51
|
Older Adults with Physical Frailty and Sarcopenia Show Increased Levels of Circulating Small Extracellular Vesicles with a Specific Mitochondrial Signature. Cells 2020; 9:cells9040973. [PMID: 32326435 PMCID: PMC7227017 DOI: 10.3390/cells9040973] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 01/23/2023] Open
Abstract
Mitochondrial dysfunction and systemic inflammation are major factors in the development of sarcopenia, but the molecular determinants linking the two mechanisms are only partially understood. The study of extracellular vesicle (EV) trafficking may provide insights into this relationship. Circulating small EVs (sEVs) from serum of 11 older adults with physical frailty and sarcopenia (PF&S) and 10 controls were purified and characterized. Protein levels of three tetraspanins (CD9, CD63, and CD81) and selected mitochondrial markers, including adenosine triphosphate 5A (ATP5A), mitochondrial cytochrome C oxidase subunit I (MTCOI), nicotinamide adenine dinucleotide reduced form (NADH):ubiquinone oxidoreductase subunit B8 (NDUFB8), NADH:ubiquinone oxidoreductase subunit S3 (NDUFS3), succinate dehydrogenase complex iron sulfur subunit B (SDHB), and ubiquinol-cytochrome C reductase core protein 2 (UQCRC2) were quantified by Western immunoblotting. Participants with PF&S showed higher levels of circulating sEVs relative to controls. Protein levels of CD9 and CD63 were lower in the sEV fraction of PF&S older adults, while CD81 was unvaried between groups. In addition, circulating sEVs from PF&S participants had lower amounts of ATP5A, NDUFS3, and SDHB. No signal was detected for MTCOI, NDUFB8, or UQCRC2 in either participant group. Our findings indicate that, in spite of increased sEV secretion, lower amounts of mitochondrial components are discarded through EV in older adults with PF&S. In-depth analysis of EV trafficking might open new venues for biomarker discovery and treatment development for PF&S.
Collapse
|
52
|
Pesce V, Lezza AMS. mtDNA and Mitochondrial Stress Signaling in Human Diseases: A Special Issue. Int J Mol Sci 2020; 21:ijms21072617. [PMID: 32283804 PMCID: PMC7178107 DOI: 10.3390/ijms21072617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 02/08/2023] Open
Abstract
The completion of the Special Issue dedicated to "mtDNA and mitochondrial stress signaling in human diseases" requests a final overall look to highlight the most valuable findings among the many presented data [...].
Collapse
Affiliation(s)
- Vito Pesce
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona, 4, 70125 Bari, Italy;
| | - Angela Maria Serena Lezza
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona, 4, 70125 Bari, Italy;
- Correspondence: ; Tel.: +39-080-5443309
| |
Collapse
|
53
|
Picca A, Ronconi D, Coelho-Junior HJ, Calvani R, Marini F, Biancolillo A, Gervasoni J, Primiano A, Pais C, Meloni E, Fusco D, Lo Monaco MR, Bernabei R, Cipriani MC, Marzetti E, Liperoti R. The "develOpment of metabolic and functional markers of Dementia IN Older people" (ODINO) Study: Rationale, Design and Methods. J Pers Med 2020; 10:E22. [PMID: 32283734 PMCID: PMC7354545 DOI: 10.3390/jpm10020022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 02/06/2023] Open
Abstract
Mild cognitive impairment (MCI), also termed mild neurocognitive disorder, includes a heterogeneous group of conditions characterized by declines in one or more cognitive domains greater than that expected during "normal" aging but not severe enough to impair functional abilities. MCI has been associated with an increased risk of developing dementia and even considered an early stage of it. Therefore, noninvasively accessible biomarkers of MCI are highly sought after for early identification of the condition. Systemic inflammation, metabolic perturbations, and declining physical performance have been described in people with MCI. However, whether biological and functional parameters differ across MCI neuropsychological subtypes is presently debated. Likewise, the predictive value of existing biomarkers toward MCI conversion into dementia is unclear. The "develOpment of metabolic and functional markers of Dementia IN Older people" (ODINO) study was conceived as a multi-dimensional investigation in which multi-marker discovery will be coupled with innovative statistical approaches to characterize patterns of systemic inflammation, metabolic perturbations, and physical performance in older adults with MCI. The ultimate aim of ODINO is to identify potential biomarkers specific for MCI subtypes and predictive of MCI conversion into Alzheimer's disease or other forms of dementia over a three-year follow-up. Here, we describe the rationale, design, and methods of ODINO.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (R.C.); (J.G.); (A.P.); (C.P.); (E.M.); (D.F.); (M.R.L.M.); (M.C.C.); (R.L.)
| | - Daniela Ronconi
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.); (H.J.C.-J.)
| | | | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (R.C.); (J.G.); (A.P.); (C.P.); (E.M.); (D.F.); (M.R.L.M.); (M.C.C.); (R.L.)
| | - Federico Marini
- Department of Chemistry, Sapienza Università di Roma, 00185 Rome, Italy;
| | - Alessandra Biancolillo
- Department of Physical and Chemical Sciences, Università degli Studi dell’Aquila, 67100 L’Aquila, Italy;
| | - Jacopo Gervasoni
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (R.C.); (J.G.); (A.P.); (C.P.); (E.M.); (D.F.); (M.R.L.M.); (M.C.C.); (R.L.)
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.); (H.J.C.-J.)
| | - Aniello Primiano
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (R.C.); (J.G.); (A.P.); (C.P.); (E.M.); (D.F.); (M.R.L.M.); (M.C.C.); (R.L.)
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.); (H.J.C.-J.)
| | - Cristina Pais
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (R.C.); (J.G.); (A.P.); (C.P.); (E.M.); (D.F.); (M.R.L.M.); (M.C.C.); (R.L.)
| | - Eleonora Meloni
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (R.C.); (J.G.); (A.P.); (C.P.); (E.M.); (D.F.); (M.R.L.M.); (M.C.C.); (R.L.)
| | - Domenico Fusco
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (R.C.); (J.G.); (A.P.); (C.P.); (E.M.); (D.F.); (M.R.L.M.); (M.C.C.); (R.L.)
| | - Maria Rita Lo Monaco
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (R.C.); (J.G.); (A.P.); (C.P.); (E.M.); (D.F.); (M.R.L.M.); (M.C.C.); (R.L.)
| | - Roberto Bernabei
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (R.C.); (J.G.); (A.P.); (C.P.); (E.M.); (D.F.); (M.R.L.M.); (M.C.C.); (R.L.)
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.); (H.J.C.-J.)
| | - Maria Camilla Cipriani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (R.C.); (J.G.); (A.P.); (C.P.); (E.M.); (D.F.); (M.R.L.M.); (M.C.C.); (R.L.)
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (R.C.); (J.G.); (A.P.); (C.P.); (E.M.); (D.F.); (M.R.L.M.); (M.C.C.); (R.L.)
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.); (H.J.C.-J.)
| | - Rosa Liperoti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (R.C.); (J.G.); (A.P.); (C.P.); (E.M.); (D.F.); (M.R.L.M.); (M.C.C.); (R.L.)
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.); (H.J.C.-J.)
| |
Collapse
|
54
|
Vieira SRL, Toffoli M, Campbell P, Schapira AHV. Biofluid Biomarkers in Parkinson's Disease: Clarity Amid Controversy. Mov Disord 2020; 35:1128-1133. [PMID: 32220025 DOI: 10.1002/mds.28030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/21/2020] [Accepted: 03/03/2020] [Indexed: 01/15/2023] Open
Affiliation(s)
- Sophia R L Vieira
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Marco Toffoli
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Philip Campbell
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
55
|
Picca A, Calvani R, Coelho-Junior HJ, Landi F, Bernabei R, Marzetti E. Inter-Organelle Membrane Contact Sites and Mitochondrial Quality Control during Aging: A Geroscience View. Cells 2020; 9:cells9030598. [PMID: 32138154 PMCID: PMC7140483 DOI: 10.3390/cells9030598] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial dysfunction and failing mitochondrial quality control (MQC) are major determinants of aging. Far from being standalone organelles, mitochondria are intricately related with cellular other compartments, including lysosomes. The intimate relationship between mitochondria and lysosomes is reflected by the fact that lysosomal degradation of dysfunctional mitochondria is the final step of mitophagy. Inter-organelle membrane contact sites also allow bidirectional communication between mitochondria and lysosomes as part of nondegradative pathways. This interaction establishes a functional unit that regulates metabolic signaling, mitochondrial dynamics, and, hence, MQC. Contacts of mitochondria with the endoplasmic reticulum (ER) have also been described. ER-mitochondrial interactions are relevant to Ca2+ homeostasis, transfer of phospholipid precursors to mitochondria, and integration of apoptotic signaling. Many proteins involved in mitochondrial contact sites with other organelles also participate to degradative MQC pathways. Hence, a comprehensive assessment of mitochondrial dysfunction during aging requires a thorough evaluation of degradative and nondegradative inter-organelle pathways. Here, we present a geroscience overview on (1) degradative MQC pathways, (2) nondegradative processes involving inter-organelle tethering, (3) age-related changes in inter-organelle degradative and nondegradative pathways, and (4) relevance of MQC failure to inflammaging and age-related conditions, with a focus on Parkinson’s disease as a prototypical geroscience condition.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.L.); (E.M.)
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.L.); (E.M.)
- Correspondence: (R.C.); (R.B.); Tel.: +39-(06)-3015-5559 (R.C. & R.B.); Fax: +39-(06)-3051-911 (R.C. & R.B.)
| | - Hélio José Coelho-Junior
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Francesco Landi
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.L.); (E.M.)
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Roberto Bernabei
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.L.); (E.M.)
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Correspondence: (R.C.); (R.B.); Tel.: +39-(06)-3015-5559 (R.C. & R.B.); Fax: +39-(06)-3051-911 (R.C. & R.B.)
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.L.); (E.M.)
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
56
|
Tatullo M, Marrelli B, Zullo MJ, Codispoti B, Paduano F, Benincasa C, Fortunato F, Scacco S, Zavan B, Cocco T. Exosomes from Human Periapical Cyst-MSCs: Theranostic Application in Parkinson's Disease. Int J Med Sci 2020; 17:657-663. [PMID: 32210716 PMCID: PMC7085217 DOI: 10.7150/ijms.41515] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/08/2020] [Indexed: 12/17/2022] Open
Abstract
The scientific community continuously strives to get new disease models, to discover early markers or novel therapeutic approaches, improving the diagnosis and prognosis of several human pathologies. Parkinson's Disease (PD) is characterized by a long asymptomatic phase, characterized by a selective loss of dopaminergic neurons. Recently, the human Periapical Cyst-Mesenchymal Stem Cells (hPCy-MSCs) have been differentiated in functional dopaminergic neurons: such oral-derived MSCs and the hPCy-MSCs-derived exosomes may represent a strategic and useful in vitro study-model, as well as intriguing therapeutic carriers. Circadian rhythm (CR) alteration variously impacts on PD pathways: an interesting research target is represented by the analysis of the exosomes released by dopaminergic neurons, derived from neural-differentiated hPCy-MSCs, after having reproduced in-vitro PD-like conditions. This review aims to describe the crosstalk among some aspects of circadian rhythm related to the onset of PD and the exosomes released by cells of PD patients. More in detail: the first part of this article will describe the main characteristics of circadian rhythm and the involvement of the exosomes found to be effective in the pathogenesis of PD. Finally, the authors will suggest how those exosomes derived from dopaminergic neurons, obtained by oral-derived stem cells (hPCy-MSCs) may represent a smart model for the in vitro research on PD, to find new biomarkers, to test new drugs or, fatally, to find new pathways applicable in future therapeutic approaches.
Collapse
Affiliation(s)
- Marco Tatullo
- Marrelli Health - Tecnologica Research Institute, Biomedical Section, Street E. Fermi, Crotone, Italy
- Department of Therapeutic Dentistry, Sechenov University Russia, Moscow, Russia
| | - Benedetta Marrelli
- Marrelli Health - Tecnologica Research Institute, Biomedical Section, Street E. Fermi, Crotone, Italy
- Department of Therapeutic Dentistry, Sechenov University Russia, Moscow, Russia
| | - Maria Josephine Zullo
- Department of Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Bruna Codispoti
- Marrelli Health - Tecnologica Research Institute, Biomedical Section, Street E. Fermi, Crotone, Italy
| | - Francesco Paduano
- Marrelli Health - Tecnologica Research Institute, Biomedical Section, Street E. Fermi, Crotone, Italy
| | - Caterina Benincasa
- Marrelli Health - Tecnologica Research Institute, Biomedical Section, Street E. Fermi, Crotone, Italy
| | - Francesco Fortunato
- Department of Neurological Sciences, University of Catanzaro “Magna Graecia”, Italy
| | - Salvatore Scacco
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, Italy
| | - Barbara Zavan
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Tiziana Cocco
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, Italy
| |
Collapse
|
57
|
Picca A, Guerra F, Calvani R, Marini F, Biancolillo A, Landi G, Beli R, Landi F, Bernabei R, Bentivoglio AR, Lo Monaco MR, Bucci C, Marzetti E. Mitochondrial Signatures in Circulating Extracellular Vesicles of Older Adults with Parkinson's Disease: Results from the EXosomes in PArkiNson's Disease (EXPAND) Study. J Clin Med 2020; 9:jcm9020504. [PMID: 32059608 PMCID: PMC7074517 DOI: 10.3390/jcm9020504] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/06/2020] [Accepted: 02/09/2020] [Indexed: 02/07/2023] Open
Abstract
Systemic inflammation and mitochondrial dysfunction are involved in neurodegeneration in Parkinson’s disease (PD). Extracellular vesicle (EV) trafficking may link inflammation and mitochondrial dysfunction. In the present study, circulating small EVs (sEVs) from 16 older adults with PD and 12 non-PD controls were purified and characterized. A panel of serum inflammatory biomolecules was measured by multiplex immunoassay. Protein levels of three tetraspanins (CD9, CD63, and CD81) and selected mitochondrial markers (adenosine triphosphate 5A (ATP5A), mitochondrial cytochrome C oxidase subunit I (MTCOI), nicotinamide adenine dinucleotide reduced form (NADH):ubiquinone oxidoreductase subunit B8 (NDUFB8), NADH:ubiquinone oxidoreductase subunit S3 (NDUFS3), succinate dehydrogenase complex iron sulfur subunit B (SDHB), and ubiquinol-cytochrome C reductase core protein 2 (UQCRC2)) were quantified in purified sEVs by immunoblotting. Relative to controls, PD participants showed a greater amount of circulating sEVs. Levels of CD9 and CD63 were lower in the sEV fraction of PD participants, whereas those of CD81 were similar between groups. Lower levels of ATP5A, NDUFS3, and SDHB were detected in sEVs from PD participants. No signal was retrieved for UQCRC2, MTCOI, or NDUFB8 in either participant group. To identify a molecular signature in circulating sEVs in relationship to systemic inflammation, a low level-fused (multi-platform) partial least squares discriminant analysis was applied. The model correctly classified 94.2% ± 6.1% PD participants and 66.7% ± 5.4% controls, and identified seven biomolecules as relevant (CD9, NDUFS3, C-reactive protein, fibroblast growth factor 21, interleukin 9, macrophage inflammatory protein 1β, and tumor necrosis factor alpha). In conclusion, a mitochondrial signature was identified in circulating sEVs from older adults with PD, in association with a specific inflammatory profile. In-depth characterization of sEV trafficking may allow identifying new biomarkers for PD and possible targets for personalized interventions.
Collapse
Affiliation(s)
- Anna Picca
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (F.L.); (R.B.); (E.M.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (G.L.); (A.R.B.); (M.R.L.M.)
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy; (F.G.); (R.B.)
| | - Riccardo Calvani
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (F.L.); (R.B.); (E.M.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (G.L.); (A.R.B.); (M.R.L.M.)
- Correspondence: (R.C.); (C.B.); Tel.: +39-06-3015-5559 (R.C.); +39-08-3229-8900 (C.B.); Fax: +39-06-3051-911 (R.C.); +39-08-3229-8941 (C.B.)
| | - Federico Marini
- Department of Chemistry, Sapienza Università di Roma, 00185 Rome, Italy;
| | - Alessandra Biancolillo
- Department of Physical and Chemical Sciences, Università degli Studi dell’Aquila, 67100 L’Aquila, Italy;
| | - Giovanni Landi
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (G.L.); (A.R.B.); (M.R.L.M.)
| | - Raffaella Beli
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy; (F.G.); (R.B.)
| | - Francesco Landi
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (F.L.); (R.B.); (E.M.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (G.L.); (A.R.B.); (M.R.L.M.)
| | - Roberto Bernabei
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (F.L.); (R.B.); (E.M.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (G.L.); (A.R.B.); (M.R.L.M.)
| | - Anna Rita Bentivoglio
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (G.L.); (A.R.B.); (M.R.L.M.)
- Institute of Neurology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Rita Lo Monaco
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (G.L.); (A.R.B.); (M.R.L.M.)
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy; (F.G.); (R.B.)
- Correspondence: (R.C.); (C.B.); Tel.: +39-06-3015-5559 (R.C.); +39-08-3229-8900 (C.B.); Fax: +39-06-3051-911 (R.C.); +39-08-3229-8941 (C.B.)
| | - Emanuele Marzetti
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (F.L.); (R.B.); (E.M.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (G.L.); (A.R.B.); (M.R.L.M.)
| |
Collapse
|
58
|
Gut Microbial, Inflammatory and Metabolic Signatures in Older People with Physical Frailty and Sarcopenia: Results from the BIOSPHERE Study. Nutrients 2019; 12:nu12010065. [PMID: 31887978 PMCID: PMC7019826 DOI: 10.3390/nu12010065] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022] Open
Abstract
Physical frailty and sarcopenia (PF&S) share multisystem derangements, including variations in circulating amino acids and chronic low-grade inflammation. Gut microbiota balances inflammatory responses in several conditions and according to nutritional status. Therefore, an altered gut-muscle crosstalk has been hypothesized in PF&S. We analyzed the gut microbial taxa, systemic inflammation, and metabolic characteristics of older adults with and without PF&S. An innovative multi-marker analytical approach was applied to explore the classification performance of potential biomarkers for PF&S. Thirty-five community dwellers aged 70+, 18 with PF&S, and 17 nonPF&S controls were enrolled. Sequential and Orthogonalized Covariance Selection (SO-CovSel), a multi-platform regression method developed to handle highly correlated variables, was applied. The SO-CovSel model with the best prediction ability using the smallest number of variables was built using seven mediators. The model correctly classified 91.7% participants with PF&S and 87.5% nonPF&S controls. Compared with the latter group, PF&S participants showed higher serum concentrations of aspartic acid, lower circulating levels of concentrations of threonine and macrophage inflammatory protein 1α, increased abundance of Oscillospira and Ruminococcus microbial taxa, and decreased abundance of Barnesiellaceae and Christensenellaceae. Future investigations are warranted to determine whether these biomediators are involved in PF&S pathophysiology and may, therefore, provide new targets for interventions.
Collapse
|
59
|
Marinaro F, Gómez-Serrano M, Jorge I, Silla-Castro JC, Vázquez J, Sánchez-Margallo FM, Blázquez R, López E, Álvarez V, Casado JG. Unraveling the Molecular Signature of Extracellular Vesicles From Endometrial-Derived Mesenchymal Stem Cells: Potential Modulatory Effects and Therapeutic Applications. Front Bioeng Biotechnol 2019; 7:431. [PMID: 31921832 PMCID: PMC6932983 DOI: 10.3389/fbioe.2019.00431] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022] Open
Abstract
Endometrial-derived Mesenchymal Stem Cells (endMSCs) are involved in the regeneration and remodeling of human endometrium, being considered one of the most promising candidates for stem cell-based therapies. Their therapeutic effects have been found to be mediated by extracellular vesicles (EV-endMSCs) with pro-angiogenic, anti-apoptotic, and immunomodulatory effects. Based on that, the main goal of this study was to characterize the proteome and microRNAome of these EV-endMSCs by proteomics and transcriptomics approaches. Additionally, we hypothesized that inflammatory priming of endMSCs may contribute to modify the therapeutic potential of these vesicles. High-throughput proteomics revealed that 617 proteins were functionally annotated as Extracellular exosome (GO:0070062), corresponding to the 70% of the EV-endMSC proteome. Bioinformatics analyses allowed us to identify that these proteins were involved in adaptive/innate immune response, complement activation, antigen processing/presentation, negative regulation of apoptosis, and different signaling pathways, among others. Of note, multiplexed quantitative proteomics and Systems Biology analyses showed that IFNγ priming significantly modulated the protein profile of these vesicles. As expected, proteins involved in antigen processing and presentation were significantly increased. Interestingly, immunomodulatory proteins, such as CSF1, ERAP1, or PYCARD were modified. Regarding miRNAs expression profile in EV-endMSCs, Next-Generation Sequencing (NGS) showed that the preferred site of microRNAome targeting was the nucleus (n = 371 microTargets), significantly affecting signal transduction (GO:0007165), cell proliferation (GO:0008283), and apoptotic processes (GO:0006915), among others. Interestingly, NGS analyses highlighted that several miRNAs, such as hsa-miR-150-5p or hsa-miR-196b-5p, were differentially expressed in IFNγ-primed EV-endMSCs. These miRNAs have a functional involvement in glucocorticoid receptor signaling, IL-6/8/12 signaling, and in the role of macrophages. In summary, these results allowed us to understand the complexity of the molecular networks in EV-endMSCs and their potential effects on target cells. To our knowledge, this is the first comprehensive study based on proteomic and genomic approaches to unravel the therapeutic potential of these extracellular vesicles, that may be used as immunomodulatory effectors in the treatment of inflammatory conditions.
Collapse
Affiliation(s)
- Federica Marinaro
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - María Gómez-Serrano
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain.,Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.,Center for Tumor Biology and Immunology, Institute of Molecular Biology and Tumor Research, Philipps University, Marburg, Germany
| | - Inmaculada Jorge
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain.,Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Jesús Vázquez
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain.,Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Francisco Miguel Sánchez-Margallo
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Rebeca Blázquez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Esther López
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Verónica Álvarez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Javier G Casado
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| |
Collapse
|
60
|
Tatullo M, Codispoti B, Spagnuolo G, Zavan B. Human Periapical Cyst-Derived Stem Cells Can Be A Smart "Lab-on-A-Cell" to Investigate Neurodegenerative Diseases and the Related Alteration of the Exosomes' Content. Brain Sci 2019; 9:E358. [PMID: 31817546 PMCID: PMC6955839 DOI: 10.3390/brainsci9120358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
Promising researches have demonstrated that the alteration of biological rhythms may be consistently linked to neurodegenerative pathologies. Parkinson's disease (PD) has a multifactorial pathogenesis, involving both genetic and environmental and/or molecular co-factors. Generally, heterogeneous alterations in circadian rhythm (CR) are a typical finding in degenerative processes, such as cell aging and death. Although numerous genetic phenotypes have been discovered in the most common forms of PD, it seems that severe deficiencies in synaptic transmission and high vesicular recycling are frequently found in PD patients. Neuron-to-neuron interactions are often ensured by exosomes, a specific type of extracellular vesicle (EV). Neuron-derived exosomes may carry several active compounds, including miRNAs: Several studies have found that circulating miRNAs are closely associated with an atypical oscillation of circadian rhythm genes, and they are also involved in the regulation of clock genes, in animal models. In this context, a careful analysis of neural-differentiated Mesenchymal Stem Cells (MSCs) and the molecular and genetic characterization of their exosome content, both in healthy cells and in PD-induced cells, could be a strategic field of investigation for early diagnosis and better treatment of PD and similar neurodegenerative pathologies. A novel MSC population, called human periapical cyst-mesenchymal stem cells (hPCy-MSCs), has demonstrated that it naively expresswa the main neuronal markers, and may differentiate towards functional neurons. Therefore, hPCy-MSCs can be considered of particular interest for testing of in vitro strategies to treat neurological diseases. On the other hand, the limitations of using stem cells is an issue that leads researchers to perform experimental studies on the exosomes released by MCSs. Human periapical cyst-derived mesenkymal stem cells can be a smart "lab-on-a-cell" to investigate neurodegenerative diseases and the related exosomes' content alteration.
Collapse
Affiliation(s)
- Marco Tatullo
- Marelli Health, Tecnologica Research Institute, Stem Cell Unit, 88900 Crotone, Italy;
- Department of Therapeutic Dentistry, Sechenov University Russia, 19c1 Moscow, Russia
| | - Bruna Codispoti
- Marelli Health, Tecnologica Research Institute, Stem Cell Unit, 88900 Crotone, Italy;
| | - Gianrico Spagnuolo
- Department of Therapeutic Dentistry, Sechenov University Russia, 19c1 Moscow, Russia
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples, 80138 Napoli, Italy
| | - Barbara Zavan
- Department of Medical Sciences, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy;
| |
Collapse
|
61
|
Picca A, Calvani R, Landi G, Marini F, Biancolillo A, Gervasoni J, Persichilli S, Primiano A, Urbani A, Bossola M, Bentivoglio AR, Cesari M, Landi F, Bernabei R, Marzetti E, Lo Monaco MR. Circulating amino acid signature in older people with Parkinson's disease: A metabolic complement to the EXosomes in PArkiNson Disease (EXPAND) study. Exp Gerontol 2019; 128:110766. [PMID: 31666195 DOI: 10.1016/j.exger.2019.110766] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/18/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIM Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder in old age. Neurotoxicity of dopaminergic neurons triggered by aggregation of misfolded α-synuclein is a major pathogenic trait of PD. However, growing evidence indicates that peripheral processes, including metabolic changes, may precede and contribute to neurodegeneration. The present study was undertaken to identify a metabolic signature of PD through the quantification of serum amino acids and derivatives. PARTICIPANTS AND METHODS Twenty older adults with PD (11 men and 9 women; mean age 73.1 ± 10.2 years) and 30 age-matched controls (14 men and 16 women; mean age 74.6 ± 4.3 years) were enrolled. A panel of 37 serum amino acids and derivatives was assessed by ultra-performance liquid chromatography/mass spectrometry. Partial least squares - discriminant analysis (PLS-DA) followed by double cross-validation was used to characterize the relationship between amino acid profiles and PD. RESULTS The optimal complexity of the PLS-DA model was found to be three latent variables. The proportion of correct classifications was 99.3 ± 2.5% for participants with PD and 94.7 ± 3.0% for non-PD controls. Higher levels of β-amino butyric acid, cystine, ornithine, phosphoethanolamine, and proline defined the circulating amino acid profile of older people with PD. Controls were characterized by higher concentrations of 3-methyl-histidine, citrulline, and serine. CONCLUSION Our findings indicate the existence of a distinct metabotype in older persons with PD. Future studies will have to establish whether changes in amino acid metabolism are involved in the pathogenesis of PD. This knowledge may be harnessed to identify novel disease biomarkers as well as new targets for interventions.
Collapse
Affiliation(s)
- Anna Picca
- Università Cattolica del Sacro Cuore, Institute of Internal Medicine and Geriatrics, Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Riccardo Calvani
- Università Cattolica del Sacro Cuore, Institute of Internal Medicine and Geriatrics, Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Giovanni Landi
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Federico Marini
- Department of Chemistry, Sapienza Università di Roma, Rome, Italy
| | - Alessandra Biancolillo
- Department of Chemistry, Sapienza Università di Roma, Rome, Italy; Department of Physical and Chemical Sciences, University of L'Aquila, Italy
| | - Jacopo Gervasoni
- Università Cattolica del Sacro Cuore, Institute of Internal Medicine and Geriatrics, Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Silvia Persichilli
- Università Cattolica del Sacro Cuore, Institute of Internal Medicine and Geriatrics, Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Aniello Primiano
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Andrea Urbani
- Università Cattolica del Sacro Cuore, Institute of Internal Medicine and Geriatrics, Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Maurizio Bossola
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Institute of Clinical Surgery, Rome, Italy
| | - Anna Rita Bentivoglio
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Institute of Neurology, Rome, Italy
| | - Matteo Cesari
- Department of Clinical Sciences and Community Health, Università di Milano, Milan, Italy; Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Landi
- Università Cattolica del Sacro Cuore, Institute of Internal Medicine and Geriatrics, Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Roberto Bernabei
- Università Cattolica del Sacro Cuore, Institute of Internal Medicine and Geriatrics, Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy.
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy.
| | | |
Collapse
|
62
|
Liu W, Bai X, Zhang A, Huang J, Xu S, Zhang J. Role of Exosomes in Central Nervous System Diseases. Front Mol Neurosci 2019; 12:240. [PMID: 31636538 PMCID: PMC6787718 DOI: 10.3389/fnmol.2019.00240] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 09/19/2019] [Indexed: 12/18/2022] Open
Abstract
There are many types of intercellular communication, and extracellular vesicles are one of the important forms of this. They are released by a variety of cell types, are heterogeneous, and can roughly be divided into microvesicles and exosomes according to their occurrence and function. Of course, exosomes do not just play a role in cell-to-cell communication. In the nervous system, exosomes can participate in intercellular communication, maintain the myelin sheath, and eliminate waste. Similarly, exosomes in the brain can play a role in central nervous system diseases, such as stroke, Alzheimer's disease (AD), Parkinson's disease (PD), prion disease, and traumatic encephalopathy (CTE), with both positive and negative effects (such as the transfer of misfolded proteins). Exosomes contain a variety of key bioactive substances and can therefore be considered as a snapshot of the intracellular environment. Studies have shown that exosomes from the central nervous system can be found in cerebrospinal fluid and peripheral body fluids, and that their contents will change with disease occurrence. Because exosomes can penetrate the blood brain barrier (BBB) and are highly stable in peripheral circulation, they can protect disease-related molecules well and therefore, using exosomes as a biomarker of central nervous system diseases is an attractive prospect as they can be used to monitor disease development and enable early diagnosis and treatment optimization. In this review, we discuss the current state of knowledge of exosomes, and introduce their pathophysiological roles in different diseases of the central nervous system as well as their roles and applications as a viable pathological biomarker.
Collapse
Affiliation(s)
- Wanying Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaodan Bai
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ao Zhang
- Epidemiology, College of Global Public Health, New York University, New York, NY, United States
| | - Juanjuan Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shixin Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|