51
|
Amthor FR, Strang CE. Effects of tACS-Like Electrical Stimulation on On-Center Retinal Ganglion Cells: Part I. Eye Brain 2021; 13:175-192. [PMID: 34285622 PMCID: PMC8285569 DOI: 10.2147/eb.s312402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/11/2021] [Indexed: 01/30/2023] Open
Abstract
Purpose Electrical stimulation of the human central nervous system via surface electrodes has been used for both learning enhancement and the amelioration of neurodegenerative or psychiatric disorders. However, data are sparse on how such electrical stimulation affects neural circuits at the cellular level. This study assessed the effects of tACS-like currents at 10 Hz on On-center retinal ganglion cell responsiveness, using the rabbit retina eyecup preparation as a model for central nervous system effects. Methods We made extracellular recordings of light-evoked spike responses in different classes of On-center retinal ganglion cells before, during and after brief applications of 1 microampere alternating currents using single electrodes and microelectrode arrays. Results tACS-like currents (tACS) of 1 microampere produced effects on On-center ganglion cell response profiles immediately after initiation or cessation of tACS, without driving phase-locked firing in the absence of light stimuli. tACS affected the initial transient responses to light stimulation for all cells, sustained response components (if any) more strongly for sustained cells, and the center-surround balance more strongly for transient cells. Conclusion tACS sculpted light-evoked responses that lasted for one or more hours after cessation of current without, itself, directly inducing significant firing changes. Functionally, tACS effects could result in effects on contrast thresholds for both broad classes of cells, but because tACs differentially affects the center-surround balance of transient On-center cells, there may be greater effects on the spatial resolution and gain. The isolated retina appears to be a useful model to understand tACS actions at the neuronal level.
Collapse
Affiliation(s)
- Franklin R Amthor
- Department of Psychology, The University of Alabama at Birmingham, Birmingham, AL, 35294-1170, USA
| | - Christianne E Strang
- Department of Psychology, The University of Alabama at Birmingham, Birmingham, AL, 35294-1170, USA
| |
Collapse
|
52
|
Li J, Xiao L, Yan N, Li Y, Wang Y, Qin X, Zhao D, Liu M, Li N, Lin Y. The Neuroprotective Effect of MicroRNA‐22‐3p Modified Tetrahedral Framework Nucleic Acids on Damaged Retinal Neurons Via TrkB/BDNF Signaling Pathway. ADVANCED FUNCTIONAL MATERIALS 2021. [DOI: 10.1002/adfm.202104141] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jiajie Li
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
| | - Lirong Xiao
- Department of Ophthalmology West China Hospital Sichuan University Chengdu 610041 China
| | - Naihong Yan
- Department of Ophthalmology West China Hospital Sichuan University Chengdu 610041 China
| | - Yanjing Li
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
| | - Yun Wang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
| | - Xin Qin
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
| | - Dan Zhao
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
| | - Mengting Liu
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
| | - Ni Li
- Department of Ophthalmology West China Hospital Sichuan University Chengdu 610041 China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- College of Biomedical Engineering Sichuan University Chengdu 610041 China
| |
Collapse
|
53
|
Scholl HPN, Boyer D, Giani A, Chong V. The use of neuroprotective agents in treating geographic atrophy. Ophthalmic Res 2021; 64:888-902. [PMID: 34153966 DOI: 10.1159/000517794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/12/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Hendrik P N Scholl
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - David Boyer
- Retina-Vitreous Associates Medical Group, Los Angeles, California, USA
| | - Andrea Giani
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
| | - Victor Chong
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
| |
Collapse
|
54
|
Kim ST, Chung YY, Hwang HI, Shin HK, Choi R, Jun YH. Differential Expression of BDNF and BIM in Streptozotocin-induced Diabetic Rat Retina After Fluoxetine Injection. In Vivo 2021; 35:1461-1466. [PMID: 33910823 DOI: 10.21873/invivo.12398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Chronic diabetic retinopathy (DR) is a diabetic complication that causes blindness. Brain-derived neurotrophic factor (BDNF) expression is induced by fluoxetine. We observed the effects of fluoxetine on a streptozotocin (STZ)-induced diabetic rat model in this study. MATERIALS AND METHODS Rats were divided into three groups: Control, diabetic (65 mg/kg STZ injection), and diabetic with fluoxetine injection (20 mg/kg/week, six times). Western blotting was performed using anti-BDNF and anti-hexaribonucleotide-binding protein-3. Expression of BCL2 apoptosis regulator-like protein 11 (BIM) was analysed using a reverse transcription-polymerase chain reaction. RESULTS BDNF levels were significantly higher in the diabetic group treated with fluoxetine than in the untreated diabetic group. BIM expression was higher in the diabetic group than in the control group. BIM gene expression was lower in fluoxetine-treated diabetic group than in the untreated diabetic group. CONCLUSION Fluoxetine had an anti-apoptotic effect with upregulation of BDNF expression in retina of rats with STZ-induced diabetes.
Collapse
Affiliation(s)
- Seong Taeck Kim
- Department of Ophthalmology, Chosun University Hospital, Gwangju, Republic of Korea
| | - Yoon Young Chung
- Department of Anatomy, School of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Hyo-In Hwang
- Department of Anatomy, School of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Hye-Kyoung Shin
- Department of Anatomy, School of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Ranju Choi
- School of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Yong Hyun Jun
- Department of Anatomy, School of Medicine, Chosun University, Gwangju, Republic of Korea;
| |
Collapse
|
55
|
Neurogenic and Neuroprotective Potential of Stem/Stromal Cells Derived from Adipose Tissue. Cells 2021; 10:cells10061475. [PMID: 34208414 PMCID: PMC8231154 DOI: 10.3390/cells10061475] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 01/01/2023] Open
Abstract
Currently, the number of stem-cell based experimental therapies in neurological injuries and neurodegenerative disorders has been massively increasing. Despite the fact that we still have not obtained strong evidence of mesenchymal stem/stromal cells’ neurogenic effectiveness in vivo, research may need to focus on more appropriate sources that result in more therapeutically promising cell populations. In this study, we used dedifferentiated fat cells (DFAT) that are proven to demonstrate more pluripotent abilities in comparison with standard adipose stromal cells (ASCs). We used the ceiling culture method to establish DFAT cells and to optimize culture conditions with the use of a physioxic environment (5% O2). We also performed neural differentiation tests and assessed the neurogenic and neuroprotective capability of both DFAT cells and ASCs. Our results show that DFAT cells may have a better ability to differentiate into oligodendrocytes, astrocytes, and neuron-like cells, both in culture supplemented with N21 and in co-culture with oxygen–glucose-deprived (OGD) hippocampal organotypic slice culture (OHC) in comparison with ASCs. Results also show that DFAT cells have a different secretory profile than ASCs after contact with injured tissue. In conclusion, DFAT cells constitute a distinct subpopulation and may be an alternative source in cell therapy for the treatment of nervous system disorders.
Collapse
|
56
|
Retinal Ganglion Cell Transplantation: Approaches for Overcoming Challenges to Functional Integration. Cells 2021; 10:cells10061426. [PMID: 34200991 PMCID: PMC8228580 DOI: 10.3390/cells10061426] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
As part of the central nervous system, mammalian retinal ganglion cells (RGCs) lack significant regenerative capacity. Glaucoma causes progressive and irreversible vision loss by damaging RGCs and their axons, which compose the optic nerve. To functionally restore vision, lost RGCs must be replaced. Despite tremendous advancements in experimental models of optic neuropathy that have elucidated pathways to induce endogenous RGC neuroprotection and axon regeneration, obstacles to achieving functional visual recovery through exogenous RGC transplantation remain. Key challenges include poor graft survival, low donor neuron localization to the host retina, and inadequate dendritogenesis and synaptogenesis with afferent amacrine and bipolar cells. In this review, we summarize the current state of experimental RGC transplantation, and we propose a set of standard approaches to quantifying and reporting experimental outcomes in order to guide a collective effort to advance the field toward functional RGC replacement and optic nerve regeneration.
Collapse
|
57
|
Shpak A, Guekht A, Druzhkova T, Rider F, Gudkova A, Gulyaeva N. Increased ciliary neurotrophic factor in blood serum and lacrimal fluid as a potential biomarkers of focal epilepsy. Neurol Sci 2021; 43:493-498. [PMID: 34031798 DOI: 10.1007/s10072-021-05338-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/17/2021] [Indexed: 01/09/2023]
Abstract
PURPOSE To evaluate ciliary neurotrophic factor (CNTF) level in blood serum (BS) and lacrimal fluid (LF) of people with epilepsy (PWE). METHODS A case-control study of 72 consecutive patients with focal epilepsy (cases, epilepsy group) and 60 age- and gender-matched healthy volunteers (controls) was performed. Based on comorbid depression, two subgroups of PWE were formed. CNTF level was measured by an enzyme-linked immunosorbent assay (ELISA) in the BS and LF. For measurements of low CNTF levels in the BS, the methodology previously improved by the authors was applied. RESULTS As compared to controls, CNTF level (pg/mL) in PWE was increased both in the BS (7.0±2.9 vs. 3.7±2.0, P<0.000) and in LF (34.0±8.0 vs. 30.6±4.8, P=0.005). No significant correlation was found between CNTF level in the BS and LF either in PWE or in controls. No impact of comorbid depression or any demographic or clinical parameters studied on CNTF level in the BS or LF of PWE could be detected. CONCLUSIONS In patients with focal epilepsy, CNTF level is increased both in the BS and LF, though without correlation between them. No association of CNTF levels with age, gender, or clinical parameters, as well as depression occurrence, was found. High CNTF levels in the BS and LF could be considered as non-invasive biomarkers of focal epilepsy.
Collapse
Affiliation(s)
- Alexander Shpak
- The S. Fyodorov Eye Microsurgery Federal State Institution, 59-a Beskudnikovsky Blvd., Moscow, Russian Federation, 127486.
| | - Alla Guekht
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Moscow, Russian Federation
- Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Tatiana Druzhkova
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Moscow, Russian Federation
| | - Flora Rider
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Moscow, Russian Federation
| | - Anna Gudkova
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Moscow, Russian Federation
| | - Natalia Gulyaeva
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Moscow, Russian Federation
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
58
|
Razzaghi N, Fernandez-Gonzalez P, Mas-Sanchez A, Vila-Julià G, Perez JJ, Garriga P. Effect of Sodium Valproate on the Conformational Stability of the Visual G Protein-Coupled Receptor Rhodopsin. Molecules 2021; 26:molecules26103032. [PMID: 34069614 PMCID: PMC8160834 DOI: 10.3390/molecules26103032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 12/29/2022] Open
Abstract
Rhodopsin is the G protein-coupled receptor of rod photoreceptor cells that mediates vertebrate vision at low light intensities. Mutations in rhodopsin cause inherited retinal degenerative diseases such as retinitis pigmentosa. Several therapeutic strategies have attempted to address and counteract the deleterious effect of rhodopsin mutations on the conformation and function of this photoreceptor protein, but none has been successful in efficiently preventing retinal degeneration in humans. These approaches include, among others, the use of small molecules, known as pharmacological chaperones, that bind to the receptor stabilizing its proper folded conformation. Valproic acid, in its sodium valproate form, has been used as an anticonvulsant in epileptic patients and in the treatment of several psychiatric disorders. More recently, this compound has been tested as a potential therapeutic agent for the treatment of retinal degeneration associated with retinitis pigmentosa caused by rhodopsin mutations. We now report on the effect of sodium valproate on the conformational stability of heterologously expressed wild-type rhodopsin and a rhodopsin mutant, I307N, which has been shown to be an appropriate model for studying retinal degeneration in mice. We found no sign of enhanced stability for the dark inactive conformation of the I307N mutant. Furthermore, the photoactivated conformation of the mutant appears to be destabilized by sodium valproate as indicated by a faster decay of its active conformation. Therefore, our results support a destabilizing effect of sodium valproate on rhodopsin I307N mutant associated with retinal degeneration. These findings, at the molecular level, agree with recent clinical studies reporting negative effects of sodium valproate on the visual function of retinitis pigmentosa patients.
Collapse
Affiliation(s)
- Neda Razzaghi
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya-Barcelona Tech, Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Spain; (N.R.); (P.F.-G.); (A.M.-S.)
| | - Pol Fernandez-Gonzalez
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya-Barcelona Tech, Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Spain; (N.R.); (P.F.-G.); (A.M.-S.)
| | - Aina Mas-Sanchez
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya-Barcelona Tech, Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Spain; (N.R.); (P.F.-G.); (A.M.-S.)
| | - Guillem Vila-Julià
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya-Barcelona Tech., Avinguda Diagonal, 647, 08028 Barcelona, Spain; (G.V.-J.); (J.J.P.)
| | - Juan Jesus Perez
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya-Barcelona Tech., Avinguda Diagonal, 647, 08028 Barcelona, Spain; (G.V.-J.); (J.J.P.)
| | - Pere Garriga
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya-Barcelona Tech, Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Spain; (N.R.); (P.F.-G.); (A.M.-S.)
- Correspondence:
| |
Collapse
|
59
|
7,8-Dihydroxyflavone protects retinal ganglion cells against chronic intermittent hypoxia-induced oxidative stress damage via activation of the BDNF/TrkB signaling pathway. Sleep Breath 2021; 26:287-295. [PMID: 33993395 DOI: 10.1007/s11325-021-02400-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/26/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Chronic intermittent hypoxia (CIH) plays a key role in the complications of obstructive sleep apnea (OSA), which is strongly associated with retinal and optic nerve diseases. Additionally, the brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB) signaling pathway plays an important protective role in neuronal injury. In the present study, we investigated the role of 7,8-dihydroxyflavone (7,8-DHF) in regulating CIH-induced injury in mice retinas and rat primary retinal ganglion cells (RGCs). METHODS C57BL/6 mice and in vitro primary RGCs were exposed to CIH or normoxia and treated with or without 7,8-DHF. The mice eyeballs or cultured cells were then taken for histochemistry, immunofluorescence or biochemistry, and the protein expression of the BDNF/TrkB signaling pathway analysis. RESULTS Our results showed that CIH induced oxidative stress (OS) in in vivo and in vitro models and inhibited the conversion of BDNF precursor (pro-BDNF) to a mature form of BDNF, which increased neuronal cell apoptosis. 7,8-DHF reduced the production of reactive oxygen species (ROS) caused by CIH and effectively activated TrkB signals and downstream protein kinase B (Akt) and extracellular signal-regulated kinase (Erk) survival signaling pathways, which upregulated the expression of mature BDNF. ANA-12 (a TrkB specific inhibitor) blocked the protective effect of 7,8-DHF. CONCLUSION In short, the activation of the BDNF/TrkB signaling pathway alleviated CIH-induced oxidative stress damage of the optic nerve and retinal ganglion cells. 7,8-DHF may serve as a promising agent for OSA related neuropathy.
Collapse
|
60
|
Plasmalogen attenuates the development of hepatic steatosis and cognitive deficit through mechanism involving p75NTR inhibition. Redox Biol 2021; 43:102002. [PMID: 33984602 PMCID: PMC8134739 DOI: 10.1016/j.redox.2021.102002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 12/23/2022] Open
Abstract
Emerging evidence suggests that the reduction of ethanolamine plasmalogen (PlsEtn) is associated with in Alzheimer's disease and metabolic diseases. However, the mechanistic bases for PlsEtn on the these diseases are not well understood. Plasmalogens are primarily synthesized in the liver and enriched in brain. To this end, the present study sought to investigate the potential role of PlsEtn on steatohepatitis and memory impairments and its underlying mechanism. Here we show that peroxisome dysfunction and impairment of PlsEtn synthesis pathway occurs in both of hippocampus and liver, resulting in the decrease of PlsEtn level in APP/PS1 mice and HFD-fed mice. shGNPAT induced PlsEtn deficiency in hepatocytes induces p75NTR enhancement leading to decreased lipolysis activity, thereby exacerbating steatosis. Moreover, in the brain, PlsEtn administration appears to not only improve steatosis but also prevent Alzheimer's disease through restoration of TrkA/p75NTR balance. Together, our findings reveal a molecular mechanistic insight into the preventive role of plasmalogen modulation against steatosis and memory impairments via p75NTR inhibition. Peroxisome dysfunction and impairment of plasmalogen synthesis pathway resulted in the decrease of plasmalogen level. Plasmalogen deficiency in hepatocytes induces p75NTR enhancement leading to decreased lipolysis activity. Ethanolamine plasmalogen administration improves memory impairments by restoration of TrkA/p75NTR balance. Ethanolamine plasmalogen administration attenuates neurodegeneration and neuronal death, and mitigates oxidative stress.
Collapse
|
61
|
Mahmoudzadeh R, Hinkle JW, Hsu J, Garg SJ. Emerging treatments for geographic atrophy in age-related macular degeneration. Curr Opin Ophthalmol 2021; 32:294-300. [PMID: 33630787 DOI: 10.1097/icu.0000000000000746] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review describes therapeutic research programs for geographic atrophy (GA) due to age-related macular degeneration (AMD). We highlight clinical trial data from phase I, II, and III studies. RECENT FINDINGS There are currently no treatments for GA, a form of advanced AMD that causes significant visual morbidity. Currently, therapeutic candidates are being developed to delay further progression of GA or even attempt to reverse some of the damage. The approaches to therapy range from molecular targets to cell transplantation. Studies of these novel treatment approaches have demonstrated varying degrees of success. The progress in understanding the disease pathophysiology as well as clinical trial data is reviewed. SUMMARY There are promising new treatments to prevent GA progression as well as some that may reverse the disease course.
Collapse
Affiliation(s)
- Raziyeh Mahmoudzadeh
- Wills Eye Hospital, Mid Atlantic Retina, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
62
|
Fuller-Carter PI, Basiri H, Harvey AR, Carvalho LS. Focused Update on AAV-Based Gene Therapy Clinical Trials for Inherited Retinal Degeneration. BioDrugs 2021; 34:763-781. [PMID: 33136237 DOI: 10.1007/s40259-020-00453-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inherited retinal diseases (IRDs) comprise a clinically and genetically heterogeneous group of disorders that can ultimately result in photoreceptor dysfunction/death and vision loss. With over 270 genes known to be involved in IRDs, translation of treatment strategies into clinical applications has been historically difficult. However, in recent years there have been significant advances in basic research findings as well as translational studies, culminating in an increasing number of clinical trials with the ultimate goal of reducing vision loss and associated morbidities. The recent approval of Luxturna® (voretigene neparvovec-rzyl) for Leber congenital amaurosis type 2 (LCA2) prompts a review of the current clinical trials for IRDs, with a particular focus on the importance of adeno-associated virus (AAV)-based gene therapies. The present article reviews the current state of AAV use in gene therapy clinical trials for IRDs, with a brief background on AAV and the reasons behind its dominance in ocular gene therapy. It will also discuss pre-clinical progress in AAV-based therapies aimed at treating other ocular conditions that can have hereditable links, and what alternative technologies are progressing in the same therapeutic space.
Collapse
Affiliation(s)
- Paula I Fuller-Carter
- Centre for Ophthalmology and Visual Sciences (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
| | - Hamed Basiri
- Centre for Ophthalmology and Visual Sciences (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
| | - Alan R Harvey
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Livia S Carvalho
- Centre for Ophthalmology and Visual Sciences (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia.
| |
Collapse
|
63
|
Samelska K, Zaleska-Żmijewska A, Bałan B, Grąbczewski A, Szaflik JP, Kubiak AJ, Skopiński P. Immunological and molecular basics of the primary open angle glaucoma pathomechanism. Cent Eur J Immunol 2021; 46:111-117. [PMID: 33897292 PMCID: PMC8056342 DOI: 10.5114/ceji.2021.104328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Glaucoma is a degenerative process of the optic nerve. Increased intraocular pressure is believed to be the main factor leading to the glaucomatous damage. The in vitro and in vivo animal glaucoma research models provide insight into the molecular changes in the retina in response to the injury factor. The damage is a complex process incorporating molecular and immunological changes. Such changes involve NF kB activity and complement activation. The processes affect the human antigen, JNK, MAPK, p53, MT2 and DBA/2J molecular pathways, activate the autophagy processes and compromise neuroprotective mechanisms. Activation and inhibition of immunological responses contribute to cell injury. The immunological mechanisms of glaucomatous degeneration include glial response, the complement, tumor necrosis factor α (TNF-α) pathways and toll-like receptors athways. Oxidative stress and excitotoxicity are factors contributing to cell death in glaucoma. The authors present an up-to-date review of the mechanisms involved and update on research focusing on a possible innovative glaucoma treatment.
Collapse
Affiliation(s)
- Katarzyna Samelska
- SPKSO Ophthalmic University Hospital, Warsaw, Poland
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
| | - Anna Zaleska-Żmijewska
- SPKSO Ophthalmic University Hospital, Warsaw, Poland
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
| | - Barbara Bałan
- Department of Immunology Biochemistry and Nutrition, Medical University of Warsaw, Warsaw, Poland
| | | | - Jacek Paweł Szaflik
- SPKSO Ophthalmic University Hospital, Warsaw, Poland
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
| | | | - Piotr Skopiński
- SPKSO Ophthalmic University Hospital, Warsaw, Poland
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
64
|
Shahsavani N, Kataria H, Karimi-Abdolrezaee S. Mechanisms and repair strategies for white matter degeneration in CNS injury and diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166117. [PMID: 33667627 DOI: 10.1016/j.bbadis.2021.166117] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
White matter degeneration is an important pathophysiological event of the central nervous system that is collectively characterized by demyelination, oligodendrocyte loss, axonal degeneration and parenchymal changes that can result in sensory, motor, autonomic and cognitive impairments. White matter degeneration can occur due to a variety of causes including trauma, neurotoxic exposure, insufficient blood flow, neuroinflammation, and developmental and inherited neuropathies. Regardless of the etiology, the degeneration processes share similar pathologic features. In recent years, a plethora of cellular and molecular mechanisms have been identified for axon and oligodendrocyte degeneration including oxidative damage, calcium overload, neuroinflammatory events, activation of proteases, depletion of adenosine triphosphate and energy supply. Extensive efforts have been also made to develop neuroprotective and neuroregenerative approaches for white matter repair. However, less progress has been achieved in this area mainly due to the complexity and multifactorial nature of the degeneration processes. Here, we will provide a timely review on the current understanding of the cellular and molecular mechanisms of white matter degeneration and will also discuss recent pharmacological and cellular therapeutic approaches for white matter protection as well as axonal regeneration, oligodendrogenesis and remyelination.
Collapse
Affiliation(s)
- Narjes Shahsavani
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hardeep Kataria
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
65
|
Co-delivery of glial cell-derived neurotrophic factor (GDNF) and tauroursodeoxycholic acid (TUDCA) from PLGA microspheres: potential combination therapy for retinal diseases. Drug Deliv Transl Res 2021; 11:566-580. [PMID: 33641047 DOI: 10.1007/s13346-021-00930-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 01/21/2023]
Abstract
Retinitis pigmentosa (RP) is a group of genetically diverse inherited disorders characterised by the progressive photoreceptors and pigment epithelial cell dysfunction leading to central vision impairment. Although important advances in the understanding of the pathophysiologic pathways involved in RP have been made, drug delivery for the treatment of ocular disorders affecting the posterior segment of the eye is still an unmet clinical need. In the present study, we describe the development of multi-loaded PLGA-microspheres (MSs) incorporating two neuroprotectants agents (glial cell-line-derived neurotrophic factor-GDNF and Tauroursodeoxycholic acid-TUDCA) as a potential therapeutic tool for the treatment of RP. A solid-in-oil-in-water (S/O/W) emulsion solvent extraction-evaporation technique was employed for MS preparation. A combination of PLGA and vitamin E was used to create the microcarriers. The morphology, particle size, encapsulation efficiency and in vitro release profile of the MSs were studied. Encapsulation efficiencies of GDNF and TUDCA for the initial multiloaded MSs, prepared with methylene chloride (MC) as organic solvent and polyvinyl alcohol (PVA) solution in the external phase, were 28.53±0.36% and 45.65±8.01% respectively. Different technological parameters to optimise the formulation such as the incorporation of a water-soluble co-solvent ethanol (EtOH) in the internal organic phase, as well as NaCl concentration, and viscosity using a viscosizing agent (hydroxypropyl methylcellulose-HPMC) in the external aqueous phase were considered. EtOH incorporation and external phase viscosity of the emulsion were critical attributes for improving drug loading of both compounds. In such a way, when using a methylene chloride/EtOH ratio 75:25 into the inner organic phase and the viscosity agent HPMC (1% w/v) in the external aqueous phase, GDNF and TUDCA payloads resulted 48.86±1.49% and 78.58±10.40% respectively, and a decrease in the initial release of GDNF was observed (22.03±1.41% compared with 40.86±6.66% of the initial multi-loaded formulation). These optimised microparticles exhibited sustained in vitro releases over 91 days. These results suggest that the microencapsulation procedure optimised in this work presents a promising technological strategy for the development of multi-loaded intraocular drug delivery systems (IODDS).
Collapse
|
66
|
Retinal Molecular Changes Are Associated with Neuroinflammation and Loss of RGCs in an Experimental Model of Glaucoma. Int J Mol Sci 2021; 22:ijms22042066. [PMID: 33669765 PMCID: PMC7922243 DOI: 10.3390/ijms22042066] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/14/2021] [Accepted: 02/17/2021] [Indexed: 12/19/2022] Open
Abstract
Signaling mediated by cytokines and chemokines is involved in glaucoma-associated neuroinflammation and in the damage of retinal ganglion cells (RGCs). Using multiplexed immunoassay and immunohistochemical techniques in a glaucoma mouse model at different time points after ocular hypertension (OHT), we analyzed (i) the expression of pro-inflammatory cytokines, anti-inflammatory cytokines, BDNF, VEGF, and fractalkine; and (ii) the number of Brn3a+ RGCs. In OHT eyes, there was an upregulation of (i) IFN-γ at days 3, 5, and 15; (ii) IL-4 at days 1, 3, 5, and 7 and IL-10 at days 3 and 5 (coinciding with downregulation of IL1-β at days 1, 5, and 7); (iii) IL-6 at days 1, 3, and 5; (iv) fractalkine and VEGF at day 1; and (v) BDNF at days 1, 3, 7, and 15. In contralateral eyes, there were (i) an upregulation of IL-1β at days 1 and 3 and a downregulation at day 7, coinciding with the downregulation of IL4 at days 3 and 5 and the upregulation at day 7; (ii) an upregulation of IL-6 at days 1, 5, and 7 and a downregulation at 15 days; (iii) an upregulation of IL-10 at days 3 and 7; and (iv) an upregulation of IL-17 at day 15. In OHT eyes, there was a reduction in the Brn3a+ RGCs number at days 3, 5, 7, and 15. OHT changes cytokine levels in both OHT and contralateral eyes at different time points after OHT induction, confirming the immune system involvement in glaucomatous neurodegeneration.
Collapse
|
67
|
Forouzanfar F, Shojapour M, Aghili ZS, Asgharzade S. Growth Factors as Tools in Photoreceptor Cell Regeneration and Vision Recovery. Curr Drug Targets 2021; 21:573-581. [PMID: 31755378 DOI: 10.2174/1389450120666191121103831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/04/2019] [Accepted: 10/18/2019] [Indexed: 02/08/2023]
Abstract
Photoreceptor loss is a major cause of blindness around the world. Stem cell therapy offers a new strategy in retina degenerative disease. Retinal progenitors can be derived from embryonic stem cells (ESC) in vitro, but cannot be processed to a mature state. In addition, the adult recipient retina presents a very different environment than the photoreceptor precursor donor. It seems that modulation of the recipient environment by ectopic development regulated growth factors for transplanted cells could generate efficient putative photoreceptors. The purpose of this review article was to investigate the signaling pathway of growth factors including: insulin-like growth factors (IGFs), fibroblast growth factors (FGF), Nerve growth factor (NGF), Brain-derived neurotrophic factor (BDNF), Taurin and Retinoic acid (RA) involved in the differentiation of neuroretina cell, like; photoreceptor and retinal progenitor cells. Given the results available in the related literature, the differentiation efficacy of ESCs toward the photoreceptor and retinal neurons and the important role of growth factors in activating signaling pathways such as Akt, Ras/Raf1/ and ERKs also inhibit the ASK1/JNK apoptosis pathway. Manipulating differentiated culture, growth factors can influence photoreceptor transplantation efficiency in retinal degenerative disease.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mana Shojapour
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Zahra Sadat Aghili
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Samira Asgharzade
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
68
|
Neuroprotection through G-CSF: recent advances and future viewpoints. Pharmacol Rep 2021; 73:372-385. [PMID: 33389706 DOI: 10.1007/s43440-020-00201-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 12/14/2022]
Abstract
Granulocyte-colony stimulating factor (G-CSF), a member of the cytokine family of hematopoietic growth factors, is 19.6 kDa glycoprotein which is responsible for the proliferation, maturation, differentiation, and survival of neutrophilic granulocyte lineage. Apart from its proven clinical application to treat chemotherapy-associated neutropenia, recent pre-clinical studies have highlighted the neuroprotective roles of G-CSF i.e., mobilization of haemopoietic stem cells, anti-apoptotic, neuronal differentiation, angiogenesis and anti-inflammatory in animal models of neurological disorders. G-CSF is expressed by numerous cell types including neuronal, immune and endothelial cells. G-CSF is released in autocrine manner and binds to its receptor G-CSF-R which further activates numerous signaling transduction pathways including PI3K/AKT, JAK/STAT and MAP kinase, and thereby promote neuronal survival, proliferation, differentiation, mobilization of hematopoietic stem and progenitor cells. The expression of G-CSF receptors (G-CSF-R) in the different brain regions and their upregulation in response to neuronal insult indicates the autocrine protective signaling mechanism of G-CSF by inhibition of apoptosis, inflammation, and stimulation of neurogenesis. These observed neuroprotective effects of G-CSF makes it an attractive target to mitigate neurodegeneration associated with neurological disorders. The objective of the review is to highlight and summarize recent updates on G-CSF as a therapeutically versatile neuroprotective agent along with mechanisms of action as well as possible clinical applications in neurodegenerative disorders including AD, PD and HD.
Collapse
|
69
|
Wareham LK, Risner ML, Calkins DJ. Protect, Repair, and Regenerate: Towards Restoring Vision in Glaucoma. CURRENT OPHTHALMOLOGY REPORTS 2020; 8:301-310. [PMID: 33269115 PMCID: PMC7686214 DOI: 10.1007/s40135-020-00259-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW We summarize recent advances in strategies that aim to restore optic nerve function and vision in glaucoma through protective, reparative, and regenerative avenues. RECENT FINDINGS Neuroprotection relies on identification of early retinal ganglion cell dysfunction, which could prove challenging in the clinic. Cell replacement therapies show promise in restoring lost vision, but some hurdles remain in restoring visual circuitry in the retina and central connections in the brain. SUMMARY Identification and manipulation of intrinsic and extrinsic cellular mechanisms that promote axon regeneration in both resident and transplanted RGCs will drive future advances in vision restoration. Understanding the roles of multiple cell types in the retina that act in concert to promote RGC survival will aid efforts to promote neuronal health and restoration. Effective RGC transplantation, fine tuning axon guidance and growth, and synaptogenesis of transplanted and resident RGCs are still areas that require more research.
Collapse
Affiliation(s)
- Lauren K. Wareham
- Department of Ophthalmology and Visual Sciences and the Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7100 MCN, 1161 21st Ave S., Nashville, TN 37232 USA
| | - Michael L. Risner
- Department of Ophthalmology and Visual Sciences and the Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7100 MCN, 1161 21st Ave S., Nashville, TN 37232 USA
| | - David J. Calkins
- Department of Ophthalmology and Visual Sciences and the Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7100 MCN, 1161 21st Ave S., Nashville, TN 37232 USA
| |
Collapse
|
70
|
Xuan W, Moothedathu AA, Meng T, Gibson DC, Zheng J, Xu Q. 3D engineering for optic neuropathy treatment. Drug Discov Today 2020; 26:181-188. [PMID: 33038525 DOI: 10.1016/j.drudis.2020.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/11/2020] [Accepted: 09/30/2020] [Indexed: 11/15/2022]
Abstract
Ocular disorders, such as age-related macular degeneration (AMD), diabetic retinopathy (DR), retinitis pigmentosa (RP), and glaucoma, can cause irreversible visual loss, and affect the quality of life of millions of patients. However, only very few 3D systems can mimic human ocular pathophysiology, especially the retinal degenerative diseases, which involve the loss of retinal ganglion cells (RGCs), photoreceptors, or retinal pigment epithelial cells (RPEs). In this review, we discuss current progress in the 3D modeling of ocular tissues, and review the use of the aforementioned technologies for optic neuropathy treatment according to the categories of associated disease models and their applications in drug screening, mechanism studies, and cell and gene therapies.
Collapse
Affiliation(s)
- Wenjing Xuan
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Aji Alex Moothedathu
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Tuo Meng
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - David C Gibson
- School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jinhua Zheng
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA; Department of Ophthalmology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Qingguo Xu
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA; Ophthalmology, Center for Pharmaceutical Engineering, Massey Cancer Center, and Institute for Structural Biology, Drug Discovery & Development (ISB3D), Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
71
|
Wójcik-Gryciuk A, Gajewska-Woźniak O, Kordecka K, Boguszewski PM, Waleszczyk W, Skup M. Neuroprotection of Retinal Ganglion Cells with AAV2-BDNF Pretreatment Restoring Normal TrkB Receptor Protein Levels in Glaucoma. Int J Mol Sci 2020; 21:ijms21176262. [PMID: 32872441 PMCID: PMC7504711 DOI: 10.3390/ijms21176262] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Intravitreal delivery of brain-derived neurotrophic factor (BDNF) by injection of recombinant protein or by gene therapy can alleviate retinal ganglion cell (RGC) loss after optic nerve injury (ONI) or laser-induced ocular hypertension (OHT). In models of glaucoma, BDNF therapy can delay or halt RGCs loss, but this protection is time-limited. The decreased efficacy of BDNF supplementation has been in part attributed to BDNF TrkB receptor downregulation. However, whether BDNF overexpression causes TrkB downregulation, impairing long-term BDNF signaling in the retina, has not been conclusively proven. After ONI or OHT, when increased retinal BDNF was detected, a concomitant increase, no change or a decrease in TrkB was reported. We examined quantitatively the retinal concentrations of the TrkB protein in relation to BDNF, in a course of adeno-associated viral vector gene therapy (AAV2-BDNF), using a microbead trabecular occlusion model of glaucoma. We show that unilateral glaucoma, with intraocular pressure ( IOP) increased for five weeks, leads to a bilateral decrease of BDNF in the retina at six weeks, accompanied by up to four-fold TrkB upregulation, while a moderate BDNF overexpression in a glaucomatous eye triggers changes that restore normal TrkB concentrations, driving signaling towards long-term RGCs neuroprotection. We conclude that for glaucoma therapy, the careful selection of the appropriate BDNF concentration is the main factor securing the long-term responsiveness of RGCs and the maintenance of normal TrkB levels.
Collapse
Affiliation(s)
- Anna Wójcik-Gryciuk
- Laboratory of Neurobiology of Vision, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (A.W.-G.); (K.K.); (W.W.)
- Mediq Clinic, 05-120 Legionowo, Poland
| | - Olga Gajewska-Woźniak
- Group of Restorative Neurobiology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland;
| | - Katarzyna Kordecka
- Laboratory of Neurobiology of Vision, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (A.W.-G.); (K.K.); (W.W.)
| | - Paweł M. Boguszewski
- Laboratory of Behavioral Methods, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland;
| | - Wioletta Waleszczyk
- Laboratory of Neurobiology of Vision, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (A.W.-G.); (K.K.); (W.W.)
| | - Małgorzata Skup
- Group of Restorative Neurobiology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland;
- Correspondence:
| |
Collapse
|
72
|
Itkonen J, Annala A, Tavakoli S, Arango-Gonzalez B, Ueffing M, Toropainen E, Ruponen M, Casteleijn MG, Urtti A. Characterization, Stability, and in Vivo Efficacy Studies of Recombinant Human CNTF and Its Permeation into the Neural Retina in ex Vivo Organotypic Retinal Explant Culture Models. Pharmaceutics 2020; 12:pharmaceutics12070611. [PMID: 32629980 PMCID: PMC7408322 DOI: 10.3390/pharmaceutics12070611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/17/2022] Open
Abstract
Ciliary neurotrophic factor (CNTF) is one of the most studied neuroprotective agents with acknowledged potential in treating diseases of the posterior eye segment. Although its efficacy and mechanisms of action in the retina have been studied extensively, it is still not comprehensively understood which retinal cells mediate the therapeutic effects of CNTF. As with therapeutic proteins in general, it is poorly elucidated whether exogenous CNTF administered into the vitreous can enter and distribute into the retina and hence reach potentially responsive target cells. Here, we have characterized our purified recombinant human CNTF (rhCNTF), studied the protein’s in vitro bioactivity in a cell-based assay, and evaluated the thermodynamic and oligomeric status of the protein during storage. Biological activity of rhCNTF was further evaluated in vivo in an animal model of retinal degeneration. The retinal penetration and distribution of rhCNTF after 24 h was studied utilizing two ex vivo retina models. Based on our characterization findings, our rhCNTF is correctly folded and biologically active. Moreover, based on initial screening and subsequent follow-up, we identified two buffers in which rhCNTF retains its stability during storage. Whereas rhCNTF did not show photoreceptor preservative effect or improve the function of photoreceptors in vivo, this could possibly be due to the used disease model or the short duration of action with a single intravitreal injection of rhCNTF. On the other hand, the lack of in vivo efficacy was shown to not be due to distribution limitations; permeation into the retina was observed in both retinal explant models as in 24 h rhCNTF penetrated the inner limiting membrane, and being mostly observed in the ganglion cell layer, distributed to different layers of the neural retina. As rhCNTF can reach deeper retinal layers, in general, having direct effects on resident CNTF-responsive target cells is plausible.
Collapse
Affiliation(s)
- Jaakko Itkonen
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00790 Helsinki, Finland; (S.T.); (M.G.C.)
- Correspondence: (J.I.); (A.U.)
| | - Ada Annala
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, 70211 Kuopio, Finland; (A.A.); (E.T.); (M.R.)
- Utrecht Institute for Pharmaceutical Science, Utrecht University, David de Wiedgebouw, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Shirin Tavakoli
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00790 Helsinki, Finland; (S.T.); (M.G.C.)
| | - Blanca Arango-Gonzalez
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Elfriede-Aulhorn-Strasse 7, D-72076 Tübingen, Germany; (B.A.-G.); (M.U.)
| | - Marius Ueffing
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Elfriede-Aulhorn-Strasse 7, D-72076 Tübingen, Germany; (B.A.-G.); (M.U.)
| | - Elisa Toropainen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, 70211 Kuopio, Finland; (A.A.); (E.T.); (M.R.)
| | - Marika Ruponen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, 70211 Kuopio, Finland; (A.A.); (E.T.); (M.R.)
| | - Marco G. Casteleijn
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00790 Helsinki, Finland; (S.T.); (M.G.C.)
- VTT Technical Research Centre of Finland Ltd., Solutions for Natural Resources and Environment, Tietotie 2, Espoo, P.O. Box 1000, FI-02044 VTT, Finland
| | - Arto Urtti
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00790 Helsinki, Finland; (S.T.); (M.G.C.)
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, 70211 Kuopio, Finland; (A.A.); (E.T.); (M.R.)
- Laboratory of Biohybrid Technologies, Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, Peterhoff, 198504 St. Petersburg, Russia
- Correspondence: (J.I.); (A.U.)
| |
Collapse
|
73
|
Ciavarella C, Buzzi M, Bergantin E, Di Marco S, Giannaccare G, Campos E, Bisti S, Versura P. Effects of Cord Blood Serum (CBS) on viability of retinal Müller glial cells under in vitro injury. PLoS One 2020; 15:e0234145. [PMID: 32497126 PMCID: PMC7272066 DOI: 10.1371/journal.pone.0234145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/19/2020] [Indexed: 01/11/2023] Open
Abstract
Oxidative stress and inflammation determine retinal ganglion cell degeneration, leading to retinal impairment and vision loss. Müller glial cells regulate retinal repair under injury, through gliosis. Meanwhile, reactive gliosis can turn in pathological effects, contributing to neurodegeneration. In the present study, we tested whether Cord Blood Serum (CBS), rich of growth factors, might improve the viability of Müller cells under in vitro damage. BDNF, NGF, TGF-α, GDNF and EGF levels were measured in CBS samples by Human Magnetic Luminex Assay. CBS effects were evaluated on rat (rMC-1) and human (MIO-M1) Müller cells, under H2O2 and IL-1β damage. Cells grown with FBS or CBS both at 5% were exposed to stress and analyzed in terms of cell viability, GFAP, IL-6 and TNF-α expression. CBS was also administrated after treatment with K252a, inhibitor of the neurotrophin receptor Trk. Cell viability of rMC-1 and MIO-M1 resulted significantly improved when pretreated with CBS and exposed to H2O2 and IL-1β, in comparison to the standard culture with FBS. Accordingly, the gliosis marker GFAP resulted down-regulated following CBS priming. In parallel, we observed a lower expression of the inflammatory mediators in rMC-1 (TNF-α) and MIO-M1 (IL-6, TNF- α), especially in presence of inflammatory damage. Trk inhibition through K252a administration impaired the effects of CBS under stress conditions on MIO-M1 and rMC-1 viability, not significantly different from FBS condition. CBS is enriched with neurotrophins and its administration to rMC-1 and MIO-M1 attenuates the cytotoxic effects of H2O2 and IL-1β. Moreover, the decrease of the main markers of gliosis and inflammation suggests a promising use of CBS for neuroprotection aims. This study is a preliminary basis that prompts future investigations to deeply explore and confirm the CBS potential.
Collapse
Affiliation(s)
- Carmen Ciavarella
- Ophthalmology Unit, DIMES, Alma Mater Studiorum University of Bologna, S.Orsola-Malpighi Teaching Hospital, Bologna, Italy
| | - Marina Buzzi
- Emilia Romagna Cord Blood Bank-Transfusion Service, S.Orsola-Malpighi Teaching Hospital, Bologna, Italy
| | - Elisa Bergantin
- Emilia Romagna Cord Blood Bank-Transfusion Service, S.Orsola-Malpighi Teaching Hospital, Bologna, Italy
| | | | - Giuseppe Giannaccare
- Ophthalmology Unit, DIMES, Alma Mater Studiorum University of Bologna, S.Orsola-Malpighi Teaching Hospital, Bologna, Italy
| | - Emilio Campos
- Ophthalmology Unit, DIMES, Alma Mater Studiorum University of Bologna, S.Orsola-Malpighi Teaching Hospital, Bologna, Italy
| | - Silvia Bisti
- Vision Lab, DISCAB, University of L’Aquila, L’Aquila, Italy
- Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Piera Versura
- Ophthalmology Unit, DIMES, Alma Mater Studiorum University of Bologna, S.Orsola-Malpighi Teaching Hospital, Bologna, Italy
- * E-mail:
| |
Collapse
|
74
|
Toms D, Al-Ani A, Sunba S, Tong QYV, Workentine M, Ungrin M. Automated Hypothesis Generation to Identify Signals Relevant in the Development of Mammalian Cell and Tissue Bioprocesses, With Validation in a Retinal Culture System. Front Bioeng Biotechnol 2020; 8:534. [PMID: 32582664 PMCID: PMC7287043 DOI: 10.3389/fbioe.2020.00534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
We have developed an accessible software tool (receptoR) to predict potentially active signaling pathways in one or more cell type(s) of interest from publicly available transcriptome data. As proof-of-concept, we applied it to mouse photoreceptors, yielding the previously untested hypothesis that activin signaling pathways are active in these cells. Expression of the type 2 activin receptor (Acvr2a) was experimentally confirmed by both RT-qPCR and immunochemistry, and activation of this signaling pathway with recombinant activin A significantly enhanced the survival of magnetically sorted photoreceptors in culture. Taken together, we demonstrate that our approach can be easily used to mine publicly available transcriptome data and generate hypotheses around receptor expression that can be used to identify novel signaling pathways in specific cell types of interest. We anticipate that receptoR (available at https://www.ucalgary.ca/ungrinlab/receptoR) will enable more efficient use of limited research resources.
Collapse
Affiliation(s)
- Derek Toms
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Abdullah Al-Ani
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.,Leaders in Medicine Program, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Saud Sunba
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Qing Yun Victor Tong
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Matthew Workentine
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Mark Ungrin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
75
|
Hlongwane NL, Hadebe K, Soma P, Dzomba EF, Muchadeyi FC. Genome Wide Assessment of Genetic Variation and Population Distinctiveness of the Pig Family in South Africa. Front Genet 2020; 11:344. [PMID: 32457791 PMCID: PMC7221027 DOI: 10.3389/fgene.2020.00344] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Genetic diversity is of great importance and a prerequisite for genetic improvement and conservation programs in pigs and other livestock populations. The present study provides a genome wide analysis of the genetic variability and population structure of pig populations from different production systems in South Africa relative to global populations. A total of 234 pigs sampled in South Africa and consisting of village (n = 91), commercial (n = 60), indigenous (n = 40), Asian (n = 5) and wild (n = 38) populations were genotyped using Porcine SNP60K BeadChip. In addition, 389 genotypes representing village and commercial pigs from America, Europe, and Asia were accessed from a previous study and used to compare population clustering and relationships of South African pigs with global populations. Moderate heterozygosity levels, ranging from 0.204 for Warthogs to 0.371 for village pigs sampled from Capricorn municipality in Eastern Cape province of South Africa were observed. Principal Component Analysis of the South African pigs resulted in four distinct clusters of (i) Duroc; (ii) Vietnamese; (iii) Bush pig and Warthog and (iv) a cluster with the rest of the commercial (SA Large White and Landrace), village, Wild Boar and indigenous breeds of Koelbroek and Windsnyer. The clustering demonstrated alignment with genetic similarities, geographic location and production systems. The PCA with the global populations also resulted in four clusters that where populated with (i) all the village populations, wild boars, SA indigenous and the large white and landraces; (ii) Durocs (iii) Chinese and Vietnamese pigs and (iv) Warthog and Bush pig. K = 10 (The number of population units) was the most probable ADMIXTURE based clustering, which grouped animals according to their populations with the exception of the village pigs that showed presence of admixture. AMOVA reported 19.92%-98.62% of the genetic variation to be within populations. Sub structuring was observed between South African commercial populations as well as between Indigenous and commercial breeds. Population pairwise F ST analysis showed genetic differentiation (P ≤ 0.05) between the village, commercial and wild populations. A per marker per population pairwise F ST analysis revealed SNPs associated with QTLs for traits such as meat quality, cytoskeletal and muscle development, glucose metabolism processes and growth factors between both domestic populations as well as between wild and domestic breeds. Overall, the study provided a baseline understanding of porcine diversity and an important foundation for porcine genomics of South African populations.
Collapse
Affiliation(s)
- Nompilo Lucia Hlongwane
- Biotechnology Platform, Agricultural Research Council, Onderstepoort, South Africa
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Pietermartizburg, South Africa
| | - Khanyisile Hadebe
- Biotechnology Platform, Agricultural Research Council, Onderstepoort, South Africa
| | - Pranisha Soma
- Animal Production Institute, Agricultural Research Council, Irene, South Africa
| | - Edgar Farai Dzomba
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Pietermartizburg, South Africa
| | | |
Collapse
|
76
|
Tsai JC. Innovative IOP-Independent Neuroprotection and Neuroregeneration Strategies in the Pipeline for Glaucoma. J Ophthalmol 2020; 2020:9329310. [PMID: 33014446 PMCID: PMC7512103 DOI: 10.1155/2020/9329310] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/23/2020] [Indexed: 12/14/2022] Open
Abstract
While sustained reduction of intraocular pressure (IOP) has been shown to halt and/or delay the progressive death of retinal ganglion cells (RGCs) in glaucoma, there exists great interest in the development and validation of IOP-independent therapeutic strategies for neuroprotection and/or neuroregeneration. Multiple etiologies for RGC death have been implicated in glaucoma including defective axonal transport, ischemia, excitotoxicity, reactive oxygen species, trophic factor withdrawal, and loss of RGC electrical activity. However, IOP lowering with medical, laser, and surgical therapies is itself neuroprotective, and investigators are seeking to identify agents that are able to confer neuroprotection independent of IOP reduction, as well as providing for regeneration of nonviable RGCs and their axons to restore and/or maintain functional vision. These innovative strategies in the pipeline include investigation of neurotrophic factors, gene therapy, immune system modulation, and novel neuroregeneration pathways. Alongside this new knowledge, enhanced opportunities for discovery of vision preservation and/or restoration therapies must be weighed against the potential disadvantages of perturbing the complex central nervous system environment.
Collapse
Affiliation(s)
- James C. Tsai
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, USA
| |
Collapse
|
77
|
Neuroprotective Strategies for Retinal Ganglion Cell Degeneration: Current Status and Challenges Ahead. Int J Mol Sci 2020; 21:ijms21072262. [PMID: 32218163 PMCID: PMC7177277 DOI: 10.3390/ijms21072262] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
The retinal ganglion cells (RGCs) are the output cells of the retina into the brain. In mammals, these cells are not able to regenerate their axons after optic nerve injury, leaving the patients with optic neuropathies with permanent visual loss. An effective RGCs-directed therapy could provide a beneficial effect to prevent the progression of the disease. Axonal injury leads to the functional loss of RGCs and subsequently induces neuronal death, and axonal regeneration would be essential to restore the neuronal connectivity, and to reestablish the function of the visual system. The manipulation of several intrinsic and extrinsic factors has been proposed in order to stimulate axonal regeneration and functional repairing of axonal connections in the visual pathway. However, there is a missing point in the process since, until now, there is no therapeutic strategy directed to promote axonal regeneration of RGCs as a therapeutic approach for optic neuropathies.
Collapse
|
78
|
Affiliation(s)
- Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takahiko Noro
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
79
|
Tian ZR, Yao M, Zhou LY, Song YJ, Ye J, Wang YJ, Cui XJ. Effect of docosahexaenoic acid on the recovery of motor function in rats with spinal cord injury: a meta-analysis. Neural Regen Res 2020; 15:537-547. [PMID: 31571666 PMCID: PMC6921345 DOI: 10.4103/1673-5374.266065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective: Studies have shown that docosahexaenoic acid (DHA) has a beneficial effect in the treatment of spinal cord injury. A meta-analysis was used to study the effect of DHA on the neurological recovery in the rat spinal cord injury model, and the relationship between the recovery of motor function after spinal cord injury and the time and method of administration and the dose of DHA. Data source: Published studies on the effect of DHA on spinal cord injury animal models from seven databases were searched from their inception to January 2019, including PubMed, MEDLINE, EMBASE, the China National Knowledge Infrastructure, Wanfang, VIP, and SinoMed databases. The search terms included “spinal cord injury” “docosahexaenoic acid”, and “rats”. Data selection: Studies that evaluated the influence of DHA in rat models of spinal cord injury for locomotor functional recovery were included. The intervention group included any form of DHA treatment and the control group included treatment with normal saline, vehicle solution or no treatment. The Systematic Review Centre for Laboratory animal Experimentation’s risk of bias assessment tool was used for the quality assessment of the included studies. Literature inclusion, quality evaluation and data extraction were performed by two researchers. Meta-analysis was then conducted on all studies that met the inclusion criteria. Statistical analysis was performed on the data using RevMan 5.1.2. software. Outcome measures: The primary outcome measure was the score on the Basso, Beattie, and Bresnahan scale. Secondary outcome measures were the sloping plate test, balance beam test, stair test and grid exploration test. Results: A total of 12 related studies were included, 3 of which were of higher quality and the remaining 9 were of lower quality. The highest mean Basso, Beattie, and Bresnahan scale score occurred at 42 days after DHA treatment in spinal cord injury rats. At 21 days after treatment, the mean difference in Basso, Beattie, Bresnahan scores between the DHA group and the control group was the most significant (pooled MD = 4.14; 95% CI = 3.58–4.70; P < 0.00001). In the subgroup analysis, improvement in the Basso, Beattie, and Bresnahan scale score was more significant in rats administered DHA intravenously (pooled MD = 2.74; 95% CI = 1.41–4.07; P < 0.0001) and subcutaneously (pooled MD = 2.99; 95% CI = 2.29–3.69; P < 0.00001) than in the groups administered DHA orally (pooled MD = 3.04; 95% CI = –1.01 to 7.09; P = 0.14). Intravenous injection of DHA at 250 nmol/kg (pooled MD = 2.94; 95% CI = 2.47–3.41; P < 0.00001] and 1000 nmol/kg [pooled MD = 3.60; 95% CI = 2.66–4.54; P < 0.00001) significantly improved the Basso, Beattie, and Bresnahan scale score in rats and promoted the recovery of motor function. Conclusion: DHA can promote motor functional recovery after spinal cord injury in rats. The administration of DHA by intravenous or subcutaneous injection is more effective than oral administration of DHA. Intravenous injection of DHA at doses of 250 nmol/kg or 1000 nmol/kg is beneficial. Because of the small number and the low quality of the included studies, more high-quality research is needed in future to substantiate the results.
Collapse
Affiliation(s)
- Zi-Rui Tian
- Institute of Spine Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine); Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Yao
- Institute of Spine Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Long-Yun Zhou
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine); Shanghai University of Traditional Chinese Medicine; Rehabilitation Medicine College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Jia Song
- Institute of Spine Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine); Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Ye
- Department of Orthopedics and Traumatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Jun Wang
- Institute of Spine Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine); Shanghai University of Traditional Chinese Medicine; Rehabilitation Medicine College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue-Jun Cui
- Institute of Spine Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| |
Collapse
|
80
|
Liu HY, Wei HJ, Wu L, Liu SM, Tang YY, Zou W, Wang CY, Zhang P, Tang XQ. BDNF-TrkB pathway mediates antidepressant-like roles of H 2 S in diabetic rats via promoting hippocampal autophagy. Clin Exp Pharmacol Physiol 2019; 47:302-312. [PMID: 31660632 DOI: 10.1111/1440-1681.13201] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/14/2019] [Accepted: 10/24/2019] [Indexed: 11/28/2022]
Abstract
Hydrogen sulfide (H2 S) plays antidepressant-like roles in diabetic rats. However, the underlying mechanisms remain unclear. Brain-derived neurotropic factor (BDNF), a neurotrophic factor, plays important regulatory roles in depression by its high-affinity tropomysin-related kinase B (TrkB) receptor. Autophagy also is implicated in modulation of depression. Previous work confirmed the modulatory roles of H2 S in BDNF protein expression and autophagy. Thus, in this study, we explored whether the BDNF-TrkB pathway mediates the antidepressant-like effects of H2 S in diabetic rats and whether this process is achieved via promoting hippocampal autophagy. We demonstrated that H2 S upregulated the expressions of BDNF and p-TrkB proteins in the hippocampus of streptozotocin (STZ)-induced diabetic rats. K252a (an inhibitor of BDNF-TrkB pathway) reversed the antidepressant-like roles of H2 S, as evidenced by the tail suspension, forced swimming, novelty suppressed feeding, and elevated plus-maze tests. Furthermore, K252a abolished H2 S-promoted hippocampal autophagy in diabetic rats, as evidenced by a decrease in the number of autolysosome, downregulation of Beclin-1 (a regulator of autophagy in the early stage of the formation of autophagosomal membranes and its level is positively correlated with autophagic activity) expression, and upregulation of P62 (a substrate of autophagic degradation and its level is inversely correlated with autophagic activity) expression, in the hippocampus of rats co-treated with NaHS and STZ. Taken together, these data indicated that the BDNF-TrkB pathway mediates the antidepressant-like roles of H2 S in diabetic rats by enhancing hippocampal autophagy.
Collapse
Affiliation(s)
- Hai-Yao Liu
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, China.,Institute of Neuroscience, Medical College, University of South China, Hengyang, China.,Department of Neurology, Hengyang Center Hospital, Hengyang, China
| | - Hai-Jun Wei
- Institute of Neuroscience, Medical College, University of South China, Hengyang, China.,Institute of Neurology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Lin Wu
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, China.,Institute of Neuroscience, Medical College, University of South China, Hengyang, China
| | - Su-Mei Liu
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, China.,Institute of Neuroscience, Medical College, University of South China, Hengyang, China
| | - Yi-Yun Tang
- Institute of Neuroscience, Medical College, University of South China, Hengyang, China
| | - Wei Zou
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, China.,Institute of Neuroscience, Medical College, University of South China, Hengyang, China
| | - Chun-Yan Wang
- Institute of Neuroscience, Medical College, University of South China, Hengyang, China
| | - Ping Zhang
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, China.,Institute of Neuroscience, Medical College, University of South China, Hengyang, China
| | - Xiao-Qing Tang
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, China.,Institute of Neuroscience, Medical College, University of South China, Hengyang, China.,Institute of Neurology, The First Affiliated Hospital, University of South China, Hengyang, China
| |
Collapse
|
81
|
Therapeutic Strategies for Attenuation of Retinal Ganglion Cell Injury in Optic Neuropathies: Concepts in Translational Research and Therapeutic Implications. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8397521. [PMID: 31828134 PMCID: PMC6885158 DOI: 10.1155/2019/8397521] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/07/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
Abstract
Retinal ganglion cell (RGC) death is the central and irreversible endpoint of optic neuropathies. Current management of optic neuropathies and glaucoma focuses on intraocular pressure-lowering treatment which is insufficient. As such, patients are effectively condemned to irreversible visual impairment. This review summarizes experimental treatments targeting RGCs over the last decade. In particular, we examine the various treatment modalities and determine their viability and limitations in translation to clinical practice. Experimental RGC treatment can be divided into (1) cell replacement therapy, (2) neuroprotection, and (3) gene therapy. For cell replacement therapy, difficulties remain in successfully integrating transplanted RGCs from various sources into the complex neural network of the human retina. However, there is significant potential for achieving full visual restoration with this technique. Neuroprotective strategies, in the form of pharmacological agents, nutritional supplementation, and neurotrophic factors, are viable strategies with encouraging results from preliminary noncomparative interventional case series. It is important to note, however, that most published studies are focused on glaucoma, with few treating optic neuropathies of other etiologies. Gene therapy, through the use of viral vectors, has shown promising results in clinical trials, particularly for diseases with specific genetic mutations like Leber's hereditary optic neuropathy. This treatment technique can be further extended to nonhereditary diseases, through transfer of genes promoting cell survival and neuroprotection. Crucially though, for gene therapy, teratogenicity remains a significant issue in translation to clinical practice.
Collapse
|
82
|
Elsherbiny NM, Abdel-Mottaleb Y, Elkazaz AY, Atef H, Lashine RM, Youssef AM, Ezzat W, El-Ghaiesh SH, Elshaer RE, El-Shafey M, Zaitone SA. Carbamazepine Alleviates Retinal and Optic Nerve Neural Degeneration in Diabetic Mice via Nerve Growth Factor-Induced PI3K/Akt/mTOR Activation. Front Neurosci 2019; 13:1089. [PMID: 31736682 PMCID: PMC6838003 DOI: 10.3389/fnins.2019.01089] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022] Open
Abstract
Aim: Diabetic retinopathy causes loss of vision in adults at working-age. Few therapeutic options are available for treatment of diabetic retinopathy. Carbamazepine (CARB), a widely used antiepileptic drug, was recently accounted for its neuroprotective effect. Nerve growth factor (NGF) activates various cascades among which, PI3K/Akt/mTOR pathway has a vital action in NGF-mediated neuronal differentiation and survival. This study evaluated the effect of CARB in the treatment of diabetic retina and unveiled some of the underlying molecular mechanisms. Main Methods: Alloxan diabetes model was induced in 36 albino well-acclimatized mice. After establishment of the diabetic model in 9 weeks, mice were assigned to treatment groups: (1) saline, (2) alloxan-diabetic, (3 and 4) alloxan+CARB (25 or 50 mg per kg p.o) for 4 weeks. After completion of the therapeutic period, mice were sacrificed and eyeballs were enucleated. Retinal levels of NGF and PI3K/Akt were assessed using real-time polymerase chain reaction. Further, total and phosphorylated TrKA, PI3K, Akt, mTOR as well as Caspase-3 were measured by Western blot analysis. Key Findings: Histopathological examination demonstrated that CARB attenuated vacuolization and restored normal thickness and organization of retinal cell layers. In addition, CARB increased pTrKA/TrKA ratio and ameliorated diabetes-induced reduction of NGF mRNA and immunostaining in retina. Additionally, it augmented the mRNA expression of PI3K and Akt, as well as the protein level of the phosphorylated PI3/Akt/mTOR. Significance: Results highlighted, for the first time, the neuronal protective effect for CARB in diabetic retina, which is mediated, at least in part, by activation of the NGF/PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Nehal M. Elsherbiny
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Yousra Abdel-Mottaleb
- Department of Pharmacology and Toxicology and Biochemistry, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| | - Amany Y. Elkazaz
- Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Medicine, Portsaid University, Port Said, Egypt
| | - Hoda Atef
- Department of Histology and Cytology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Rehab M. Lashine
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Amal M. Youssef
- Department of Physiology, Faculty of Medicine, Taibah University, Medina, Saudi Arabia
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Wessam Ezzat
- Department of Physiology, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Sabah H. El-Ghaiesh
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
- Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Rabie E. Elshaer
- Pathology Department, Faculty of Medicine (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed El-Shafey
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Physiological Sciences Department, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Sawsan A. Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
83
|
Birch DG, Bernstein PS, Iannacone A, Pennesi ME, Lam BL, Heckenlively J, Csaky K, Hartnett ME, Winthrop KL, Jayasundera T, Hughbanks-Wheaton DK, Warner J, Yang P, Fish GE, Teske MP, Sklaver NL, Erker L, Chegarnov E, Smith T, Wahle A, VanVeldhuisen PC, McCormack J, Lindblad R, Bramer S, Rose S, Zilliox P, Francis PJ, Weleber RG. Effect of Oral Valproic Acid vs Placebo for Vision Loss in Patients With Autosomal Dominant Retinitis Pigmentosa: A Randomized Phase 2 Multicenter Placebo-Controlled Clinical Trial. JAMA Ophthalmol 2019; 136:849-856. [PMID: 29879277 DOI: 10.1001/jamaophthalmol.2018.1171] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Importance There are no approved drug treatments for autosomal dominant retinitis pigmentosa, a relentlessly progressive cause of adult and childhood blindness. Objectives To evaluate the potential efficacy and assess the safety of orally administered valproic acid (VPA) in the treatment of autosomal dominant retinitis pigmentosa. Design, Setting, and Participants Multicenter, phase 2, prospective, interventional, placebo-controlled, double-masked randomized clinical trial. The study took place in 6 US academic retinal degeneration centers. Individuals with genetically characterized autosomal dominant retinitis pigmentosa were randomly assigned to receive treatment or placebo for 12 months. Analyses were intention-to-treat. Interventions Oral VPA 500 mg to 1000 mg daily for 12 months or placebo. Main Outcomes and Measures The primary outcome measure was determined prior to study initiation as the change in visual field area (assessed by the III4e isopter, semiautomated kinetic perimetry) between baseline and month 12. Results The mean (SD) age of the 90 participants was 50.4 (11.6) years. Forty-four (48.9%) were women, 87 (96.7%) were white, and 79 (87.8%) were non-Hispanic. Seventy-nine participants (87.8%) completed the study (42 [95.5%] received placebo and 37 [80.4%] received VPA). Forty-two (46.7%) had a rhodopsin mutation. Most adverse events were mild, although 7 serious adverse events unrelated to VPA were reported. The difference between the VPA and placebo arms for mean change in the primary outcome was -150.43 degree2 (95% CI, -290.5 to -10.03; P = .035). Conclusions and Relevance This negative value indicates that the VPA arm had worse outcomes than the placebo group. This study brings to light the key methodological considerations that should be applied to the rigorous evaluation of treatments for these conditions. This study does not provide support for the use of VPA in the treatment of autosomal dominant retinitis pigmentosa. Trial Registration ClinicalTrials.gov Identifier: NCT01233609.
Collapse
Affiliation(s)
| | | | - Alessandro Iannacone
- University of Tennessee Health Sciences Center, Hamilton Eye Institute, Memphis.,now with Duke University School of Medicine, Duke Eye Center, Durham, North Carolina
| | - Mark E Pennesi
- Oregon Health & Science University, Casey Eye Institute, Portland
| | - Byron L Lam
- University of Miami, Bascom Palmer Eye Institute, Miami, Florida
| | | | - Karl Csaky
- Retina Foundation of the Southwest, Dallas, Texas
| | | | - Kevin L Winthrop
- now with Duke University School of Medicine, Duke Eye Center, Durham, North Carolina
| | | | | | - Judith Warner
- University of Utah School of Medicine, Salt Lake City
| | - Paul Yang
- Oregon Health & Science University, Casey Eye Institute, Portland
| | | | | | | | - Laura Erker
- Oregon Health & Science University, Casey Reading Center, Portland
| | - Elvira Chegarnov
- Oregon Health & Science University, Casey Reading Center, Portland
| | - Travis Smith
- Oregon Health & Science University, Casey Reading Center, Portland
| | | | | | | | | | | | - Stephen Rose
- Foundation Fighting Blindness, Columbia, Maryland
| | | | | | | |
Collapse
|
84
|
Honda S, Namekata K, Kimura A, Guo X, Harada C, Murakami A, Matsuda A, Harada T. Survival of Alpha and Intrinsically Photosensitive Retinal Ganglion Cells in NMDA-Induced Neurotoxicity and a Mouse Model of Normal Tension Glaucoma. ACTA ACUST UNITED AC 2019; 60:3696-3707. [DOI: 10.1167/iovs.19-27145] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Sari Honda
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akira Matsuda
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
85
|
Claes M, De Groef L, Moons L. Target-Derived Neurotrophic Factor Deprivation Puts Retinal Ganglion Cells on Death Row: Cold Hard Evidence and Caveats. Int J Mol Sci 2019; 20:E4314. [PMID: 31484425 PMCID: PMC6747494 DOI: 10.3390/ijms20174314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022] Open
Abstract
Glaucoma and other optic neuropathies are characterized by axonal transport deficits. Axonal cargo travels back and forth between the soma and the axon terminus, a mechanism ensuring homeostasis and the viability of a neuron. An example of vital molecules in the axonal cargo are neurotrophic factors (NTFs). Hindered retrograde transport can cause a scarcity of those factors in the retina, which in turn can tilt the fate of retinal ganglion cells (RGCs) towards apoptosis. This postulation is one of the most widely recognized theories to explain RGC death in the disease progression of glaucoma and is known as the NTF deprivation theory. For several decades, research has been focused on the use of NTFs as a novel neuroprotective glaucoma treatment. Until now, results in animal models have been promising, but translation to the clinic has been highly disappointing. Are we lacking important knowledge to lever NTF therapies towards the therapeutic armamentarium? Or did we get the wrong end of the stick regarding the NTF deprivation theory? In this review, we will tackle the existing evidence and caveats advocating for and against the target-derived NTF deprivation theory in glaucoma, whilst digging into associated therapy efforts.
Collapse
Affiliation(s)
- Marie Claes
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Lies De Groef
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Lieve Moons
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
86
|
Effects of a combinatorial treatment with gene and cell therapy on retinal ganglion cell survival and axonal outgrowth after optic nerve injury. Gene Ther 2019; 27:27-39. [PMID: 31243393 DOI: 10.1038/s41434-019-0089-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/26/2019] [Accepted: 06/10/2019] [Indexed: 11/08/2022]
Abstract
After an injury, axons in the central nervous system do not regenerate over large distances and permanently lose their connections to the brain. Two promising approaches to correct this condition are cell and gene therapies. In the present work, we evaluated the neuroprotective and neuroregenerative potential of pigment epithelium-derived factor (PEDF) gene therapy alone and combined with human mesenchymal stem cell (hMSC) therapy after optic nerve injury by analysis of retinal ganglion cell survival and axonal outgrowth. Overexpression of PEDF by intravitreal delivery of AAV2 vector significantly increased Tuj1-positive cells survival and modulated FGF-2, IL-1ß, Iba-1, and GFAP immunostaining in the ganglion cell layer (GCL) at 4 weeks after optic nerve crush, although it could not promote axonal outgrowth. The combination of AAV2.PEDF and hMSC therapy showed a higher number of Tuj1-positive cells and a pronounced axonal outgrowth than unimodal therapy after optic nerve crush. In summary, our results highlight a synergistic effect of combined gene and cell therapy relevant for future therapeutic interventions regarding optic nerve injury.
Collapse
|
87
|
Zhang L, Li X, Lin X, Wu M. Nerve growth factor promotes the proliferation of Müller cells co-cultured with internal limiting membrane by regulating cell cycle via Trk-A/PI3K/Akt pathway. BMC Ophthalmol 2019; 19:130. [PMID: 31208396 PMCID: PMC6580575 DOI: 10.1186/s12886-019-1142-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 06/10/2019] [Indexed: 11/28/2022] Open
Abstract
Background Nerve growth factor (NGF), produced by Müller cells, and internal limiting membrane (ILM) have fundamental roles in the development of full-thickness macular hole (FTMH). However, the potential crosstalk between NGF and ILM in FTMH is unclear. This study aimed to explore the mechanism and effects of NGF on the proliferation of Müller cells co-cultured with ILM. Methods Primary Müller cells and ILM from New Zealand rabbits were extracted and authenticated with specific staining. Müller cells co-cultured with or without ILM were exposed to NGF and then analysed. Müller cell viability was estimated using cell counting kit-8. Cell cycle analysis was performed by flow cytometry. The levels of cell cycle-related gene were detected using qRT-PCR. The TrK-A/Akt signal axis and downstream signaling cascades such as p21, CyclinE, CDK2, CyclinD1, and CDK4 were investigated by western blotting. Results ILM treatment alone induced the proliferation of Müller cells following the promotion of phosphorylated Akt, while growth of Müller cells was enhanced by activation of the Trk-A/Akt pathway under the stimulation of NGF or NGF + ILM. Additionally, the ratio of S-phase cells was increased, while G2-phase cells decreased upon the treatment with either ILM or NGF alone, or with NGF + ILM co-treatment. Cell cycle-related genes such as CyclinD1, CyclinE, CDK2, and CDK4 were all upregulated, but p21 expression was downregulated in the presence of NGF, ILM, or NGF + ILM. There was an additive effect on cell proliferation and cell cycle in the group of Müller cells exposed to NGF co-cultured with ILM compared with either NGF or ILM treatment alone. However, both K252ɑ (inhibitors of Trk-A) and LY294002 (inhibitor for Akt) counteracted the effect of NGF or NGF + ILM on the protein levels of Trk-A, Akt, CyclinD1, CyclinE, CDK2, and p21. Conclusions Müller cells co-cultured with ILM or NGF promoted cell proliferation by regulating cell cycle-correlated proteins via the PI3K/Akt pathway. ILM + NGF further amplified the PI3K/Akt signaling pathway by binding to Trk-A, leading to more cell growth. This study provides new insight into the potential mechanism of NGF-mediated proliferation of Müller cells co-cultured with or without ILM, which may have considerable impact on therapies for FTMH. Electronic supplementary material The online version of this article (10.1186/s12886-019-1142-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luyi Zhang
- Department of Ophthalmology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road Hangzhou, Zhejiang, 310014, China
| | - Xiaoxia Li
- Department of Ophthalmology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road Hangzhou, Zhejiang, 310014, China
| | - Xiaoqin Lin
- Department of Ophthalmology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road Hangzhou, Zhejiang, 310014, China
| | - Miaoqin Wu
- Department of Ophthalmology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
88
|
Rodrigues L, Wartchow KM, Suardi LZ, Federhen BC, Selistre NG, Gonçalves CA. Streptozotocin causes acute responses on hippocampal S100B and BDNF proteins linked to glucose metabolism alterations. Neurochem Int 2019; 128:85-93. [PMID: 31009650 DOI: 10.1016/j.neuint.2019.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/12/2019] [Accepted: 04/19/2019] [Indexed: 02/07/2023]
Abstract
Streptozotocin (STZ) is a glucosamine-nitrosourea commonly used to induce long-lasting models of diabetes mellitus and Alzheimer's disease. Direct toxicity of STZ on the pancreas and kidneys has been well characterized, but the acute effect of this compound on brain tissue has received less attention. Herein, we investigated the acute and direct toxicity of STZ on fresh hippocampal slices, measuring changes in BDNF and S100B secretion (two widely-used peripheral markers of brain injury), as well as glucose metabolism. Moreover, we investigated in vivo changes of these proteins in the hippocampus, 48 h after intracerebroventricular STZ administration. Transverse hippocampal slices (0.3 mm thick) were obtained using a McIlwain tissue chopper and target proteins were measured in the incubation medium by ELISA. STZ decreased S100B secretion, but increased BDNF secretion as well as causing impairment in glucose uptake in hippocampal slices, measured using [3H] deoxy-glucose. Glucose levels and glucose metabolism differentially modulated S100B secretion in astrocytes and BDNF secretion in neurons, when evaluated under specific conditions (high-potassium medium, presence of tetrodotoxin or fluorocitrate). Moreover, at 48 h after intracerebroventricular STZ, hippocampal BDNF content, but not S100B, was reduced. Our results indicate that BDNF and S100B are useful and sensitive markers of glucose metabolism disturbance and reinforce these proteins as general acute markers of brain disorders.
Collapse
Affiliation(s)
- Leticia Rodrigues
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Krista Minéia Wartchow
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lucas Zingano Suardi
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | |
Collapse
|
89
|
Intra-Vitreal Administration of Microvesicles Derived from Human Adipose-Derived Multipotent Stromal Cells Improves Retinal Functionality in Dogs with Retinal Degeneration. J Clin Med 2019; 8:jcm8040510. [PMID: 31013950 PMCID: PMC6518198 DOI: 10.3390/jcm8040510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/28/2022] Open
Abstract
This study was designed to determine the influence of microvesicles (MVs) derived from multipotent stromal cells isolated from human adipose tissue (hASCs) on retinal functionality in dogs with various types of retinal degeneration. The biological properties of hASC-MVs were first determined using an in vitro model of retinal Muller-like cells (CaMLCs). The in vitro assays included analysis of hASC-MVs influence on cell viability and metabolism. Brain-derived neurotrophic factor (BDNF) expression was also determined. Evaluation of the hASC-MVs was performed under normal and oxidative stress conditions. Preliminary clinical studies were performed on ten dogs with retinal degeneration. The clinical studies included behavioral tests, fundoscopy and electroretinography before and after hASC-MVs intra-vitreal injection. The in vitro study showed that CaMLCs treated with hASC-MVs were characterized by improved viability and mitochondrial potential, both under normal and oxidative stress conditions. Additionally, hASC-MVs under oxidative stress conditions reduced the number of senescence-associated markers, correlating with the increased expression of BDNF. The preliminary clinical study showed that the intra-vitreal administration of hASC-MVs significantly improved the dogs’ general behavior and tracking ability. Furthermore, fundoscopy demonstrated that the retinal blood vessels appeared to be less attenuated, and electroretinography using HMsERG demonstrated an increase in a- and b-wave amplitude after treatment. These results shed promising light on the application of cell-free therapies in veterinary medicine for retinal degenerative disorders treatment.
Collapse
|
90
|
Nebbioso M, Lambiase A, Cerini A, Limoli PG, La Cava M, Greco A. Therapeutic Approaches with Intravitreal Injections in Geographic Atrophy Secondary to Age-Related Macular Degeneration: Current Drugs and Potential Molecules. Int J Mol Sci 2019; 20:ijms20071693. [PMID: 30987401 PMCID: PMC6479480 DOI: 10.3390/ijms20071693] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/31/2019] [Accepted: 04/01/2019] [Indexed: 01/22/2023] Open
Abstract
The present review focuses on recent clinical trials that analyze the efficacy of intravitreal therapeutic agents for the treatment of dry age-related macular degeneration (AMD), such as neuroprotective drugs, and complement inhibitors, also called immunomodulatory or anti-inflammatory agents. A systematic literature search was performed to identify randomized controlled trials published prior to January 2019. Patients affected by dry AMD treated with intravitreal therapeutic agents were included. Changes in the correct visual acuity and reduction in geographic atrophy progression were evaluated. Several new drugs have shown promising results, including those targeting the complement cascade and neuroprotective agents. The potential action of the two groups of drugs is to block complement cascade upregulation of immunomodulating agents, and to prevent the degeneration and apoptosis of ganglion cells for the neuroprotectors, respectively. Our analysis indicates that finding treatments for dry AMD will require continued collaboration among researchers to identify additional molecular targets and to fully interrogate the utility of pluripotent stem cells for personalized therapy.
Collapse
Affiliation(s)
- Marcella Nebbioso
- Department of Sense Organs, Faculty of Medicine and Odontology, Umberto I Policlinic, Sapienza University of Rome, p. le A. Moro 5, 00185 Rome, Italy.
| | - Alessandro Lambiase
- Department of Sense Organs, Faculty of Medicine and Odontology, Umberto I Policlinic, Sapienza University of Rome, p. le A. Moro 5, 00185 Rome, Italy.
| | - Alberto Cerini
- Department of Sense Organs, Faculty of Medicine and Odontology, Umberto I Policlinic, Sapienza University of Rome, p. le A. Moro 5, 00185 Rome, Italy.
| | | | - Maurizio La Cava
- Department of Sense Organs, Faculty of Medicine and Odontology, Umberto I Policlinic, Sapienza University of Rome, p. le A. Moro 5, 00185 Rome, Italy.
| | - Antonio Greco
- Department of Sense Organs, Faculty of Medicine and Odontology, Umberto I Policlinic, Sapienza University of Rome, p. le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
91
|
Telegina DV, Kolosova NG, Kozhevnikova OS. Immunohistochemical localization of NGF, BDNF, and their receptors in a normal and AMD-like rat retina. BMC Med Genomics 2019; 12:48. [PMID: 30871541 PMCID: PMC6417162 DOI: 10.1186/s12920-019-0493-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a major cause of blindness in developed countries, and the molecular pathogenesis of AMD is poorly understood. A large body of evidence has corroborated the key role of neurotrophins in development, proliferation, differentiation, and survival of retinal cells. Neurotrophin deprivation has been proposed to contribute to retinal-cell death associated with neurodegenerative diseases. Little is known about the expression of the immature form of neurotrophins (proneurotrophins) and their mature form [e.g., nerve growth factor (proNGF and mNGF) and brain-derived neurotrophic factor (proBDNF and mBDNF)] in the retina during physiological aging and against the background of AMD. In addition, cell-specific localization of proteins NGF and BDNF in the retina during AMD development is not clear. Here, we evaluated contributions of the age-related alterations in the neurotrophin system to the development of AMD-like retinopathy in OXYS rats. METHODS Male OXYS rats at preclinical (20 days), early (3 months), and late (18 months) stages of the disease and age-matched male Wistar rats (as controls) were used. We performed immunohistochemical localization of NGF, BDNF, and their receptors TrkA, TrkB, and p75NTR by fluorescence microscopy in retinal sections from OXYS and Wistar rats. RESULTS We found increased NGF staining in Muller cells in 18-month-old OXYS rats (progressive stage of retinopathy). In contrast, we observed only subtle changes in the labeling of mature BDNF (mBDNF) and TrkB during the development of AMD-like retinopathy in OXYS rats. Using colocalization with vimentin and NeuN, we detected a difference in the cell type-specific localization of mBDNF between OXYS and Wistar rats. We showed that the mBDNF protein was located in Muller cells in OXYS rats, whereas in the Wistar retina, mBDNF immunoreactivity was detected in Muller cells and ganglion cells. During the development of AMD-like retinopathy, proBDNF dominated over mBDNF during increasing cell loss in the OXYS retina. CONCLUSIONS These data indicate that alterations in the balance of neurotrophic factors in the retina are involved in the development of AMD-like retinopathy in OXYS rats and confirm their participation in the pathogenesis of AMD in humans.
Collapse
Affiliation(s)
| | - Nataliya G. Kolosova
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, Novosibirsk, Russia
| | | |
Collapse
|
92
|
Preclinical Evaluation of Long-Term Neuroprotective Effects of BDNF-Engineered Mesenchymal Stromal Cells as Intravitreal Therapy for Chronic Retinal Degeneration in Rd6 Mutant Mice. Int J Mol Sci 2019; 20:ijms20030777. [PMID: 30759764 PMCID: PMC6387230 DOI: 10.3390/ijms20030777] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/03/2019] [Accepted: 02/10/2019] [Indexed: 12/13/2022] Open
Abstract
This study aimed to investigate whether the transplantation of genetically engineered bone marrow-derived mesenchymal stromal cells (MSCs) to overexpress brain-derived neurotrophic factor (BDNF) could rescue the chronic degenerative process of slow retinal degeneration in the rd6 (retinal degeneration 6) mouse model and sought to identify the potential underlying mechanisms. Rd6 mice were subjected to the intravitreal injection of lentivirally modified MSC-BDNF or unmodified MSC or saline. In vivo morphology, electrophysiological retinal function (ERG), and the expression of apoptosis-related genes, as well as BDNF and its receptor (TrkB), were assessed in retinas collected at 28 days and three months after transplantation. We observed that cells survived for at least three months after transplantation. MSC-BDNF preferentially integrated into the outer retinal layers and considerably rescued damaged retinal cells, as evaluated by ERG and immunofluorescence staining. Additionally, compared with controls, the therapy with MSC-BDNF was associated with the induction of molecular changes related to anti-apoptotic signaling. In conclusion, BDNF overexpression observed in retinas after MSC-BDNF treatment could enhance the neuroprotective properties of transplanted autologous MSCs alone in the chronically degenerated retina. This research provides evidence for the long-term efficacy of genetically-modified MSC and may represent a strategy for treating various forms of degenerative retinopathies in the future.
Collapse
|
93
|
Devoldere J, Peynshaert K, De Smedt SC, Remaut K. Müller cells as a target for retinal therapy. Drug Discov Today 2019; 24:1483-1498. [PMID: 30731239 DOI: 10.1016/j.drudis.2019.01.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/20/2018] [Accepted: 01/30/2019] [Indexed: 12/28/2022]
Abstract
Müller cells are specialized glial cells that span the entire retina from the vitreous cavity to the subretinal space. Their functional diversity and unique radial morphology render them particularly interesting targets for new therapeutic approaches. In this review, we reflect on various possibilities for selective Müller cell targeting and describe how some of their cellular mechanisms can be used for retinal neuroprotection. Intriguingly, cross-species investigation of their properties has revealed that Müller cells also have an essential role in retinal regeneration. Although many questions regarding this subject remain, it is clear that Müller cells have unique characteristics that make them suitable targets for the prevention and treatment of numerous retinal diseases.
Collapse
Affiliation(s)
- Joke Devoldere
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Karen Peynshaert
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Katrien Remaut
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| |
Collapse
|
94
|
Delplace V, Ortin-Martinez A, Tsai ELS, Amin AN, Wallace V, Shoichet MS. Controlled release strategy designed for intravitreal protein delivery to the retina. J Control Release 2019; 293:10-20. [DOI: 10.1016/j.jconrel.2018.11.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 12/25/2022]
|
95
|
Yarube I, Saidu A, Hassan S, Mohammed A. Circulating brain-derived neurotrophic factor level in patients with primary open angle glaucoma. SAHEL MEDICAL JOURNAL 2019. [DOI: 10.4103/smj.smj_63_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
96
|
Adams CM, Stacy R, Rangaswamy N, Bigelow C, Grosskreutz CL, Prasanna G. Glaucoma - Next Generation Therapeutics: Impossible to Possible. Pharm Res 2018; 36:25. [PMID: 30547244 DOI: 10.1007/s11095-018-2557-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 11/12/2018] [Indexed: 12/28/2022]
Abstract
The future of next generation therapeutics for glaucoma is strong. The recent approval of two novel intraocular pressure (IOP)-lowering drugs with distinct mechanisms of action is the first in over 20 years. However, these are still being administered as topical drops. Efforts are underway to increase patient compliance and greater therapeutic benefits with the development of sustained delivery technologies. Furthermore, innovations from biologics- and gene therapy-based therapeutics are being developed in the context of disease modification, which are expected to lead to more permanent therapies for patients. Neuroprotection, including the preservation of retinal ganglion cells (RGCs) and optic nerve is another area that is actively being explored for therapeutic options. With improvements in imaging technologies and determination of new surrogate clinical endpoints, the therapeutic potential for translation of neuroprotectants is coming close to clinical realization. This review summarizes the aforementioned topics and other related aspects.
Collapse
Affiliation(s)
- Christopher M Adams
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research (NIBR),, Cambridge, Massachusetts, USA
| | - Rebecca Stacy
- Translational Medicine, Ophthalmology, NIBR, Cambridge, Massachusetts, USA
| | - Nalini Rangaswamy
- Ophthalmology Research, Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, Massachusetts, 02139, USA
| | - Chad Bigelow
- Ophthalmology Research, Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, Massachusetts, 02139, USA
| | - Cynthia L Grosskreutz
- Ophthalmology Research, Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, Massachusetts, 02139, USA
| | - Ganesh Prasanna
- Ophthalmology Research, Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, Massachusetts, 02139, USA.
| |
Collapse
|
97
|
Telegina DV, Kozhevnikova OS, Kolosova NG. Changes in Retinal Glial Cells with Age and during Development of Age-Related Macular Degeneration. BIOCHEMISTRY (MOSCOW) 2018; 83:1009-1017. [PMID: 30472939 DOI: 10.1134/s000629791809002x] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Age is the major risk factor in the age-related macular degeneration (AMD) which is a complex multifactor neurodegenerative disease of the retina and the main cause of irreversible vision loss in people over 60 years old. The major role in AMD pathogenesis belongs to structure-functional changes in the retinal pigment epithelium cells, while the onset and progression of AMD are commonly believed to be caused by the immune system dysfunctions. The role of retinal glial cells (Muller cells, astrocytes, and microglia) in AMD pathogenesis is studied much less. These cells maintain neurons and retinal vessels through the synthesis of neurotrophic and angiogenic factors, as well as perform supporting, separating, trophic, secretory, and immune functions. It is known that retinal glia experiences morphological and functional changes with age. Age-related impairments in the functional activity of glial cells are closely related to the changes in the expression of trophic factors that affect the status of all cell types in the retina. In this review, we summarized available literature data on the role of retinal macro- and microglia and on the contribution of these cells to AMD pathogenesis.
Collapse
Affiliation(s)
- D V Telegina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - O S Kozhevnikova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - N G Kolosova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| |
Collapse
|
98
|
Pietrucha-Dutczak M, Amadio M, Govoni S, Lewin-Kowalik J, Smedowski A. The Role of Endogenous Neuroprotective Mechanisms in the Prevention of Retinal Ganglion Cells Degeneration. Front Neurosci 2018; 12:834. [PMID: 30524222 PMCID: PMC6262299 DOI: 10.3389/fnins.2018.00834] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022] Open
Abstract
Retinal neurons are not able to undergo spontaneous regeneration in response to damage. A variety of stressors, i.e., UV radiation, high temperature, ischemia, allergens, and others, induce reactive oxygen species production, resulting in consecutive alteration of stress-response gene expression and finally can lead to cell apoptosis. Neurons have developed their own endogenous cellular protective systems. Some of them are preventing cell death and others are allowing functional recovery after injury. The high efficiency of these mechanisms is crucial for cell survival. In this review we focus on the contribution of the most recently studied endogenous neuroprotective factors involved in retinal ganglion cell (RGC) survival, among which, neurotrophic factors and their signaling pathways, processes regulating the redox status, and different pathways regulating cell death are the most important. Additionally, we summarize currently ongoing clinical trials for therapies for RGC degeneration and optic neuropathies, including glaucoma. Knowledge of the endogenous cellular protective mechanisms may help in the development of effective therapies and potential novel therapeutic targets in order to achieve progress in the treatment of retinal and optic nerve diseases.
Collapse
Affiliation(s)
- Marita Pietrucha-Dutczak
- Chair and Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marialaura Amadio
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Joanna Lewin-Kowalik
- Chair and Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Adrian Smedowski
- Chair and Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
99
|
Alqawlaq S, Flanagan JG, Sivak JM. All roads lead to glaucoma: Induced retinal injury cascades contribute to a common neurodegenerative outcome. Exp Eye Res 2018; 183:88-97. [PMID: 30447198 DOI: 10.1016/j.exer.2018.11.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/02/2018] [Accepted: 11/06/2018] [Indexed: 11/25/2022]
Abstract
Glaucoma describes a distinct optic neuropathy with complex etiology and a variety of associated risk factors, but with similar pathological endpoints. Risk factors such as age, increased intraocular pressure (IOP), low mean arterial pressure, and autoimmune disease, can all be associated with death of retinal ganglion cells (RGCs) and optic nerve head remodeling. Today, IOP management remains the standard of care, even though IOP elevation is not pathognomonic of glaucoma, and patients can continue to lose vision despite effective IOP control. A contemporary view of glaucoma as a complex, neurodegenerative disease has developed, along with the recognition of a need for new disease modifying retinal treatment strategies and improved outcomes. However, the distinction between risk factors triggering the disease process and retinal injury responses is not always clear. In this review, we attempt to distinguish between the various triggers, and their association with subsequent key RGC injury mechanisms. We propose that distinct glaucomatous risk factors result in similar retinal and optic nerve injury cascades, including oxidative and metabolic stress, glial reactivity, and altered inflammatory responses, which induce common molecular signals to induce RGC apoptosis. This organization forms a coherent disease framework and presents conserved targets for therapeutic intervention that are not limited to specific risk factors.
Collapse
Affiliation(s)
- Samih Alqawlaq
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, ON, Canada; Vision Science Research Program, Ophthalmology and Vision Science, University of Toronto, Toronto, ON, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - John G Flanagan
- School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, CA, USA
| | - Jeremy M Sivak
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, ON, Canada; Vision Science Research Program, Ophthalmology and Vision Science, University of Toronto, Toronto, ON, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
100
|
Parisi V, Oddone F, Ziccardi L, Roberti G, Coppola G, Manni G. Citicoline and Retinal Ganglion Cells: Effects on Morphology and Function. Curr Neuropharmacol 2018; 16:919-932. [PMID: 28676014 PMCID: PMC6120106 DOI: 10.2174/1570159x15666170703111729] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/07/2017] [Accepted: 06/22/2017] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Retinal ganglion cells (RGCs) are the nervous retinal elements which connect the visual receptors to the brain forming the nervous visual system. Functional and/or morphological involvement of RGCs occurs in several ocular and neurological disorders and therefore these cells are targeted in neuroprotective strategies. Cytidine 5-diphosphocholine or Citicoline is an endogenous compound that acts in the biosynthesis of phospholipids of cell membranes and increases neurotransmitters' levels in the Central Nervous System. Experimental studies suggested the neuromodulator effect and the protective role of Citicoline on RGCs. This review aims to present evidence of the effects of Citicoline in experimental models of RGCs degeneration and in human neurodegenerative disorders involving RGCs. METHODS All published papers containing experimental or clinical studies about the effects of Citicoline on RGCs morphology and function were reviewed. RESULTS In rodent retinal cultures and animal models, Citicoline induces antiapoptotic effects, increases the dopamine retinal level, and counteracts retinal nerve fibers layer thinning. Human studies in neurodegenerative visual pathologies such as glaucoma or non-arteritic ischemic neuropathy showed a reduction of the RGCs impairment after Citicoline administration. By reducing the RGCs' dysfunction, a better neural conduction along the post-retinal visual pathways with an improvement of the visual field defects was observed. CONCLUSION Citicoline, with a solid history of experimental and clinical studies, could be considered a very promising molecule for neuroprotective strategies in those pathologies (i.e. Glaucoma) in which morpho-functional changes of RGCc occurs.
Collapse
Affiliation(s)
- Vincenzo Parisi
- IRCCS-Fondazione GB Bietti, Via Livenza, 3, 00198 Rome, Italy
| | | | - Lucia Ziccardi
- IRCCS-Fondazione GB Bietti, Via Livenza, 3, 00198 Rome, Italy
| | - Gloria Roberti
- IRCCS-Fondazione GB Bietti, Via Livenza, 3, 00198 Rome, Italy
| | | | - Gianluca Manni
- IRCCS-Fondazione GB Bietti, Via Livenza, 3, 00198 Rome, Italy.,DSCMT, Università di Roma Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| |
Collapse
|