51
|
Sport Dietary Supplements and Physical Activity in Biomedical Students. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18042046. [PMID: 33669800 PMCID: PMC7922728 DOI: 10.3390/ijerph18042046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022]
Abstract
Biomedical students should have suitable knowledge about sport dietary supplements (SDS) usage as they are future medical professionals who will have SDS users in their care. The aim of this study was to assess the habits, opinions, and knowledge about SDS usage, along with the level of physical activity, in 386 biomedical students at the University of Split School of Medicine. A specialized questionnaire was developed by a group of experts for the assessment of habits, opinions, and knowledge about SDS and the International Physical Activity Questionnaire—Short Form (IPAQ-SF) was used to evaluate the level of physical activity. The results showed that 49.2% of students used SDS and there was a significant positive correlation between the knowledge questionnaire score and the level of physical activity (r = 0.744, p < 0.001). Moreover, SDS users had a higher knowledge questionnaire score (p < 0.001) and a higher level of physical activity (p < 0.001) compared to non-users. These results suggest that more physically active students are better informed about SDS, but these results also imply that SDS should be implemented in the study program of future medical professionals to ensure that they are informed for their own personal consumption and will be confident in giving advice about SDS usage to their future patients.
Collapse
|
52
|
Mancin L, Rollo I, Mota JF, Piccini F, Carletti M, Susto GA, Valle G, Paoli A. Optimizing Microbiota Profiles for Athletes. Exerc Sport Sci Rev 2021; 49:42-49. [PMID: 33044333 DOI: 10.1249/jes.0000000000000236] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gut microbiome influences athletes' physiology, but because of the complexity of sport performance and the great intervariability of microbiome features, it is not reasonable to define a single healthy microbiota profile for athletes. We suggest the use of specific meta-omics analysis coupled with innovative computational systems to uncover the hidden association between microbes and athlete's physiology and predict personalized recommendation.
Collapse
Affiliation(s)
| | | | - Joao Felipe Mota
- Clinical and Sports Nutrition Research Laboratory (LABINCE), Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | | | | | | | | |
Collapse
|
53
|
Liao X, Wu M, Hao Y, Deng H. Exploring the Preventive Effect and Mechanism of Senile Sarcopenia Based on "Gut-Muscle Axis". Front Bioeng Biotechnol 2020; 8:590869. [PMID: 33251202 PMCID: PMC7674676 DOI: 10.3389/fbioe.2020.590869] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Age-related sarcopenia probably leads to chronic systemic inflammation and plays a vital role in the development of the complications of the disease. Gut microbiota, an environmental factor, is the medium of nutritional support to muscle cells, having significant impact on sarcopenia. Consequently, a significant amount of studies explored and showed the presence of gut microbiome–muscle axis (gut–muscle axis for short), which was possibly considered as the disease interventional target of age-related sarcopenia. However, a variety of nutrients probably affect the changes of the gut–muscle axis so as to affect the healthy balance of skeletal muscle. Therefore, it is necessary to study the mechanism of intestinal–muscle axis, and nutrients play a role in the treatment of senile sarcopenia through this mechanism. This review summarizes the available literature on mechanisms and specific pathways of gut–muscle axis and discusses the potential role and therapeutic feasibility of gut microbiota in age-related sarcopenia to understand the development of age-related sarcopenia and figure out the novel perspective of the potential therapeutic interventional targets.
Collapse
Affiliation(s)
- Xiaoshan Liao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, Guangzhou, China
| | - Mengting Wu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yuting Hao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hong Deng
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
54
|
Firrman J, Liu L, Tanes C, Friedman ES, Bittinger K, Daniel S, van den Abbeele P, Evans B. Metabolic Analysis of Regionally Distinct Gut Microbial Communities Using an In Vitro Platform. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13056-13067. [PMID: 31690071 DOI: 10.1021/acs.jafc.9b05202] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The colon gut microbiota is responsible for complex chemical conversions of nutrients and subsequent release of metabolites that have diverse biological consequences. However, information on the metabolic dynamics that occur longitudinally through the colon is limited. Here, gas and liquid chromatographies coupled with mass spectrometry were applied to generate metabolic profiles of the region-specific microbial communities cultured using an in vitro platform simulating the ascending (AC), transverse (TC), and descending (DC) colon regions. Comparative analysis revealed a large divergence between metabolic profiles of the AC and the TC and DC regions in terms of short-chain fatty acid production, metabolic spectrum, and conversion of bile acids. Metagenomic evaluation revealed that the regionally derived metabolic profiles had strong correlation to community composition and genetic potential. Together, the results provide key insights regarding the metabolic divergence of the regional communities that are integral to understand the structure-function relationship of the gut microbiota.
Collapse
Affiliation(s)
- Jenni Firrman
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Wyndmoor, Pennsylvania 19038, United States
| | - LinShu Liu
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Wyndmoor, Pennsylvania 19038, United States
| | - Ceylan Tanes
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Elliot S Friedman
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Scott Daniel
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | | | - Bradley Evans
- Proteomics & Mass Spectrometry Facility, Donald Danforth Plant Science Center, St. Louis, Missouri 63132, United States
| |
Collapse
|
55
|
Reguant-Closa A, Roesch A, Lansche J, Nemecek T, Lohman TG, Meyer NL. The Environmental Impact of the Athlete's Plate Nutrition Education Tool. Nutrients 2020; 12:E2484. [PMID: 32824745 PMCID: PMC7468909 DOI: 10.3390/nu12082484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 01/17/2023] Open
Abstract
Periodized nutrition is necessary to optimize training and enhance performance through the season. The Athlete's Plate (AP) is a nutrition education tool developed to teach athletes how to design their plates depending on training load (e.g., volume × intensity), from easy (E), moderate (M) to hard (H). The AP was validated, confirming its recommendations according to international sports nutrition guidelines. However, the AP had significantly higher protein content than recommended (up to 2.9 ± 0.5 g·kg-1·d-1; p < 0.001 for H male). The aim of this study was to quantify the environmental impact (EnvI) of the AP and to evaluate the influence of meal type, training load, sex and registered dietitian (RD). The nutritional contents of 216 APs created by 12 sport RDs were evaluated using Computrition Software (Hospitality Suite, v. 18.1, Chatsworth, CA, USA). The EnvI of the AP was analyzed by life cycle assessment (LCA) expressed by the total amount of food on the AP, kg, and kcal, according to the Swiss Agricultural Life Cycle Assessment (SALCA) methodology. Higher EnvI is directly associated with higher training load when the total amount of food on the plate is considered for E (5.7 ± 2.9 kg CO2 eq/day); M (6.4 ± 1.5 kg CO2 eq/day); and H (8.0 ± 2.1 kg CO2 eq/day). Global warming potential, exergy and eutrophication are driven by animal protein and mainly beef, while ecotoxicity is influenced by vegetable content on the AP. The EnvI is influenced by the amount of food, training load and sex. This study is the first to report the degree of EnvI in sports nutrition. These results not only raise the need for sustainability education in sports nutrition in general, but also the urgency to modify the AP nutrition education tool to ensure sports nutrition recommendations are met, while not compromising the environment.
Collapse
Affiliation(s)
- Alba Reguant-Closa
- International Doctoral School, University of Andorra, Andorra, AD600 Sant Julià de Lòria, Andorra
| | - Andreas Roesch
- Agroscope, Life Cycle Assessment Research Group, CH-8046 Zurich, Switzerland; (A.R.); (J.L.); (T.N.)
| | - Jens Lansche
- Agroscope, Life Cycle Assessment Research Group, CH-8046 Zurich, Switzerland; (A.R.); (J.L.); (T.N.)
| | - Thomas Nemecek
- Agroscope, Life Cycle Assessment Research Group, CH-8046 Zurich, Switzerland; (A.R.); (J.L.); (T.N.)
| | | | - Nanna L Meyer
- Beth-El College of Nursing and Health Sciences, Department of Human Physiology and Nutrition, William J. Hybl Sports Medicine and Performance Center, University of Colorado, Colorado Springs, CO 80918, USA;
| |
Collapse
|
56
|
McClements DJ. Nano-enabled personalized nutrition: Developing multicomponent-bioactive colloidal delivery systems. Adv Colloid Interface Sci 2020; 282:102211. [PMID: 32721626 DOI: 10.1016/j.cis.2020.102211] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/21/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022]
Abstract
There is growing interest in the production of foods and beverages with nutrient and nutraceutical profiles tailored to an individual's specific nutritional requirements. In principle, these personalized nutrition products are formulated based on the genetics, epigenetics, metabolism, microbiome, phenotype, lifestyle, age, gender, and health status of a person. A challenge in this area is to create customized functional food and beverage products that contain the required combination of bioactive agents, such as lipids, proteins, carbohydrates, vitamins, minerals, nutraceuticals, prebiotics and probiotics. Nanotechnology may facilitate the development of these kind of products since it can be used to encapsulate one or more bioactive agent in a single colloidal delivery system. This delivery system may contain one or more different kinds of colloidal particle, specifically designed to protect each nutrient in the food, but then deliver it in a bioavailable form after ingestion. This review article provides an overview of the different kinds of bioactives that need to be delivered, as well as some of the challenges associated with incorporating them into functional foods and beverages. It then highlights how nanotech-enabled colloidal delivery systems can be developed to encapsulate multiple bioactive agents in a form suitable for functional food applications, particularly in the personalized nutrition field.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Zhejiang, Hangzhou 310018, China.
| |
Collapse
|
57
|
El Khoury D, Hansen J, Tabakos M, Spriet LL, Brauer P. Dietary Supplement Use among Non-athlete Students at a Canadian University: A Pilot-Survey. Nutrients 2020; 12:nu12082284. [PMID: 32751521 PMCID: PMC7468929 DOI: 10.3390/nu12082284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Despite the emerging evidence of adverse consequences and interaction with doping substances, dietary supplements (DS) are commonly used by many Canadians. The purpose of this study was to evaluate the patterns and determinants of current DS use among non-athlete students at a Canadian university using a cross-sectional approach. Of the 475 participants who completed the online survey, 43.4% declared using DS in the past six months. Participants who were male, aged ≥20 years old, and had a parent/guardian with a bachelor’s degree were significantly more likely to use DS. The types of DS used and the sources of information regarding DS were significantly influenced by age and gender. The most commonly used DS were vitamin and mineral and protein supplements. Most participants referred to healthcare professionals for information on DS, but many continued to depend on unreliable sources including family and friends. Of DS users, 10.1% reported experiencing adverse events from using DS. Findings from this study indicate that supplementation is very common among Canadian non-athlete students and highlight the urgent need for the development of educational programs surrounding DS use.
Collapse
Affiliation(s)
- Dalia El Khoury
- Department of Family Relations and Applied Nutrition, University of Guelph, 50 Stone Road, Guelph, ON N1G 2W1, Canada; (J.H.); (M.T.); (P.B.)
- Correspondence:
| | - Joel Hansen
- Department of Family Relations and Applied Nutrition, University of Guelph, 50 Stone Road, Guelph, ON N1G 2W1, Canada; (J.H.); (M.T.); (P.B.)
| | - Madelyn Tabakos
- Department of Family Relations and Applied Nutrition, University of Guelph, 50 Stone Road, Guelph, ON N1G 2W1, Canada; (J.H.); (M.T.); (P.B.)
| | - Lawrence L. Spriet
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road, Guelph, ON N1G 2W1, Canada;
| | - Paula Brauer
- Department of Family Relations and Applied Nutrition, University of Guelph, 50 Stone Road, Guelph, ON N1G 2W1, Canada; (J.H.); (M.T.); (P.B.)
| |
Collapse
|
58
|
|
59
|
Przewłócka K, Folwarski M, Kaźmierczak-Siedlecka K, Skonieczna-Żydecka K, Kaczor JJ. Gut-Muscle AxisExists and May Affect Skeletal Muscle Adaptation to Training. Nutrients 2020; 12:nu12051451. [PMID: 32443396 PMCID: PMC7285193 DOI: 10.3390/nu12051451] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Excessive training may limit physiological muscle adaptation through chronic oxidative stress and inflammation. Improper diet and overtraining may also disrupt intestinal homeostasis and in consequence enhance inflammation. Altogether, these factors may lead to an imbalance in the gut ecosystem, causing dysregulation of the immune system. Therefore, it seems to be important to optimize the intestinal microbiota composition, which is able to modulate the immune system and reduce oxidative stress. Moreover, the optimal intestinal microbiota composition may have an impact on muscle protein synthesis and mitochondrial biogenesis and function, as well as muscle glycogen storage. Aproperly balanced microbiome may also reduce inflammatory markers and reactive oxygen species production, which may further attenuate macromolecules damage. Consequently, supplementation with probiotics may have some beneficial effect on aerobic and anaerobic performance. The phenomenon of gut-muscle axis should be continuously explored to function maintenance, not only in athletes.
Collapse
Affiliation(s)
- Katarzyna Przewłócka
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Marcin Folwarski
- Departmentof Clinical Nutrition and Dietetics, Medical University of Gdansk, 80-210 Gdańsk, Poland;
| | | | | | - Jan Jacek Kaczor
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
- Correspondence: ; Tel.: +48-516-191-109
| |
Collapse
|
60
|
Liu Y, Li Y, Xia Y, Liu K, Ren L, Ji Y. The Dysbiosis of Gut Microbiota Caused by Low-Dose Cadmium Aggravate the Injury of Mice Liver through Increasing Intestinal Permeability. Microorganisms 2020; 8:microorganisms8020211. [PMID: 32033263 PMCID: PMC7074735 DOI: 10.3390/microorganisms8020211] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/31/2022] Open
Abstract
Cadmium (Cd), widely present in food and drinking water at low doses, can cause health risks. However, the mechanistic effects of long-term Cd exposure at low dose through dietary intake is poorly studied. The aim of this study is to elucidate whether the dysbiosis of gut microbiota caused by Cd at an environmental low dose can aggravate the injury of mice liver, and the possible mechanism is investigated. In order to explore the potential underlying mechanism, the analyses of the variation of gut microbiota composition, intestinal permeability, and hepatic transcriptome were conducted. Our results showed that gut microbiota was disturbed. The rise of intestinal permeability induced by the dysbiosis of gut microbiota resulted in more Cd ions accumulating in mice liver, but it could be restored partly through depleting gut microbiota by antibiotics cocktail. Transcriptomic analyses indicated that 162 genes were significantly differentially expressed including 59 up-regulated and 103 down-regulated in Cd treatment. These genes were involved in several important pathways. Our findings provide a better understanding about the health risks of cadmium in the environment.
Collapse
Affiliation(s)
- Yehao Liu
- School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China; (Y.L.); (K.L.); (L.R.)
| | - Yuhui Li
- Department of Biological and Environmental Engineering, Hefei University, Hefei 230032, Anhui, China;
| | - Yuhong Xia
- School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China; (Y.L.); (K.L.); (L.R.)
| | - Kaiyong Liu
- School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China; (Y.L.); (K.L.); (L.R.)
| | - Lingling Ren
- School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China; (Y.L.); (K.L.); (L.R.)
| | - Yanli Ji
- School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China; (Y.L.); (K.L.); (L.R.)
- Correspondence:
| |
Collapse
|
61
|
Hughes RL. A Review of the Role of the Gut Microbiome in Personalized Sports Nutrition. Front Nutr 2020; 6:191. [PMID: 31998739 PMCID: PMC6966970 DOI: 10.3389/fnut.2019.00191] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/12/2019] [Indexed: 12/15/2022] Open
Abstract
The gut microbiome is a key factor in determining inter-individual variability in response to diet. Thus, far, research in this area has focused on metabolic health outcomes such as obesity and type 2 diabetes. However, understanding the role of the gut microbiome in determining response to diet may also lead to improved personalization of sports nutrition for athletic performance. The gut microbiome has been shown to modify the effect of both diet and exercise, making it relevant to the athlete's pursuit of optimal performance. This area of research can benefit from recent developments in the general field of personalized nutrition and has the potential to expand our knowledge of the nexus between the gut microbiome, lifestyle, and individual physiology.
Collapse
Affiliation(s)
- Riley L. Hughes
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| |
Collapse
|
62
|
Donati Zeppa S, Agostini D, Gervasi M, Annibalini G, Amatori S, Ferrini F, Sisti D, Piccoli G, Barbieri E, Sestili P, Stocchi V. Mutual Interactions among Exercise, Sport Supplements and Microbiota. Nutrients 2019; 12:nu12010017. [PMID: 31861755 PMCID: PMC7019274 DOI: 10.3390/nu12010017] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/10/2019] [Accepted: 12/17/2019] [Indexed: 12/18/2022] Open
Abstract
The adult gut microbiota contains trillions of microorganisms of thousands of different species. Only one third of gut microbiota are common to most people; the rest are specific and contribute to enhancing genetic variation. Gut microorganisms significantly affect host nutrition, metabolic function, immune system, and redox levels, and may be modulated by several environmental conditions, including physical activity and exercise. Microbiota also act like an endocrine organ and is sensitive to the homeostatic and physiological changes associated with training; in turn, exercise has been demonstrated to increase microbiota diversity, consequently improving the metabolic profile and immunological responses. On the other side, adaptation to exercise might be influenced by the individual gut microbiota that regulates the energetic balance and participates to the control of inflammatory, redox, and hydration status. Intense endurance exercise causes physiological and biochemical demands, and requires adequate measures to counteract oxidative stress, intestinal permeability, electrolyte imbalance, glycogen depletion, frequent upper respiratory tract infections, systemic inflammation and immune responses. Microbiota could be an important tool to improve overall general health, performance, and energy availability while controlling inflammation and redox levels in endurance athletes. The relationship among gut microbiota, general health, training adaptation and performance, along with a focus on sport supplements which are known to exert some influence on the microbiota, will be discussed.
Collapse
Affiliation(s)
- Sabrina Donati Zeppa
- Correspondence: (D.A.); (S.D.Z.); Tel.: +39-0722-303-423 (D.A.); +39-0722-303-422 (S.D.Z.); Fax: +39-0722-303-401 (D.A. & S.D.Z.)
| | - Deborah Agostini
- Correspondence: (D.A.); (S.D.Z.); Tel.: +39-0722-303-423 (D.A.); +39-0722-303-422 (S.D.Z.); Fax: +39-0722-303-401 (D.A. & S.D.Z.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Beneficial effects of running and milk protein supplements on Sirtuins and risk factors of metabolic disorders in rats with low aerobic capacity. Metabol Open 2019; 4:100019. [PMID: 32812928 PMCID: PMC7424841 DOI: 10.1016/j.metop.2019.100019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/06/2019] [Accepted: 10/07/2019] [Indexed: 12/17/2022] Open
Abstract
Background Physical activity and dietary intake of dairy products are associated with improved metabolic health. Dairy products are rich with branched chain amino acids that are essential for energy production. To gain insight into the mechanisms underlying the benefit of the sub-chronic effects of running and intake of milk protein supplements, we studied Low Capacity Runner rats (LCR), a rodent exercise model with risk for metabolic disorders. We especially focused on the role of Sirtuins, energy level dependent proteins that affect many cellular metabolic processes. Methods Forty-seven adult LCR female rats sedentary or running voluntarily in wheels were fed normal chow and given supplements of either whey or milk protein drink (PD)-supplemented water, or water only for 21 weeks. Physiological responses were measured in vivo. Blood lipids were determined from serum. Mitochondrial markers and Sirtuins (Sirt1-7) including downstream targets were measured in plantaris muscle by western blotting. Results For the first 10 weeks whey-drinking rats ran about 50% less compared to other groups; still, in all runners glucose tolerance improved and triglycerides decreased. Generally, running induced a ∼six-fold increase in running capacity and a ∼8% decrease in % body fat. Together with running, protein supplements increased the relative lean mass of the total body weight by ∼11%. In comparison with sedentary controls, running and whey increased HDL (21%) and whey, with or without running, lowered LDL (−34%). Running increased mitochondrial biogenesis and Sirtuins 3 and 4. When combined with exercise, both whey and milk protein drink induced about a 4-fold increase in Sirt3, compared to runners drinking water only, and about a 2-fold increase compared to the respective sedentary group. Protein supplements, with or without running, enhanced the phosphorylation level of the acetyl-coA-carboxylase, suggesting increased fat oxidation. Both supplemented diets increased Sirt5 and Sirt7 without an additional effect from exercise. Running diminished and PD supplement increased Sirt6. Conclusion We demonstrate in rats new sub-chronic effects of milk proteins on metabolism that involve Sirtuins and their downstream targets in skeletal muscle. The results show that running and milk proteins act on reducing the risk factors of metabolic disorders and suggest that the underlying mechanisms may involve Sirtuins. Notably, we found that milk protein supplements have some favorable effects on metabolism even without running. Interactive effects of running and/or milk protein supplements were studied. Milk protein drink enhanced and whey diminished the amount of voluntary running. Despite less running whey-supplementation improved metabolic health. Almost all Sirtuins in muscle adapted to milk protein and running interventions.
Collapse
|