51
|
Alluri K, Nair KPM, Kotturu SK, Ghosh S. Transcriptional Regulation of Zinc Transporters in Human Osteogenic Sarcoma (Saos-2) Cells to Zinc Supplementation and Zinc Depletion. Biol Trace Elem Res 2020; 194:360-367. [PMID: 31325026 DOI: 10.1007/s12011-019-01807-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/28/2019] [Indexed: 10/26/2022]
Abstract
Bone is a passive storage organ for zinc, which contains about 30% of the total body zinc. However, during extreme zinc deficiency, only a small fraction of zinc is released in contrast to other tissues where zinc is released like monocytes or conserved, e.g., skeletal muscle. Zinc plays an important role in bone tissue remodeling. Zinc homeostasis is regulated by several zinc transporters (ZnTs) and importers (ZIPs), but their expression dynamics concerning zinc status of bone cells is not well understood. The study aimed to elucidate the effects of zinc supplementation and depletion on the transcript levels of various zinc transporters. Saos-2, a human osteoblastic cell line, was used as representative bone tissue. Zinc sulfate was used for simulating sufficient zinc status whereas TPEN, a zinc chelator, was used to simulate zinc-deficient state. Expression of various transcripts was measured by qRT-PCR. Subcellular localization of ZnT-1 was carried out by immunofluorescent microscopy, and Western Blotting was carried out to measure the expression of ZnT-1 at the protein level. Among the export transporters the transcript levels of MT, ZnT-1 showed higher levels in zinc sufficient and lower levels in TPEN treated cells. Expression of ZnT-4 was decreased under both the conditions. ZIP-6 and ZIP-13 were downregulated in zinc sufficiency, and ZIP-10 upregulated probably to prevent an excess zinc accumulation in bone cells. Further, ZnT-1 was found to be localized in the nuclear region of SaOS-2 cells. ZnT-1, ZnT-4, ZIP-6, ZIP-11, ZIP-10, and ZIP-13 along with MT may be responsible for maintaining bone zinc homeostasis.
Collapse
Affiliation(s)
- Kiran Alluri
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, 500007, India
| | - Krishna Pillay Madhavan Nair
- Micronutrient Division, Micronutrient Research Group, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, 500007, India.
| | - Sandeep Kumar Kotturu
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, 500007, India
| | - Sudip Ghosh
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, 500007, India.
| |
Collapse
|
52
|
Zinc Homeostasis in Bone: Zinc Transporters and Bone Diseases. Int J Mol Sci 2020; 21:ijms21041236. [PMID: 32059605 PMCID: PMC7072862 DOI: 10.3390/ijms21041236] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
Zinc is an essential micronutrient that plays critical roles in numerous physiological processes, including bone homeostasis. The majority of zinc in the human body is stored in bone. Zinc is not only a component of bone but also an essential cofactor of many proteins involved in microstructural stability and bone remodeling. There are two types of membrane zinc transporter proteins identified in mammals: the Zrt- and Irt-like protein (ZIP) family and the zinc transporter (ZnT) family. They regulate the influx and efflux of zinc, accounting for the transport of zinc through cellular and intracellular membranes to maintain zinc homeostasis in the cytoplasm and in intracellular compartments, respectively. Abnormal function of certain zinc transporters is associated with an imbalance of bone homeostasis, which may contribute to human bone diseases. Here, we summarize the regulatory roles of zinc transporters in different cell types and the mechanisms underlying related pathological changes involved in bone diseases. We also present perspectives for further studies on bone homeostasis-regulating zinc transporters.
Collapse
|
53
|
Zhang T, Sui D, Zhang C, Cole L, Hu J. Asymmetric functions of a binuclear metal center within the transport pathway of a human zinc transporter ZIP4. FASEB J 2019; 34:237-247. [PMID: 31914589 DOI: 10.1096/fj.201902043r] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 01/18/2023]
Abstract
Metal clusters are exploited by numerous metalloenzymes for catalysis, but it is not common to utilize a metal cluster for substrate transport across membrane. The recent crystal structure of a prototypic Zrt-/Irt-like protein (ZIP) metal transporter from Bordetella bronchiseptica (BbZIP) revealed an unprecedented binuclear metal center (BMC) within the transport pathway. Here, through a combination of bioinformatics, biochemical and structural approaches, we concluded that the two physically associated metal-binding sites in the BMC of human ZIP4 (hZIP4) zinc transporter exert different functions: one conserved transition metal-binding site acts as the transport site essential for activity, whereas the variable metal-binding site is required for hZIP4's optimal activity presumably by serving as a secondary transport site and modulating the properties of the primary transport site. Sequential soaking experiments on BbZIP crystals clarified the process of metal release from the BMC to the bulky solvent. This work provides important insights into the transport mechanism of the ZIPs broadly involved in transition metal homeostasis and signaling, and also a paradigm on a novel function of metal cluster in metalloproteins.
Collapse
Affiliation(s)
- Tuo Zhang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Dexin Sui
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Chi Zhang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Logan Cole
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Jian Hu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.,Department of Chemistry, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
54
|
Ohashi W, Hara T, Takagishi T, Hase K, Fukada T. Maintenance of Intestinal Epithelial Homeostasis by Zinc Transporters. Dig Dis Sci 2019; 64:2404-2415. [PMID: 30830525 DOI: 10.1007/s10620-019-05561-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/22/2019] [Indexed: 12/12/2022]
Abstract
Zinc is an essential micronutrient for normal organ function, and dysregulation of zinc metabolism has been implicated in a wide range of diseases. Emerging evidence has revealed that zinc transporters play diverse roles in cellular homeostasis and function by regulating zinc trafficking via organelles or the plasma membrane. In the gastrointestinal tract, zinc deficiency leads to diarrhea and dysfunction of intestinal epithelial cells. Studies also showed that zinc transporters are very important in intestinal epithelial homeostasis. In this review, we describe the physiological roles of zinc transporters in intestinal epithelial functions and relevance of zinc transporters in gastrointestinal diseases.
Collapse
Affiliation(s)
- Wakana Ohashi
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Takafumi Hara
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamabouji, Yamashiro, Tokushima, 770-8055, Japan
| | - Teruhisa Takagishi
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamabouji, Yamashiro, Tokushima, 770-8055, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Toshiyuki Fukada
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamabouji, Yamashiro, Tokushima, 770-8055, Japan.
- Division of Pathology, Department of Oral Diagnostic Sciences, School of dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
- RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0042, Japan.
| |
Collapse
|
55
|
Grilz-Seger G, Neuditschko M, Ricard A, Velie B, Lindgren G, Mesarič M, Cotman M, Horna M, Dobretsberger M, Brem G, Druml T. Genome-Wide Homozygosity Patterns and Evidence for Selection in a Set of European and Near Eastern Horse Breeds. Genes (Basel) 2019; 10:genes10070491. [PMID: 31261764 PMCID: PMC6679042 DOI: 10.3390/genes10070491] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 01/10/2023] Open
Abstract
Intensive artificial and natural selection have shaped substantial variation among European horse breeds. Whereas most equine selection signature studies employ divergent genetic population structures in order to derive specific inter-breed targets of selection, we screened a total of 1476 horses originating from 12 breeds for the loss of genetic diversity by runs of homozygosity (ROH) utilizing a 670,000 single nucleotide polymorphism (SNP) genotyping array. Overlapping homozygous regions (ROH islands) indicating signatures of selection were identified by breed and similarities/dissimilarities between populations were evaluated. In the entire dataset, 180 ROH islands were identified, whilst 100 islands were breed specific, all other overlapped in 36 genomic regions with at least one ROH island of another breed. Furthermore, two ROH hot spots were determined at horse chromosome 3 (ECA3) and ECA11. Besides the confirmation of previously documented target genes involved in selection for coat color (MC1R, STX17, ASIP), body size (LCORL/NCAPG, ZFAT, LASP1, HMGA2), racing ability (PPARGC1A), behavioral traits (GRIN2B, NTM/OPCML) and gait patterns (DMRT3), several putative target genes related to embryonic morphogenesis (HOXB), energy metabolism (IGFBP-1, IGFBP-3), hair follicle morphogenesis (KRT25, KRT27, INTU) and autophagy (RALB) were highlighted. Furthermore, genes were pinpointed which might be involved in environmental adaptation of specific habitats (UVSSA, STXBP4, COX11, HLF, MMD).
Collapse
Affiliation(s)
- Gertrud Grilz-Seger
- Institute of Animal Breeding and Genetics, University of Veterinary Sciences Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Markus Neuditschko
- Agroscope, Swiss National Stud Farm, Les Longs Prés, CH-1580 Avenches, Switzerland.
| | - Anne Ricard
- UMR 1313 Génétique Animale et Biologie Intégrative, Institut National de la Recherche Agronomique, Domaine de Vilvert, Bat 211, 78352 Jouy-en-Josas, France.
| | - Brandon Velie
- Department of Animal Breeding & Genetics, Swedish University of Agricultural Sciences, Ulls väg 26, 750 07 Uppsala, Sweden.
- School of Life and Environmental Sciences, University of Sydney, Eastern Ave, 2006 NSW Sydney, Australia.
| | - Gabriella Lindgren
- Department of Animal Breeding & Genetics, Swedish University of Agricultural Sciences, Ulls väg 26, 750 07 Uppsala, Sweden.
- Livestock Genetics, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium.
| | - Matjaz Mesarič
- Clinic for Reproduction and Large Animals, University of Ljubljana, Veterinary, Faculty, Cesta v Mestni log 47, 1000 Ljubljana, Slovenia.
| | - Marko Cotman
- Institute for Preclinical Sciences, University of Ljubljana, Veterinary Faculty, Gerbičeva 60, 1000 Ljubljana, Slovenia.
| | - Michaela Horna
- Department of Animal Husbandry, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia.
| | - Max Dobretsberger
- Institute of Animal Breeding and Genetics, University of Veterinary Sciences Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Gottfried Brem
- Institute of Animal Breeding and Genetics, University of Veterinary Sciences Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Thomas Druml
- Institute of Animal Breeding and Genetics, University of Veterinary Sciences Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
56
|
Qiu Y, Gao Y, Yu D, Zhong L, Cai W, Ji J, Geng F, Tang G, Zhang H, Cao J, Zhang J, Zhang S. Genome-Wide Analysis Reveals Zinc Transporter ZIP9 Regulated by DNA Methylation Promotes Radiation-Induced Skin Fibrosis via the TGF-β Signaling Pathway. J Invest Dermatol 2019; 140:94-102.e7. [PMID: 31254515 DOI: 10.1016/j.jid.2019.04.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/16/2019] [Accepted: 04/29/2019] [Indexed: 01/12/2023]
Abstract
Radiation-induced skin fibrosis is a detrimental and chronic disorder that occurs after radiation exposure. DNA methylation has been characterized as an important regulatory mechanism of multiple pathological processes. In this study, we compared the genome-wide DNA methylation status in radiation-induced fibrotic skin and adjacent normal tissues of rats by methylated DNA immunoprecipitation sequencing. Radiation-induced fibrotic skin showed differentially methylated regions associated with 3,650 protein-coding genes, 72 microRNAs, 5,836 long noncoding RNAs and 3 piwi-interacting RNAs. By integrating the mRNA and methylation profiles, the zinc transporter SLC39A9/ZIP9 was investigated in greater detail. The protein level of ZIP9 was increased in irradiated skin tissues of humans, monkeys, and rats, especially in radiogenic fibrotic skin tissues. Radiation induced the demethylation of a CpG dinucleotide in exon 1 of ZIP9 that resulted in recruitment of the transcriptional factor Sp1 and increased ZIP9 expression. Overexpression of ZIP9 resulted in activation of the profibrotic transforming growth factor-β signaling pathway through protein kinase B in human fibroblasts. In addition, radiation-induced skin fibrosis was associated with increased zinc accumulation. The zinc chelator N,N,N',N'-tetrakis(2-pyridylmethyl)-1,2-ethylenediamine abrogated ZIP9-induced activation of the transforming growth factor-β signaling pathway and attenuated radiation-induced skin fibrosis in a rat model. In summary, our findings illustrate epigenetic regulation of ZIP9 and its critical role in promoting radiation-induced skin fibrosis.
Collapse
Affiliation(s)
- Yuyou Qiu
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yiying Gao
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Daojiang Yu
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China; The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Li Zhong
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Weichao Cai
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiang Ji
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Fenghao Geng
- Radiation Medicine Department of Institute of Preventive Medicine, Fourth Military Medical University, Xi'an, China
| | - Guangyu Tang
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huojun Zhang
- Department of Radiation Oncology, Shanghai Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Jianping Cao
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China; The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Zhang
- Radiation Medicine Department of Institute of Preventive Medicine, Fourth Military Medical University, Xi'an, China.
| | - Shuyu Zhang
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China; Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China.
| |
Collapse
|
57
|
Zinc Attenuates the Cytotoxicity of Some Stimuli by Reducing Endoplasmic Reticulum Stress in Hepatocytes. Int J Mol Sci 2019; 20:ijms20092192. [PMID: 31058829 PMCID: PMC6540033 DOI: 10.3390/ijms20092192] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/28/2019] [Accepted: 05/02/2019] [Indexed: 01/01/2023] Open
Abstract
Zinc is an essential trace element and plays critical roles in cellular integrity and biological functions. Excess copper induced both oxidative stress and endoplasmic reticulum (ER) stress in liver-derived cultured cells. Excess copper also induced impairment of autophagic flux at the step of autophagosome–lysosome fusion, as well as Mallory–Denk body (MDB)-like inclusion body formation. Zinc ameliorated excess copper-induced impairment of autophagic flux and MDB-like inclusion body formation via the maintenance of ER homeostasis. Furthermore, zinc also ameliorated free fatty acid-induced impairment of autophagic flux. These results indicate that zinc may be able to protect hepatocytes from various ER stress-related conditions.
Collapse
|
58
|
Kim SS, Dai C, Hormozdiari F, van de Geijn B, Gazal S, Park Y, O'Connor L, Amariuta T, Loh PR, Finucane H, Raychaudhuri S, Price AL. Genes with High Network Connectivity Are Enriched for Disease Heritability. Am J Hum Genet 2019; 104:896-913. [PMID: 31051114 PMCID: PMC6506868 DOI: 10.1016/j.ajhg.2019.03.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/20/2019] [Indexed: 12/13/2022] Open
Abstract
Recent studies have highlighted the role of gene networks in disease biology. To formally assess this, we constructed a broad set of pathway, network, and pathway+network annotations and applied stratified LD score regression to 42 diseases and complex traits (average N = 323K) to identify enriched annotations. First, we analyzed 18,119 biological pathways. We identified 156 pathway-trait pairs whose disease enrichment was statistically significant (FDR < 5%) after conditioning on all genes and 75 known functional annotations (from the baseline-LD model), a stringent step that greatly reduced the number of pathways detected; most significant pathway-trait pairs were previously unreported. Next, for each of four published gene networks, we constructed probabilistic annotations based on network connectivity. For each gene network, the network connectivity annotation was strongly significantly enriched. Surprisingly, the enrichments were fully explained by excess overlap between network annotations and regulatory annotations from the baseline-LD model, validating the informativeness of the baseline-LD model and emphasizing the importance of accounting for regulatory annotations in gene network analyses. Finally, for each of the 156 enriched pathway-trait pairs, for each of the four gene networks, we constructed pathway+network annotations by annotating genes with high network connectivity to the input pathway. For each gene network, these pathway+network annotations were strongly significantly enriched for the corresponding traits. Once again, the enrichments were largely explained by the baseline-LD model. In conclusion, gene network connectivity is highly informative for disease architectures, but the information in gene networks may be subsumed by regulatory annotations, emphasizing the importance of accounting for known annotations.
Collapse
Affiliation(s)
- Samuel S Kim
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Chengzhen Dai
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Farhad Hormozdiari
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Bryce van de Geijn
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Steven Gazal
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Yongjin Park
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Luke O'Connor
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Program in Bioinformatics and Integrative Genomics, Harvard University, Cambridge, MA 02138, USA
| | - Tiffany Amariuta
- Program in Bioinformatics and Integrative Genomics, Harvard University, Cambridge, MA 02138, USA
| | - Po-Ru Loh
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hilary Finucane
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Soumya Raychaudhuri
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Alkes L Price
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
59
|
Turan B. A Brief Overview from the Physiological and Detrimental Roles of Zinc Homeostasis via Zinc Transporters in the Heart. Biol Trace Elem Res 2019; 188:160-176. [PMID: 30091070 DOI: 10.1007/s12011-018-1464-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/26/2018] [Indexed: 12/15/2022]
Abstract
Zinc (mostly as free/labile Zn2+) is an essential structural constituent of many proteins, including enzymes in cellular signaling pathways via functioning as an important signaling molecule in mammalian cells. In cardiomyocytes at resting condition, intracellular labile Zn2+ concentration ([Zn2+]i) is in the nanomolar range, whereas it can increase dramatically under pathological conditions, including hyperglycemia, but the mechanisms that affect its subcellular redistribution is not clear. Therefore, overall, very little is known about the precise mechanisms controlling the intracellular distribution of labile Zn2+, particularly via Zn2+ transporters during cardiac function under both physiological and pathophysiological conditions. Literature data demonstrated that [Zn2+]i homeostasis in mammalian cells is primarily coordinated by Zn2+ transporters classified as ZnTs (SLC30A) and ZIPs (SLC39A). To identify the molecular mechanisms of diverse functions of labile Zn2+ in the heart, the recent studies focused on the discovery of subcellular localization of these Zn2+ transporters in parallel to the discovery of novel physiological functions of [Zn2+]i in cardiomyocytes. The present review summarizes the current understanding of the role of [Zn2+]i changes in cardiomyocytes under pathological conditions, and under high [Zn2+]i and how Zn2+ transporters are important for its subcellular redistribution. The emerging importance and the promise of some Zn2+ transporters for targeted cardiac therapy against pathological stimuli are also provided. Taken together, the review clearly outlines cellular control of cytosolic Zn2+ signaling by Zn2+ transporters, the role of Zn2+ transporters in heart function under hyperglycemia, the role of Zn2+ under increased oxidative stress and ER stress, and their roles in cancer are discussed.
Collapse
Affiliation(s)
- Belma Turan
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey.
| |
Collapse
|
60
|
Essential Role of Zinc and Zinc Transporters in Myeloid Cell Function and Host Defense against Infection. J Immunol Res 2018; 2018:4315140. [PMID: 30417019 PMCID: PMC6207864 DOI: 10.1155/2018/4315140] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/27/2018] [Indexed: 12/19/2022] Open
Abstract
Zinc is an essential micronutrient known to play a vital role in host defense against pathogens. Diets that are deficient in zinc lead to impaired immunity and delayed recovery from and worse outcomes following infection. Sustained insufficient zinc intake leads to dysregulation of the innate immune response and increases susceptibility to infection whereas zinc supplementation in at-risk populations has been shown to restore host defense and reduce pathogen-related morbidity and mortality. Upon infection, zinc deficiency leads to increased pathology due to imbalance in key signaling networks that result in excessive inflammation and collateral tissue damage. In particular, zinc impacts macrophage function, a critical front-line cell in host defense, in addition to other immune cells. Deficits in zinc adversely impact macrophage function resulting in dysregulation of phagocytosis, intracellular killing, and cytokine production. An additional work in this field has revealed a vital role for several zinc transporter proteins that are required for proper bioredistribution of zinc within mononuclear cells to achieve an optimal immune response against invading microorganisms. In this review, we will discuss the most recent developments regarding zinc's role in innate immunity and protection against pathogen invasion.
Collapse
|
61
|
How cellular Zn 2+ signaling drives physiological functions. Cell Calcium 2018; 75:53-63. [PMID: 30145429 DOI: 10.1016/j.ceca.2018.08.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 01/10/2023]
Abstract
Zinc is an essential micronutrient affecting many aspects of human health. Cellular Zn2+ homeostasis is critical for cell function and survival. Zn2+, acting as a first or second messenger, triggers signaling pathways that mediate the physiological roles of Zn2+. Transient changes in Zn2+ concentrations within the cell or in the extracellular region occur following its release from Zn2+ binding metallothioneins, its transport across membranes by the ZnT or ZIP transporters, or release of vesicular Zn2+. These transients activate a distinct Zn2+ sensing receptor, ZnR/GPR39, or modulate numerous proteins and signaling pathways. Importantly, Zn2+ signaling regulates cellular physiological functions such as: proliferation, differentiation, ion transport and secretion. Indeed, novel therapeutic approaches aimed to maintain Zn2+ homeostasis and signaling are evolving. This review focuses on recent findings describing roles of Zn2+ and its transporters in regulating physiological or pathological processes.
Collapse
|
62
|
Bowers K, Srai SKS. The trafficking of metal ion transporters of the Zrt- and Irt-like protein family. Traffic 2018; 19:813-822. [PMID: 29952128 DOI: 10.1111/tra.12602] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 12/28/2022]
Abstract
Metal ion transporters of the Zrt- and Irt-like protein (ZIP, or SLC39A) family transport zinc, iron, manganese and/or cadmium across cellular membranes and into the cytosol. The 14 human ZIP family proteins are expressed in a wide variety of tissues and function in many different cellular processes. Many of these proteins (including ZIP1, 2, 3, 4, 5, 6/10, 8, 9, 11, 12, 14) are situated, at least some of the time, on the plasma membrane, where they mediate metal ion uptake into cells. Their level on the cell surface can be controlled rapidly via protein trafficking in response to the ions they transport. For example, the cell surface level of many ZIPs (including ZIP1, 3, 4, 8 and 12) is mediated by the available concentration of zinc. Zinc depletion causes a decrease in endocytosis and degradation, resulting in more ZIP on the surface to take up the essential ion. ZIP levels on the cell surface are a balance between endocytosis, recycling and degradation. We review the trafficking mechanisms of human ZIP proteins, highlighting possible targeting motifs and suggesting a model of zinc-mediated endocytic trafficking. We also provide two possible models for ZIP14 trafficking and degradation.
Collapse
Affiliation(s)
- Katherine Bowers
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Surjit K S Srai
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| |
Collapse
|
63
|
Affiliation(s)
- Toshiyuki Fukada
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan.
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo 142-8555, Japan.
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0042, Japan.
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
64
|
The Role of the Slc39a Family of Zinc Transporters in Zinc Homeostasis in Skin. Nutrients 2018; 10:nu10020219. [PMID: 29462920 PMCID: PMC5852795 DOI: 10.3390/nu10020219] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/27/2018] [Accepted: 02/11/2018] [Indexed: 12/20/2022] Open
Abstract
The first manifestations that appear under zinc deficiency are skin defects such as dermatitis, alopecia, acne, eczema, dry, and scaling skin. Several genetic disorders including acrodermatitis enteropathica (also known as Danbolt-Closs syndrome) and Brandt's syndrome are highly related to zinc deficiency. However, the zinc-related molecular mechanisms underlying normal skin development and homeostasis, as well as the mechanism by which disturbed zinc homeostasis causes such skin disorders, are unknown. Recent genomic approaches have revealed the physiological importance of zinc transporters in skin formation and clarified their functional impairment in cutaneous pathogenesis. In this review, we provide an overview of the relationships between zinc deficiency and skin disorders, focusing on the roles of zinc transporters in the skin. We also discuss therapeutic outlooks and advantages of controlling zinc levels via zinc transporters to prevent cutaneous disorganization.
Collapse
|
65
|
Hershfinkel M. The Zinc Sensing Receptor, ZnR/GPR39, in Health and Disease. Int J Mol Sci 2018; 19:ijms19020439. [PMID: 29389900 PMCID: PMC5855661 DOI: 10.3390/ijms19020439] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 02/07/2023] Open
Abstract
A distinct G-protein coupled receptor that senses changes in extracellular Zn2+, ZnR/GPR39, was found in cells from tissues in which Zn2+ plays a physiological role. Most prominently, ZnR/GPR39 activity was described in prostate cancer, skin keratinocytes, and colon epithelial cells, where zinc is essential for cell growth, wound closure, and barrier formation. ZnR/GPR39 activity was also described in neurons that are postsynaptic to vesicular Zn2+ release. Activation of ZnR/GPR39 triggers Gαq-dependent signaling and subsequent cellular pathways associated with cell growth and survival. Furthermore, ZnR/GPR39 was shown to regulate the activity of ion transport mechanisms that are essential for the physiological function of epithelial and neuronal cells. Thus, ZnR/GPR39 provides a unique target for therapeutically modifying the actions of zinc in a specific and selective manner.
Collapse
Affiliation(s)
- Michal Hershfinkel
- Department of Physiology and Cell Biology and The Zlotowski Center for Neuroscience, Faculty of Health Sciences, POB 653, Ben-Gurion Ave. Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|