age effects on IC expression in both directions depending on specific IC molecule and tissue. IC expression was further affected by tumor challenge on immune, non-immune, and tumor cells in tumor and other organs. In in vitro co-culture, αPD-1 versus αPD-L1 distinctly influenced polyclonal T cells in young versus aged, suggesting mechanisms for distinct age-related ICI outcomes. Conclusion Age affects IC expression on specific immune cells in an organ- and tissue-specific manner. ICs were generally higher on aged immune cells. High immune-cell PD-1 could help explain αPD-1 efficacy in aged. High co-expression of CD80 with PD-L1 on dendritic cells could help explain lack of αPD-L1 efficacy in aged hosts. Factors other than myeloid cells and interferon-γ also affect age-related IC expression and T cell function, meriting additional studies.
Collapse
Affiliation(s)
- Myrna G Garcia
- South Texas Medical Scientist Training Program, University of Texas Health, San Antonio, Texas, USA.,Graduate School of Biomedical Sciences, University of Texas Health, San Antonio, Texas, USA
| | - Yilun Deng
- Department of Medicine, University of Texas Health, San Antonio, Texas, USA
| | - Clare Murray
- South Texas Medical Scientist Training Program, University of Texas Health, San Antonio, Texas, USA.,Graduate School of Biomedical Sciences, University of Texas Health, San Antonio, Texas, USA
| | - Ryan M Reyes
- South Texas Medical Scientist Training Program, University of Texas Health, San Antonio, Texas, USA
| | - Alvaro Padron
- Department of Medicine, University of Texas Health, San Antonio, Texas, USA
| | - Haiyan Bai
- Department of Medicine, University of Texas Health, San Antonio, Texas, USA
| | - Aravind Kancharla
- Department of Medicine, University of Texas Health, San Antonio, Texas, USA.,Senda Biosciences, Cambridge, MA, USA
| | - Harshita Gupta
- Department of Medicine, University of Texas Health, San Antonio, Texas, USA
| | - Shai Shen-Orr
- Technion, Israel Institute of Technology, Haifa, Israel
| | - Tyler J Curiel
- South Texas Medical Scientist Training Program, University of Texas Health, San Antonio, Texas, USA.,Graduate School of Biomedical Sciences, University of Texas Health, San Antonio, Texas, USA.,Department of Medicine, University of Texas Health, San Antonio, Texas, USA.,Clayton Foundation for Research, Houston, Texas, USA.,Mays Cancer Center, University of Texas Health, San Antonio, Texas, USA
| |
Collapse
|
69
|
Sun J, Zhu YZ, Shao PP, Ke J, Wang W, Sun QL, Li JB, Cheng J. Malignant melanoma mimic fungal infection a case report. Diagn Pathol 2022; 17:33. [PMID: 35220953 PMCID: PMC8882303 DOI: 10.1186/s13000-022-01214-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/09/2022] [Indexed: 11/30/2022] Open
Abstract
Background Most of malignant melanomas originate from skin and often metastasize to the lungs, rarely metastasizes to the liver and bone. However, imageology characters of lung metastasis tumor are commonly similar to those of fungal infections. Case presentation A patient was admitted with unhealed plantar puncture wound for 3 years, and cough and expectoration for 2 years. The chest computed tomography (CT) revealed multiple nodules with cavities, and the patient was diagnosed of pulmonary fungal infection in another hospital and received antifungal therapy for more than 8 months, but the clinical symptoms and chest imaging findings continue to progress. After admission, the pathological results of both lung biopsy and biopsy of the plantar wound 3 years ago indicated malignant melanoma. Conclusions The diagnosis of lung lesions cannot rely solely on imaging diagnosis, lung biopsy should be performed if necessary. Supplementary Information The online version contains supplementary material available at 10.1186/s13000-022-01214-7.
Collapse
|
70
|
Reipond L, Ford D, Cool P. A Rare Presentation of a Solitary Melanoma Bone Metastasis. Cureus 2022; 14:e21479. [PMID: 35223259 PMCID: PMC8860680 DOI: 10.7759/cureus.21479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2022] [Indexed: 11/05/2022] Open
Abstract
A 74-year-old woman presented with sudden onset pain and swelling in her right wrist. Plain radiographs showed a pathological fracture through a lytic lesion. The patient had a past medical history of melanoma on her right thigh, which had been excised two years previously. She was referred to the bone cancer unit to undergo a series of investigations that included a magnetic resonance imaging scan, bone scintigraphy and a computed tomography-guided biopsy. Collectively, all investigations revealed a solitary bone metastasis from her previous melanoma in the right distal radius. The patient was treated symptomatically and underwent internal fixation with cement augmentation for symptom control. With the incidence of melanoma increasing, this case demonstrates the importance of being vigilant of unusual presentations.
Collapse
|
71
|
Bustos SO, Leal Santos N, Chammas R, Andrade LNDS. Secretory Autophagy Forges a Therapy Resistant Microenvironment in Melanoma. Cancers (Basel) 2022; 14:234. [PMID: 35008395 PMCID: PMC8749976 DOI: 10.3390/cancers14010234] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
Melanoma is the most aggressive skin cancer characterized by high mutational burden and large heterogeneity. Cancer cells are surrounded by a complex environment, critical to tumor establishment and progression. Thus, tumor-associated stromal components can sustain tumor demands or impair cancer cell progression. One way to manage such processes is through the regulation of autophagy, both in stromal and tumor cells. Autophagy is a catabolic mechanism that provides nutrients and energy, and it eliminates damaged organelles by degradation and recycling of cellular elements. Besides this primary function, autophagy plays multiple roles in the tumor microenvironment capable of affecting cell fate. Evidence demonstrates the existence of novel branches in the autophagy system related to cytoplasmic constituent's secretion. Hence, autophagy-dependent secretion assembles a tangled network of signaling that potentially contributes to metabolism reprogramming, immune regulation, and tumor progression. Here, we summarize the current awareness regarding secretory autophagy and the intersection with exosome biogenesis and release in melanoma and their role in tumor resistance. In addition, we present and discuss data from public databases concerning autophagy and exosome-related genes as important mediators of melanoma behavior. Finally, we will present the main challenges in the field and strategies to translate most of the pre-clinical findings to clinical practice.
Collapse
Affiliation(s)
- Silvina Odete Bustos
- Center for Translational Research in Oncology (LIM24), Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo 01246-000, Brazil; (N.L.S.); (R.C.)
| | | | | | - Luciana Nogueira de Sousa Andrade
- Center for Translational Research in Oncology (LIM24), Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo 01246-000, Brazil; (N.L.S.); (R.C.)
| |
Collapse
|
72
|
Cherepakhin OS, Argenyi ZB, Moshiri AS. Genomic and Transcriptomic Underpinnings of Melanoma Genesis, Progression, and Metastasis. Cancers (Basel) 2021; 14:123. [PMID: 35008286 PMCID: PMC8750021 DOI: 10.3390/cancers14010123] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Melanoma is a deadly skin cancer with rapidly increasing incidence worldwide. The discovery of the genetic drivers of melanomagenesis in the last decade has led the World Health Organization to reclassify melanoma subtypes by their molecular pathways rather than traditional clinical and histopathologic features. Despite this significant advance, the genomic and transcriptomic drivers of metastatic progression are less well characterized. This review describes the known molecular pathways of cutaneous and uveal melanoma progression, highlights recently identified pathways and mediators of metastasis, and touches on the influence of the tumor microenvironment on metastatic progression and treatment resistance. While targeted therapies and immune checkpoint blockade have significantly aided in the treatment of advanced disease, acquired drug resistance remains an unfortunately common problem, and there is still a great need to identify potential prognostic markers and novel therapeutic targets to aid in such cases.
Collapse
Affiliation(s)
| | - Zsolt B. Argenyi
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA;
| | - Ata S. Moshiri
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA;
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
73
|
Vuković LD, Chen P, Mishra S, White KH, Gigley JP, Levy DL. Nuclear Transport Factor 2 (NTF2) suppresses WM983B metastatic melanoma by modifying cell migration, metastasis, and gene expression. Sci Rep 2021; 11:23586. [PMID: 34880267 PMCID: PMC8654834 DOI: 10.1038/s41598-021-02803-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/23/2021] [Indexed: 12/19/2022] Open
Abstract
While changes in nuclear structure and organization are frequently observed in cancer cells, relatively little is known about how nuclear architecture impacts cancer progression and pathology. To begin to address this question, we studied Nuclear Transport Factor 2 (NTF2) because its levels decrease during melanoma progression. We show that increasing NTF2 expression in WM983B metastatic melanoma cells reduces cell proliferation and motility while increasing apoptosis. We also demonstrate that increasing NTF2 expression in these cells significantly inhibits metastasis and prolongs survival of mice. NTF2 levels affect the expression and nuclear positioning of a number of genes associated with cell proliferation and migration, and increasing NTF2 expression leads to changes in nuclear size, nuclear lamin A levels, and chromatin organization. Thus, ectopic expression of NTF2 in WM983B metastatic melanoma abrogates phenotypes associated with advanced stage cancer both in vitro and in vivo, concomitantly altering nuclear and chromatin structure and generating a gene expression profile with characteristics of primary melanoma. We propose that NTF2 is a melanoma tumor suppressor and could be a novel therapeutic target to improve health outcomes of melanoma patients.
Collapse
Affiliation(s)
- Lidija D Vuković
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA
| | - Pan Chen
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA
| | - Sampada Mishra
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA
| | - Karen H White
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA
| | - Jason P Gigley
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA.
| |
Collapse
|
74
|
Reyes RM, Zhang C, Deng Y, Ji N, Mukherjee N, Padron AS, Clark CA, Svatek RS, Curiel TJ. CD122-targeted interleukin-2 and αPD-L1 treat bladder cancer and melanoma via distinct mechanisms, including CD122-driven natural killer cell maturation. Oncoimmunology 2021; 10:2006529. [PMID: 34858732 PMCID: PMC8632314 DOI: 10.1080/2162402x.2021.2006529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Bladder cancer (BC) and melanoma are amenable to immune checkpoint blockade (ICB) therapy, yet most patients with advanced/metastatic disease do not respond. CD122-targeted interleukin (IL)-2 can improve ICB efficacy, but mechanisms are unclear. We tested αPD-L1 and CD122-directed immunotherapy with IL-2/αIL-2 complexes (IL-2c) in primary and metastatic bladder and melanoma tumors. IL-2c treatment of orthotopic MB49 and MBT-2 BC generated NK cell antitumor immunity through enhanced activation, reduced exhaustion, and promotion of a mature, effector NK cell phenotype. By comparison, subcutaneous B16-F10 melanoma, which is IL-2c sensitive, requires CD8+ T and not NK cells, yet we found αPD-L1 efficacy requires both CD8+ T and NK cells. We then explored αPD-L1 and IL-2c mechanisms at distinct metastatic sites and found intraperitoneal B16-F10 metastases were sensitive to αPD-L1 and IL-2c, with IL-2c but not αPD-L1, increasing CD122+ mature NK cell function, confirming conserved IL-2c effects in distinct cancer types and anatomic compartments. αPD-L1 failed to control tumor growth and prolong survival in B16-F10 lung metastases, yet IL-2c treated B16-F10 lung metastases effectively even in T cell and adaptive immunity deficient mice, which was abrogated by NK cell depletion in wild-type mice. Flow cytometric analyses of NK cells in B16-F10 lung metastases suggest that IL-2c directly boosts NK cell activation and effector function. Thus, αPD-L1 and IL-2c mediate nonredundant, immune microenvironment-specific treatment mechanisms involving CD8+ T and NK cells in primary and metastatic BC and melanoma. Mechanistic differences suggest effective treatment combinations including in other tumors or sites, warranting further studies.
Collapse
Affiliation(s)
- Ryan M Reyes
- South Texas Medical Scientist Training Program, University of Texas Health San Antonio, San Antonio, TX, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Chenghao Zhang
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA.,Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Yilun Deng
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Niannian Ji
- Department of Urology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Neelam Mukherjee
- Department of Urology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Alvaro S Padron
- Division of Hematology/Oncology, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Curtis A Clark
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Robert S Svatek
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA.,Department of Urology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Tyler J Curiel
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA.,Division of Hematology/Oncology, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
75
|
Kutlay A, Aydin Son Y. Integrative Predictive Modeling of Metastasis in Melanoma Cancer Based on MicroRNA, mRNA, and DNA Methylation Data. Front Mol Biosci 2021; 8:637355. [PMID: 34631789 PMCID: PMC8495312 DOI: 10.3389/fmolb.2021.637355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction: Despite the significant progress in understanding cancer biology, the deduction of metastasis is still a challenge in the clinic. Transcriptional regulation is one of the critical mechanisms underlying cancer development. Even though mRNA, microRNA, and DNA methylation mechanisms have a crucial impact on the metastatic outcome, there are no comprehensive data mining models that combine all transcriptional regulation aspects for metastasis prediction. This study focused on identifying the regulatory impact of genetic biomarkers for monitoring metastatic molecular signatures of melanoma by investigating the consolidated effect of miRNA, mRNA, and DNA methylation. Method: We developed multiple machine learning models to distinguish the metastasis by integrating miRNA, mRNA, and DNA methylation markers. We used the TCGA melanoma dataset to differentiate between metastatic melanoma samples by assessing a set of predictive models. For this purpose, machine learning models using a support vector machine with different kernels, artificial neural networks, random forests, AdaBoost, and Naïve Bayes are compared. An iterative combination of differentially expressed miRNA, mRNA, and methylation signatures is used as a candidate marker to reveal each new biomarker category’s impact. In each iteration, the performances of the combined models are calculated. During all comparisons, the choice of the feature selection method and under and oversampling approaches are analyzed. Selected biomarkers of the highest performing models are further analyzed for the biological interpretation of functional enrichment. Results: In the initial model, miRNA biomarkers can identify metastatic melanoma with an 81% F-score. The addition of mRNA markers upon miRNA increased the F-score to 92%. In the final integrated model, the addition of the methylation data resulted in a similar F-score of 92% but produced a stable model with low variance across multiple trials. Conclusion: Our results support the role of miRNA regulation in metastatic melanoma as miRNA markers model metastasis outcomes with high accuracy. Moreover, the integrated evaluation of miRNA with mRNA and methylation biomarkers increases the model’s power. It populates selected biomarkers on the metastasis-associated pathways of melanoma, such as the “osteoclast”, “Rap1 signaling”, and “chemokine signaling” pathways. Source Code:https://github.com/aysegul-kt/MelonomaMetastasisPrediction/
Collapse
Affiliation(s)
- Ayşegül Kutlay
- Department of Health Informatics, Graduate School of Informatics, METU, Ankara, Turkey
| | - Yeşim Aydin Son
- Department of Health Informatics, Graduate School of Informatics, METU, Ankara, Turkey
| |
Collapse
|
76
|
Battaglia L, Scomparin A, Dianzani C, Milla P, Muntoni E, Arpicco S, Cavalli R. Nanotechnology Addressing Cutaneous Melanoma: The Italian Landscape. Pharmaceutics 2021; 13:1617. [PMID: 34683910 PMCID: PMC8540596 DOI: 10.3390/pharmaceutics13101617] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 12/20/2022] Open
Abstract
Cutaneous melanoma is one of the most aggressive solid tumors, with a low survival for the metastatic stage. Currently, clinical melanoma treatments include surgery, chemotherapy, targeted therapy, immunotherapy and radiotherapy. Of note, innovative therapeutic regimens concern the administration of multitarget drugs in tandem, in order to improve therapeutic efficacy. However, also, if this drug combination is clinically relevant, the patient's response is not yet optimal. In this scenario, nanotechnology-based delivery systems can play a crucial role in the clinical treatment of advanced melanoma. In fact, their nano-features enable targeted drug delivery at a cellular level by overcoming biological barriers. Various nanomedicines have been proposed for the treatment of cutaneous melanoma, and a relevant number of them are undergoing clinical trials. In Italy, researchers are focusing on the pharmaceutical development of nanoformulations for malignant melanoma therapy. The present review reports an overview of the main melanoma-addressed nanomedicines currently under study in Italy, alongside the state of the art of melanoma therapy. Moreover, the latest Italian advances concerning the pre-clinical evaluation of nanomedicines for melanoma are described.
Collapse
Affiliation(s)
- Luigi Battaglia
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| | - Anna Scomparin
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
- . Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chiara Dianzani
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| | - Paola Milla
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| | - Elisabetta Muntoni
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| | - Silvia Arpicco
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| | - Roberta Cavalli
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| |
Collapse
|
77
|
Bajpai J, Abraham G, Saklani AP, Agarwal A, Das S, Chatterjee A, Kapoor A, Eaga P, Mondal PK, Chandrasekharan A, Bhargava PG, Srinivas S, Turkar S, Rekhi B, Khanna N, Janu AK, Bal M, Ostwal VS, Ramaswamy A, Rohila J, Desouza AL, Guha A, Kumar R, Menon NS, Rath S, Patil VM, Noronha VM, Joshi AP, Laskar S, Rangarajan V, Prabhash K, Gupta S, Banavali S. Demographics, Pattern of Care, and Outcome Analysis of Malignant Melanomas - Experience From a Tertiary Cancer Centre in India. Front Oncol 2021; 11:710585. [PMID: 34568037 PMCID: PMC8456006 DOI: 10.3389/fonc.2021.710585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022] Open
Abstract
Background Treatment of malignant melanoma has undergone a paradigm shift with the advent of immune checkpoint inhibitors (ICI) and targeted therapies. However, access to ICI is limited in low-middle income countries (LMICs). Patients and Methods Histologically confirmed malignant melanoma cases registered from 2013 to 2019 were analysed for pattern of care, safety, and efficacy of systemic therapies (ST). Results There were 659 patients with a median age of 53 (range 44–63) years; 58.9% were males; 55.2% were mucosal melanomas. Most common primary sites were extremities (36.6%) and anorectum (31.4%). Nearly 10.8% of the metastatic cohort were BRAF mutated. Among 368 non-metastatic patients (172 prior treated, 185 de novo, and 11 unresectable), with a median follow-up of 26 months (0–83 months), median EFS and OS were 29.5 (95% CI: 22–40) and 33.3 (95% CI: 29.5–41.2) months, respectively. In the metastatic cohort, with a median follow up of 24 (0–85) months, the median EFS for BSC was 3.1 (95% CI 1.9–4.8) months versus 3.98 (95% CI 3.2–4.7) months with any ST (HR: 0.69, 95% CI: 0.52–0.92; P = 0.011). The median OS was 3.9 (95% CI 3.3–6.4) months for BSC alone versus 12.0 (95% CI 10.5–15.1) months in any ST (HR: 0.38, 95% CI: 0.28–0.50; P < 0.001). The disease control rate was 51.55%. Commonest grade 3–4 toxicity was anemia with chemotherapy (9.5%) and ICI (8.8%). In multivariate analysis, any ST received had a better prognostic impact in the metastatic cohort. Conclusions Large real-world data reflects the treatment patterns adopted in LMIC for melanomas and poor access to expensive, standard of care therapies. Other systemic therapies provide meaningful clinical benefit and are worth exploring especially when the standard therapies are challenging to administer.
Collapse
Affiliation(s)
- Jyoti Bajpai
- Department of Medical Oncology, Tata Memorial Hospital, Homibhabha National Institute, Mumbai, India
| | - George Abraham
- Department of Medical Oncology, Tata Memorial Hospital, Homibhabha National Institute, Mumbai, India
| | - Avanish P Saklani
- Department of Surgical Oncology, Tata Memorial Hospital, Homibhabha National Institute, Mumbai, India
| | - Anshul Agarwal
- Department of Medical Oncology, Tata Memorial Hospital, Homibhabha National Institute, Mumbai, India
| | - Sashanka Das
- Department of Medical Oncology, Tata Memorial Hospital, Homibhabha National Institute, Mumbai, India
| | - Ambarish Chatterjee
- Department of Surgical Oncology, Tata Memorial Hospital, Homibhabha National Institute, Mumbai, India
| | - Akhil Kapoor
- Department of Medical Oncology, Tata Memorial Hospital, Homibhabha National Institute, Mumbai, India
| | - Prathyusha Eaga
- Department of Medical Oncology, Tata Memorial Hospital, Homibhabha National Institute, Mumbai, India
| | - Pradip Kumar Mondal
- Department of Medical Oncology, Tata Memorial Hospital, Homibhabha National Institute, Mumbai, India
| | - Arun Chandrasekharan
- Department of Medical Oncology, Tata Memorial Hospital, Homibhabha National Institute, Mumbai, India
| | | | - Sujay Srinivas
- Department of Medical Oncology, Tata Memorial Hospital, Homibhabha National Institute, Mumbai, India
| | - Siddharth Turkar
- Department of Medical Oncology, Tata Memorial Hospital, Homibhabha National Institute, Mumbai, India
| | - Bharat Rekhi
- Department of Surgical Pathology, Tata Memorial Hospital, Homibhabha National Institute, Mumbai, India
| | - Nehal Khanna
- Department of Radiation Oncology, Tata Memorial Hospital, Homibhabha National Institute, Mumbai, India
| | - Amit Kumar Janu
- Department of Radiodiagnosis, Tata Memorial Hospital, Homibhabha National Institute, Mumbai, India
| | - Munita Bal
- Department of Surgical Pathology, Tata Memorial Hospital, Homibhabha National Institute, Mumbai, India
| | - Vikas Sureshchand Ostwal
- Department of Medical Oncology, Tata Memorial Hospital, Homibhabha National Institute, Mumbai, India
| | - Anant Ramaswamy
- Department of Medical Oncology, Tata Memorial Hospital, Homibhabha National Institute, Mumbai, India
| | - Jitender Rohila
- Department of Surgical Oncology, Tata Memorial Hospital, Homibhabha National Institute, Mumbai, India
| | - Ashwin L Desouza
- Department of Surgical Oncology, Tata Memorial Hospital, Homibhabha National Institute, Mumbai, India
| | - Amrita Guha
- Department of Radiodiagnosis, Tata Memorial Hospital, Homibhabha National Institute, Mumbai, India
| | - Rajiv Kumar
- Department of Surgical Pathology, Tata Memorial Hospital, Homibhabha National Institute, Mumbai, India
| | - Nandini Sharrel Menon
- Department of Medical Oncology, Tata Memorial Hospital, Homibhabha National Institute, Mumbai, India
| | - Sushmita Rath
- Department of Medical Oncology, Tata Memorial Hospital, Homibhabha National Institute, Mumbai, India
| | - Vijay Maruti Patil
- Department of Medical Oncology, Tata Memorial Hospital, Homibhabha National Institute, Mumbai, India
| | - Vanita Maria Noronha
- Department of Medical Oncology, Tata Memorial Hospital, Homibhabha National Institute, Mumbai, India
| | - Amit Prakashchandra Joshi
- Department of Medical Oncology, Tata Memorial Hospital, Homibhabha National Institute, Mumbai, India
| | - Siddhartha Laskar
- Department of Radiation Oncology, Tata Memorial Hospital, Homibhabha National Institute, Mumbai, India
| | - Venkatesh Rangarajan
- Department of Nuclear Medicine, Tata Memorial Hospital, Homibhabha National Institute, Mumbai, India
| | - Kumar Prabhash
- Department of Medical Oncology, Tata Memorial Hospital, Homibhabha National Institute, Mumbai, India
| | - Sudeep Gupta
- Department of Medical Oncology, Tata Memorial Hospital, Homibhabha National Institute, Mumbai, India
| | - Shripad Banavali
- Department of Medical Oncology, Tata Memorial Hospital, Homibhabha National Institute, Mumbai, India
| |
Collapse
|
78
|
Abooshahab R, Al-Salami H, Dass CR. The increasing role of pigment epithelium-derived factor in metastasis: from biological importance to a promising target. Biochem Pharmacol 2021; 193:114787. [PMID: 34571004 DOI: 10.1016/j.bcp.2021.114787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is a non-inhibitory member of the serpin (serine protease inhibitor) family and is a well-known potent anti-tumor factor in a variety of cancers. It has been ascertained that PEDF regulates multiple metastatic processes through various plausible mechanisms, including inhibiting angiogenesis, inducing apoptosis, stimulating extracellular matrix (ECM) degradation, and suppressing the epithelial-to-mesenchymal transition (EMT) process. Although PEDF has been recognized as an anti-metastatic marker in most studies, its role remains controversial with conflicting reports of PEDF as a metastatic marker. The emerging insights into the mechanism(s) of PEDF in tumor progression and its therapeutic effects are discussed systematically in this review, aiming to improve our understanding in the context of metastasis and drug development.
Collapse
Affiliation(s)
- Raziyeh Abooshahab
- Curtin Medical School, Curtin University, Bentley 6102, Australia; Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hani Al-Salami
- Curtin Medical School, Curtin University, Bentley 6102, Australia; Curtin Health Innovation Research Institute, Bentley 6102, Australia
| | - Crispin R Dass
- Curtin Medical School, Curtin University, Bentley 6102, Australia; Curtin Health Innovation Research Institute, Bentley 6102, Australia.
| |
Collapse
|
79
|
Primary Melanoma Characteristics of Metastatic Disease: A Nationwide Cancer Registry Study. Cancers (Basel) 2021; 13:cancers13174431. [PMID: 34503242 PMCID: PMC8431672 DOI: 10.3390/cancers13174431] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Melanoma of the skin is the most lethal form of skin cancer. Almost 40% of the patients who die of metastatic melanoma did not have metastases at first diagnosis. More knowledge about patient and tumour characteristics as well as patterns of disease progression is needed. We described the characteristics and disease patterns of early-stage melanomas that progress into metastatic disease. We observed that more than half of the patients with metastases were initially diagnosed with early-stage disease. Additionally, we found that melanomas in some specific body sites were likely to metastasize to certain organs. Our finding that a substantial proportion of patients with metastases were initially diagnosed with early-stage disease highlights the need to investigate who these high-risk patients are. Abstract The characteristics and disease patterns of primary stage I and II cutaneous melanomas that progress to stage III or IV disease were investigated based on data from the Netherlands Cancer Registry (NCR). Data on stage III or IV melanomas at first diagnosis or during follow-up between 2017 and 2019 were retrieved. Patient and primary tumour characteristics were investigated in relation to time to disease progression and the number of organ sites with metastatic disease using regression models. In total, 2763 patients were included, of whom 1613 were diagnosed with stage IV disease. Among the patients with stage IV disease, 60% (n = 963) were initially diagnosed with stage I or II disease. The proportion of patients who received a sentinel lymph node biopsy increased after the introduction of adjuvant therapy in 2019 from 61% to 87%. Among all patients with stage III disease who were eligible for adjuvant systemic therapy (n = 453) after 2019, 37% were not treated with this therapy. Among patients with stage IV disease, lung metastases were most often detected as the first metastatic site and females presented with more metastatic sites than males. Most patient and primary tumour characteristics were not associated with the distant metastatic organ site, except melanoma localisation in the lower extremities and the head or neck. Our observation that most stage IV patients were initially diagnosed with early-stage disease highlights the need for more accurate risk prediction models.
Collapse
|
80
|
Lajara S, Landau M. Metastatic malignant melanoma mimicking a salivary gland basaloid neoplasm after treatment with nivolumab. Diagn Cytopathol 2021; 49:E370-E373. [PMID: 34174024 DOI: 10.1002/dc.24817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 12/18/2022]
Abstract
Malignant melanoma is a well-known diagnostic pitfall, given its propensity to metastasize to different sites and mimic various entities. In this report, we present a fine-needle aspiration biopsy (FNA) of a metastatic melanoma with basaloid features that is occurring in the preauricular/parotid area. The patient is a 17-year-old male with a history of excision of melanoma of the left temple, and was undergoing adjuvant treatment with nivolumab. The prior excision was positive for S100, HMB-45, melan-A, and tyrosinase. On follow-up, he presented with non-FDG avid left preauricular area lesions. FNA was performed, and on-site evaluation demonstrated a cellular basaloid neoplasm with focal fibrillary stroma. Immunohistochemical stains revealed that the tumor cells were positive for SOX-10, S100, MITF, and HMGA2, and were negative for HMB-45, melan-A, tyrosinase, p63, cam 5.2 and PLAG1. The positive S100, SOX-10, and MITF results and negative cam 5.2 result supported the diagnosis of melanoma. Nivolumab was then stopped, Dabrafenib/Trametinib were started, and the patient underwent excision of the nodules. Nine-months later, he developed a rib metastasis that was positive for S100, SOX-10, melan-A, and tyrosinase. This report emphasizes that melanoma involving the parotid gland region has the potential to be misdiagnosed by FNA as a salivary gland neoplasm because of overlapping cytologic features and immunophenotypes. This pitfall is avoided by careful morphologic analysis and judicious use of ancillary studies.
Collapse
Affiliation(s)
- Sigfred Lajara
- Department of Pathology, University of Pittsburgh Medical Center, Pennsylvania, USA
| | - Michael Landau
- Department of Pathology, University of Pittsburgh Medical Center, Pennsylvania, USA
| |
Collapse
|
81
|
Targeting Melanoma-Initiating Cells by Caffeine: In Silico and In Vitro Approaches. Molecules 2021; 26:molecules26123619. [PMID: 34199192 PMCID: PMC8231844 DOI: 10.3390/molecules26123619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022] Open
Abstract
The beneficial effects of coffee on human diseases are well documented, but the molecular mechanisms of its bioactive compounds on cancer are not completely elucidated. This is likely due to the large heterogeneity of coffee preparations and different coffee-based beverages, but also to the choice of experimental models where proliferation, differentiation and immune responses are differently affected. The aim of the present study was to investigate the effects of one of the most interesting bioactive compounds in coffee, i.e., caffeine, using a cellular model of melanoma at a defined differentiation level. A preliminary in silico analysis carried out on public gene-expression databases identified genes potentially involved in caffeine’s effects and suggested some specific molecular targets, including tyrosinase. Proliferation was investigated in vitro on human melanoma initiating cells (MICs) and cytokine expression was measured in conditioned media. Tyrosinase was revealed as a key player in caffeine’s mechanisms of action, suggesting a crucial role in immunomodulation through the reduction in IL-1β, IP-10, MIP-1α, MIP-1β and RANTES secretion onto MICs conditioned media. The potent antiproliferative effects of caffeine on MICs are likely to occur by promoting melanin production and reducing inflammatory signals’ secretion. These data suggest tyrosinase as a key player mediating the effects of caffeine on melanoma.
Collapse
|
82
|
Mao L, Qi Z, Zhang L, Guo J, Si L. Immunotherapy in Acral and Mucosal Melanoma: Current Status and Future Directions. Front Immunol 2021; 12:680407. [PMID: 34149718 PMCID: PMC8212860 DOI: 10.3389/fimmu.2021.680407] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Acral and mucosal melanomas are extremely rare in Caucasians; however, they are the predominant melanoma subtypes in Asians and other non-Caucasian populations. Acral and mucosal melanomas share many clinicopathological features, including aggressive phenotypes, similar genetic landscapes, and grim prognoses. In spite of advances in melanoma management, patients with acral and mucosal melanomas show limited benefit from current therapies. The rarity of these subtypes of melanoma is a significant factor contributing to the poor understanding of these pathological subtypes and the lack of effective interventions. Furthermore, the mechanisms contributing to disparities between different types of melanoma remain largely unclear. Herein, we comprehensively review current knowledge on the clinicopathological characteristics and mutational landscapes of acral and mucosal melanomas, as well as providing an overview of current therapies for patients with these aggressive melanoma subtypes, focusing on available immunotherapeutic interventions. We also discuss pathological differences between different melanoma subtypes and summarize current knowledge on melanoma disparities between Asians and Caucasians. Finally, we discuss emerging immunotherapeutic strategies for the treatment of acral and mucosal melanomas, focusing on combination therapies with immune checkpoint inhibitors. Unraveling the unique features of acral and mucosal melanomas is key for their early diagnosis and for the development of effective therapies.
Collapse
Affiliation(s)
- Lili Mao
- Department of Melanoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhonghui Qi
- Department of Melanoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Li Zhang
- Global Medical Affairs, MSD China, Shanghai, China
| | - Jun Guo
- Department of Melanoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Lu Si
- Department of Melanoma, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
83
|
Cells to Surgery Quiz: June 2021. J Invest Dermatol 2021. [PMID: 34024342 DOI: 10.1016/j.jid.2021.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
84
|
Abstract
Malignant melanoma is a neoplasm originating in the melanocytes in the skin. Although malignant melanoma is the third most common cutaneous cancer, it is recognized as the main cause of skin cancer-related mortality, and its incidence is rising. The natural history of malignant melanoma involves an inconsistent and insidious skin cancer with great metastatic potential. Increased ultra-violet (UV) skin exposure is undoubtedly the greatest risk factor for developing cutaneous melanoma; however, a plethora of risk factors are now recognized as causative. Moreover, modern oncology now considers melanoma proliferation a complex, multifactorial process with a combination of genetic, epigenetic, and environmental factors all known to be contributory to tumorgenesis. Herein, we wish to outline the epidemiological, molecular, and biological processes responsible for driving malignant melanoma proliferation.
Collapse
Affiliation(s)
| | - Nicola Miller
- Surgery, National University of Ireland Galway, Galway, IRL
| | - Niall M McInerney
- Plastic, Aesthetic, and Reconstructive Surgery, Galway University Hospitals, Galway, IRL
| |
Collapse
|
85
|
McKenna S, García-Gutiérrez L. Resistance to Targeted Therapy and RASSF1A Loss in Melanoma: What Are We Missing? Int J Mol Sci 2021; 22:5115. [PMID: 34066022 PMCID: PMC8150731 DOI: 10.3390/ijms22105115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022] Open
Abstract
Melanoma is one of the most aggressive forms of skin cancer and is therapeutically challenging, considering its high mutation rate. Following the development of therapies to target BRAF, the most frequently found mutation in melanoma, promising therapeutic responses were observed. While mono- and combination therapies to target the MAPK cascade did induce a therapeutic response in BRAF-mutated melanomas, the development of resistance to MAPK-targeted therapies remains a challenge for a high proportion of patients. Resistance mechanisms are varied and can be categorised as intrinsic, acquired, and adaptive. RASSF1A is a tumour suppressor that plays an integral role in the maintenance of cellular homeostasis as a central signalling hub. RASSF1A tumour suppressor activity is commonly lost in melanoma, mainly by aberrant promoter hypermethylation. RASSF1A loss could be associated with several mechanisms of resistance to MAPK inhibition considering that most of the signalling pathways that RASSF1A controls are found to be altered targeted therapy resistant melanomas. Herein, we discuss resistance mechanisms in detail and the potential role for RASSF1A reactivation to re-sensitise BRAF mutant melanomas to therapy.
Collapse
Affiliation(s)
| | - Lucía García-Gutiérrez
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland;
| |
Collapse
|
86
|
van der Weyden L, Offord V, Turner G, Swiatkowska A, Speak AO, Adams DJ. Membrane protein regulators of melanoma pulmonary colonisation identified using a CRISPRa screen and spontaneous metastasis assay in mice. G3-GENES GENOMES GENETICS 2021; 11:6272227. [PMID: 33963380 PMCID: PMC8495943 DOI: 10.1093/g3journal/jkab157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/03/2021] [Indexed: 01/30/2023]
Abstract
Metastasis is the spread of cancer cells to a secondary site within the body, and is the leading cause of death for cancer patients. The lung is a common site of metastasis for many cancer types, including melanoma. Identifying the genes involved in aiding metastasis of melanoma cells to the lungs is critical for the development of better treatments. As the accessibility of cell surface proteins makes them attractive therapeutic targets, we performed a CRISPR activation screen using a library of guide RNAs (gRNAs) targeting the transcription start sites of 2195 membrane protein-encoding genes, to identify genes whose upregulated expression aided pulmonary metastasis. Immunodeficient mice were subcutaneously injected in the flank with murine B16-F0 melanoma cells expressing dCas9 and the membrane protein library gRNAs, and their lungs collected after 14–21 days. Analysis was performed to identify the gRNAs that were enriched in the lungs relative to those present in the cells at the time of administration (day 0). We identified six genes whose increased expression promotes lung metastasis. These genes included several with well-characterized pro-metastatic roles (Fut7, Mgat5, and Pcdh7) that have not previously been linked to melanoma progression, genes linked to tumor progression but that have not previously been described as involved in metastasis (Olfr322 and Olfr441), as well as novel genes (Tmem116). Thus, we have identified genes that, when upregulated in melanoma cells, can aid successful metastasis and colonization of the lung, and therefore may represent novel therapeutic targets to inhibit pulmonary metastasis.
Collapse
Affiliation(s)
- Louise van der Weyden
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Victoria Offord
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Gemma Turner
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Agnes Swiatkowska
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Anneliese O Speak
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| |
Collapse
|
87
|
Kambale Syaluha E, Zimmerman D, Ramer J, Gilardi K, Kabuyaya M, Cranfield MR, Kent MS, Corner SM, Yeh N, Lowenstine L. Metastatic perioral melanoma in a wild mountain gorilla (Gorilla beringei beringei). J Med Primatol 2021; 50:197-200. [PMID: 33893639 DOI: 10.1111/jmp.12521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/05/2021] [Accepted: 03/08/2021] [Indexed: 01/21/2023]
Abstract
A 30-year-old free-ranging female mountain gorilla (Gorilla beringei beringei) developed a perioral mass that was surgically debulked and diagnosed as malignant melanoma. After tumor recurrence, a canine melanoma vaccine was administered. However, the gorilla died shortly thereafter, and metastases to lymph nodes, lung, liver, and kidney were found post-mortem.
Collapse
Affiliation(s)
| | - Dawn Zimmerman
- Global Health Program, Smithsonian Conservation Biology Institute, Washington, DC, USA
| | | | - Kirsten Gilardi
- MGVP, Inc., Goma, DR Congo.,Karen C. Drayer Wildlife Health Center, UC Davis, Davis, CA, USA
| | | | - Michael R Cranfield
- MGVP, Inc., Goma, DR Congo.,Karen C. Drayer Wildlife Health Center, UC Davis, Davis, CA, USA
| | - Michael S Kent
- Department of Surgical and Radiological Sciences, UC Davis, Davis, CA, USA
| | - Sarah M Corner
- Veterinary Diagnostic Laboratory, Michigan State University College of Veterinary Medicine, East Lansing, MI, USA
| | - Natasha Yeh
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - Linda Lowenstine
- MGVP, Inc., Goma, DR Congo.,Karen C. Drayer Wildlife Health Center, UC Davis, Davis, CA, USA
| |
Collapse
|
88
|
Abstract
Liver metastases are commonly detected in a range of malignancies including colorectal cancer (CRC), pancreatic cancer, melanoma, lung cancer and breast cancer, although CRC is the most common primary cancer that metastasizes to the liver. Interactions between tumour cells and the tumour microenvironment play an important part in the engraftment, survival and progression of the metastases. Various cells including liver sinusoidal endothelial cells, Kupffer cells, hepatic stellate cells, parenchymal hepatocytes, dendritic cells, resident natural killer cells as well as other immune cells such as monocytes, macrophages and neutrophils are implicated in promoting and sustaining metastases in the liver. Four key phases (microvascular, pre-angiogenic, angiogenic and growth phases) have been identified in the process of liver metastasis. Imaging modalities such as ultrasonography, CT, MRI and PET scans are typically used for the diagnosis of liver metastases. Surgical resection remains the main potentially curative treatment among patients with resectable liver metastases. The role of liver transplantation in the management of liver metastasis remains controversial. Systemic therapies, newer biologic agents (for example, bevacizumab and cetuximab) and immunotherapeutic agents have revolutionized the treatment options for liver metastases. Moving forward, incorporation of genetic tests can provide more accurate information to guide clinical decision-making and predict prognosis among patients with liver metastases.
Collapse
|
89
|
Kiss T, Jámbor K, Koroknai V, Szász I, Bárdos H, Mokánszki A, Ádány R, Balázs M. Silencing Osteopontin Expression Inhibits Proliferation, Invasion and Induce Altered Protein Expression in Melanoma Cells. Pathol Oncol Res 2021; 27:581395. [PMID: 34257527 PMCID: PMC8262222 DOI: 10.3389/pore.2021.581395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/05/2021] [Indexed: 12/21/2022]
Abstract
Osteopontin (OPN) is a multifunctional phosphoprotein that is expressed in different types of cancers, including melanoma. OPN overexpression is associated with tumor progression and metastasis formation; however, the role of OPN in cell invasion and metastasis formation is not completely understood. In this study we aimed to define OPN expression in melanoma tissues and cell lines and investigate the effect of OPN expression on cell proliferation and invasion after inhibiting OPN expression with small interfering RNA (siRNA). OPN gene expression was determined by qRT-PCR, while protein expression was examined using a Proteome Profiler Oncology Array. siRNA-mediated OPN knockdown led to decreased OPN expression in melanoma cell lines, which was associated with decreased cell proliferation and invasion. Proteome profile analysis revealed significantly different protein expression between the original and transfected cell lines. The altered expression of the differently expressed proteins was validated at the mRNA level. Furthermore, OPN-specific siRNA was able to reduce OPN expression and inhibit the invasiveness of melanoma cells. Our results revealed for the first time that silencing the OPN gene influences proliferation and invasion of melanoma cells by effecting EGFR, tenascin C, survivin, galectin-3 and enolase 2 expression. To predict protein-protein interactions along with putative pathways we used STRING analysis for the differentially expressed proteins. These proteins formed multiple clusters, including extracellular matrix organization, regulation of angiogenesis, cell death and cell migration, PI3K-Akt, MAPK and focal adhesion signaling pathways. Taken together these data suggest that OPN might be an ideal target for drug development and therapies.
Collapse
Affiliation(s)
- Tímea Kiss
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Krisztina Jámbor
- Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
| | - Viktória Koroknai
- MTA-DE Public Health Research Group, University of Debrecen, Debrecen, Hungary
| | - István Szász
- MTA-DE Public Health Research Group, University of Debrecen, Debrecen, Hungary
| | - Helga Bárdos
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Mokánszki
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Róza Ádány
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Public Health Research Group, University of Debrecen, Debrecen, Hungary
| | - Margit Balázs
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Public Health Research Group, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
90
|
Eddy K, Shah R, Chen S. Decoding Melanoma Development and Progression: Identification of Therapeutic Vulnerabilities. Front Oncol 2021; 10:626129. [PMID: 33614507 PMCID: PMC7891057 DOI: 10.3389/fonc.2020.626129] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Melanoma, a cancer of the skin, arises from transformed melanocytes. Melanoma has the highest mutational burden of any cancer partially attributed to UV induced DNA damage. Localized melanoma is “curable” by surgical resection and is followed by radiation therapy to eliminate any remaining cancer cells. Targeted therapies against components of the MAPK signaling cascade and immunotherapies which block immune checkpoints have shown remarkable clinical responses, however with the onset of resistance in most patients, and, disease relapse, these patients eventually become refractory to treatments. Although great advances have been made in our understanding of the metastatic process in cancers including melanoma, therapy failure suggests that much remains to be learned and understood about the multi-step process of tumor metastasis. In this review we provide an overview of melanocytic transformation into malignant melanoma and key molecular events that occur during this evolution. A better understanding of the complex processes entailing cancer cell dissemination will improve the mechanistic driven design of therapies that target specific steps involved in cancer metastasis to improve clinical response rates and overall survival in all cancer patients.
Collapse
Affiliation(s)
- Kevinn Eddy
- Graduate Program in Cellular and Molecular Pharmacology, School of Graduate Studies, Rutgers University, Piscataway, NJ, United States.,Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ, United States
| | - Raj Shah
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ, United States.,Joint Graduate Program in Toxicology, Rutgers University, Piscataway, NJ, United States
| | - Suzie Chen
- Graduate Program in Cellular and Molecular Pharmacology, School of Graduate Studies, Rutgers University, Piscataway, NJ, United States.,Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ, United States.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States.,Environmental & Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
91
|
Ryan JF, Xie DX, Eytan DF, McCarthy EF, Mandal R, Gourin CG, Lipson EJ, Meyer CF, Vosler PS. Melanoma metastatic to the hyoid bone. Clin Case Rep 2021; 9:522-525. [PMID: 33489207 PMCID: PMC7813091 DOI: 10.1002/ccr3.3571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/25/2020] [Accepted: 11/03/2020] [Indexed: 11/21/2022] Open
Abstract
Metastatic melanoma may be included in the differential diagnosis of hyoid masses in patients with a history of melanoma. Hyoid resection is well tolerated and of diagnostic and therapeutic benefit in patients with tumors metastatic to the hyoid bone.
Collapse
Affiliation(s)
- John F. Ryan
- Department of Otolaryngology–Head and Neck SurgeryJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Deborah X. Xie
- Department of Otolaryngology–Head and Neck SurgeryJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Danielle F. Eytan
- Department of Otolaryngology–Head and Neck SurgeryJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Edward F. McCarthy
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Rajarsi Mandal
- Department of Otolaryngology–Head and Neck SurgeryJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Christine G. Gourin
- Department of Otolaryngology–Head and Neck SurgeryJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Evan J. Lipson
- Department of OncologyJohns Hopkins University School of MedicineBaltimoreMDUSA
- Johns Hopkins Bloomberg‐Kimmel Institute for Cancer ImmunotherapyKimmel Cancer CenterBaltimoreMDUSA
| | - Christian F. Meyer
- Department of OncologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Peter S. Vosler
- Department of Otolaryngology–Head and Neck SurgeryJohns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
92
|
IER2-induced senescence drives melanoma invasion through osteopontin. Oncogene 2021; 40:6494-6512. [PMID: 34611309 PMCID: PMC8616759 DOI: 10.1038/s41388-021-02027-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 09/01/2021] [Accepted: 09/17/2021] [Indexed: 01/07/2023]
Abstract
Expression of the immediate-early response gene IER2 has been associated with the progression of several types of cancer, but its functional role is poorly understood. We found that increased IER2 expression in human melanoma is associated with shorter overall survival, and subsequently investigated the mechanisms through which IER2 exerts this effect. In experimental melanoma models, sustained expression of IER2 induced senescence in a subset of melanoma cells in a p53/MAPK/AKT-dependent manner. The senescent cells produced a characteristic secretome that included high levels of the extracellular phosphoglycoprotein osteopontin. Nuclear localization of the IER2 protein was critical for both the induction of senescence and osteopontin secretion. Osteopontin secreted by IER2-expressing senescent cells strongly stimulated the migration and invasion of non-senescent melanoma cells. Consistently, we observed coordinate expression of IER2, p53/p21, and osteopontin in primary human melanomas and metastases, highlighting the pathophysiological relevance of IER2-mediated senescence in melanoma progression. Together, our study reveals that sustained IER2 expression drives melanoma invasion and progression through stimulating osteopontin secretion via the stochastic induction of senescence.
Collapse
|
93
|
Suppression of Metastatic Melanoma Growth in Lung by Modulated Electro-Hyperthermia Monitored by a Minimally Invasive Heat Stress Testing Approach in Mice. Cancers (Basel) 2020; 12:cancers12123872. [PMID: 33371498 PMCID: PMC7767533 DOI: 10.3390/cancers12123872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/05/2020] [Accepted: 12/17/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary The lung is the most frequent site of distant melanoma metastases. Metastases of melanoma in the lungs offer a very poor prognosis, with a 5-year survival rate of below 10%. Hyperthermic therapies including modulated electro-hyperthermia (mEHT) in clinical settings have been used to improve the efficacy of radiotherapy, chemotherapy, and immunotherapy of tumors. In this study, we focused primarily on the optimization of mEHT for targeted lung treatment of mice lungs burdened with B16F10 melanoma pulmonary metastases, with a particular focus on elucidating the mechanism of action of mEHT on treated melanoma cells while investigating any potential treatment-related side effects on normal lung tissue. mEHT showed evidence of significant anti-tumor effects as demonstrated by the reduced number of pulmonary metastatic nodules, DNA damage response, downregulation of Ki67 expression, higher immune cell infiltration, and upregulation of p21waf1 expression in mEHT-treated tumors. Abstract Modulated electro-hyperthermia (mEHT) is a novel complementary therapy in oncology which is based on the higher conductivity and permittivity of cancerous tissues due to their enhanced glycolytic activity and ionic content compared to healthy normal tissues. We aimed to evaluate the potential of mEHT, inducing local hyperthermia, in the treatment of pulmonary metastatic melanoma. Our primary objective was the optimization of mEHT for targeted lung treatment as well as to identify the mechanism of its potential anti-tumor effect in the B16F10 mouse melanoma pulmonary metastases model while investigating the potential treatment-related side effects of mEHT on normal lung tissue. Repeated treatment of tumor-bearing lungs with mEHT induced significant anti-tumor effects as demonstrated by the lower number of tumor nodules and the downregulation of Ki67 expression in treated tumor cells. mEHT treatment provoked significant DNA double-strand breaks indicated by the increased expression of phosphorylated H2AX protein in treated tumors, although treatment-induced elevation of cleaved/activated caspase-3 expression was insignificant, suggesting the minimal role of apoptosis in this process. The mEHT-related significant increase in p21waf1 positive tumor cells suggested that p21waf1-mediated cell cycle arrest plays an important role in the anti-tumor effect of mEHT on melanoma metastases. Significantly increased CD3+, CD8+ T-lymphocytes, and F4/80+CD11b+ macrophage density in the whole lung and tumor of treated animals emphasizes the mobilizing capability of mEHT on immune cells. In conclusion, mEHT can reduce the growth potential of melanoma, thus offering itself as a complementary therapeutic option to chemo- and/or radiotherapy.
Collapse
|
94
|
Regional lymph node infiltration and thick lesions are associated with poor prognosis in high-risk resected melanomas: A retrospective cohort study. Ann Med Surg (Lond) 2020; 61:132-138. [PMID: 33456772 PMCID: PMC7797471 DOI: 10.1016/j.amsu.2020.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/24/2022] Open
Abstract
Background Acral lentiginous and mucosal melanoma that represent lesions without cumulative sun-induced damages account for 65% of melanomas among Asians but constitute only 5% in Caucasians. The distinct clinical manifestations might influence the clinical course, response to treatment, and outcomes. Factors associated with the prognosis of high-risk resected melanoma in Asians are still rarely reported. Methods Clinical, histological determinants of non-distant metastatic melanoma patients who underwent complete resection in 2014–9 were analyzed. Results Mucosal melanoma, nodular melanoma, and acral lentiginous melanoma accounted for 45.1%, 40.2%, and 14.2% of total melanoma cases (N = 82), respectively. Among cutaneous melanomas, all patients were diagnosed with Breslow's depth more than 4 mm (T4), 51% with ulceration, 95.6% with diameter more than 6 mm, 59% with lympho-vascular invasion, and 74% with regional lymph node infiltration. In mucosal melanomas, 78.3% were diagnosed in advanced stages, 14.5% with regional spread to lymph nodes and 77% with regional infiltration beyond mucosa. Lesions with ulceration were associated with higher risk of distant metastasis (OR 3.003, 95%CI:1.01–9.09). Infiltration into regional lymph node was associated with shorter overall survival (median survivals were 17 vs 23.4 months, Mantel-Cox test P = 0.049). Patients diagnosed at Breslow T4 were also associated with poorer overall survival than T1-3 (median survivals were 23 vs 32 months, Mantel-Cox test P = 0.047). Conclusion The majority of melanoma patients in our population were diagnosed in advanced stages with a higher risk for recurrence and progression into distant metastasis. Regional lymph node involvement and thicker tumor (T4) were associated with poor prognosis. Most of melanoma patients in Indonesia are diagnosed with high-risk of progression and worse survival. Revealing factors-associated with high-risk of disease progression is important to set up surveillance program. Refinement of public education and care delivery are required to advance management of melanoma in Indonesia.
Collapse
|
95
|
Lowe A, Bray JJH. Late-stage melanoma presenting with cannonball metastases. BMJ Case Rep 2020; 13:13/12/e237969. [PMID: 33310832 PMCID: PMC7735130 DOI: 10.1136/bcr-2020-237969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Ashima Lowe
- Acute Medical Admissions Unit, Morriston Hospital, Swansea, UK
| | | |
Collapse
|
96
|
Straker RJ, Modi MB, Elder DE, LiVolsi VA, Fraker DL, Xu X, Karakousis GC. A case of tumor-to-tumor metastasis of cutaneous malignant melanoma. J Cutan Pathol 2020; 47:1196-1199. [PMID: 32740977 DOI: 10.1111/cup.13829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 11/27/2022]
Abstract
We report a case of tumor-to-tumor metastasis of a cutaneous malignant melanoma to a synchronous thyroid Hurthle cell carcinoma. A 42-year-old male underwent a biopsy of right inguinal lymphadenopathy which showed metastatic melanoma. The primary lesion was identified on his right posterior leg, and staging workup discovered a synchronous left thyroid lobe nodule concerning for a follicular neoplasm. He underwent excision of the primary melanoma, right inguinal lymphadenectomy, and total thyroidectomy. The resected thyroid contained a 6.6-cm, well-encapsulated left-sided nodule, red-brown in color and homogenous in consistency, with areas of focal hemorrhage and no grossly identifiable calcification. Microscopically, large tumor cells with distinct cell borders were present, with deeply eosinophilic and granular cytoplasm, large nuclei with prominent nucleoli, and loss of polarity consistent with oncocytes. A microscopic single focus of vascular invasion was identified, and a diagnosis of angioinvasive Hurthle cell carcinoma was made. Within the Hurthle cell carcinoma, multiple deposits of metastatic melanoma were seen. These findings were indicative of tumor-to-tumor metastasis of the cutaneous melanoma to the angioinvasive Hurthle cell carcinoma. Our findings show the ability of melanoma to metastasize to a pre-existing neoplasm.
Collapse
Affiliation(s)
- Richard J Straker
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mitul B Modi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David E Elder
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Virginia A LiVolsi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Douglas L Fraker
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Giorgos C Karakousis
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
97
|
Eddy K, Chen S. Overcoming Immune Evasion in Melanoma. Int J Mol Sci 2020; 21:E8984. [PMID: 33256089 PMCID: PMC7730443 DOI: 10.3390/ijms21238984] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
Melanoma is the most aggressive and dangerous form of skin cancer that develops from transformed melanocytes. It is crucial to identify melanoma at its early stages, in situ, as it is "curable" at this stage. However, after metastasis, it is difficult to treat and the five-year survival is only 25%. In recent years, a better understanding of the etiology of melanoma and its progression has made it possible for the development of targeted therapeutics, such as vemurafenib and immunotherapies, to treat advanced melanomas. In this review, we focus on the molecular mechanisms that mediate melanoma development and progression, with a special focus on the immune evasion strategies utilized by melanomas, to evade host immune surveillances. The proposed mechanism of action and the roles of immunotherapeutic agents, ipilimumab, nivolumab, pembrolizumab, and atezolizumab, adoptive T- cell therapy plus T-VEC in the treatment of advanced melanoma are discussed. In this review, we implore that a better understanding of the steps that mediate melanoma onset and progression, immune evasion strategies exploited by these tumor cells, and the identification of biomarkers to predict treatment response are critical in the design of improved strategies to improve clinical outcomes for patients with this deadly disease.
Collapse
Affiliation(s)
- Kevinn Eddy
- Graduate Program in Cellular and Molecular Pharmacology, School of Graduate Studies Rutgers University, Piscataway, NJ 08854, USA;
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA
| | - Suzie Chen
- Graduate Program in Cellular and Molecular Pharmacology, School of Graduate Studies Rutgers University, Piscataway, NJ 08854, USA;
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Environmental & Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
98
|
Chen L, Newby C, Fakhri N, Lammle M. Metastatic melanoma of unknown origin mimicking neurofibromatosis. Radiol Case Rep 2020; 16:119-122. [PMID: 33224396 PMCID: PMC7666308 DOI: 10.1016/j.radcr.2020.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/15/2020] [Accepted: 08/16/2020] [Indexed: 11/18/2022] Open
Abstract
We present an unusual case of metastatic melanoma in a young patient with imaging appearance resembling neurofibromatosis. A 36-year-old-man with a history of cervical radiculopathy presented with cauda equina syndrome. An MRI was performed for further evaluation demonstrating multiple intradural, extramedullary enhancing lesions in the thoracic and lumbar spine, as well as extra-axial enhancing lesions with involvement of the lateral ventricles and posterior fossa. Bilateral pulmonary masses were found on chest CT. Lung lesions were biopsied and positive for metastatic melanoma. Melanoma is the third most common primary neoplasm to produce brain metastasis and should be considered on the differential as a cause of newly detected intracranial and intraspinal masses in young patients.
Collapse
Affiliation(s)
- Lauren Chen
- Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, USA
- Corresponding author.
| | - Celeste Newby
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Nibras Fakhri
- Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Markus Lammle
- Department of Radiology, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
99
|
Brito C, Barral DC, Pojo M. Subversion of Ras Small GTPases in Cutaneous Melanoma Aggressiveness. Front Cell Dev Biol 2020; 8:575223. [PMID: 33072757 PMCID: PMC7538714 DOI: 10.3389/fcell.2020.575223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/28/2020] [Indexed: 12/25/2022] Open
Abstract
The rising incidence and mortality rate associated with the metastatic ability of cutaneous melanoma represent a major public health concern. Cutaneous melanoma is one of the most invasive human cancers, but the molecular mechanisms are poorly understood. Moreover, currently available therapies are not efficient in avoiding melanoma lethality. In this context, new biomarkers of prognosis, metastasis, and response to therapy are necessary to better predict the disease outcome. Additionally, the knowledge about the molecular alterations and dysregulated pathways involved in melanoma metastasis may provide new therapeutic targets. Members of the Ras superfamily of small GTPases regulate various essential cellular activities, from signaling to membrane traffic and cytoskeleton dynamics. Therefore, it is not surprising that they are differentially expressed, and their functions subverted in several types of cancer, including melanoma. Indeed, Ras small GTPases were found to regulate melanoma progression and invasion. Hence, a better understanding of the mechanisms regulated by Ras small GTPases that are involved in melanoma tumorigenesis and progression may provide new therapeutic strategies to block these processes. Here, we review the current knowledge on the role of Ras small GTPases in melanoma aggressiveness and the molecular mechanisms involved. Furthermore, we summarize the known involvement of these proteins in melanoma metastasis and how these players influence the response to therapy.
Collapse
Affiliation(s)
- Cheila Brito
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Lisbon, Portugal
| | - Duarte C Barral
- CEDOC, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Marta Pojo
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Lisbon, Portugal
| |
Collapse
|
100
|
Abstract
Exosomes are small extracellular vesicles released by cells under physiological and pathological conditions. There is emerging evidence associating exosomes with tumorigenesis. They carry cargo (DNA, RNA, miRNA and protein) pertaining to the cell of origin and play a key role in intercellular communication, influencing several cellular processes. Moreover, exosomes can be shed and found in almost all body fluids, providing a source of biomarkers for tumor diagnosis and prognosis. In addition, the use of exosomes for cancer therapeutics is another research area that is gaining attention. This book chapter aims to explore the role of exosomes in tumor biogenesis, progression and clinical applications, comprehensively compiling the research for three tumor types, namely head and neck cancer, lung cancer and glioblastoma.
Collapse
|