51
|
Lecas L, Nuccio S, de Vaumas R, Faure K. Off-line two-dimensional liquid chromatography separation for the quality control of saponins samples from Quillaja Saponaria. J Sep Sci 2021; 44:3070-3079. [PMID: 34165880 DOI: 10.1002/jssc.202100115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/18/2021] [Accepted: 06/16/2021] [Indexed: 11/05/2022]
Abstract
Quil-A is a purified extract of saponins with strong immunoadjuvant activity. While specific molecules have been identified and tested in clinical trials, Quil-A is mostly used as a totum of the Quillaja Saponaria bark extract. Quality control of the extract stability is usually based on the monitoring of specific saponins, whereas the comparison of samples with an initial chromatogram seems more appropriate. A reference fingerprint based on comprehensive two-dimensional liquid chromatography offers a rapid detection of nonconform samples. To fulfill quality control constraints, off-line configuration using basic instrumentation was promoted. Hence, reversed-phase liquid chromatography × reversed-phase liquid chromatography and hydrophilic interaction chromatography × reversed-phase liquid chromatography methods with ultraviolet and single-quadrupole mass spectrometry detection were kinetically optimized. The reversed-phase liquid chromatography × reversed-phase liquid chromatography method used a pH switch between dimensions to maximize orthogonality. Despite diagonalization, it led to a high peak capacity of 831 in 2 h. On the other hand, the combination of hydrophilic interaction chromatography and reversed-phase liquid chromatography offered a larger orthogonality but a lower, yet satisfactory peak capacity of 673. The advantages of both methods were illustrated on degraded samples, where the reversed-phase liquid chromatography × reversed-phase liquid chromatography contour plot highlighted the loss of fatty acid chains, while the hydrophilic interaction chromatography × reversed-phase liquid chromatography method was found useful to evidence enzymatic loss of sugar moieties.
Collapse
Affiliation(s)
- Lucile Lecas
- Institut des Sciences Analytiques, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Villeurbanne, F-69100, France.,Extrasynthese, Impasse Jacquard, Genay, F-69730, France
| | - Sylvie Nuccio
- Extrasynthese, Impasse Jacquard, Genay, F-69730, France
| | | | - Karine Faure
- Institut des Sciences Analytiques, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Villeurbanne, F-69100, France
| |
Collapse
|
52
|
Bafundo KW, Johnson AB, Mathis GF. The Effects of a Combination of Quillaja saponaria and Yucca schidigera on Eimeria spp. in Broiler Chickens. Avian Dis 2021; 64:300-304. [PMID: 33205178 DOI: 10.1637/aviandiseases-d-20-00016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/31/2020] [Indexed: 11/05/2022]
Abstract
A series of studies was carried out to determine the anticoccidial effects of a product derived from plant material sourced from Quillaja saponaria and Yucca schidigera. These plants are known to contain high concentrations of triterpenoid and steroidal saponins, substances that are known to display an array of biological effects. Battery tests involving individual Eimeria acervulina, Eimeria maxima, and Eimeria tenella infections and graded levels of a quillaja/yucca combination (QY) (0, 200, 250, and 300 ppm) were conducted. Body weight gain, coccidial lesion scores, and total oocysts per gram of feces (OPG) were used to evaluate anticoccidial effects. In addition, three floor pen trials evaluated the effects of 250 ppm QY in the control coccidial infections. The first pen trial measured the effects of 250 ppm QY, both alone and in combination with 66 ppm salinomycin (Sal), in a 2 3 2 factorial treatment arrangement. Two additional 42-day pen studies assessed the effects 250 ppm QY in birds vaccinated for coccidiosis. Data from the three battery trials indicated that at doses of 250 ppm QY or more, weight gain was improved, E. acervulina and E. tenella lesion scores were reduced, and OPG was lowered. In general, OPG was reduced by about 50% across all species by 250 and 300 ppm QY. Results of the pen study indicated that 250 ppm QY and Sal, when fed individually, reduced OPG and lesion scores and improved final performance. However, when QY and Sal were administered concurrently, further significant reductions in OPG occurred. The final performance of broilers vaccinated for coccidiosis was also improved at 250 ppm QY, as was OPG at both 21 and 28 days. Thus, at QY doses of 250 ppm or more, anticoccidial activity was evident but lacked the potency exhibited by many standard anticoccidials. When combined with either Sal or a live coccidiosis vaccine, QY improved the anticoccidial effects and performance of these anticoccidial methods.
Collapse
Affiliation(s)
- K W Bafundo
- Phibro Animal Health Corporation, 300 Frank W. Burr Boulevard, Teaneck, NJ 07666
| | - A B Johnson
- Phibro Animal Health Corporation, 300 Frank W. Burr Boulevard, Teaneck, NJ 07666
| | - G F Mathis
- Southern Poultry Research, Inc., 96 Roquemore Road, Athens, GA 30607
| |
Collapse
|
53
|
Draberova L, Tumova M, Draber P. Molecular Mechanisms of Mast Cell Activation by Cholesterol-Dependent Cytolysins. Front Immunol 2021; 12:670205. [PMID: 34248949 PMCID: PMC8260682 DOI: 10.3389/fimmu.2021.670205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/08/2021] [Indexed: 12/23/2022] Open
Abstract
Mast cells are potent immune sensors of the tissue microenvironment. Within seconds of activation, they release various preformed biologically active products and initiate the process of de novo synthesis of cytokines, chemokines, and other inflammatory mediators. This process is regulated at multiple levels. Besides the extensively studied IgE and IgG receptors, toll-like receptors, MRGPR, and other protein receptor signaling pathways, there is a critical activation pathway based on cholesterol-dependent, pore-forming cytolytic exotoxins produced by Gram-positive bacterial pathogens. This pathway is initiated by binding the exotoxins to the cholesterol-rich membrane, followed by their dimerization, multimerization, pre-pore formation, and pore formation. At low sublytic concentrations, the exotoxins induce mast cell activation, including degranulation, intracellular calcium concentration changes, and transcriptional activation, resulting in production of cytokines and other inflammatory mediators. Higher toxin concentrations lead to cell death. Similar activation events are observed when mast cells are exposed to sublytic concentrations of saponins or some other compounds interfering with the membrane integrity. We review the molecular mechanisms of mast cell activation by pore-forming bacterial exotoxins, and other compounds inducing cholesterol-dependent plasma membrane perturbations. We discuss the importance of these signaling pathways in innate and acquired immunity.
Collapse
Affiliation(s)
- Lubica Draberova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Magda Tumova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
54
|
Jazayeri SD, Lim HX, Shameli K, Yeap SK, Poh CL. Nano and Microparticles as Potential Oral Vaccine Carriers and Adjuvants Against Infectious Diseases. Front Pharmacol 2021; 12:682286. [PMID: 34149426 PMCID: PMC8206556 DOI: 10.3389/fphar.2021.682286] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Mucosal surfaces are the first site of infection for most infectious diseases and oral vaccination can provide protection as the first line of defense. Unlike systemic administration, oral immunization can stimulate cellular and humoral immune responses at both systemic and mucosal levels to induce broad-spectrum and long-lasting immunity. Therefore, to design a successful vaccine, it is essential to stimulate the mucosal as well as systemic immune responses. Successful oral vaccines need to overcome the harsh gastrointestinal environment such as the extremely low pH, proteolytic enzymes, bile salts as well as low permeability and the low immunogenicity of vaccines. In recent years, several delivery systems and adjuvants have been developed for improving oral vaccine delivery and immunogenicity. Formulation of vaccines with nanoparticles and microparticles have been shown to improve antigen stability, availability and adjuvanticity as well as immunostimulatory capacity, target delivery and specific release. This review discusses how nanoparticles (NPs) and microparticles (MPs) as oral carriers with adjuvant characteristics can be beneficial in oral vaccine development.
Collapse
Affiliation(s)
| | - Hui Xuan Lim
- Centre for Virus and Vaccine Research, Subang Jaya, Malaysia
| | - Kamyar Shameli
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Swee Keong Yeap
- Department of Marine Biotechnology, China-Asean College of Marine Sciences, Xiamen University Malaysia, Sepang, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, Subang Jaya, Malaysia
| |
Collapse
|
55
|
Sun AL, Mu WW, Li YM, Sun YL, Li PX, Liu RM, Yang J, Liu GY. Piperlongumine Analogs Promote A549 Cell Apoptosis through Enhancing ROS Generation. Molecules 2021; 26:3243. [PMID: 34071298 PMCID: PMC8198376 DOI: 10.3390/molecules26113243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Chemotherapeutic agents, which contain the Michael acceptor, are potent anticancer molecules by promoting intracellular reactive oxygen species (ROS) generation. In this study, we synthesized a panel of PL (piperlongumine) analogs with chlorine attaching at C2 and an electron-withdrawing/electron-donating group attaching to the aromatic ring. The results displayed that the strong electrophilicity group at the C2-C3 double bond of PL analogs plays an important role in the cytotoxicity whereas the electric effect of substituents, which attached to the aromatic ring, partly contributed to the anticancer activity. Moreover, the protein containing sulfydryl or seleno, such as TrxR, could be irreversibly inhibited by the C2-C3 double bond of PL analogs, and boost intracellular ROS generation. Then, the ROS accumulation could disrupt the redox balance, induce lipid peroxidation, lead to the loss of MMP (Mitochondrial Membrane Potential), and ultimately result in cell cycle arrest and A549 cell line death. In conclusion, PL analogs could induce in vitro cancer apoptosis through the inhibition of TrxR and ROS accumulation.
Collapse
Affiliation(s)
- Ai-Ling Sun
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China;
| | - Wen-Wen Mu
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (W.-W.M.); (P.-X.L.); (R.-M.L.)
| | - Yan-Mo Li
- Shandong Center for Disease Control and Prevention, Jinan 250014, China;
| | - Ya-Lei Sun
- Qingdao Vland Biotech INC, Qingdao 266000, China;
| | - Peng-Xiao Li
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (W.-W.M.); (P.-X.L.); (R.-M.L.)
| | - Ren-Min Liu
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (W.-W.M.); (P.-X.L.); (R.-M.L.)
| | - Jie Yang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (W.-W.M.); (P.-X.L.); (R.-M.L.)
| | - Guo-Yun Liu
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (W.-W.M.); (P.-X.L.); (R.-M.L.)
| |
Collapse
|
56
|
Ballegaard ASR, Larsen JM, Rasmussen PH, Untersmayr E, Pilegaard K, Bøgh KL. Quinoa (Chenopodium quinoa Willd.) Seeds Increase Intestinal Protein Uptake. Mol Nutr Food Res 2021; 65:e2100102. [PMID: 33939283 DOI: 10.1002/mnfr.202100102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/07/2021] [Indexed: 12/22/2022]
Abstract
SCOPE Within the last decade, quinoa seeds have gained much popularity as a new food and have recently been proposed as an appropriate food for early introduction in infants. Quinoa contains high levels of saponins, which are known for their adjuvant activity and effect on the intestinal barrier function. The aim of this study is to investigate the impact of quinoa on intestinal permeability and inflammation in comparison with the positive controls; cholera toxin (CT), and capsaicin. METHODS AND RESULTS The effect of quinoa on intestinal barrier function and inflammation is investigated in vitro using a Caco-2 cell line and in vivo using a Brown Norway rat model. Effects in vivo are analyzed by protein uptake, histology, gene expression, antibody levels, and flow cytometry. Quinoa and the positive controls all increased the intestinal permeability, but distinct patterns of absorbed protein are observed in the epithelium, Peyer's patches, lamina propria, and serum. The quinoa-mediated effect on intestinal barrier function is found to be distinct from the effect of the two positive controls. CONCLUSION The findings demonstrate the ability of quinoa to increase intestinal permeability and to promote compartment-specific protein uptake via mechanisms that may differ from CT and capsaicin.
Collapse
Affiliation(s)
| | - Jeppe Madura Larsen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Kirsten Pilegaard
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | |
Collapse
|
57
|
Alhazmi HA, Najmi A, Javed SA, Sultana S, Al Bratty M, Makeen HA, Meraya AM, Ahsan W, Mohan S, Taha MME, Khalid A. Medicinal Plants and Isolated Molecules Demonstrating Immunomodulation Activity as Potential Alternative Therapies for Viral Diseases Including COVID-19. Front Immunol 2021; 12:637553. [PMID: 34054806 PMCID: PMC8155592 DOI: 10.3389/fimmu.2021.637553] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
Plants have been extensively studied since ancient times and numerous important chemical constituents with tremendous therapeutic potential are identified. Attacks of microorganisms including viruses and bacteria can be counteracted with an efficient immune system and therefore, stimulation of body's defense mechanism against infections has been proven to be an effective approach. Polysaccharides, terpenoids, flavonoids, alkaloids, glycosides, and lactones are the important phytochemicals, reported to be primarily responsible for immunomodulation activity of the plants. These phytochemicals may act as lead molecules for the development of safe and effective immunomodulators as potential remedies for the prevention and cure of viral diseases. Natural products are known to primarily modulate the immune system in nonspecific ways. A number of plant-based principles have been identified and isolated with potential immunomodulation activity which justify their use in traditional folklore medicine and can form the basis of further specified research. The aim of the current review is to describe and highlight the immunomodulation potential of certain plants along with their bioactive chemical constituents. Relevant literatures of recent years were searched from commonly employed scientific databases on the basis of their ethnopharmacological use. Most of the plants displaying considerable immunomodulation activity are summarized along with their possible mechanisms. These discussions shall hopefully elicit the attention of researchers and encourage further studies on these plant-based immunomodulation products as potential therapy for the management of infectious diseases, including viral ones such as COVID-19.
Collapse
Affiliation(s)
- Hassan A. Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Sadique A. Javed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Shahnaz Sultana
- Department of Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Al Bratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hafiz A. Makeen
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M. Meraya
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Manal M. E. Taha
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
58
|
Digital Twin of mRNA-Based SARS-COVID-19 Vaccine Manufacturing towards Autonomous Operation for Improvements in Speed, Scale, Robustness, Flexibility and Real-Time Release Testing. Processes (Basel) 2021. [DOI: 10.3390/pr9050748] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Supplying SARS-COVID-19 vaccines in quantities to meet global demand has a bottleneck in manufacturing capacity. Assessment of existing mRNA (messenger ribonucleic acid) vaccine processing shows the need for digital twins enabled by process analytical technology approaches to improve process transfers for manufacturing capacity multiplication, reduction of out-of-specification batch failures, qualified personnel training for faster validation and efficient operation, optimal utilization of scarce buffers and chemicals, and faster product release. A digital twin of the total pDNA (plasmid deoxyribonucleic acid) to mRNA process is proposed. In addition, a first feasibility of multisensory process analytical technology (PAT) is shown. Process performance characteristics are derived as results and evaluated regarding manufacturing technology bottlenecks. Potential improvements could be pointed out such as dilution reduction in lysis, and potential reduction of necessary chromatography steps. 1 g pDNA may lead to about 30 g mRNA. This shifts the bottleneck towards the mRNA processing step, which points out co-transcriptional capping as a preferred option to reduce the number of purification steps. Purity demands are fulfilled by a combination of mixed-mode and reversed-phase chromatography as established unit operations on a higher industrial readiness level than e.g., precipitation and ethanol-chloroform extraction. As a final step, lyophilization was chosen for stability, storage and transportation logistics. Alternative process units like UF/DF (ultra-/diafiltration) integration would allow the adjustment of final concentration and buffer composition before lipid-nano particle (LNP) formulation. The complete digital twin is proposed for further validation in manufacturing scale and utilization in process optimization and manufacturing operations. The first PAT results should be followed by detailed investigation of different batches and processing steps in order to implement this strategy for process control and reliable, efficient operation.
Collapse
|
59
|
Zaynab M, Sharif Y, Abbas S, Afzal MZ, Qasim M, Khalofah A, Ansari MJ, Khan KA, Tao L, Li S. Saponin toxicity as key player in plant defense against pathogens. Toxicon 2021; 193:21-27. [PMID: 33508310 DOI: 10.1016/j.toxicon.2021.01.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/24/2020] [Accepted: 01/20/2021] [Indexed: 12/31/2022]
Abstract
Microbial pathogens attack every plant tissue, including leaves, roots, shoots, and flowers during all growth stages. Thus, they cause several diseases resulting in a plant's failure or loss of the whole crop in severe cases. To combat the pathogens attack, plants produce some biologically active toxic compounds known as saponins. The saponins are secondary metabolic compounds produced in healthy plants with potential anti-pathogenic activity and serve as potential chemical barriers against pathogens. Saponins are classified into two major groups the steroidal and terpenoid saponins. Here, we reported the significance of saponin toxins in the war against insect pests, fungal, and bacterial pathogens. Saponins are present in both cultivated (chilies, spinach, soybean, quinoa, onion, oat, tea, etc.) and wild plant species. As they are natural toxic constituents of plant defense, breeders and plant researchers aiming to boost plant imm unity should focus on transferring these compounds in cash crops.
Collapse
Affiliation(s)
- Madiha Zaynab
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China; Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518071, China; Shenzhen Environmental Monitoring Center, Shenzhen, 518049, Guangdong, China
| | - Yasir Sharif
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Safdar Abbas
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Zohaib Afzal
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Qasim
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects,Institute of Insect Science,Zhejiang University, Hangzhou, 310058, China
| | - Ahlam Khalofah
- Department of Biology, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (MJP Rohilkhand University Bareilly), 244001, India
| | - Khalid Ali Khan
- Department of Biology, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Li Tao
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, China
| | - Shuangfei Li
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518071, China.
| |
Collapse
|
60
|
Ahmad W, Shetab Boushehri MA, Lamprecht A. Polymeric matrix hydrophobicity governs saponin packing-density on nanoparticle surface and the subsequent biological interactions. J Colloid Interface Sci 2021; 596:500-513. [PMID: 33878541 DOI: 10.1016/j.jcis.2021.03.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 02/22/2021] [Accepted: 03/06/2021] [Indexed: 10/21/2022]
Abstract
This study investigated the loading behavior of Quillaja saponin as a model surface-active cargo on (NP) nanoparticles prepared with various hydrophobic polymers and using different organic solvents through emulsification/solvent evaporation, and the impact of NP surface hydrophobicity upon the cytotoxic and hemolytic properties of the loaded entity. A superficial monolayered arrangement of saponins on NP was established (R2 > 0.9) for all NP, as the saponin loading values complied with the Langmuir adsorption isotherm over the entire concentration range. Next, based on the measurement of interfacial tension between formulation phases, and the subsequent use of Gibb's adsorption isotherm, the packing density (Гexc) and loading of saponins on various nanospheres could be predicted with good correlation with the actual values (R2 > 0.95). The results demonstrated that the hydrophobicity of the polymeric matrix was the major determinant of saponin packing density on the nanospheres. Finally, the impact of NP surface properties upon saponin biological interactions was investigated, where a linear correlation was found between the NP surface hydrophobicity and their hemolytic properties (R2 ≅ 0.79), and cytotoxicity against two cancer cell lines (R2 > 0.76). The surface hydrophobicity of the polymeric NP seemingly governed the NP-cell membrane binding, which in turn determined the amount of membrane-bound saponins per unit NP surface area. As the saponins exert their cytotoxicity mainly through strong permeabilization of the cell membrane, a higher amount of NP-membrane association governed by a more hydrophobic matrix can lead to higher levels of cytotoxicity. These findings highlight the importance of a detailed characterization of NP surface properties, particularly in case of surface-active cargos, for these dictate the side effects and biological interactions of the delivery system.
Collapse
Affiliation(s)
- Waqas Ahmad
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | | | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany; PEPITE EA4267, Université de Bourgogne/Franche-Comté, Besançon, France.
| |
Collapse
|
61
|
Yucca schidigera Usage for Healthy Aquatic Animals: Potential Roles for Sustainability. Animals (Basel) 2021; 11:ani11010093. [PMID: 33419069 PMCID: PMC7825398 DOI: 10.3390/ani11010093] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary This review presents an updated and exclusive collection of results about yucca’s beneficial effects as phytogenic additives for clean aquaculture activity. The overall performances of aquatic organisms treated with yucca as dietary additives of water cleaners encourage performing further studies to prove its mode of action based on biochemical and biological techniques. Abstract In modern aquaculture systems, farmers are increasing the stocking capacity of aquatic organisms to develop the yield and maximize water resources utilization. However, the accumulation of ammonia in fishponds regularly occurs in intensive aquaculture systems, resulting in reduced growth rates and poor health conditions. The inclusion of yucca extract is recognized as a practical solution for adsorbing the waterborne ammonia. Yucca has abundant amounts of polyphenolics, steroidal saponins, and resveratrol and can be used as a solution or as a powder. In this context, this review aimed to investigate the possible regulatory roles of yucca extract on aquatic animals’ performances. Concurrently, the feed utilization, growth performance, and physiological status of aquatic species can be improved. Additionally, the yucca application resulted in enhancing the antioxidative, immunological, and anti-inflammatory responses in several aquatic animals. Exclusively, the present review proposed a protective solution through the application of yucca extract in the aquafeed and rearing water of aquatic animals suffering from ammonia accumulation. Furthermore, it shows how yucca could enhance the growth, survival rates, blood biochemical quality, immunological indices, and the antioxidative capacity of aquatic animals in light of the relevant published data.
Collapse
|
62
|
Natural and synthetic carbohydrate-based vaccine adjuvants and their mechanisms of action. Nat Rev Chem 2021; 5:197-216. [PMID: 37117529 PMCID: PMC7829660 DOI: 10.1038/s41570-020-00244-3] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2020] [Indexed: 01/31/2023]
Abstract
Modern subunit vaccines based on homogeneous antigens offer more precise targeting and improved safety compared with traditional whole-pathogen vaccines. However, they are also less immunogenic and require an adjuvant to increase the immunogenicity of the antigen and potentiate the immune response. Unfortunately, few adjuvants have sufficient potency and low enough toxicity for clinical use, highlighting the urgent need for new, potent and safe adjuvants. Notably, a number of natural and synthetic carbohydrate structures have been used as adjuvants in clinical trials, and two have recently been approved in human vaccines. However, naturally derived carbohydrate adjuvants are heterogeneous, difficult to obtain and, in some cases, unstable. In addition, their molecular mechanisms of action are generally not fully understood, partly owing to the lack of tools to elucidate their immune-potentiating effects, thus hampering the rational development of optimized adjuvants. To address these challenges, modification of the natural product structure using synthetic chemistry emerges as an attractive approach to develop well-defined, improved carbohydrate-containing adjuvants and chemical probes for mechanistic investigation. This Review describes selected examples of natural and synthetic carbohydrate-based adjuvants and their application in synthetic self-adjuvanting vaccines, while also discussing current understanding of their molecular mechanisms of action.
Collapse
|
63
|
Abd El Fadeel MR, El-Dakhly AT, Allam AM, Farag TK, El-Kholy AAM. Preparation and efficacy of freeze-dried inactivated vaccine against bovine viral diarrhea virus genotypes 1 and 2, bovine herpes virus type 1.1, bovine parainfluenza-3 virus, and bovine respiratory syncytial virus. Clin Exp Vaccine Res 2020; 9:119-125. [PMID: 32864368 PMCID: PMC7445318 DOI: 10.7774/cevr.2020.9.2.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 11/29/2022] Open
Abstract
Purpose Bovine respiratory disease is a worldwide health concern in the feedlot cattle causing morbidity and mortality in young with major economic losses to the producer. Programs of vaccination are integral parts of preventive health programs. We aim to prepare and evaluate lyophilized combined inactivated viruses (bovine viral diarrhea virus [BVDV] genotypes 1 and 2, bovine herpes virus type 1.1 [BoHV-1.1], bovine parainfluenza-3 virus [BPI-3V], and bovine respiratory syncytial virus [BRSV]) vaccine using saponin as a solvent and adjuvant in cattle. Materials and Methods Lyophilized Pneumo-5 vaccine was formulated to include the inactivated BVDV genotypes 1 and 2, BoHV-1.1, BPI-3V, and BRSV. The saponin solution was used as an adjuvant and solvent. The prepared vaccines were adjusted to contain 1- and 1.5-mg saponin/dose. It was evaluated for its sterility, safety, and potency in mice and calves. The antibody titers in vaccinated calves were measured by virus neutralization test and enzyme-linked immunosorbent assay (ELISA). Results The Pneumo-5 vaccine was found to be free from any contaminants and safe in mice. Meanwhile, the vaccine showed safety in calves which inoculated intramuscularly with the double dose of the vaccines. The overall immune response reached its peak in the 2nd-month post-vaccination. The vaccine contained saponin 1.5 mg/dose reached its antibodies peak in the 4th-week post-vaccination. All groups of vaccinated calves with both concentrations of the saponin did not show statistical significance in antibody titers measured by serum neutralization test and/or ELISA. Conclusion The prepared vaccine, namely Pneumo-5, and adjuvanted with either 1 or 1.5 mg/dose saponin was proved safe and potent for effectual protection of calves against BVDV genotypes 1 and 2, BoHV-1.1, BPI-3V, and BRSV.
Collapse
Affiliation(s)
- Maha Raafat Abd El Fadeel
- Department of Rinder Pest like Diseases, Veterinary Serum and Vaccine Research Institute, Agriculture Research Center, Cairo, Egypt
| | - Ashraf Taha El-Dakhly
- Department of Lyophilization. Veterinary Serum and Vaccine Research Institute, Agriculture Research Center, Cairo, Egypt
| | - Ahmad Mohammad Allam
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Giza, Egypt
| | - Tarek Korany Farag
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Giza, Egypt
| | | |
Collapse
|
64
|
Zheng X, Gallot G. Dynamics of Cell Membrane Permeabilization by Saponins Using Terahertz Attenuated Total Reflection. Biophys J 2020; 119:749-755. [PMID: 32735777 DOI: 10.1016/j.bpj.2020.05.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/22/2020] [Accepted: 05/04/2020] [Indexed: 11/30/2022] Open
Abstract
Understanding the relevant parameters of the formation of pores during permeabilization is very challenging for medical applications. Several components are involved: the arrival of the permeabilizing molecules to the membrane, the efficiency of formation of the pores and their specific dynamics, and the flux of molecules through the plasma membrane. Using attenuated total reflection in the terahertz domain, we studied the dynamics of Madine-Darby canine kidney cells after permeabilization by saponin molecules. We developed an analytical model taking into account saponin molecule diffusion, cell geometry, cytosol molecule diffusion, and pore dynamics. We also studied the effect of possible pore overlapping on the cell membrane, introducing a dimensionless quantity that is the ratio between overlapping and diffusive effects. Pores are found to be static within 1 h after their creation, hinting that the diffusion of the saponin molecules to the membrane is the limiting factor in our experiments.
Collapse
Affiliation(s)
- Xiujun Zheng
- LOB, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Guilhem Gallot
- LOB, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France.
| |
Collapse
|
65
|
Reddy PRK, Elghandour M, Salem A, Yasaswini D, Reddy PPR, Reddy AN, Hyder I. Plant secondary metabolites as feed additives in calves for antimicrobial stewardship. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114469] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
66
|
Saponin Facilitates Anti-Robo1 Immunotoxin Cytotoxic Effects on Maxillary Sinus Squamous Cell Carcinoma. JOURNAL OF ONCOLOGY 2020; 2020:9593516. [PMID: 32256588 PMCID: PMC7086449 DOI: 10.1155/2020/9593516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/08/2019] [Accepted: 01/18/2020] [Indexed: 01/06/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers worldwide. The standard treatment of surgery, chemotherapy, and radiotherapy can result in long-term complications which lower the patient's quality of life, such as eating disorders, speech problems, and disfiguring or otherwise untoward cosmetic issues. Antibody therapy against cancer-specific antigens is advantageous in terms of its lesser side effects achieved by its greater specificity, though the antitumor activity is still usually not enough to obtain a complete cure. Robo1, an axon guidance receptor, has received considerable attention as a possible drug target in various cancers. We have shown previously the enhanced cytotoxic effects of saporin-conjugated anti-Robo1 immunotoxin (IT-Robo1) on the HNSCC cell line HSQ-89 in combination with a photochemical internalization technique. Considering the light source, which has only limited tissue penetrance, we examined the drug internalization effect of saponin. Treatment with saponin facilitated significant cytotoxic effects of IT-Robo1 on HSQ-89 cells. Saponin exerts its own nonspecific cytotoxicity, which may cover the actual extent of the internalization effect. We thus examined whether a flashed treatment with saponin exerted a significant specific cytotoxic effect on cancer cells. The combination of an immunotoxin with saponin also exhibited a significant tumor-suppressive effect on mice HSQ-19 xenografts. These results suggest the utility of saponin treatment as an enhancer of immunotoxin treatment in cancer.
Collapse
|
67
|
Samtiya M, Aluko RE, Dhewa T. Plant food anti-nutritional factors and their reduction strategies: an overview. FOOD PRODUCTION, PROCESSING AND NUTRITION 2020. [DOI: 10.1186/s43014-020-0020-5] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Legumes and cereals contain high amounts of macronutrients and micronutrients but also anti-nutritional factors. Major anti-nutritional factors, which are found in edible crops include saponins, tannins, phytic acid, gossypol, lectins, protease inhibitors, amylase inhibitor, and goitrogens. Anti-nutritional factors combine with nutrients and act as the major concern because of reduced nutrient bioavailability. Various other factors like trypsin inhibitors and phytates, which are present mainly in legumes and cereals, reduce the digestibility of proteins and mineral absorption. Anti-nutrients are one of the key factors, which reduce the bioavailability of various components of the cereals and legumes. These factors can cause micronutrient malnutrition and mineral deficiencies. There are various traditional methods and technologies, which can be used to reduce the levels of these anti-nutrient factors. Several processing techniques and methods such as fermentation, germination, debranning, autoclaving, soaking etc. are used to reduce the anti-nutrient contents in foods. By using various methods alone or in combinations, it is possible to reduce the level of anti-nutrients in foods. This review is focused on different types of anti-nutrients, and possible processing methods that can be used to reduce the level of these factors in food products.
Graphical abstract
A brief overview of beneficial effects of anti-nutrients and reduction strategy.
Collapse
|
68
|
Fink R, Potočnik A, Oder M. Plant-based natural saponins for Escherichia coli surface hygiene management. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
69
|
In Search of High-Yielding and Single-Compound-Yielding Plants: New Sources of Pharmaceutically Important Saponins from the Primulaceae Family. Biomolecules 2020; 10:biom10030376. [PMID: 32121337 PMCID: PMC7175136 DOI: 10.3390/biom10030376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 12/04/2022] Open
Abstract
So far, only a few primrose species have been analyzed regarding their saponin composition and content. Moreover, the roots of only two of them are defined by the European Union (EU) Pharmacopoeia monograph and commercially utilized by the pharmaceutical industry. Thus, this study intended to find some new sources of main triterpene saponins from Primulae radix, namely primulasaponins I and II together with the closely related sakurasosaponin. Using isolated standards, UHPLC-ESI-HRMS served to assess over 155 Primulaceae members qualitatively and quantitatively. Nine examples of plants accumulating over 5% of primulasaponin I in their roots were found. Among them, in one case, it was found as the almost sole secondary metabolite with the concentration of 15–20% (Primula grandis L.). A reasonable content of primulasaponin II was found to be typical for Primula vulgaris Huds. and P. megaseifolia Boiss. & Bal. The sakurasosaponin level was found in seven species to exceed 5%. The finding of new, single and rich sources of the abovementioned biomolecules among species that were never analyzed phytochemically is important for future research and economic benefit. The chemotaxonomic significance of the occurrence of these three saponins in Primulaceae is discussed.
Collapse
|
70
|
Sultan R, Aslam A, Tipu MY, Rehman HU, Anjum A, Krull W, Kumosani T, Shaib H, Barbour EK. Appraisal of a new patented method for control of chicken coccidiosis. JOURNAL OF APPLIED ANIMAL RESEARCH 2019. [DOI: 10.1080/09712119.2019.1694028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Rizwana Sultan
- Department of Pathology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Asim Aslam
- Department of Pathology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Yasin Tipu
- Department of Pathology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Habib ur Rehman
- Department of Physiology, Faculty of Bio-Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ahsan Anjum
- Department of Pathology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Werner Krull
- Department of Research & Development, Opticon Hygiene Consulting GmbH, St. Gallen, Switzerland
| | - Taha Kumosani
- Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Houssam Shaib
- Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Elie K. Barbour
- Department of Research & Development, Opticon Hygiene Consulting GmbH, St. Gallen, Switzerland
- Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|