51
|
Bui NL, Chu DT. An introduction to RNA therapeutics and their potentials. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 203:1-12. [PMID: 38359993 DOI: 10.1016/bs.pmbts.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
RNA therapeutics is a biological term regarding the usage of RNA-based molecules for medical purposes. Thanks to the success of mRNA-vaccine production against COVID-19, RNA therapeutics has gained more and more attention and investigation from worldwide scientists. It is considered as one of the promising alternatives for conventional drugs. In this first chapter, we presented an overview of the history and perspectives of RNA therapeutics' development. This chapter also explained the underlying mechanisms of different RNA-based molecules, including antisense oligonucleotide, interfering RNA (iRNA), aptamer, and mRNA, from degrading mRNA to inactivating targeted protein. Although there are many advantages of RNA therapeutics, its challenges in designing RNA chemical structure and the delivery vehicle need to be discussed. We described advanced technologies in the development of drug delivery systems that are positively correlated to the efficacy of the drug. Our aim is to provide a general background of RNA therapeutics to the audience before introducing plenty of more detailed parts, including clinical applications in certain diseases in the following chapters of the "RNA therapeutics" book.
Collapse
Affiliation(s)
- Nhat-Le Bui
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|
52
|
Nguyen Thi YV, Ngo AD, Chu DT, Lin SC, Wu CC. RNA therapeutics for regenerative medicine. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 204:163-176. [PMID: 38458737 DOI: 10.1016/bs.pmbts.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
It is estimated that millions of people around the world experience various types of tissue injuries every year. Regenerative medicine was born and developed for understanding and application with the aim of replacing affected organs or some cells. The research, manufacture, production, and distribution of RNA in cells have acted as a basic foundation for the development and testing of therapies and treatments that are widely applied in different fields of medicine. Vaccines against COVID-19 are considered one of the brilliant and outstanding successes of RNA therapeutics research. With the characteristics of bio-derived RNA therapeutics, the mechanism of rapid implementation, safe production, and flexibility to create proteins depending on actual requirements. Based on the advantages above in this review, we discuss RNA therapeutics for regenerative medicine, and the types of RNA therapies currently being used for regenerative medicine. The relationship between disease and regenerative medicine is currently being studied or tested in RNA therapeutics. We have also covered the mechanisms of action of RNA therapy for regenerative medicine and some of the limitations in our current understanding of the effects of RNA therapy in this area. Additionally, we have also covered developing RNA therapeutics for regenerative medicine, focusing on RNA therapeutics for regenerative medicine. As a final point, we discuss potential applications for therapeutics for regenerative medicine in the future, as well as their mechanisms.
Collapse
Affiliation(s)
- Yen Vy Nguyen Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Anh Dao Ngo
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam; Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Sheng-Che Lin
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Division of Plastic and Reconstructive Surgery, Tainan Municipal An-Nan Hospital-China Medical University, Tainan, Taiwan.
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan; International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan; Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
53
|
Thi HV, Thi LAN, Tang TL, Chu DT. Biosafety and regulatory issues of RNA therapeutics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 204:311-329. [PMID: 38458742 DOI: 10.1016/bs.pmbts.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
RNA therapy has recently emerged as a therapy targeting specific genes or proteins. With its outstanding advantages, this therapy has opened promising doors for treating and preventing diseases. The great application potential has driven the need for a comprehensive understanding of these therapies, particularly on biosafety and regulatory issues. This chapter began by discussing the risks to RNA therapy, such as off-target effects, immunogenicity and immune responses, and long-term effects. Since then, this therapy's intricate landscape of biosafety issues has been elucidated. Common biosecurity measures applied around the world have also been reviewed. In addition, this chapter emphasized the importance of regulations and laws in applying RNA therapy to prevent and treat human and animal diseases. At the same time, the current legal regulations in the world for RNA therapies have also been thoroughly discussed. To sum up, this chapter has provided a comprehensive perspective on biosafety and regulatory issues for developing RNA therapies. Understanding the biosafety and regulatory issues in RNA therapy can help researchers use this promising new technology safely and effectively in the future.
Collapse
Affiliation(s)
- Hue Vu Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Lan-Anh Nguyen Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Thuy Linh Tang
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|
54
|
Salehi A. A novel therapeutic strategy: the significance of exosomal miRNAs in acute myeloid leukemia. Med Oncol 2024; 41:62. [PMID: 38253748 DOI: 10.1007/s12032-023-02286-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024]
Abstract
Acute myeloid leukemia (AML) is a fast-growing blood cancer that interferes with the normal growth of blood cells in the bone marrow and blood. It is characterized by its unpredictable outlook and high death rate. The main treatment for AML is chemotherapy, but this often results in drug resistance and the possibility of the disease returning. For this reason, new biomarkers are necessary to diagnose, predict, and treat this disease. Research has demonstrated that cells responsible for AML release exosomes that interact with the disease's microenvironment. These exosomes have significant roles in promoting leukemia growth, suppressing normal hematopoiesis, facilitating angiogenesis, and contributing to drug resistance in AML. Further investigations have shown that these exosomes contain miRNAs, which are transferred to target cells and have functional roles. Biomarkers are utilized to assess various aspects of tumor cell behavior, including proliferation, apoptosis, angiogenesis, changes in the microenvironment, transfer of drug resistance, and stability in serum and blood plasma. In this research, we showed that exosomal miRNAs and exosomes have the potential to be used as indicators for detecting various phases of AML and can aid in its medical treatment. Furthermore, they can be specifically targeted for therapeutic purposes in addressing this condition.
Collapse
Affiliation(s)
- Ali Salehi
- Department of Cellular and Molecular Biology, Faculty of New Science and Technology, Tehran Medical Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
55
|
Bravo-Vázquez LA, Paul S, Colín-Jurado MG, Márquez-Gallardo LD, Castañón-Cortés LG, Banerjee A, Pathak S, Duttaroy AK. Exploring the Therapeutic Significance of microRNAs and lncRNAs in Kidney Diseases. Genes (Basel) 2024; 15:123. [PMID: 38275604 PMCID: PMC10815231 DOI: 10.3390/genes15010123] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two crucial classes of transcripts that belong to the major group of non-coding RNAs (ncRNAs). These RNA molecules have significant influence over diverse molecular processes due to their crucial role as regulators of gene expression. However, the dysregulated expression of these ncRNAs constitutes a fundamental factor in the etiology and progression of a wide variety of multifaceted human diseases, including kidney diseases. In this context, over the past years, compelling evidence has shown that miRNAs and lncRNAs could be prospective targets for the development of next-generation drugs against kidney diseases as they participate in a number of disease-associated processes, such as podocyte and nephron death, renal fibrosis, inflammation, transition from acute kidney injury to chronic kidney disease, renal vascular changes, sepsis, pyroptosis, and apoptosis. Hence, in this current review, we critically analyze the recent findings concerning the therapeutic inferences of miRNAs and lncRNAs in the pathophysiological context of kidney diseases. Additionally, with the aim of driving advances in the formulation of ncRNA-based drugs tailored for the management of kidney diseases, we discuss some of the key challenges and future prospects that should be addressed in forthcoming investigations.
Collapse
Affiliation(s)
- Luis Alberto Bravo-Vázquez
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico (S.P.)
| | - Sujay Paul
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico (S.P.)
| | - Miriam Guadalupe Colín-Jurado
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico (S.P.)
| | - Luis David Márquez-Gallardo
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico (S.P.)
| | - Luis Germán Castañón-Cortés
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico (S.P.)
| | - Antara Banerjee
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai 603103, India
| | - Surajit Pathak
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai 603103, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0316 Oslo, Norway
| |
Collapse
|
56
|
Vosáhlová Z, Kalíková K, Gilar M, Szymarek J, Mazurkiewicz-Bełdzińska M, Studzińska S. Hydrophilic interaction liquid chromatography with mass spectrometry for the separation and identification of antisense oligonucleotides impurities and nusinersen metabolites. J Chromatogr A 2024; 1713:464535. [PMID: 38039623 DOI: 10.1016/j.chroma.2023.464535] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
With the development of therapeutic oligonucleotides for antisense and gene therapies, the demand for analytical methods also increases. For the analysis of complex samples, for example plasma samples, where the use of mass detection is essential, hydrophilic interaction liquid chromatography is a suitable choice. The aim of the present work was to develop a method for separation and identification of the oligonucleotide impurities and metabolites by hydrophilic interaction liquid chromatography. First of all, the effects of different chromatographic conditions (e.g. pH of the aqueous part of the mobile phase, buffer concentration, column temperature) on the retention and separation of phosphorothioate oligonucleotides standards on the amide stationary phase were investigated. A set of model oligonucleotides containing a fully modified 21mer and its typical impurities (shortmers and oligonucleotides with different number of thiophosphate modifications) was used. The results showed that the concentration of the salt in the mobile phase as well as its pH, are the most influential parameters with regard to peak shape and separation. The knowledge gained was applied to the analysis of an unpurified 18mer oligonucleotides, analogues of the drug nusinersen used for the treatment of spinal muscular atrophy. The successful separation and identification of twenty-six and twenty-eight impurities was performed with the developed HILIC method. The method was applied to analysis of nusinersen metabolites of serum samples of patients treated with Spinraza.
Collapse
Affiliation(s)
- Zuzana Vosáhlová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12800, Prague, Czech Republic
| | - Květa Kalíková
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12800, Prague, Czech Republic.
| | - Martin Gilar
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | - Jakub Szymarek
- Department of Developmental Neurology, Medical University of Gdansk, 7 Dębinki Str., PL-80-952, Gdańsk, Poland
| | | | - Sylwia Studzińska
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12800, Prague, Czech Republic; Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., PL-87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, 4 Wilenska St., 87-100 Toruń, Poland.
| |
Collapse
|
57
|
Idrissi YA, Rajabi MR, Beumer JH, Monga SP, Saeed A. Exploring the Impact of the β-Catenin Mutations in Hepatocellular Carcinoma: An In-Depth Review. Cancer Control 2024; 31:10732748241293680. [PMID: 39428608 PMCID: PMC11528747 DOI: 10.1177/10732748241293680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024] Open
Abstract
Liver cancer, primarily hepatocellular carcinoma, represents a major global health issue with significant clinical, economic, and psychological impacts. Its incidence continues to rise, driven by risk factors such as hepatitis B and C infections, nonalcoholic steatohepatitis, and various environmental influences. The Wnt/β-Catenin signaling pathway, frequently dysregulated in HCC, emerges as a promising therapeutic target. Critical genetic alterations, particularly in the CTNNB1 gene, involve mutations at key phosphorylation sites on β-catenin's N-terminal domain (S33, S37, T41, and S45) and in armadillo repeat domains (K335I and N387 K). These mutations impede β-catenin degradation, enhancing its oncogenic potential. In addition to genetic alterations, molecular and epigenetic mechanisms, including DNA methylation, histone modifications, and noncoding RNAs, further influence β-catenin signaling and tumor progression. However, β-catenin activation alone is insufficient for hepatocarcinogenesis; additional genetic "hits" are required for tumor initiation. Mutations or alterations in genes such as Ras, c-Met, NRF2, and LKB1, when combined with β-catenin activation, significantly contribute to HCC development and progression. Understanding these cooperative mutations provides crucial insights into the disease and reveals potential therapeutic strategies. The complex interplay between genetic variations and the tumor microenvironment, coupled with novel therapeutic approaches targeting the Wnt/β-Catenin pathway, offers promise for improved treatment of HCC. Despite advances, translating preclinical findings into clinical practice remains a challenge. Future research should focus on elucidating how specific β-catenin mutations and additional genetic alterations contribute to HCC pathogenesis, leveraging genetically clengineered mouse models to explore distinct signaling impacts, and identifying downstream targets. Relevant clinical trials will be essential for advancing personalized therapies and enhancing patient outcomes. This review provides a comprehensive analysis of β-Catenin signaling in HCC, highlighting its role in pathogenesis, diagnosis, and therapeutic targeting, and identifies key research directions to improve understanding and clinical outcomes.
Collapse
Affiliation(s)
- Yassine Alami Idrissi
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Mohammad Reza Rajabi
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Jan H. Beumer
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, Pittsburgh, PA, USA
| | - Satdarshan P. Monga
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Gastroenterology, Hepatology and Nutrition; Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and UPMC, Pittsburgh, PA, USA
| | - Anwaar Saeed
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
58
|
Rezaei S, Jafari Najaf Abadi MH, Bazyari MJ, Jalili A, Kazemi Oskuee R, Aghaee-Bakhtiari SH. Dysregulated microRNAs in prostate cancer: In silico prediction and in vitro validation. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:611-620. [PMID: 38629091 PMCID: PMC11017842 DOI: 10.22038/ijbms.2024.75164.16299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/04/2023] [Indexed: 04/19/2024]
Abstract
Objectives MicroRNAs, which are micro-coordinators of gene expression, have been recently investigated as a potential treatment for cancer. The study used computational techniques to identify microRNAs that could target a set of genes simultaneously. Due to their multi-target-directed nature, microRNAs have the potential to impact multiple key pathways and their pathogenic cross-talk. Materials and Methods We identified microRNAs that target a prostate cancer-associated gene set using integrated bioinformatics analyses and experimental validation. The candidate gene set included genes targeted by clinically approved prostate cancer medications. We used STRING, GO, and KEGG web tools to confirm gene-gene interactions and their clinical significance. Then, we employed integrated predicted and validated bioinformatics approaches to retrieve hsa-miR-124-3p, 16-5p, and 27a-3p as the top three relevant microRNAs. KEGG and DIANA-miRPath showed the related pathways for the candidate genes and microRNAs. Results The Real-time PCR results showed that miR-16-5p simultaneously down-regulated all genes significantly except for PIK3CA/CB in LNCaP; miR-27a-3p simultaneously down-regulated all genes significantly, excluding MET in LNCaP and PIK3CA in PC-3; and miR-124-3p could not down-regulate significantly PIK3CB, MET, and FGFR4 in LNCaP and FGFR4 in PC-3. Finally, we used a cell cycle assay to show significant G0/G1 arrest by transfecting miR-124-3p in LNCaP and miR-16-5p in both cell lines. Conclusion Our findings suggest that this novel approach may have therapeutic benefits and these predicted microRNAs could effectively target the candidate genes.
Collapse
Affiliation(s)
- Samaneh Rezaei
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mohammad Javad Bazyari
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Jalili
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Bioinformatics Research Center, Mashhad University of Medical Science, Mashhad, Iran
| |
Collapse
|
59
|
Kola NS, Patel D, Thakur A. RNA-Based Vaccines and Therapeutics Against Intracellular Pathogens. Methods Mol Biol 2024; 2813:321-370. [PMID: 38888787 DOI: 10.1007/978-1-0716-3890-3_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
RNA-based vaccines have sparked a paradigm shift in the treatment and prevention of diseases by nucleic acid medicines. There has been a notable surge in the development of nucleic acid therapeutics and vaccines following the global approval of the two messenger RNA-based COVID-19 vaccines. This growth is fueled by the exploration of numerous RNA products in preclinical stages, offering several advantages over conventional methods, i.e., safety, efficacy, scalability, and cost-effectiveness. In this chapter, we provide an overview of various types of RNA and their mechanisms of action for stimulating immune responses and inducing therapeutic effects. Furthermore, this chapter delves into the varying delivery systems, particularly emphasizing the use of nanoparticles to deliver RNA. The choice of delivery system is an intricate process involved in developing nucleic acid medicines that significantly enhances their stability, biocompatibility, and site-specificity. Additionally, this chapter sheds light on the current landscape of clinical trials of RNA therapeutics and vaccines against intracellular pathogens.
Collapse
Affiliation(s)
- Naga Suresh Kola
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Dhruv Patel
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Aneesh Thakur
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
60
|
Ali A, Khatoon A, Shao C, Murtaza B, Tanveer Q, Su Z. Therapeutic potential of natural antisense transcripts and various mechanisms involved for clinical applications and disease prevention. RNA Biol 2024; 21:1-18. [PMID: 38090817 PMCID: PMC10761088 DOI: 10.1080/15476286.2023.2293335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
Antisense transcription, a prevalent occurrence in mammalian genomes, gives rise to natural antisense transcripts (NATs) as RNA molecules. These NATs serve as agents of diverse transcriptional and post-transcriptional regulatory mechanisms, playing crucial roles in various biological processes vital for cell function and immune response. However, when their normal functions are disrupted, they can contribute to human diseases. This comprehensive review aims to establish the molecular foundation linking NATs to the development of disorders like cancer, neurodegenerative conditions, and cardiovascular ailments. Additionally, we evaluate the potential of oligonucleotide-based therapies targeting NATs, presenting both their advantages and limitations, while also highlighting the latest advancements in this promising realm of clinical investigation.Abbreviations: NATs- Natural antisense transcripts, PRC1- Polycomb Repressive Complex 1, PRC2- Polycomb Repressive Complex 2, ADARs- Adenosine deaminases acting on RNA, BDNF-AS- Brain-derived neurotrophic factor antisense transcript, ASOs- Antisense oligonucleotides, SINEUPs- Inverted SINEB2 sequence-mediated upregulating molecules, PTBP1- Polypyrimidine tract binding protein-1, HNRNPK- heterogeneous nuclear ribonucleoprotein K, MAPT-AS1- microtubule-associated protein tau antisense 1, KCNQ1OT- (KCNQ1 opposite strand/antisense transcript 1, ERK- extracellular signal-regulated kinase 1, USP14- ubiquitin-specific protease 14, EGF- Epidermal growth factor, LSD1- Lysine Specific Demethylase 1, ANRIL- Antisense Noncoding RNA in the INK4 Locus, BWS- Beckwith-Wiedemann syndrome, VEGFA- Vascular Endothelial Growth component A.
Collapse
Affiliation(s)
- Ashiq Ali
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Aisha Khatoon
- Department of Pathology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Chenran Shao
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Bilal Murtaza
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Qaisar Tanveer
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
| | - Zhongjing Su
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| |
Collapse
|
61
|
Gogate A, Belcourt J, Shah M, Wang AZ, Frankel A, Kolmel H, Chalon M, Stephen P, Kolli A, Tawfik SM, Jin J, Bahal R, Rasmussen TP, Manautou JE, Zhong XB. Targeting the Liver with Nucleic Acid Therapeutics for the Treatment of Systemic Diseases of Liver Origin. Pharmacol Rev 2023; 76:49-89. [PMID: 37696583 PMCID: PMC10753797 DOI: 10.1124/pharmrev.123.000815] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023] Open
Abstract
Systemic diseases of liver origin (SDLO) are complex diseases in multiple organ systems, such as cardiovascular, musculoskeletal, endocrine, renal, respiratory, and sensory organ systems, caused by irregular liver metabolism and production of functional factors. Examples of such diseases discussed in this article include primary hyperoxaluria, familial hypercholesterolemia, acute hepatic porphyria, hereditary transthyretin amyloidosis, hemophilia, atherosclerotic cardiovascular diseases, α-1 antitrypsin deficiency-associated liver disease, and complement-mediated diseases. Nucleic acid therapeutics use nucleic acids and related compounds as therapeutic agents to alter gene expression for therapeutic purposes. The two most promising, fastest-growing classes of nucleic acid therapeutics are antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs). For each listed SDLO disease, this article discusses epidemiology, symptoms, genetic causes, current treatment options, and advantages and disadvantages of nucleic acid therapeutics by either ASO or siRNA drugs approved or under development. Furthermore, challenges and future perspectives on adverse drug reactions and toxicity of ASO and siRNA drugs for the treatment of SDLO diseases are also discussed. In summary, this review article will highlight the clinical advantages of nucleic acid therapeutics in targeting the liver for the treatment of SDLO diseases. SIGNIFICANCE STATEMENT: Systemic diseases of liver origin (SDLO) contain rare and common complex diseases caused by irregular functions of the liver. Nucleic acid therapeutics have shown promising clinical advantages to treat SDLO. This article aims to provide the most updated information on targeting the liver with antisense oligonucleotides and small interfering RNA drugs. The generated knowledge may stimulate further investigations in this growing field of new therapeutic entities for the treatment of SDLO, which currently have no or limited options for treatment.
Collapse
Affiliation(s)
- Anagha Gogate
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Jordyn Belcourt
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Milan Shah
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Alicia Zongxun Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Alexis Frankel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Holly Kolmel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Matthew Chalon
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Prajith Stephen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Aarush Kolli
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Sherouk M Tawfik
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Jing Jin
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Raman Bahal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Theodore P Rasmussen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - José E Manautou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
62
|
Chancellor D, Barrett D, Nguyen-Jatkoe L, Millington S, Eckhardt F. The state of cell and gene therapy in 2023. Mol Ther 2023; 31:3376-3388. [PMID: 37927037 PMCID: PMC10727993 DOI: 10.1016/j.ymthe.2023.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/16/2023] [Accepted: 11/03/2023] [Indexed: 11/07/2023] Open
Abstract
Progress in the understanding of human diseases has coincided with the advent of precision medicine, whereby the underlying genetic and molecular contributors can be used as diagnostic and therapeutic biomarkers. To address these, drug developers have designed a range of different treatment strategies, including gene therapy, which the American Society of Gene and Cell Therapy defines as the use of genetic material to treat or prevent disease. A number of approaches exist, including the delivery of genetic material in vivo or ex vivo, as well as the use of RNA species to alter gene expression in particular disease states. Through the end of the first quarter of 2023, there were more than 100 different approved gene, cell, and RNA therapies throughout the world, with over 3,700 more in clinical and preclinical development. This review comprehensively captures the landscape for such advanced therapies, including the different genetic technologies used and diseases targeted in clinical trials.
Collapse
Affiliation(s)
| | - David Barrett
- American Society of Gene & Cell Therapy, Waukesha, WI, USA.
| | | | | | | |
Collapse
|
63
|
Li W, Li X, Gao Y, Xiong C, Tang Z. Emerging roles of RNA binding proteins in intervertebral disc degeneration and osteoarthritis. Orthop Surg 2023; 15:3015-3025. [PMID: 37803912 PMCID: PMC10694020 DOI: 10.1111/os.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 10/08/2023] Open
Abstract
The etiology of intervertebral disc degeneration (IDD) and osteoarthritis (OA) is complex and multifactorial. Both predisposing genes and environmental factors are involved in the pathogenesis of IDD and OA. Moreover, epigenetic modifications affect the development of IDD and OA. Dysregulated phenotypes of nucleus pulposus (NP) cells and OA chondrocytes, including apoptosis, extracellular matrix disruption, inflammation, and angiogenesis, are involved at all developmental stages of IDD and OA. RNA binding proteins (RBPs) have recently been recognized as essential post-transcriptional regulators of gene expression. RBPs are implicated in many cellular processes, such as proliferation, differentiation, and apoptosis. Recently, several RBPs have been reported to be associated with the pathogenesis of IDD and OA. This review briefly summarizes the current knowledge on the RNA-regulatory networks controlled by RBPs and their potential roles in the pathogenesis of IDD and OA. These initial findings support the idea that specific modulation of RBPs represents a promising approach for managing IDD and OA.
Collapse
Affiliation(s)
- Wen Li
- Department of EmergencyGeneral Hospital of Central Theater Command of PLAWuhanChina
| | - Xing‐Hua Li
- Department of EmergencyGeneral Hospital of Central Theater Command of PLAWuhanChina
| | - Yang Gao
- Department of OrthopaedicGeneral Hospital of Central Theater Command of PLAWuhanChina
| | - Cheng‐Jie Xiong
- Department of OrthopaedicGeneral Hospital of Central Theater Command of PLAWuhanChina
| | - Zhong‐Zhi Tang
- Department of EmergencyGeneral Hospital of Central Theater Command of PLAWuhanChina
| |
Collapse
|
64
|
Hussen BM, Abdullah KH, Abdullah SR, Majeed NM, Mohamadtahr S, Rasul MF, Dong P, Taheri M, Samsami M. New insights of miRNA molecular mechanisms in breast cancer brain metastasis and therapeutic targets. Noncoding RNA Res 2023; 8:645-660. [PMID: 37818447 PMCID: PMC10560790 DOI: 10.1016/j.ncrna.2023.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/17/2023] [Accepted: 09/17/2023] [Indexed: 10/12/2023] Open
Abstract
Brain metastases in breast cancer (BC) patients are often associated with a poor prognosis. Recent studies have uncovered the critical roles of miRNAs in the initiation and progression of BC brain metastasis, highlighting the disease's underlying molecular pathways. miRNA-181c, miRNA-10b, and miRNA-21, for example, are all overexpressed in BC patients. It has been shown that these three miRNAs help tumors grow and metastasize by targeting genes that control how cells work. On the other hand, miRNA-26b5p, miRNA-7, and miRNA-1013p are all downregulated in BC brain metastasis patients. They act as tumor suppressors by controlling the expression of genes related to cell adhesion, angiogenesis, and invasion. Therapeutic miRNA targeting has considerable promise in treating BC brain metastases. Several strategies have been proposed to modulate miRNA expression, including miRNA-Mimics, antagomirs, and small molecule inhibitors of miRNA biogenesis. This review discusses the aberrant expression of miRNAs and metastatic pathways that lead to the spread of BC cells to the brain. It also explores miRNA therapeutic target molecular mechanisms and BC brain metastasis challenges with advanced strategies. The targeting of certain miRNAs opens a new door for the development of novel therapeutic approaches for this devastating disease.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Kurdistan Region, 44001, Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Khozga Hazhar Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | | | - Sayran Mohamadtahr
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Samsami
- Cancer Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
65
|
Molenda S, Sikorska A, Florczak A, Lorenc P, Dams-Kozlowska H. Oligonucleotide-Based Therapeutics for STAT3 Targeting in Cancer-Drug Carriers Matter. Cancers (Basel) 2023; 15:5647. [PMID: 38067351 PMCID: PMC10705165 DOI: 10.3390/cancers15235647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 09/08/2024] Open
Abstract
High expression and phosphorylation of signal transducer and transcription activator 3 (STAT3) are correlated with progression and poor prognosis in various types of cancer. The constitutive activation of STAT3 in cancer affects processes such as cell proliferation, apoptosis, metastasis, angiogenesis, and drug resistance. The importance of STAT3 in cancer makes it a potential therapeutic target. Various methods of directly and indirectly blocking STAT3 activity at different steps of the STAT3 pathway have been investigated. However, the outcome has been limited, mainly by the number of upstream proteins that can reactivate STAT3 or the relatively low specificity of the inhibitors. A new branch of molecules with significant therapeutic potential has emerged thanks to recent developments in the regulatory function of non-coding nucleic acids. Oligonucleotide-based therapeutics can silence target transcripts or edit genes, leading to the modification of gene expression profiles, causing cell death or restoring cell function. Moreover, they can reach untreatable targets, such as transcription factors. This review briefly describes oligonucleotide-based therapeutics that found application to target STAT3 activity in cancer. Additionally, this review comprehensively summarizes how the inhibition of STAT3 activity by nucleic acid-based therapeutics such as siRNA, shRNA, ASO, and ODN-decoy affected the therapy of different types of cancer in preclinical and clinical studies. Moreover, due to some limitations of oligonucleotide-based therapeutics, the importance of carriers that can deliver nucleic acid molecules to affect the STAT3 in cancer cells and cells of the tumor microenvironment (TME) was pointed out. Combining a high specificity of oligonucleotide-based therapeutics toward their targets and functionalized nanoparticles toward cell type can generate very efficient formulations.
Collapse
Affiliation(s)
- Sara Molenda
- Department of Cancer Immunology, Poznan University of Medical Sciences, 15 Garbary St., 61-866 Poznan, Poland; (S.M.); (A.S.); (A.F.); (P.L.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Agata Sikorska
- Department of Cancer Immunology, Poznan University of Medical Sciences, 15 Garbary St., 61-866 Poznan, Poland; (S.M.); (A.S.); (A.F.); (P.L.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Anna Florczak
- Department of Cancer Immunology, Poznan University of Medical Sciences, 15 Garbary St., 61-866 Poznan, Poland; (S.M.); (A.S.); (A.F.); (P.L.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Patryk Lorenc
- Department of Cancer Immunology, Poznan University of Medical Sciences, 15 Garbary St., 61-866 Poznan, Poland; (S.M.); (A.S.); (A.F.); (P.L.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Hanna Dams-Kozlowska
- Department of Cancer Immunology, Poznan University of Medical Sciences, 15 Garbary St., 61-866 Poznan, Poland; (S.M.); (A.S.); (A.F.); (P.L.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| |
Collapse
|
66
|
Collotta D, Bertocchi I, Chiapello E, Collino M. Antisense oligonucleotides: a novel Frontier in pharmacological strategy. Front Pharmacol 2023; 14:1304342. [PMID: 38044945 PMCID: PMC10690781 DOI: 10.3389/fphar.2023.1304342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023] Open
Abstract
Antisense oligonucleotides (ASOs) are short single stranded synthetic RNA or DNA molecules, whereas double-stranded RNA nucleotide sequences are called small interfering RNA (siRNA). ASOs bind to complementary nucleic acid sequences impacting the associated functions of the targeted nucleic acids. They represent an emerging class of drugs that, through a revolutionary mechanism of action, aim to directly regulate disease-causing genes and their variants, providing an alternative tool to traditional "protein-specific" therapies. The majority of the ASOs are designed to treat orphan genetic disorders that in most of the cases are seriously disabling and still lacking an adequate therapy. In order to translate ASOs into clinical success, constant technological advances have been instrumental in overcoming several pharmacological, toxicological and formulation limitations. Accordingly, chemical structures have been recently implemented and new bio-conjugation and nanocarriers formulation strategies explored. The aim of this work is to offer an overview of the antisense technology with a comparative analysis of the oligonucleotides approved by the Food and Drug Administration (FDA) and the European Medicines Agency (EMA).
Collapse
Affiliation(s)
- D. Collotta
- Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy
| | - I. Bertocchi
- Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Turin, Italy
| | - E. Chiapello
- Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy
| | - M. Collino
- Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy
| |
Collapse
|
67
|
Han JH, Lee EJ, Park W, Ha KT, Chung HS. Natural compounds as lactate dehydrogenase inhibitors: potential therapeutics for lactate dehydrogenase inhibitors-related diseases. Front Pharmacol 2023; 14:1275000. [PMID: 37915411 PMCID: PMC10616500 DOI: 10.3389/fphar.2023.1275000] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023] Open
Abstract
Lactate dehydrogenase (LDH) is a crucial enzyme involved in energy metabolism and present in various cells throughout the body. Its diverse physiological functions encompass glycolysis, and its abnormal activity is associated with numerous diseases. Targeting LDH has emerged as a vital approach in drug discovery, leading to the identification of LDH inhibitors among natural compounds, such as polyphenols, alkaloids, and terpenoids. These compounds demonstrate therapeutic potential against LDH-related diseases, including anti-cancer effects. However, challenges concerning limited bioavailability, poor solubility, and potential toxicity must be addressed. Combining natural compounds with LDH inhibitors has led to promising outcomes in preclinical studies. This review highlights the promise of natural compounds as LDH inhibitors for treating cancer, cardiovascular, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jung Ho Han
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, Republic of Korea
| | - Eun-Ji Lee
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, Republic of Korea
| | - Wonyoung Park
- Korean Convergence Medical Science Major, KIOM Campus, University of Science and Technology (UST), Daegu, Republic of Korea
| | - Ki-Tae Ha
- Korean Convergence Medical Science Major, KIOM Campus, University of Science and Technology (UST), Daegu, Republic of Korea
| | - Hwan-Suck Chung
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, Republic of Korea
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
68
|
Wang Z, Liu J, Qiu X, Zhang D, Inuzuka H, Chen L, Chen H, Xie L, Kaniskan HÜ, Chen X, Jin J, Wei W. Methylated Nucleotide-Based Proteolysis-Targeting Chimera Enables Targeted Degradation of Methyl-CpG-Binding Protein 2. J Am Chem Soc 2023; 145:21871-21878. [PMID: 37774414 PMCID: PMC10979653 DOI: 10.1021/jacs.3c06023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Methyl-CpG-binding protein 2 (MeCP2), a reader of DNA methylation, has been extensively investigated for its function in neurological and neurodevelopmental disorders. Emerging evidence indicates that MeCP2 exerts an oncogenic function in cancer; however, the endeavor to develop a MeCP2-targeted therapy remains a challenge. This work attempts to address it by introducing a methylated nucleotide-based targeting chimera termed methyl-proteolysis-targeting chimera (methyl-PROTAC). The methyl-PROTAC incorporates a methylated cytosine into an oligodeoxynucleotide moiety to recruit MeCP2 for targeted degradation in a von Hippel-Lindau- and proteasome-dependent manner, thus displaying antiproliferative effects in cancer cells reliant on MeCP2 overexpression. This selective cytotoxicity endows methyl-PROTAC with the capacity to selectively eliminate cancer cells that are addicted to the overexpression of the MeCP2 oncoprotein. Furthermore, methyl-PROTAC-mediated MeCP2 degradation induces apoptosis in cancer cells. These findings underscore the therapeutic potential of methyl-PROTAC to degrade undruggable epigenetic regulatory proteins. In summary, the development of methyl-PROTAC introduces an innovative strategy by designing a modified nucleotide-based degradation approach for manipulating epigenetic factors, thereby representing a promising avenue for the advancement of PROTAC-based therapeutics.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Xing Qiu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Dingpeng Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Li Chen
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - He Chen
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Ling Xie
- Department of Biochemistry & Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Xian Chen
- Department of Biochemistry & Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| |
Collapse
|
69
|
Chen Q, Zhou T. Emerging functional principles of tRNA-derived small RNAs and other regulatory small RNAs. J Biol Chem 2023; 299:105225. [PMID: 37673341 PMCID: PMC10562873 DOI: 10.1016/j.jbc.2023.105225] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023] Open
Abstract
Recent advancements in small RNA sequencing have unveiled a previously hidden world of regulatory small noncoding RNAs (sncRNAs) that extend beyond the well-studied small interfering RNAs, microRNAs, and piwi-interacting RNAs. This exploration, starting with tRNA-derived small RNAs, has led to the discovery of a diverse universe of sncRNAs derived from various longer structured RNAs such as rRNAs, small nucleolar RNAs, small nuclear RNAs, Y RNAs, and vault RNAs, with exciting uncharted functional possibilities. In this perspective, we discuss the emerging functional principles of sncRNAs beyond the well-known RNAi-like mechanisms, focusing on those that operate independent of linear sequence complementarity but rather function in an aptamer-like fashion. Aptamers use 3D structure for specific interactions with ligands and are modulated by RNA modifications and subcellular environments. Given that aptamer-like sncRNA functions are widespread and present in species lacking RNAi, they may represent an ancient functional principle that predates RNAi. We propose a rethinking of the origin of RNAi and its relationship with these aptamer-like functions in sncRNAs and how these complementary mechanisms shape biological processes. Lastly, the aptamer-like function of sncRNAs highlights the need for caution in using small RNA mimics in research and therapeutics, as their specificity is not restricted solely to linear sequence.
Collapse
Affiliation(s)
- Qi Chen
- Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, Utah, USA; Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, USA; Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA.
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA.
| |
Collapse
|
70
|
Barr J, Colpaert G, Cadoni E, Madder A. Furan-based (photo)oxidation reactions and their application in nucleic acid and protein targeting. Methods 2023; 218:189-197. [PMID: 37597698 DOI: 10.1016/j.ymeth.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023] Open
Abstract
Oligonucleotides (ODNs) find applications as diagnostic and therapeutic tools due to their unique ability to interact, thanks to Watson-Crick base pairing, with a specific DNA or RNA target strand. Although most of the tools available today rely on mere hydrogen bond formation, chemical modifications to enable covalent interstrand-crosslinking (ICL) have been reported, and are gaining a place under the spotlight as they potentially offer a series of advantages over the state of the art, including a higher potency and selectivity. This methodological paper focuses on the use of a pro-reactive furan moiety and its subsequent oxidation for applications in ODN targeting. The design of effective capture and targeting probes to ensure high ICL yields is discussed and the mechanisms underlying the (photo)chemical oxidation of furan are explained. Furthermore, examples of furan-containing DNAs designed for different applications, including DNA-DNA or DNA-RNA ICL and DNA-peptide/protein targeting, are provided. The paper highlights the advantages of using different oxidative chemical triggers, such as N-bromosuccinimide or singlet oxygen, to offer additional selectivity control over the ICL reaction.
Collapse
Affiliation(s)
- Jack Barr
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Gertjan Colpaert
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Enrico Cadoni
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium.
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium.
| |
Collapse
|
71
|
Gane E, Lim YS, Kim JB, Jadhav V, Shen L, Bakardjiev AI, Huang SA, Cathcart AL, Lempp FA, Janas MM, Cloutier DJ, Kaittanis C, Sepp-Lorenzino L, Hinkle G, Taubel J, Haslett P, Milstein S, Anglero-Rodriguez YI, Hebner CM, Pang PS, Yuen MF. Evaluation of RNAi therapeutics VIR-2218 and ALN-HBV for chronic hepatitis B: Results from randomized clinical trials. J Hepatol 2023; 79:924-932. [PMID: 37290591 DOI: 10.1016/j.jhep.2023.05.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/27/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND & AIMS Current therapy for chronic hepatitis B virus (cHBV) infection involves lifelong treatment. New treatments that enable HBV functional cure would represent a clinically meaningful advance. ALN-HBV and VIR-2218 are investigational RNA interference therapeutics that target all major HBV transcripts. METHODS We report on: i) the safety of single doses of VIR-2218 (modified from ALN-HBV by enhanced stabilization chemistry plus technology to reduce off-target, seed-mediated binding while maintaining on-target antiviral activity) and ALN-HBV in humanized mice; ii) a cross-study comparison of the safety of single doses of VIR-2218 and ALN-HBV in healthy human volunteers (n = 24 and n = 49, respectively); and iii) the antiviral activity of two doses of 20, 50, 100, 200 mg of VIR-2218 (total n = 24) vs. placebo (n = 8), given 4 weeks apart, in participants with cHBV infection. RESULTS In humanized mice, alanine aminotransferase (ALT) levels were markedly lower following administration of VIR-2218 compared with ALN-HBV. In healthy volunteers, post-treatment ALT elevations occurred in 28% of participants receiving ALN-HBV compared with none in those receiving VIR-2218. In participants with cHBV infection, VIR-2218 was associated with dose-dependent reductions in hepatitis B surface antigen (HBsAg). The greatest mean reduction of HBsAg at Week 20 in participants receiving 200 mg was 1.65 log IU/ml. The HBsAg reduction was maintained at 0.87 log IU/ml at Week 48. No participants had serum HBsAg loss or hepatitis B surface antibody seroconversion. CONCLUSIONS VIR-2218 demonstrated an encouraging hepatic safety profile in preclinical and clinical studies as well as dose-dependent HBsAg reductions in patients with cHBV infection. These data support future studies with VIR-2218 as part of combination regimens with a goal of HBV functional cure. TRIAL REGISTRATION ClinicalTrials.gov identifiers: NCT02826018 and NCT03672188. IMPACT AND IMPLICATIONS A significant unmet need exists for therapies for chronic HBV (cHBV) infection that achieve functional cure. We report clinical and non-clinical data on two investigational small-interfering RNAs that target HBx, ALN-HBV and VIR-2218, demonstrating that incorporation of enhanced stabilization chemistry plus technology in VIR-2218 reduces its propensity to cause ALT elevations relative to its parent compound, ALN-HBV. We also show that VIR-2218 reduces hepatitis B surface antigen levels in a dose-dependent manner in participants with cHBV infection. These studies support the continued development of VIR-2218 as part of therapeutic regimens for cHBV infection, with the goal of a functional cure, and are important for HBV researchers and physicians.
Collapse
Affiliation(s)
- Ed Gane
- University of Auckland and New Zealand Clinical Research, Auckland, New Zealand.
| | - Young-Suk Lim
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jae B Kim
- Alnylam Pharmaceuticals, Cambridge, Massachusetts, USA
| | - Vasant Jadhav
- Alnylam Pharmaceuticals, Cambridge, Massachusetts, USA
| | - Ling Shen
- Vir Biotechnology, Inc., San Francisco, California, USA
| | | | | | | | | | - Maja M Janas
- Alnylam Pharmaceuticals, Cambridge, Massachusetts, USA
| | | | | | | | | | - Jorg Taubel
- Richmond Pharmacology Ltd., St George's University of London, London, UK
| | | | | | | | | | | | - Man-Fung Yuen
- Department of Medicine and State Key Laboratory of Liver Research, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
72
|
Weidner J, Kolosionek E, Holmila R, Ax E, Garreau M, Gnerlich F, Olsson H, Czechtizky W, Vollmer S, Rydzik AM. Gymnotic uptake of AntimiRs alter microRNA-34a levels in 2D and 3D epithelial cell culture. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:898-907. [PMID: 37680982 PMCID: PMC10480572 DOI: 10.1016/j.omtn.2023.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023]
Abstract
MicroRNAs are attractive therapeutic targets in many diseases, including chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Among microRNA inhibitors antimiRs have been proven successful in lowering aberrant microRNA levels in the clinic. We present a set of antimiRs targeting miR-34a, which has been shown to be dysregulated in chronic lung diseases. The tool compounds were taken up by a bronchial epithelial cell line and primary human bronchial epithelial cells, followed by efficient knockdown of miR-34a. Similar results were observed in 3D differentiated primary human bronchial epithelial cells cultured at the air-liquid interface. Varying chemical properties of antimiRs had significant impact on cellular uptake and potency, resulting in effective tool compounds for use in lung-relevant cellular systems. This report demonstrates gymnotic antimiR uptake and activity in 3D epithelial cell culture after apical administration, mimicking inhalation conditions.
Collapse
Affiliation(s)
- Julie Weidner
- Translational Science Experimental Medicine, Research & Early Development, Respiratory & Immunology, BioPharmaceutical R&D, AstraZeneca, 431 83 Mölndal, Sweden
| | - Ewa Kolosionek
- Bioscience COPD/IPF, Research & Early Development, Respiratory & Immunology, BioPharmaceutical R&D, AstraZeneca, 431 83 Mölndal, Sweden
| | - Reetta Holmila
- Bioscience COPD/IPF, Research & Early Development, Respiratory & Immunology, BioPharmaceutical R&D, AstraZeneca, 431 83 Mölndal, Sweden
| | - Elisabeth Ax
- Translational Science Experimental Medicine, Research & Early Development, Respiratory & Immunology, BioPharmaceutical R&D, AstraZeneca, 431 83 Mölndal, Sweden
| | - Marion Garreau
- Medicinal Chemistry, Research & Early Development, Respiratory & Immunology, BioPharmaceutical R&D, AstraZeneca, 431 83 Mölndal, Sweden
| | - Felix Gnerlich
- Medicinal Chemistry, Research & Early Development, Respiratory & Immunology, BioPharmaceutical R&D, AstraZeneca, 431 83 Mölndal, Sweden
| | - Henric Olsson
- Translational Science Experimental Medicine, Research & Early Development, Respiratory & Immunology, BioPharmaceutical R&D, AstraZeneca, 431 83 Mölndal, Sweden
| | - Werngard Czechtizky
- Medicinal Chemistry, Research & Early Development, Respiratory & Immunology, BioPharmaceutical R&D, AstraZeneca, 431 83 Mölndal, Sweden
| | - Stefan Vollmer
- Bioscience COPD/IPF, Research & Early Development, Respiratory & Immunology, BioPharmaceutical R&D, AstraZeneca, 431 83 Mölndal, Sweden
| | - Anna M. Rydzik
- Medicinal Chemistry, Research & Early Development, Respiratory & Immunology, BioPharmaceutical R&D, AstraZeneca, 431 83 Mölndal, Sweden
| |
Collapse
|
73
|
Prakash S. mRNA-Based Nanomedicine: A New Strategy for Treating Infectious Diseases and Beyond. Eur J Drug Metab Pharmacokinet 2023; 48:515-529. [PMID: 37656402 DOI: 10.1007/s13318-023-00849-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
Abstract
Messenger RNA (mRNA) has emerged as a new therapeutic agent for the prevention and treatment of a wide range of diseases. The recent achievement of the two lipid nanoparticle-mRNA vaccines developed by Moderna and Pfizer-BioNTech against coronavirus 2019 (COVID-19) disease in record time highlights the huge potential of mRNA technology and reshaping the landscape of vaccine development and the future of gene therapies. Challenges related to translational efficacy, mRNA stability, immunogenicity, and ensuring the quality of final products have been significantly improved by recent advancements in mRNA engineering and delivery. Thus, the present review aims to provide the latest innovations that incrementally overcome these issues and future directions in the context of ongoing clinical trials against infectious diseases and beyond.
Collapse
Affiliation(s)
- Satyendra Prakash
- Centre of Biotechnology, Faculty of Science, University of Allahabad, Allahabad, India.
| |
Collapse
|
74
|
Gou LT, Zhu Q, Liu MF. Small RNAs: An expanding world with therapeutic promises. FUNDAMENTAL RESEARCH 2023; 3:676-682. [PMID: 38933305 PMCID: PMC11197668 DOI: 10.1016/j.fmre.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 04/09/2023] Open
Abstract
Small non-coding RNAs (sncRNAs), such as microRNAs (miRNAs), small interfering RNAs (siRNAs), PIWI-interacting RNAs (piRNAs), and transfer RNA (tRNA)-derived small RNAs (tsRNAs), play essential roles in regulating various cellular and developmental processes. Over the past three decades, researchers have identified novel sncRNA species from various organisms. These molecules demonstrate dynamic expression and diverse functions, and they are subject to intricate regulation through RNA modifications in both healthy and diseased states. Notably, certain sncRNAs in gametes, particularly sperm, respond to environmental stimuli and facilitate epigenetic inheritance. Collectively, the in-depth understanding of sncRNA functions and mechanisms has accelerated the development of small RNA-based therapeutics. In this review, we present the recent advances in the field, including new sncRNA species and the regulatory influences of RNA modifications. We also discuss the current limitations and challenges associated with using small RNAs as either biomarkers or therapeutic drugs.
Collapse
Affiliation(s)
- Lan-Tao Gou
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qifan Zhu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mo-Fang Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| |
Collapse
|
75
|
Daich Varela M, Georgiadis A, Michaelides M. Genetic treatment for autosomal dominant inherited retinal dystrophies: approaches, challenges and targeted genotypes. Br J Ophthalmol 2023; 107:1223-1230. [PMID: 36038193 DOI: 10.1136/bjo-2022-321903] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/01/2022] [Indexed: 11/04/2022]
Abstract
Inherited retinal diseases (IRDs) have been in the front line of gene therapy development for the last decade, providing a useful platform to test novel therapeutic approaches. More than 40 clinical trials have been completed or are ongoing, tackling autosomal recessive and X-linked conditions, mostly through adeno-associated viral vector delivery of a normal copy of the disease-causing gene. However, only recently has autosomal dominant (ad) disease been targeted, with the commencement of a trial for rhodopsin (RHO)-associated retinitis pigmentosa (RP), implementing antisense oligonucleotide (AON) therapy, with promising preliminary results (NCT04123626).Autosomal dominant RP represents 15%-25% of all RP, with RHO accounting for 20%-30% of these cases. Autosomal dominant macular and cone-rod dystrophies (MD/CORD) correspond to approximately 7.5% of all IRDs, and approximately 35% of all MD/CORD cases, with the main causative gene being BEST1 Autosomal dominant IRDs are not only less frequent than recessive, but also tend to be less severe and have later onset; for example, an individual with RHO-adRP would typically become severely visually impaired at an age 2-3 times older than in X-linked RPGR-RP.Gain-of-function and dominant negative aetiologies are frequently seen in the prevalent adRP genes RHO, RP1 and PRPF31 among others, which would not be effectively addressed by gene supplementation alone and need creative, novel approaches. Zinc fingers, RNA interference, AON, translational read-through therapy, and gene editing by clustered regularly interspaced short palindromic repeats/Cas are some of the strategies that are currently under investigation and will be discussed here.
Collapse
Affiliation(s)
- Malena Daich Varela
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | | | - Michel Michaelides
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
76
|
Datta N, Johnson C, Kao D, Gurnani P, Alexander C, Polytarchou C, Monaghan TM. MicroRNA-based therapeutics for inflammatory disorders of the microbiota-gut-brain axis. Pharmacol Res 2023; 194:106870. [PMID: 37499702 DOI: 10.1016/j.phrs.2023.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
An emerging but less explored shared pathophysiology across microbiota-gut-brain axis disorders is aberrant miRNA expression, which may represent novel therapeutic targets. miRNAs are small, endogenous non-coding RNAs that are important transcriptional repressors of gene expression. Most importantly, they regulate the integrity of the intestinal epithelial and blood-brain barriers and serve as an important communication channel between the gut microbiome and the host. A well-defined understanding of the mode of action, therapeutic strategies and delivery mechanisms of miRNAs is pivotal in translating the clinical applications of miRNA-based therapeutics. Accumulating evidence links disorders of the microbiota-gut-brain axis with a compromised gut-blood-brain-barrier, causing gut contents such as immune cells and microbiota to enter the bloodstream leading to low-grade systemic inflammation. This has the potential to affect all organs, including the brain, causing central inflammation and the development of neurodegenerative and neuropsychiatric diseases. In this review, we have examined in detail miRNA biogenesis, strategies for therapeutic application, delivery mechanisms, as well as their pathophysiology and clinical applications in inflammatory gut-brain disorders. The research data in this review was drawn from the following databases: PubMed, Google Scholar, and Clinicaltrials.gov. With increasing evidence of the pathophysiological importance for miRNAs in microbiota-gut-brain axis disorders, therapeutic targeting of cross-regulated miRNAs in these disorders displays potentially transformative and translational potential. Further preclinical research and human clinical trials are required to further advance this area of research.
Collapse
Affiliation(s)
- Neha Datta
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Charlotte Johnson
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Dina Kao
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Pratik Gurnani
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Cameron Alexander
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Christos Polytarchou
- Department of Biosciences, John van Geest Cancer Research Centre, School of Science & Technology, Nottingham Trent University, Nottingham, UK.
| | - Tanya M Monaghan
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK.
| |
Collapse
|
77
|
Niderla-Bielińska J, Jankowska-Steifer E, Włodarski P. Non-Coding RNAs and Human Diseases: Current Status and Future Perspectives. Int J Mol Sci 2023; 24:11679. [PMID: 37511438 PMCID: PMC10380467 DOI: 10.3390/ijms241411679] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are a family of RNA molecules that, unlike messenger RNAs, are not templates for protein synthesis but have an essential or regulatory role in this process [...].
Collapse
Affiliation(s)
| | - Ewa Jankowska-Steifer
- Histology and Embryology Department, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Paweł Włodarski
- Department of Methodology, Center for Preclinical Research, Medical University of Warsaw, 1B Banacha Street, 02-097 Warsaw, Poland
| |
Collapse
|
78
|
Kurakula H, Vaishnavi S, Sharif MY, Ellipilli S. Emergence of Small Interfering RNA-Based Gene Drugs for Various Diseases. ACS OMEGA 2023; 8:20234-20250. [PMID: 37323391 PMCID: PMC10268023 DOI: 10.1021/acsomega.3c01703] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023]
Abstract
Small molecule, peptide, and protein-based drugs have been developed over decades to treat various diseases. The importance of gene therapy as an alternative to traditional drugs has increased after the discovery of gene-based drugs such as Gendicine for cancer and Neovasculgen for peripheral artery disease. Since then, the pharma sector is focusing on developing gene-based drugs for various diseases. After the discovery of the RNA interference (RNAi) mechanism, the development of siRNA-based gene therapy has been accelerated immensely. siRNA-based treatment for hereditary transthyretin-mediated amyloidosis (hATTR) using Onpattro and acute hepatic porphyria (AHP) by Givlaari and three more FDA-approved siRNA drugs has set up a milestone and further improved the confidence for the development of gene therapeutics for a spectrum of diseases. siRNA-based gene drugs have more advantages over other gene therapies and are under study to treat different types of diseases such as viral infections, cardiovascular diseases, cancer, and many more. However, there are a few bottlenecks to realizing the full potential of siRNA-based gene therapy. They include chemical instability, nontargeted biodistribution, undesirable innate immune responses, and off-target effects. This review provides a comprehensive view of siRNA-based gene drugs: challenges associated with siRNA delivery, their potential, and future prospects.
Collapse
Affiliation(s)
- Harshini Kurakula
- Department
of Chemistry, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Swetha Vaishnavi
- Department
of Chemistry, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Mohammed Yaseen Sharif
- Department
of Chemistry, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Satheesh Ellipilli
- Department
of Chemistry, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| |
Collapse
|
79
|
Capolla S, Argenziano M, Bozzer S, D’Agaro T, Bittolo T, De Leo L, Not T, Busato D, Dal Bo M, Toffoli G, Cavalli R, Gattei V, Bomben R, Macor P. Targeted chitosan nanobubbles as a strategy to down-regulate microRNA-17 into B-cell lymphoma models. Front Immunol 2023; 14:1200310. [PMID: 37359561 PMCID: PMC10285521 DOI: 10.3389/fimmu.2023.1200310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction MicroRNAs represent interesting targets for new therapies because their altered expression influences tumor development and progression. miR-17 is a prototype of onco-miRNA, known to be overexpressed in B-cell non-Hodgkin lymphoma (B-NHL) with peculiar clinic-biological features. AntagomiR molecules have been largely studied to repress the regulatory functions of up-regulated onco-miRNAs, but their clinical use is mainly limited by their rapid degradation, kidney elimination and poor cellular uptake when injected as naked oligonucleotides. Methods To overcome these problems, we exploited CD20 targeted chitosan nanobubbles (NBs) for a preferential and safe delivery of antagomiR17 to B-NHL cells. Results Positively charged 400 nm-sized nanobubbles (NBs) represent a stable and effective nanoplatform for antagomiR encapsulation and specific release into B-NHL cells. NBs rapidly accumulated in tumor microenvironment, but only those conjugated with a targeting system (antiCD20 antibodies) were internalized into B-NHL cells, releasing antagomiR17 in the cytoplasm, both in vitro and in vivo. The result is the down-regulation of miR-17 level and the reduction in tumor burden in a human-mouse B-NHL model, without any documented side effects. Discussion Anti-CD20 targeted NBs investigated in this study showed physico-chemical and stability properties suitable for antagomiR17 delivery in vivo and represent a useful nanoplatform to address B-cell malignancies or other cancers through the modification of their surface with specific targeting antibodies.
Collapse
Affiliation(s)
- Sara Capolla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Monica Argenziano
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Turin, Italy
| | - Sara Bozzer
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Tiziana D’Agaro
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Tamara Bittolo
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Luigina De Leo
- Department of Pediatrics, Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy
| | - Tarcisio Not
- Department of Pediatrics, Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy
| | - Davide Busato
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Roberta Cavalli
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Turin, Italy
| | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Riccardo Bomben
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
80
|
Natalicchio A, Montagnani M, Gallo M, Marrano N, Faggiano A, Zatelli MC, Mazzilli R, Argentiero A, Danesi R, D'Oronzo S, Fogli S, Giuffrida D, Gori S, Ragni A, Renzelli V, Russo A, Franchina T, Tuveri E, Sciacca L, Monami M, Cirino G, Di Cianni G, Colao A, Avogaro A, Cinieri S, Silvestris N, Giorgino F. MiRNA dysregulation underlying common pathways in type 2 diabetes and cancer development: an Italian Association of Medical Oncology (AIOM)/Italian Association of Medical Diabetologists (AMD)/Italian Society of Diabetology (SID)/Italian Society of Endocrinology (SIE)/Italian Society of Pharmacology (SIF) multidisciplinary critical view. ESMO Open 2023; 8:101573. [PMID: 37263082 PMCID: PMC10245125 DOI: 10.1016/j.esmoop.2023.101573] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/27/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Increasing evidence suggests that patients with diabetes, particularly type 2 diabetes (T2D), are characterized by an increased risk of developing different types of cancer, so cancer could be proposed as a new T2D-related complication. On the other hand, cancer may also increase the risk of developing new-onset diabetes, mainly caused by anticancer therapies. Hyperinsulinemia, hyperglycemia, and chronic inflammation typical of T2D could represent possible mechanisms involved in cancer development in diabetic patients. MicroRNAs (miRNAs) are a subset of non-coding RNAs, ⁓22 nucleotides in length, which control the post-transcriptional regulation of gene expression through both translational repression and messenger RNA degradation. Of note, miRNAs have multiple target genes and alteration of their expression has been reported in multiple diseases, including T2D and cancer. Accordingly, specific miRNA-regulated pathways are involved in the pathogenesis of both conditions. In this review, a panel of experts from the Italian Association of Medical Oncology (AIOM), Italian Association of Medical Diabetologists (AMD), Italian Society of Diabetology (SID), Italian Society of Endocrinology (SIE), and Italian Society of Pharmacology (SIF) provide a critical view of the evidence about the involvement of miRNAs in the pathophysiology of both T2D and cancer, trying to identify the shared miRNA signature and pathways able to explain the strong correlation between the two conditions, as well as to envision new common pharmacological approaches.
Collapse
Affiliation(s)
- A Natalicchio
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - M Montagnani
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Pharmacology, Medical School, University of Bari Aldo Moro, Bari, Italy
| | - M Gallo
- Endocrinology and Metabolic Diseases Unit, AO SS Antonio e Biagio e Cesare Arrigo of Alessandria, Alessandria, Italy
| | - N Marrano
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - A Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| | - M C Zatelli
- Section of Endocrinology, Geriatrics, and Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - R Mazzilli
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| | - A Argentiero
- Medical Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - R Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - S D'Oronzo
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - S Fogli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - D Giuffrida
- Department of Oncology, Istituto Oncologico del Mediterraneo, Viagrande, Catania, Italy
| | - S Gori
- Oncologia Medica, IRCCS Ospedale Don Calabria-Sacro Cuore di Negrar, Verona, Italy
| | - A Ragni
- Endocrinology and Metabolic Diseases Unit, AO SS Antonio e Biagio e Cesare Arrigo of Alessandria, Alessandria, Italy
| | - V Renzelli
- Diabetologist and Endocrinologist, Italian Association of Clinical Diabetologists, Rome, Italy
| | - A Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - T Franchina
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - E Tuveri
- Diabetology, Endocrinology and Metabolic Diseases Service, ASL-Sulcis, Carbonia, Sardinia, Italy
| | - L Sciacca
- Department of Clinical and Experimental Medicine, Endocrinology Section, University of Catania, Catania, Italy
| | - M Monami
- Diabetology, Careggi Hospital and University of Florence, Firenze, Italy
| | - G Cirino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - G Di Cianni
- Diabetes Unit, Livorno Hospital, Livorno, Italy
| | - A Colao
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy; UNESCO Chair, Education for Health and Sustainable Development, Federico II University, Naples, Italy
| | - A Avogaro
- Department of Medicine, University of Padova, Padua, Italy
| | - S Cinieri
- Medical Oncology Division and Breast Unit, Senatore Antonio Perrino Hospital, ASL Brindisi, Brindisi, Italy
| | - N Silvestris
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - F Giorgino
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
81
|
Spinetti G, Mutoli M, Greco S, Riccio F, Ben-Aicha S, Kenneweg F, Jusic A, de Gonzalo-Calvo D, Nossent AY, Novella S, Kararigas G, Thum T, Emanueli C, Devaux Y, Martelli F. Cardiovascular complications of diabetes: role of non-coding RNAs in the crosstalk between immune and cardiovascular systems. Cardiovasc Diabetol 2023; 22:122. [PMID: 37226245 PMCID: PMC10206598 DOI: 10.1186/s12933-023-01842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/25/2023] [Indexed: 05/26/2023] Open
Abstract
Diabetes mellitus, a group of metabolic disorders characterized by high levels of blood glucose caused by insulin defect or impairment, is a major risk factor for cardiovascular diseases and related mortality. Patients with diabetes experience a state of chronic or intermittent hyperglycemia resulting in damage to the vasculature, leading to micro- and macro-vascular diseases. These conditions are associated with low-grade chronic inflammation and accelerated atherosclerosis. Several classes of leukocytes have been implicated in diabetic cardiovascular impairment. Although the molecular pathways through which diabetes elicits an inflammatory response have attracted significant attention, how they contribute to altering cardiovascular homeostasis is still incompletely understood. In this respect, non-coding RNAs (ncRNAs) are a still largely under-investigated class of transcripts that may play a fundamental role. This review article gathers the current knowledge on the function of ncRNAs in the crosstalk between immune and cardiovascular cells in the context of diabetic complications, highlighting the influence of biological sex in such mechanisms and exploring the potential role of ncRNAs as biomarkers and targets for treatments. The discussion closes by offering an overview of the ncRNAs involved in the increased cardiovascular risk suffered by patients with diabetes facing Sars-CoV-2 infection.
Collapse
Affiliation(s)
- Gaia Spinetti
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy.
| | - Martina Mutoli
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | - Federica Riccio
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Soumaya Ben-Aicha
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Franziska Kenneweg
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | | | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Anne Yaël Nossent
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Susana Novella
- Department of Physiology, University of Valencia - INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Georgios Kararigas
- Department of Physiology, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Costanza Emanueli
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy.
| |
Collapse
|
82
|
Thibonnier M, Ghosh S. Strategy for Pre-Clinical Development of Active Targeting MicroRNA Oligonucleotide Therapeutics for Unmet Medical Needs. Int J Mol Sci 2023; 24:ijms24087126. [PMID: 37108289 PMCID: PMC10138879 DOI: 10.3390/ijms24087126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
We present here an innovative modular and outsourced model of drug research and development for microRNA oligonucleotide therapeutics (miRNA ONTs). This model is being implemented by a biotechnology company, namely AptamiR Therapeutics, in collaboration with Centers of Excellence in Academic Institutions. Our aim is to develop safe, effective and convenient active targeting miRNA ONT agents for the metabolic pandemic of obesity and metabolic-associated fatty liver disease (MAFLD), as well as deadly ovarian cancer.
Collapse
Affiliation(s)
| | - Sujoy Ghosh
- Duke-NUS Medical School, Singapore and Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| |
Collapse
|
83
|
Ren ZL, Kang XD, Zheng YX, Shi HF, Chen CA, Shi YY, Wang QG, Cheng FF, Wang XQ, Li CX. Emerging effects of non-coding RNA in vascular endothelial cells during strokes. Vascul Pharmacol 2023; 150:107169. [PMID: 37059212 DOI: 10.1016/j.vph.2023.107169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/05/2023] [Accepted: 03/24/2023] [Indexed: 04/16/2023]
Abstract
Vascular and neurological damage are the typical outcomes of ischemic strokes. Vascular endothelial cells (VECs), a substantial component of the blood-brain barrier (BBB), are necessary for normal cerebrovascular physiology. During an ischemic stroke (IS), changes in the brain endothelium can lead to a BBB rupture, inflammation, and vasogenic brain edema, and VECs are essential for neurotrophic effects and angiogenesis. Non-coding RNAs (nc-RNAs) are endogenous molecules, and brain ischemia quickly changes the expression patterns of several non-coding RNA types, such as microRNA (miRNA/miR), long non-coding RNA (lncRNA), and circular RNA (circRNA). Furthermore, vascular endothelium-associated nc-RNAs are important mediators in the maintenance of healthy cerebrovascular function. In order to better understand how VECs are regulated epigenetically during an IS, in this review, we attempted to assemble the molecular functions of nc-RNAs that are linked with VECs during an IS.
Collapse
Affiliation(s)
- Zi-Lin Ren
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiang-Dong Kang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yu-Xiao Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Han-Fen Shi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cong-Ai Chen
- Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing 100700, China
| | - Yu-Yu Shi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qing-Guo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fa-Feng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Xue-Qian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Chang-Xiang Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
84
|
Guimaraes GJ, Leach FE, Bartlett MG. Microflow Liquid Chromatography – Multi-Emitter Nanoelectrospray Mass Spectrometry of Oligonucleotides. J Chromatogr A 2023; 1696:463976. [PMID: 37054634 DOI: 10.1016/j.chroma.2023.463976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/08/2023]
Abstract
While the most sensitive LC-MS methods for oligonucleotide analysis contain ion-pairs in the mobile phase, these modifiers have been associated with instrument contamination and ion suppression. Typically, entire LC-MS systems are reserved for oligonucleotide LC-MS when using ion-pairing buffers. To overcome these limitations, numerous HILIC methods, liberated from ion-pairs, have been recently developed. Since ion-pairs play a role in analyte desorption from ESI droplets, their removal from mobile phases tend to impact method sensitivity. An effective way to recover MS sensitivity is to reduce the LC flow rate and therefore reduce ESI droplet size. With a focus on MS sensitivity, this study investigates the applicability of a microflow LC- nanoelectrospray MS platform in oligonucleotide ion-pair RP and HILIC LC-MS methods. The platform is effective and substantially increased the MS sensitivity of HILIC methods. Furthermore, LC method development for both types of separations provide insight into microflow chromatography of oligonucleotides, an under investigated chromatographic scale.
Collapse
|
85
|
Sell MC, Ramlogan-Steel CA, Steel JC, Dhungel BP. MicroRNAs in cancer metastasis: biological and therapeutic implications. Expert Rev Mol Med 2023; 25:e14. [PMID: 36927814 PMCID: PMC10407223 DOI: 10.1017/erm.2023.7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/02/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Cancer metastasis is the primary cause of cancer-related deaths. The seeding of primary tumours at a secondary site is a highly inefficient process requiring substantial alterations in the genetic architecture of cancer cells. These alterations include significant changes in global gene expression patterns. MicroRNAs are small, non-protein coding RNAs which play a central role in regulating gene expression. Here, we focus on microRNA determinants of cancer metastasis and examine microRNA dysregulation in metastatic cancer cells. We dissect the metastatic process in a step-wise manner and summarise the involvement of microRNAs at each step. We also discuss the advantages and limitations of different microRNA-based strategies that have been used to target metastasis in pre-clinical models. Finally, we highlight current clinical trials that use microRNA-based therapies to target advanced or metastatic tumours.
Collapse
Affiliation(s)
- Marie C. Sell
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Charmaine A. Ramlogan-Steel
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Jason C. Steel
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Bijay P. Dhungel
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
86
|
Shifting from a Biological-Agnostic Approach to a Molecular-Driven Strategy in Rare Cancers: Ewing Sarcoma Archetype. Biomedicines 2023; 11:biomedicines11030874. [PMID: 36979853 PMCID: PMC10045500 DOI: 10.3390/biomedicines11030874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/24/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Sarcomas of the thoracic cavity are rare entities that predominantly affect children and young adults. They can be very heterogeneous encompassing several different histological entities. Ewing Sarcoma (ES) can potentially arise from every bone, soft tissue, or visceral site in the body. However, it represents an extremely rare finding when it affects the thoracic cavity. It represents the second most frequent type of thoracic sarcoma, after chondrosarcoma. ES arises more frequently in sites that differ from the thoracic cavity, but it displays the same biological features and behavior of extra-thoracic ones. Current management of ES often requires a multidisciplinary treatment approach including surgery, radiotherapy, and systemic therapy, as it can guarantee local and distant disease control, at least transiently, although the long-term outcome remains poor. Unfortunately, due to the paucity of clinical trials purposely designed for this rare malignancy, there are no optimal strategies that can be used for disease recurrence. As a result of its complex biological features, ES might be suitable for emerging biology-based therapeutic strategies. However, a deeper understanding of the molecular mechanisms driving tumor growth and treatment resistance, including those related to oncogenic pathways, epigenetic landscape, and immune microenvironment, is necessary in order to develop new valid therapeutic opportunities. Here, we provide an overview of the most recent therapeutic advances for ES in both the preclinical and clinical settings. We performed a review of the current available literature and of the ongoing clinical trials focusing on new treatment strategies, after failure of conventional multimodal treatments.
Collapse
|
87
|
Maity P, Chatterjee J, Patil KT, Arora S, Katiyar MK, Kumar M, Samarbakhsh A, Joshi G, Bhutani P, Chugh M, Gavande NS, Kumar R. Targeting the Epidermal Growth Factor Receptor with Molecular Degraders: State-of-the-Art and Future Opportunities. J Med Chem 2023; 66:3135-3172. [PMID: 36812395 DOI: 10.1021/acs.jmedchem.2c01242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Epidermal growth factor receptor (EGFR) is an oncogenic drug target and plays a critical role in several cellular functions including cancer cell growth, survival, proliferation, differentiation, and motility. Several small-molecule tyrosine kinase inhibitors (TKIs) and monoclonal antibodies (mAbs) have been approved for targeting intracellular and extracellular domains of EGFR, respectively. However, cancer heterogeneity, mutations in the catalytic domain of EGFR, and persistent drug resistance limited their use. Different novel modalities are gaining a position in the limelight of anti-EGFR therapeutics to overcome such limitations. The current perspective reflects upon newer modalities, importantly the molecular degraders such as PROTACs, LYTACs, AUTECs, and ATTECs, etc., beginning with a snapshot of traditional and existing anti-EGFR therapies including small molecule inhibitors, mAbs, and antibody drug conjugates (ADCs). Further, a special emphasis has been made on the design, synthesis, successful applications, state-of-the-art, and emerging future opportunities of each discussed modality.
Collapse
Affiliation(s)
- Pritam Maity
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Joydeep Chatterjee
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Kiran T Patil
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Sahil Arora
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Madhurendra K Katiyar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Manvendra Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Amirreza Samarbakhsh
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States
| | - Gaurav Joshi
- Department of Pharmaceutical Science, Hemvati Nandan Bahuguna Garhwal (A Central) University, Srinagar 246174, Dist. Garhwal (Uttarakhand), India
| | | | - Manoj Chugh
- In Vitro Diagnostics, Transasia BioMedical Pvt. Ltd. 400072 Mumbai, India
| | - Navnath S Gavande
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, United States
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| |
Collapse
|
88
|
Fellah S, Larrue R, Truchi M, Vassaux G, Mari B, Cauffiez C, Pottier N. Pervasive role of the long noncoding RNA DNM3OS in development and diseases. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1736. [PMID: 35491542 DOI: 10.1002/wrna.1736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/04/2022] [Accepted: 04/11/2022] [Indexed: 11/08/2022]
Abstract
Thousands of unique noncoding RNAs (ncRNAs) are expressed in human cells, some are tissue or cell type specific whereas others are considered as house-keeping molecules. Studies over the last decade have modified our perception of ncRNAs from transcriptional noise to functional regulatory transcripts that influence a variety of molecular processes such as chromatin remodeling, transcription, post-transcriptional modifications, or signal transduction. Consequently, aberrant expression of many ncRNAs plays a causative role in the initiation and progression of various diseases. Since the identification of its developmental role, the long ncRNA DNM3OS (Dynamin 3 Opposite Strand) has attracted attention of researchers in distinct fields including oncology, fibroproliferative diseases, or bone disorders. Mechanistic studies have in particular revealed the multifaceted nature of DNM3OS and its important pathogenic role in several human disorders. In this review, we summarize the current knowledge of DNM3OS functions in diseases, with an emphasis on its potential as a novel therapeutic target. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Sandy Fellah
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR-S 1277, Lille, France
| | - Romain Larrue
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR-S 1277, Lille, France
| | - Marin Truchi
- Université Côte d'Azur, CNRS UMR7275, IPMC, Valbonne, France
| | - Georges Vassaux
- Université Côte d'Azur, CNRS UMR7275, IPMC, Valbonne, France
| | - Bernard Mari
- Université Côte d'Azur, CNRS UMR7275, IPMC, Valbonne, France
| | - Christelle Cauffiez
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR-S 1277, Lille, France
| | - Nicolas Pottier
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR-S 1277, Lille, France
| |
Collapse
|
89
|
Menon D, Singh R, Joshi KB, Gupta S, Bhatia D. Designer, Programmable DNA-peptide hybrid materials with emergent properties to probe and modulate biological systems. Chembiochem 2023; 24:e202200580. [PMID: 36468492 DOI: 10.1002/cbic.202200580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/07/2022]
Abstract
The chemistry of DNA endows it with certain functional properties that facilitate the generation of self-assembled nanostructures, offering precise control over their geometry and morphology, that can be exploited for advanced biological applications. Despite the structural promise of these materials, their applications are limited owing to lack of functional capability to interact favourably with biological systems, which has been achieved by functional proteins or peptides. Herein, we outline a strategy for functionalizing DNA structures with short-peptides, leading to the formation of DNA-peptide hybrid materials. This proposition offers the opportunity to leverage the unique advantages of each of these bio-molecules, that have far reaching emergent properties in terms of better cellular interactions and uptake, better stability in biological media, an acceptable and programmable immune response and high bioactive molecule loading capacities. We discuss the synthetic strategies for the formation of these materials, namely, solid-phase functionalization and solution-coupling functionalization. We then proceed to highlight selected biological applications of these materials in the domains of cell instruction & molecular recognition, gene delivery, drug delivery and bone & tissue regeneration. We conclude with discussions shedding light on the challenges that these materials pose and offer our insights on future directions of peptide-DNA research for targeted biomedical applications.
Collapse
Affiliation(s)
- Dhruv Menon
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, United Kingdom
| | - Ramesh Singh
- Biological Engineering Discipline, Indian Institute of Technology, Gandhinagar, 382355, India
| | - Kashti B Joshi
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, India
| | - Sharad Gupta
- Biological Engineering Discipline, Indian Institute of Technology, Gandhinagar, 382355, India
| | - Dhiraj Bhatia
- Biological Engineering Discipline, Indian Institute of Technology, Gandhinagar, 382355, India
| |
Collapse
|
90
|
Respiratory Syncytial Virus Infection: Treatments and Clinical Management. Vaccines (Basel) 2023; 11:vaccines11020491. [PMID: 36851368 PMCID: PMC9962240 DOI: 10.3390/vaccines11020491] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/29/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a major healthcare concern, especially for immune-compromised individuals and infants below 5 years of age. Worldwide, it is known to be associated with incidences of morbidity and mortality in infants. Despite the seriousness of the issue and continuous rigorous scientific efforts, no approved vaccine or available drug is fully effective against RSV. The purpose of this review article is to provide insights into the past and ongoing efforts for securing effective vaccines and therapeutics against RSV. The readers will be able to confer the mechanism of existing therapies and the loopholes that need to be overcome for future therapeutic development against RSV. A methodological approach was applied to collect the latest data and updated results regarding therapeutics and vaccine development against RSV. We outline the latest throughput vaccination technologies and prophylactic development efforts linked with RSV. A range of vaccination approaches with the already available vaccine (with limited use) and those undergoing trials are included. Moreover, important drug regimens used alone or in conjugation with adjuvants or vaccines are also briefly discussed. After reading this article, the audience will be able to understand the current standing of clinical management in the form of the vaccine, prophylactic, and therapeutic candidates against RSV. An understanding of the biological behavior acting as a reason behind the lack of effective therapeutics against RSV will also be developed. The literature indicates a need to overcome the limitations attached to RSV clinical management, drugs, and vaccine development that could be explained by dealing with the challenges of current study designs with continuous improvement and further work and approval on novel therapeutic applications.
Collapse
|
91
|
Wu KY, Kulbay M, Toameh D, Xu AQ, Kalevar A, Tran SD. Retinitis Pigmentosa: Novel Therapeutic Targets and Drug Development. Pharmaceutics 2023; 15:685. [PMID: 36840007 PMCID: PMC9963330 DOI: 10.3390/pharmaceutics15020685] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
Retinitis pigmentosa (RP) is a heterogeneous group of hereditary diseases characterized by progressive degeneration of retinal photoreceptors leading to progressive visual decline. It is the most common type of inherited retinal dystrophy and has a high burden on both patients and society. This condition causes gradual loss of vision, with its typical manifestations including nyctalopia, concentric visual field loss, and ultimately bilateral central vision loss. It is one of the leading causes of visual disability and blindness in people under 60 years old and affects over 1.5 million people worldwide. There is currently no curative treatment for people with RP, and only a small group of patients with confirmed RPE65 mutations are eligible to receive the only gene therapy on the market: voretigene neparvovec. The current therapeutic armamentarium is limited to retinoids, vitamin A supplements, protection from sunlight, visual aids, and medical and surgical interventions to treat ophthalmic comorbidities, which only aim to slow down the progression of the disease. Considering such a limited therapeutic landscape, there is an urgent need for developing new and individualized therapeutic modalities targeting retinal degeneration. Although the heterogeneity of gene mutations involved in RP makes its target treatment development difficult, recent fundamental studies showed promising progress in elucidation of the photoreceptor degeneration mechanism. The discovery of novel molecule therapeutics that can selectively target specific receptors or specific pathways will serve as a solid foundation for advanced drug development. This article is a review of recent progress in novel treatment of RP focusing on preclinical stage fundamental research on molecular targets, which will serve as a starting point for advanced drug development. We will review the alterations in the molecular pathways involved in the development of RP, mainly those regarding endoplasmic reticulum (ER) stress and apoptotic pathways, maintenance of the redox balance, and genomic stability. We will then discuss the therapeutic approaches under development, such as gene and cell therapy, as well as the recent literature identifying novel potential drug targets for RP.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Merve Kulbay
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Dana Toameh
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| | - An Qi Xu
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Ananda Kalevar
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
92
|
Convenient Solid-Phase Attachment of Small-Molecule Ligands to Oligonucleotides via a Biodegradable Acid-Labile P-N-Bond. Molecules 2023; 28:molecules28041904. [PMID: 36838892 PMCID: PMC9961013 DOI: 10.3390/molecules28041904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
One of the key problems in the design of therapeutic and diagnostic oligonucleotides is the attachment of small-molecule ligands for targeted deliveries in such a manner that provides the controlled release of the oligonucleotide at a certain moment. Here, we propose a novel, convenient approach for attaching ligands to the 5'-end of the oligonucleotide via biodegradable, acid-labile phosphoramide linkage. The method includes the activation of the 5'-terminal phosphate of the fully protected, support-bound oligonucleotide, followed by interaction with a ligand bearing the primary amino group. This technique is simple to perform, allows for forcing the reaction to completion by adding excess soluble reactant, eliminates the problem of the limited solubility of reagents, and affords the possibility of using different solvents, including water/organic media. We demonstrated the advantages of this approach by synthesizing and characterizing a wide variety of oligonucleotide 5'-conjugates with different ligands, such as cholesterol, aliphatic oleylamine, and p-anisic acid. The developed method suits different types of oligonucleotides (deoxyribo-, 2'-O-methylribo-, ribo-, and others).
Collapse
|
93
|
Cruz-Aguilar M, Groman-Lupa S, Jiménez-Martínez MC. MicroRNAs as potential biomarkers and therapeutic targets in age-related macular degeneration. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1023782. [PMID: 38983087 PMCID: PMC11182111 DOI: 10.3389/fopht.2023.1023782] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 01/30/2023] [Indexed: 07/11/2024]
Abstract
Age-related macular degeneration (AMD) involves degenerative and neovascular alteration in the macular region of the retina resulting in central vision loss. AMD can be classified into dry (dAMD) and wet AMD (wAMD). There is no established treatment for dAMD, and therapies available for wAMD have limited success. Diagnosis in early AMD stages is difficult due to the absence of clinical symptoms. Currently, imaging tests are used in the diagnosis of AMD, but cannot predict the clinical course. The clinical limitations to establishing a diagnosis of AMD have led to exploration for innovative and more sensitive tests to support the diagnosis and prognosis of the disease. MicroRNAs (miRNAs) are small single-stranded non-coding RNA molecules that negatively regulate genes by post-transcriptional gene silencing. Because these molecules are dysregulated in various processes implicated in the pathogenesis of AMD, they could contribute to the early detection of the disease and monitoring of its progression. Studies of miRNA profiling have indicated several miRNAs as potential diagnostic biomarkers of AMD, but no approved biomarker is available at present for early AMD detection. Thus, understanding the function of miRNAs in AMD and their use as potential biomarkers may lead to future advances in diagnosis and treatment. Here we present a brief review of some of the miRNAs involved in regulating pathological processes associated with AMD and discuss several candidate miRNAs proposed as biomarkers or therapeutic targets for AMD.
Collapse
Affiliation(s)
- Marisa Cruz-Aguilar
- Department of Immunology and Research Unit, Institute of Ophthalmology "Conde de Valenciana Foundation", Ciudad de México, Mexico
| | - Sergio Groman-Lupa
- Retina Service, Codet Vision Institute, Tijuana, Baja California, Mexico
| | - María C Jiménez-Martínez
- Department of Immunology and Research Unit, Institute of Ophthalmology "Conde de Valenciana Foundation", Ciudad de México, Mexico
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Ciudad de México, Mexico
| |
Collapse
|
94
|
Jing X, Arya V, Reynolds KS, Rogers H. Clinical Pharmacology of RNA Interference-Based Therapeutics: A Summary Based on Food and Drug Administration-Approved Small Interfering RNAs. Drug Metab Dispos 2023; 51:193-198. [PMID: 36332914 PMCID: PMC9900864 DOI: 10.1124/dmd.122.001107] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
RNA-based oligonucleotide therapeutics are revolutionizing drug development for disease treatment. This class of therapeutics differs from small molecules and protein therapeutics in various ways, including both its mechanism of action and clinical pharmacology characteristics. These unique characteristics, along with evolving oligonucleotide-associated conjugates allowing specific tissue targeting, have fueled interest in the evaluation of RNA-based oligonucleotide therapeutics in a rapidly increasing number of therapeutic areas. With these unique attributes as well as growing therapeutic potential, oligonucleotide therapeutics have generated significant interest from a clinical pharmacology perspective. The Food and Drug Administration (FDA) previously published results of a survey that summarized clinical pharmacology studies supporting oligonucleotide therapies approved and in development between 2012 and 2018. Since the first approval of a small interfering RNA (siRNA) therapeutic in 2018, this class of modalities has gained momentum in various therapeutic areas. Hence, a comprehensive examination of the clinical pharmacology of FDA-approved siRNA therapeutics would benefit the path forward for many stakeholders. Thus, in this current review, we thoroughly examine and summarize clinical pharmacology data of the FDA-approved siRNA therapeutics approved from 2018 (year of first approval) to 2022, aimed at facilitating future drug development and regulatory decision making. SIGNIFICANCE STATEMENT: This review systematically summarizes the clinical pharmacology information of Food and Drug Administration (FDA)-approved small interfering RNAs (siRNA) therapeutics. SiRNAs are revolutionizing the drug development field. Unique clinical pharmacology characteristics represent a differentiating factor for this class of therapeutics. The FDArecently published a draft guidance for clinical pharmacology considerations for developing oligonucleotide therapeutics. As clinical development of this class of therapeutics is fast growing, this review will inform discovery and clinical-stage evaluation of upcoming siRNA-associated drug candidates.
Collapse
Affiliation(s)
- Xing Jing
- Divisions of Infectious Disease Pharmacology (X.J., V.A., K.S.R.) and Translational and Precision Medicine (H.R.), Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Vikram Arya
- Divisions of Infectious Disease Pharmacology (X.J., V.A., K.S.R.) and Translational and Precision Medicine (H.R.), Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Kellie Schoolar Reynolds
- Divisions of Infectious Disease Pharmacology (X.J., V.A., K.S.R.) and Translational and Precision Medicine (H.R.), Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Hobart Rogers
- Divisions of Infectious Disease Pharmacology (X.J., V.A., K.S.R.) and Translational and Precision Medicine (H.R.), Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
95
|
Wang T, Zhao H, Jing S, Fan Y, Sheng G, Ding Q, Liu C, Wu H, Liu Y. Magnetofection of miR-21 promoted by electromagnetic field and iron oxide nanoparticles via the p38 MAPK pathway contributes to osteogenesis and angiogenesis for intervertebral fusion. J Nanobiotechnology 2023; 21:27. [PMID: 36694219 PMCID: PMC9875474 DOI: 10.1186/s12951-023-01789-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Magnetofection-mediated gene delivery shows great therapeutic potential through the regulation of the direction and degree of differentiation. Lumbar degenerative disc disease (DDD) is a serious global orthopaedic problem. However, even though intervertebral fusion is the gold standard for the treatment of DDD, its therapeutic effect is unsatisfactory. Here, we described a novel magnetofection system for delivering therapeutic miRNAs to promote osteogenesis and angiogenesis in patients with lumbar DDD. RESULTS Co-stimulation with electromagnetic field (EMF) and iron oxide nanoparticles (IONPs) enhanced magnetofection efficiency significantly. Moreover, in vitro, magnetofection of miR-21 into bone marrow mesenchymal stem cells (BMSCs) and human umbilical endothelial cells (HUVECs) influenced their cellular behaviour and promoted osteogenesis and angiogenesis. Then, gene-edited seed cells were planted onto polycaprolactone (PCL) and hydroxyapatite (HA) scaffolds (PCL/HA scaffolds) and evolved into the ideal tissue-engineered bone to promote intervertebral fusion. Finally, our results showed that EMF and polyethyleneimine (PEI)@IONPs were enhancing transfection efficiency by activating the p38 MAPK pathway. CONCLUSION Our findings illustrate that a magnetofection system for delivering miR-21 into BMSCs and HUVECs promoted osteogenesis and angiogenesis in vitro and in vivo and that magnetofection transfection efficiency improved significantly under the co-stimulation of EMF and IONPs. Moreover, it relied on the activation of p38 MAPK pathway. This magnetofection system could be a promising therapeutic approach for various orthopaedic diseases.
Collapse
Affiliation(s)
- Tianqi Wang
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Hongqi Zhao
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Shaoze Jing
- grid.470966.aThird Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032 China
| | - Yang Fan
- grid.412793.a0000 0004 1799 5032Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Gaohong Sheng
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Qing Ding
- grid.412793.a0000 0004 1799 5032Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Chaoxu Liu
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Hua Wu
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Yang Liu
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| |
Collapse
|
96
|
Lee SH, Ng CX, Wong SR, Chong PP. MiRNAs Overexpression and Their Role in Breast Cancer: Implications for Cancer Therapeutics. Curr Drug Targets 2023; 24:484-508. [PMID: 36999414 DOI: 10.2174/1389450124666230329123409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/20/2022] [Accepted: 01/30/2023] [Indexed: 04/01/2023]
Abstract
MicroRNAs have a plethora of roles in various biological processes in the cells and most human cancers have been shown to be associated with dysregulation of the expression of miRNA genes. MiRNA biogenesis involves two alternative pathways, the canonical pathway which requires the successful cooperation of various proteins forming the miRNA-inducing silencing complex (miRISC), and the non-canonical pathway, such as the mirtrons, simtrons, or agotrons pathway, which bypasses and deviates from specific steps in the canonical pathway. Mature miRNAs are secreted from cells and circulated in the body bound to argonaute 2 (AGO2) and miRISC or transported in vesicles. These miRNAs may regulate their downstream target genes via positive or negative regulation through different molecular mechanisms. This review focuses on the role and mechanisms of miRNAs in different stages of breast cancer progression, including breast cancer stem cell formation, breast cancer initiation, invasion, and metastasis as well as angiogenesis. The design, chemical modifications, and therapeutic applications of synthetic anti-sense miRNA oligonucleotides and RNA mimics are also discussed in detail. The strategies for systemic delivery and local targeted delivery of the antisense miRNAs encompass the use of polymeric and liposomal nanoparticles, inorganic nanoparticles, extracellular vesicles, as well as viral vectors and viruslike particles (VLPs). Although several miRNAs have been identified as good candidates for the design of antisense and other synthetic modified oligonucleotides in targeting breast cancer, further efforts are still needed to study the most optimal delivery method in order to drive the research beyond preclinical studies.
Collapse
Affiliation(s)
- Sau Har Lee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Chu Xin Ng
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Sharon Rachel Wong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
97
|
Bravo-Vázquez LA, Frías-Reid N, Ramos-Delgado AG, Osorio-Pérez SM, Zlotnik-Chávez HR, Pathak S, Banerjee A, Bandyopadhyay A, Duttaroy AK, Paul S. MicroRNAs and long non-coding RNAs in pancreatic cancer: From epigenetics to potential clinical applications. Transl Oncol 2023; 27:101579. [PMID: 36332600 PMCID: PMC9637816 DOI: 10.1016/j.tranon.2022.101579] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/05/2022] [Accepted: 10/18/2022] [Indexed: 11/08/2022] Open
Abstract
MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two relevant classes of non-coding RNAs (ncRNAs) that play a pivotal role in a number of molecular processes through different epigenetic regulatory mechanisms of gene expression. As a matter of fact, the altered expression of these types of RNAs leads to the development and progression of a varied range of multifactorial human diseases. Several recent reports elucidated that miRNA and lncRNAs have been implicated in pancreatic cancer (PC). For instance, dysregulation of such ncRNAs has been found to be associated with chemoresistance, apoptosis, autophagy, cell differentiation, tumor suppression, tumor growth, cancer cell proliferation, migration, and invasion in PC. Moreover, several aberrantly expressed miRNAs and lncRNAs have the potential to be used as biomarkers for accurate PC diagnosis. Additionally, miRNAs and lncRNAs are considered as promising clinical targets for PC. Therefore, in this review, we discuss recent experimental evidence regarding the clinical implications of miRNAs and lncRNAs in the pathophysiology of PC, their future potential, as well as the challenges that have arisen in this field of study in order to drive forward the design of ncRNA-based diagnostics and therapeutics for PC.
Collapse
Affiliation(s)
- Luis Alberto Bravo-Vázquez
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
| | - Natalia Frías-Reid
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
| | - Ana Gabriela Ramos-Delgado
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
| | - Sofía Madeline Osorio-Pérez
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
| | - Hania Ruth Zlotnik-Chávez
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Anindya Bandyopadhyay
- International Rice Research Institute, Manila 4031, Philippines; Reliance Industries Ltd., Navi Mumbai 400701, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, POB 1046, Blindern, Oslo, Norway.
| | - Sujay Paul
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico.
| |
Collapse
|
98
|
Autophagy-Related ncRNAs in Pancreatic Cancer. Pharmaceuticals (Basel) 2022; 15:ph15121547. [PMID: 36558998 PMCID: PMC9785627 DOI: 10.3390/ph15121547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer (PC) is a malignancy accounting for only 3% of total cancers, but with a low 5-year relative survival rate. Approximately 80% of PC patients are diagnosed at a late stage when the disease has already spread from the primary site. Despite advances in PC treatment, there is an urgently needed for the identification of novel therapeutic strategies for PC, particularly for patients who cannot undergo classical surgery. Autophagy is an evolutionarily conserved process used by cells to adapt to metabolic stress via the degrading or recycling of damaged or unnecessary organelles and cellular components. This process is elevated in PC and, thus, it contributes to the onset, progression, and cancer cell resistance to chemotherapy in pancreatic tumors. Autophagy inhibition has been shown to lead to cancer regression and to increase the sensitivity of pancreatic cells to radiation and chemotherapy. Emerging studies have focused on the roles of non-coding RNAs (ncRNAs), such as miRNAs, long non-coding RNAs, and circular RNAs, in PC development and progression. Furthermore, ncRNAs have been reported as crucial regulators of many biological processes, including autophagy, suggesting that ncRNA-based autophagy targeting methods could be promising novel molecular approaches for specifically reducing autophagic flux, thus improving the management of PC patients. In this review, we briefly summarize the existing studies regarding the role and the regulatory mechanisms of autophagy-related ncRNAs in the context of this cancer.
Collapse
|
99
|
Antitumor and off-target effects of cholesterol-conjugated let-7a mimics in an orthotopic hepatocellular carcinoma xenograft nude mouse model. JOURNAL OF BIO-X RESEARCH 2022; 5:181-196. [PMID: 36618771 PMCID: PMC9810003 DOI: 10.1097/jbr.0000000000000103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/12/2021] [Indexed: 01/11/2023] Open
Abstract
To explore the antitumor and potential off-target effects of systemically delivered cholesterol-conjugated let-7a mimics (Chol-let-7a) and control mimics (Chol-miRCtrl) on hepatocellular carcinoma in vivo. Methods The antitumor effects of two intravenous dosing regimens of Chol-let-7a on heptocellular carcinoma growth were compared using an orthotopic xenograft mouse model. Off-targets were analyzed with histopathological and ultrapathological features of heparenal tissue and cells in the Chol-let-7a-, Chol-miRCtrl-, and saline-treated (blank) xenograft mice and normal control mice. Then, let-7a abundance in orthotopic tumors, corresponding paracancerous hepatic tissue, and normal liver tissue from healthy nude mice was examined by reverse transcription-polymerase chain reaction. The distribution of Chol-let-7a and Chol-miRCtrl in vivo was examined by whole-animal imaging and frozen-sections observation. The experiments were approved by the Institutional Research Board of Peking Union Medical College Hospital. Results Continuous treatment with Chol-let-7a resulted in tumors that were 35.86% and 40.02% the size of those in the Chol-miRCtrl and blank xenograft group (P < 0.01 and P < 0.01, respectively), while intermittent dosing with Chol-let-7a resulted in tumors that were 65.42% and 56.66% the size of those in the Chol-miRCtrl and the blank control group, respectively (P < 0.05 and P < 0.05). In addition, some histopathological and ultrapathological features were only observed after treatment with the two cholesterol-conjugated molecules, however mild with intermittent dosing Chol-let-7a treatment, such as diffuse sinusoidal dilation and edema, primarily around the centrolobular vein in heptic tissues; mild hypercellularity with dilated capillary lumens in the renal tissue; and some organelle abnormalities found in heptic and renal cells. Furthermore, whole-animal imaging showed that Chol-let-7a and Chol-miRCtrl were predominantly distributed in the liver, kidney, and bladder regions after injection, and that the concentration of Chol-let-7a and Chol-miRCtrl in the kidney and the bladder decreased much slowly in the xenograft animals, especially in the Chol-miRCtrl group. Finally, RT-PCR analysis showed that let-7a levels were significantly increased in Chol-let-7a-treated xenografts compared with Chol-miRCtrl group (P=0.003) and blank xenograft group (P=0.001); however, the level was only equivalent to 50.6% and 40.7% of that in paracancerous hepatic tissue and hepatic tissue in normal mice, respectively. Conclusions Chol-let-7a, administered either continuously or intermittently, showed effective antitumor efficacy. Chol-let-7a had some off-target effects, such as mild acute hepatitis-like inflammation and non-specific drug-induced kidney injury. The intermittent dosing regimen resulted in less damage than the continuous regimen, while maintaining relatively satisfactory antitumor efficacy, which could be useful for the investigation and possible clinical use of miRNA treatment regimens in the future.
Collapse
|
100
|
Nano drug delivery systems for antisense oligonucleotides (ASO) therapeutics. J Control Release 2022; 352:861-878. [PMID: 36397636 DOI: 10.1016/j.jconrel.2022.10.050] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/02/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Abstract
Cancer, infectious diseases, and metabolic and hereditary genetic disorders are a global health burden affecting millions of people, with contemporary treatments offering limited relief. Antisense technology treats diseases by targeting their causal agents using its ability to alter or inhibit endogenous or malfunctioning genes. Nine antisense oligonucleotide (ASO) drugs that represent four different chemical classes have been approved for the treatment of rare diseases, including nusinersen, the first new oligonucleotide-based drug. Advances in medicinal chemistry, understanding the molecular pathways, and the availability of vast genetic data have resulted in enormous improvements in the therapeutic performance of ASO drugs; however, their susceptibility to degradation in the circulation, rapid renal clearance, and immunostimulatory adverse effects greatly limit their clinical applications. An increasing number of ASO-based therapeutics is being tested in clinical trials. Improvements to the delivery of ASO drugs could potentially change the therapeutic landscape for many conditions in the near future. This review describes the technological advances and developments in drug delivery systems pertaining to ASO therapeutics.
Collapse
|