51
|
Lanza G, Fisicaro F, D’Agate CC, Ferri R, Cantone M, Falzone L, Pennisi G, Bella R, Hadjivassiliou M, Pennisi M. Preserved central cholinergic functioning to transcranial magnetic stimulation in de novo patients with celiac disease. PLoS One 2021; 16:e0261373. [PMID: 34914787 PMCID: PMC8675755 DOI: 10.1371/journal.pone.0261373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Celiac disease (CD) is now viewed as a systemic disease with multifaceted clinical manifestations. Among the extra-intestinal features, neurological and neuropsychiatric symptoms are still a diagnostic challenge, since they can precede or follow the diagnosis of CD. In particular, it is well known that some adults with CD may complain of cognitive symptoms, that improve when the gluten-free diet (GFD) is started, although they may re-appear after incidental gluten intake. Among the neurophysiological techniques, motor evoked potentials (MEPs) to transcranial magnetic stimulation (TMS) can non-invasively probe in vivo the excitation state of cortical areas and cortico-spinal conductivity, being also able to unveil preclinical impairment in several neurological and psychiatric disorders, as well as in some systemic diseases affecting the central nervous system (CNS), such as CD. We previously demonstrated an intracortical disinhibition and hyperfacilitation of MEP responses to TMS in newly diagnosed patients. However, no data are available on the central cholinergic functioning indexed by specific TMS measures, such as the short-latency afferent inhibition (SAI), which might represent the neurophysiological correlate of cognitive changes in CD patients, also at the preclinical level. METHODS Cognitive and depressive symptoms were screened by means of the Montreal Cognitive Assessment (MoCA) and the 17-item Hamilton Depression Rating Scale (HDRS), respectively, in 15 consecutive de novo CD patients and 15 healthy controls. All patients were on normal diet at the time of the enrolment. Brain computed tomography (CT) was performed in all patients. SAI, recorded at two interstimulus intervals (2 and 8 ms), was assessed as the percentage amplitude ratio between the conditioned and the unconditioned MEP response. Resting motor threshold, MEP amplitude and latency, and central motor conduction time were also measured. RESULTS The two groups were comparable for age, sex, anthropometric features, and educational level. Brain CT ruled out intracranial calcifications and clear radiological abnormalities in all patients. Scores at MoCA and HDRS were significantly worse in patients than in controls. The comparison of TMS data between the two groups revealed no statistically significant difference for all measures, including SAI at both interstimulus intervals. CONCLUSIONS Central cholinergic functioning explored by the SAI of the motor cortex resulted to be not affected in these de novo CD patients compared to age-matched healthy controls. Although the statistically significant difference in MoCA, an overt cognitive impairment was not clinically evident in CD patients. Coherently, to date, no study based on TMS or other diagnostic techniques has shown any involvement of the central acetylcholine or the cholinergic fibers within the CNS in CD. This finding might add support to the vascular inflammation hypothesis underlying the so-called "gluten encephalopathy", which seems to be due to an aetiology different from that of the cholinergic dysfunction. Longitudinal studies correlating clinical, TMS, and neuroimaging data, both before and after GFD, are needed.
Collapse
Affiliation(s)
- Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Carmela Cinzia D’Agate
- Gastroenterology and Endoscopy Unit, University Hospital Policlinico “G. Rodolico-San Marco”, Catania, Italy
| | - Raffaele Ferri
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
| | - Mariagiovanna Cantone
- Department of Neurology, Sant’Elia Hospital, ASP Caltanissetta, Caltanissetta, Italy
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, Instituto Nazionale Tumori-IRCCS “Fondazione G. Pascale, Napoli, Italy
| | - Giovanni Pennisi
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Marios Hadjivassiliou
- Academic Department of Neurosciences, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
52
|
Derbyshire E, Obeid R, Schön C. Habitual Choline Intakes across the Childbearing Years: A Review. Nutrients 2021; 13:nu13124390. [PMID: 34959942 PMCID: PMC8709092 DOI: 10.3390/nu13124390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 11/20/2022] Open
Abstract
Choline is an important nutrient during the first 1000 days post conception due to its roles in brain function. An increasing number of studies have measured choline intakes at the population level. We collated the evidence focusing on habitual choline intakes in the preconceptual, pregnancy, and lactation life stages. We conducted a review including studies published from 2004 to 2021. Twenty-six relevant publications were identified. After excluding studies with a high choline intake (>400 mg/day; two studies) or low choline intake (<200 mg/day; one study), average choline intake in the remaining 23 studies ranged from 233 mg/day to 383 mg/day, even with the inclusion of choline from supplements. Intakes were not higher in studies among pregnant and lactating women compared with studies in nonpregnant women. To conclude, during the childbearing years and across the globe, habitual intakes of choline from foods alone and foods and supplements combined appear to be consistently lower than the estimated adequate intakes for this target group. Urgent measures are needed to (1) improve the quality of choline data in global food composition databases, (2) encourage the reporting of choline intakes in dietary surveys, (3) raise awareness about the role(s) of choline in foetal–maternal health, and (4) consider formally advocating the use of choline supplements in women planning a pregnancy, pregnant, or lactating.
Collapse
Affiliation(s)
| | - Rima Obeid
- Department of Clinical Chemistry and Laboratory Medicine, University Hospital of the Saarland, D-66420 Homburg, Germany;
| | - Christiane Schön
- BioTeSys GmbH, Schelztorstrasse 54-56, D-73728 Esslingen, Germany;
| |
Collapse
|
53
|
Patterns of Egg Consumption Can Help Contribute to Nutrient Recommendations and Are Associated with Diet Quality and Shortfall Nutrient Intakes. Nutrients 2021; 13:nu13114094. [PMID: 34836349 PMCID: PMC8621348 DOI: 10.3390/nu13114094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 01/22/2023] Open
Abstract
Limited data are available on how eggs are consumed in the typical American eating pattern and the contribution to usual intakes, diet quality and in meeting recommendations. The objectives of the present analysis included identifying how eggs are consumed within U.S. dietary patterns and how these patterns are associated with the usual intakes of shortfall nutrients and diet quality (Healthy Eating Index 2015) using data from the combined National Health and Nutrition Examination Survey (NHANES) from 2001–2016. An additional objective included assessing the differences between egg consumers and egg non-consumers in nutrient intakes and nutrient adequacy. Several egg-containing dietary patterns were identified, and two egg patterns were associated with a greater diet quality compared to a no egg pattern (p < 0.0001). Most egg patterns identified were similar in diet quality scores when compared to the no egg pattern; however, the two egg patterns had lower diet quality scores. Egg consumption combined with a greater intake of total protein foods, seafood and plant protein, total vegetables, total fruit, whole fruit, whole grains and dairy foods, and a lower intake of refined grains and added sugars contributed to an improved diet quality, supporting that no one food is responsible for a healthy dietary pattern. Egg consumers demonstrated significantly higher intakes of dietary fiber, calcium, magnesium, potassium, total choline, vitamin A, vitamin C, vitamin D and vitamin E when compared to egg non-consumers. A comparison of egg consumers and egg non-consumers found egg consumers had significantly less percentages of the population below the EAR for calcium, iron, magnesium, vitamin A, vitamin C and vitamin E. Similarly, the percentage of the population above the recommendations for potassium and choline were greater for egg consumers vs. egg non-consumers. In egg consumers, 24.4% of the population was above the AI for dietary choline when compared to 4.3% of egg non-consumers (p < 0.0001). Findings from the present analysis demonstrate that eggs and egg-containing foods can be an important part of a healthy dietary pattern when balanced accordingly with other nutrient-dense foods.
Collapse
|
54
|
Choline Intake Correlates with Cognitive Performance among Elder Adults in the United States. Behav Neurol 2021; 2021:2962245. [PMID: 34745383 PMCID: PMC8570899 DOI: 10.1155/2021/2962245] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/11/2021] [Indexed: 11/21/2022] Open
Abstract
Objective This research attempted to explore the neuroprotective effect of choline and establish evidence for future dietary recommendations and nutritional interventions to maintain a proper cognitive function among elders aged >60 years in the US. Method This cross-sectional study retrieved data of 2,393 eligible elderly participants from the 2011-2014 National Health and Nutrition Examination Survey. Combining dietary and supplement choline intake, total choline intake was evaluated using the 24-hour dietary recall method and the dietary supplement questionnaire. Total choline intake was categorized into tertiles, which ranged at <187.60 mg/day (T1), 187.60-399.50 mg/day (T2), and >399.50 mg/day (T3). The Consortium to Establish a Registry for Alzheimer's Disease (CERAD) Word Learning subtest, Animal Fluency (AF) test, and Digit Symbol Substitution test (DSST) was used to measure cognitive function. Participants who scored the lowest 25th percentile in each cognitive test were classified in the low cognitive function (LC) group. Logistic regression models were implemented to examine the association between total choline intake and the incidence of LC. Results In the CERAD test, the risk of LC was significantly lower in T2 than T1 (OR: 0.668, 95% CI: 0.493-0.904, and P = 0.006) when adjusted for age, gender, BMI, alcohol consumption, and hypertension. Similarly, T2 was associated with a significantly lower risk of LC when assessed by the AF test (OR: 0.606, 95% CI: 0.580-0.724, and P < 0.001) and DSST (0.584, 95% CI: 0.515-0.661, and P < 0.001). In all three cognitive measures, the T3 of the total choline intake was not associated with cognitive function compared to T1. Conclusion Total choline intake at 187.06-399.50 mg/day reduces the risk of LC by approximately 50% compared to intake at <187.6 mg/day. The findings of this research may be used to establish dietary recommendations and nutritional interventions to optimize the cognitive function among elders.
Collapse
|
55
|
Miao M, Du J, Che B, Guo Y, Zhang J, Ju Z, Xu T, Zhong X, Zhang Y, Zhong C. Circulating choline pathway nutrients and depression after ischemic stroke. Eur J Neurol 2021; 29:459-468. [PMID: 34611955 DOI: 10.1111/ene.15133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 09/30/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND PURPOSE Choline pathway nutrients, including choline and betaine, are reported to exert antidepressant effects. However, there is little population-based evidence on the relationships between circulating choline and betaine and poststroke depression (PSD). We aimed to prospectively explore the associations between plasma choline and betaine and depression after ischemic stroke. METHODS This study was based on the China Antihypertensive Trial in Acute Ischemic Stroke. A total of 612 participants with plasma choline and betaine concentrations were included in the analysis. The study outcome was depression 3 months after ischemic stroke. Logistic regression models were performed to estimate the relationships between plasma choline and betaine and the risk of PSD. Risk reclassification and calibration of models with choline or betaine were analyzed. RESULTS Patients with PSD had lower choline and betaine levels than those without PSD (p < 0.05). Compared with tertile 1, the multivariable-adjusted odds ratios (95% CIs) for tertile 3 of choline and betaine were 0.54 (0.35-0.83) and 0.59 (0.38-0.92), respectively. Per 1 SD increase in choline or betaine was associated with a 25% (95% CI 9%-37%) or an 19% (95% CI 3%-32%) decreased risk of PSD, respectively. Furthermore, the addition of choline or betaine to the established risk factors model improved the risk reclassification for PSD, as shown by an increase in the net reclassification index and integrated discrimination improvement (all p < 0.05). CONCLUSIONS Patients with elevated levels of choline and betaine had a lower risk of depression after acute ischemic stroke, suggesting the protective significance of choline pathway nutrients for PSD.
Collapse
Affiliation(s)
- Mengyuan Miao
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Jigang Du
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Bizhong Che
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Yufei Guo
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Jintao Zhang
- Department of Neurology, The 88th Hospital of PLA, Shandong, China
| | - Zhong Ju
- Department of Neurology, Kerqin District First People's Hospital of Tongliao City, Tongliao, China
| | - Tan Xu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Xiaoyan Zhong
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Chongke Zhong
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
56
|
Zhong C, Miao M, Che B, Du J, Wang A, Peng H, Bu X, Zhang J, Ju Z, Xu T, He J, Zhang Y. Plasma choline and betaine and risks of cardiovascular events and recurrent stroke after ischemic stroke. Am J Clin Nutr 2021; 114:1351-1359. [PMID: 34159355 DOI: 10.1093/ajcn/nqab199] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/25/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Choline and betaine have been suggested to play a pivotal role in neurotransmitter synthesis, cell membrane integrity, and methyl-group metabolism, exerting neuroprotective effects in patients with various neurological disorders. However, population-based evidence on choline and betaine with subsequent cardiovascular events after stroke is rare. OBJECTIVES We aimed to prospectively investigate the relationships of circulating choline and betaine with cardiovascular events and recurrent stroke in patients with ischemic stroke. METHODS We performed a nested case-control study within the China Antihypertensive Trial in Acute Ischemic Stroke. A total of 323 cardiovascular events (including 264 recurrent strokes) and 323 controls (free of recurrent cardiovascular events) matched for age (±1 y), sex, and treatment group were included. The primary endpoint was a composite of cardiovascular events after ischemic stroke. Plasma choline and betaine were measured at baseline by ultra-high-performance LC-MS/MS. Conditional logistic regression models were applied, and discrimination, reclassification, and calibration of models with choline pathway metabolites were evaluated. RESULTS Plasma choline and betaine were inversely associated with cardiovascular events and recurrent stroke after ischemic stroke. Specifically, in fully adjusted models, each additional SD of choline and betaine was associated with 35% (95% CI: 20%-48%) and 30% (95% CI: 14%-43%) decreased risks of subsequent cardiovascular events, respectively, and 34% (95% CI: 16%-48%) and 29% (95% CI: 12%-43%) decreased risks of recurrent stroke, respectively. In addition, both choline and betaine offered substantial risk discrimination and reclassification improvement for cardiovascular events and recurrent stroke beyond traditional risk factors, as evidenced by an increase in C statistics, the net reclassification index, and integrated discrimination improvement. CONCLUSIONS Plasma choline pathway metabolites, including choline and betaine, were associated with decreased risks of cardiovascular events and recurrent stroke and provided incremental value in risk discrimination and stratification in patients with ischemic stroke. This nested case-control study was based on the China Antihypertensive Trial in Acute Ischemic Stroke, which is registered at clinicaltrials.gov as NCT01840072.
Collapse
Affiliation(s)
- Chongke Zhong
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Mengyuan Miao
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Bizhong Che
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Jigang Du
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Aili Wang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Hao Peng
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Xiaoqing Bu
- Department of Epidemiology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Jintao Zhang
- Department of Neurology, The 88th Hospital of PLA, Shandong, China
| | - Zhong Ju
- Department of Neurology, Kerqin District First People's Hospital of Tongliao City, Tongliao, China
| | - Tan Xu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
57
|
Leone P, Tolomeo M, Piancone E, Puzzovio PG, De Giorgi C, Indiveri C, Di Schiavi E, Barile M. Mimicking human riboflavin responsive neuromuscular disorders by silencing flad-1 gene in C. elegans: Alteration of vitamin transport and cholinergic transmission. IUBMB Life 2021; 74:672-683. [PMID: 34558787 PMCID: PMC9292511 DOI: 10.1002/iub.2553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/14/2021] [Accepted: 08/30/2021] [Indexed: 01/01/2023]
Abstract
Riboflavin (Rf), or vitamin B2, is the precursor of FMN and FAD, redox cofactors of several dehydrogenases involved in energy metabolism, redox balance and other cell regulatory processes. FAD synthase, coded by FLAD1 gene in humans, is the last enzyme in the pathway converting Rf into FAD. Mutations in FLAD1 gene are responsible for neuromuscular disorders, in some cases treatable with Rf. In order to mimic these disorders, the Caenorhabditis elegans (C. elegans) gene orthologue of FLAD1 (flad‐1) was silenced in a model strain hypersensitive to RNA interference in nervous system. Silencing flad‐1 resulted in a significant decrease in total flavin content, paralleled by a decrease in the level of the FAD‐dependent ETFDH protein and by a secondary transcriptional down‐regulation of the Rf transporter 1 (rft‐1) possibly responsible for the total flavin content decrease. Conversely an increased ETFDH mRNA content was found. These biochemical changes were accompanied by significant phenotypical changes, including impairments of fertility and locomotion due to altered cholinergic transmission, as indicated by the increased sensitivity to aldicarb. A proposal is made that neuronal acetylcholine production/release is affected by alteration of Rf homeostasis. Rf supplementation restored flavin content, increased rft‐1 transcript levels and eliminated locomotion defects. In this aspect, C. elegans could provide a low‐cost animal model to elucidate the molecular rationale for Rf therapy in human Rf responsive neuromuscular disorders and to screen other molecules with therapeutic potential.
Collapse
Affiliation(s)
- Piero Leone
- Department of Biosciences, Biotechnology, and Biopharmaceutics, University of Bari, Bari, Italy
| | - Maria Tolomeo
- Department of Biosciences, Biotechnology, and Biopharmaceutics, University of Bari, Bari, Italy
| | - Elisabetta Piancone
- Department of Biosciences, Biotechnology, and Biopharmaceutics, University of Bari, Bari, Italy
| | - Pier Giorgio Puzzovio
- Faculty of Medicine, Pharmacology and Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Carla De Giorgi
- Department of Biosciences, Biotechnology, and Biopharmaceutics, University of Bari, Bari, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Elia Di Schiavi
- Institute of Biosciences and Bioresources (IBBR) CNR, Naples, Italy
| | - Maria Barile
- Department of Biosciences, Biotechnology, and Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
58
|
Goh YQ, Cheam G, Wang Y. Understanding Choline Bioavailability and Utilization: First Step Toward Personalizing Choline Nutrition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10774-10789. [PMID: 34392687 DOI: 10.1021/acs.jafc.1c03077] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Choline is an essential macronutrient involved in neurotransmitter synthesis, cell-membrane signaling, lipid transport, and methyl-group metabolism. Nevertheless, the vast majority are not meeting the recommended intake requirement. Choline deficiency is linked to nonalcoholic fatty liver disease, skeletal muscle atrophy, and neurodegenerative diseases. The conversion of dietary choline to trimethylamine by gut microbiota is known for its association with atherosclerosis and may contribute to choline deficiency. Choline-utilizing bacteria constitutes less than 1% of the gut community and is modulated by lifestyle interventions such as dietary patterns, antibiotics, and probiotics. In addition, choline utilization is also affected by genetic factors, further complicating the impact of choline on health. This review overviews the complex interplay between dietary intakes of choline, gut microbiota and genetic factors, and the subsequent impact on health. Understanding of gut microbiota metabolism of choline substrates and interindividual variability is warranted in the development of personalized choline nutrition.
Collapse
Affiliation(s)
- Ying Qi Goh
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921
| | - Guoxiang Cheam
- School of Biological Sciences, Nanyang Technological University, Singapore 639798
| | - Yulan Wang
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921
| |
Collapse
|
59
|
Bekdash RA. Early Life Nutrition and Mental Health: The Role of DNA Methylation. Nutrients 2021; 13:nu13093111. [PMID: 34578987 PMCID: PMC8469584 DOI: 10.3390/nu13093111] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 02/05/2023] Open
Abstract
Does the quality of our diet during early life impact our long-term mental health? Accumulating evidence suggests that nutrition interacts with our genes and that there is a strong association between the quality of diet and mental health throughout life. Environmental influences such as maternal diet during pregnancy or offspring diet have been shown to cause epigenetic changes during critical periods of development, such as chemical modifications of DNA or histones by methylation for the regulation of gene expression. One-carbon metabolism, which consists of the folate and methionine cycles, is influenced by the diet and generates S-Adenosylmethinoine (SAM), the main methyl donor for methylation reactions such as DNA and histone methylation. This review provides current knowledge on how the levels of one-carbon metabolism associated micronutrients such as choline, betaine, folate, methionine and B vitamins that play a role in brain function can impact our well-being and mental health across the lifespan. Micronutrients that act as methyl donors for SAM formation could affect global or gene methylation, altering gene expression and phenotype. Strategies should then be adopted to better understand how these nutrients work and their impact at different stages of development to provide individualized dietary recommendations for better mental health outcomes.
Collapse
Affiliation(s)
- Rola A Bekdash
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
60
|
Wang X, Xu T, Zhang Y, Gao N, Feng T, Wang S, Zhang M. In Vivo Detection of Redox-Inactive Neurochemicals in the Rat Brain with an Ion Transfer Microsensor. ACS Sens 2021; 6:2757-2762. [PMID: 34191484 DOI: 10.1021/acssensors.1c00978] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Electrochemical tracking of redox-inactive neurochemicals remain a challenge due to chemical inertness, almost no Faraday electron transfer for these species, and the complex brain atmosphere. In this work, we demonstrate a low-cost, simple-making liquid/liquid interface microsensor (LLIM) to monitor redox-inactive neurochemicals in the rat brain. Taking choline (Ch) as an example, based on the difference in solvation energies of Ch in cerebrospinal fluid (aqueous phase) and 1,2-dichloroethane (1,2-DCE; organic phase), Ch is recognized in the specific ion-transfer potential and distinctive ion-transfer current signals. The LLIM has an excellent response to Ch with good linearity and selectivity, and the detection limit is 0.37 μM. The LLIM can monitor the dynamics of Ch in the cortex of the rat brain by both local microinfusion and intraperitoneal injection of Ch. This work first demonstrates that the LLIM can be successfully applied in the brain and obtain electrochemical signals in such a sophisticated system, allowing one new perspective of sensing at the liquid/liquid interface for nonelectrically active substances in vivo to understand the physiological function of the brain.
Collapse
Affiliation(s)
- Xiaofang Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Tianci Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yue Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Nan Gao
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Taotao Feng
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Shujun Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Meining Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
61
|
Mao Q, Tian T, Chen J, Guo X, Zhang X, Zou T. Serum Metabolic Profiling of Late-Pregnant Women With Antenatal Depressive Symptoms. Front Psychiatry 2021; 12:679451. [PMID: 34305679 PMCID: PMC8295540 DOI: 10.3389/fpsyt.2021.679451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/24/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Antenatal depression (AD) is a major public health issue worldwide and lacks objective laboratory-based tests to support its diagnosis. Recently, small metabolic molecules have been found to play a vital role in interpreting the pathogenesis of AD. Thus, non-target metabolomics was conducted in serum. Methods: Liquid chromatography-tandem mass spectrometry-based metabolomics platforms were used to conduct serum metabolic profiling of AD and non-antenatal depression (NAD). Orthogonal partial least squares discriminant analysis, the non-parametric Mann-Whitney U test, and Benjamini-Hochberg correction were used to identify the differential metabolites between AD and NAD groups; Spearman's correlation between the key differential metabolites and Edinburgh Postnatal Depression Scale (EPDS) and the stepwise logistic regression analysis was used to identify potential biomarkers. Results: In total, 79 significant differential metabolites between AD and NAD were identified. These metabolites mainly influence amino acid metabolism and glycerophospholipid metabolism. Then, PC (16:0/16:0) and betaine were significantly positively correlated with EPDS. The simplified biomarker panel consisting of these three metabolites [betaine, PC (16:0/16:0) and succinic acid] has excellent diagnostic performance (95% confidence interval = 0.911-1.000, specificity = 95%, sensitivity = 85%) in discriminating AD and NAD. Conclusion: The results suggested that betaine, PC (16:0/16:0), and succinic acid were potential biomarker panels, which significantly correlated with depression; and it could make for developing an objective method in future to diagnose AD.
Collapse
Affiliation(s)
- Qiang Mao
- Department of Pharmacology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tian Tian
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jing Chen
- Department of Psychiatry, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xunyi Guo
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Xueli Zhang
- Department of Psychiatry, Linyi Mental Health Center, Linyi, China
| | - Tao Zou
- Shanghai Key Laboratory of Forensic Medicine (Academy of Forensic Science), Shanghai, China
- Department of Psychiatry, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
62
|
Zhang YW, Lu PP, Li YJ, Dai GC, Cao MM, Xie T, Zhang C, Shi L, Rui YF. Low dietary choline intake is associated with the risk of osteoporosis in elderly individuals: a population-based study. Food Funct 2021; 12:6442-6451. [PMID: 34076003 DOI: 10.1039/d1fo00825k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Currently, little is known regarding the association between dietary choline intake and osteoporosis in elderly individuals, as well as if such intakes affect bone health and result in fractures. This study was aimed to examine associations between daily dietary choline intake and osteoporosis in elderly individuals. A total of 31 034 participants from the National Health and Nutritional Examination Survey (NHANES) during 2005-2010 were enrolled, and 3179 participants with complete data and aged 65 years and older were identified. Baseline characteristics and dietary intake data were obtained through method of in-home administered questionnaires. Of 3179 individuals with a mean age of 73.7 ± 5.6 years, female (P < 0.001) and non-hispanic white (P < 0.001) occupied a higher proportion in the osteoporosis group. The logistic regression analysis indicated that the prevalence of osteoporosis in three tertile categories with gradually enhanced dietary choline intake was decreased progressively (P for trend <0.001). The restricted cubic spline (RCS) showed that the risk of osteoporosis generally decreased with increasing daily dietary choline intake (P < 0.001), while this trend was not apparent in relation between the daily dietary choline intake and risk of hip fracture (P = 0.592). The receiver operating characteristic (ROC) analysis identified a daily dietary choline intake of 232.1 mg as the optimal cutoff value for predicting osteoporosis. Our nationwide data suggested that a lower level of daily dietary choline intake was positively associated with the increased risk of osteoporosis in the US elderly population.
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Baumel BS, Doraiswamy PM, Sabbagh M, Wurtman R. Potential Neuroregenerative and Neuroprotective Effects of Uridine/Choline-Enriched Multinutrient Dietary Intervention for Mild Cognitive Impairment: A Narrative Review. Neurol Ther 2021; 10:43-60. [PMID: 33368017 PMCID: PMC8139993 DOI: 10.1007/s40120-020-00227-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/02/2020] [Indexed: 01/21/2023] Open
Abstract
In mild cognitive impairment (MCI) due to Alzheimer disease (AD), also known as prodromal AD, there is evidence for a pathologic shortage of uridine, choline, and docosahexaenoic acid [DHA]), which are key nutrients needed by the brain. Preclinical and clinical evidence shows the importance of nutrient bioavailability to support the development and maintenance of brain structure and function in MCI and AD. Availability of key nutrients is limited in MCI, creating a distinct nutritional need for uridine, choline, and DHA. Evidence suggests that metabolic derangements associated with ageing and disease-related pathology can affect the body's ability to generate and utilize nutrients. This is reflected in lower levels of nutrients measured in the plasma and brains of individuals with MCI and AD dementia, and progressive loss of cognitive performance. The uridine shortage cannot be corrected by normal diet, making uridine a conditionally essential nutrient in affected individuals. It is also challenging to correct the choline shortfall through diet alone, because brain uptake from the plasma significantly decreases with ageing. There is no strong evidence to support the use of single-agent supplements in the management of MCI due to AD. As uridine and choline work synergistically with DHA to increase phosphatidylcholine formation, there is a compelling rationale to combine these nutrients. A multinutrient enriched with uridine, choline, and DHA developed to support brain function has been evaluated in randomized controlled trials covering a spectrum of dementia from MCI to moderate AD. A randomized controlled trial in subjects with prodromal AD showed that multinutrient intervention slowed brain atrophy and improved some measures of cognition. Based on the available clinical evidence, nutritional intervention should be considered as a part of the approach to the management of individuals with MCI due to AD, including adherence to a healthy, balanced diet, and consideration of evidence-based multinutrient supplements.
Collapse
Affiliation(s)
- Barry S Baumel
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - P Murali Doraiswamy
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Marwan Sabbagh
- Lou Ruvo Center for Brain Health, Cleveland Clinic, Las Vegas, NV, USA
| | - Richard Wurtman
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
64
|
Zhang Z, Liao Q, Sun Y, Pan T, Liu S, Miao W, Li Y, Zhou L, Xu G. Lipidomic and Transcriptomic Analysis of the Longissimus Muscle of Luchuan and Duroc Pigs. Front Nutr 2021; 8:667622. [PMID: 34055857 PMCID: PMC8154583 DOI: 10.3389/fnut.2021.667622] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/30/2021] [Indexed: 01/08/2023] Open
Abstract
Meat is an essential food, and pork is the largest consumer meat product in China and the world. Intramuscular fat has always been the basis for people to select and judge meat products. Therefore, we selected the Duroc, a western lean pig breed, and the Luchuan, a Chinese obese pig breed, as models, and used the longissimus dorsi muscle for lipidomics testing and transcriptomics sequencing. The purpose of the study was to determine the differences in intramuscular fat between the two breeds and identify the reasons for the differences. We found that the intramuscular fat content of Luchuan pigs was significantly higher than that of Duroc pigs. The triglycerides and diglycerides related to flavor were higher in Luchuan pigs compared to Duroc pigs. This phenotype may be caused by the difference in the expression of key genes in the glycerolipid metabolism signaling pathway.
Collapse
Affiliation(s)
- Zhiwang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Qichao Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yu Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Tingli Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Siqi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Weiwei Miao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yixing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Lei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Gaoxiao Xu
- Teaching and Research Section of Biotechnology, Nanning University, Nanning, China
| |
Collapse
|
65
|
Bekdash RA. The Cholinergic System, the Adrenergic System and the Neuropathology of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22031273. [PMID: 33525357 PMCID: PMC7865740 DOI: 10.3390/ijms22031273] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 12/16/2022] Open
Abstract
Neurodegenerative diseases are a major public health problem worldwide with a wide spectrum of symptoms and physiological effects. It has been long reported that the dysregulation of the cholinergic system and the adrenergic system are linked to the etiology of Alzheimer’s disease. Cholinergic neurons are widely distributed in brain regions that play a role in cognitive functions and normal cholinergic signaling related to learning and memory is dependent on acetylcholine. The Locus Coeruleus norepinephrine (LC-NE) is the main noradrenergic nucleus that projects and supplies norepinephrine to different brain regions. Norepinephrine has been shown to be neuroprotective against neurodegeneration and plays a role in behavior and cognition. Cholinergic and adrenergic signaling are dysregulated in Alzheimer’s disease. The degeneration of cholinergic neurons in nucleus basalis of Meynert in the basal forebrain and the degeneration of LC-NE neurons were reported in Alzheimer’s disease. The aim of this review is to describe current literature on the role of the cholinergic system and the adrenergic system (LC-NE) in the pathology of Alzheimer’s disease and potential therapeutic implications.
Collapse
Affiliation(s)
- Rola A Bekdash
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
66
|
Donoso F, Schverer M, Rea K, Pusceddu MM, Roy BL, Dinan TG, Cryan JF, Schellekens H. Neurobiological effects of phospholipids in vitro: Relevance to stress-related disorders. Neurobiol Stress 2020; 13:100252. [PMID: 33344707 PMCID: PMC7739190 DOI: 10.1016/j.ynstr.2020.100252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 11/08/2022] Open
Abstract
Nutrition is a crucial component for maintenance of brain function and mental health. Accumulating evidence suggests that certain molecular compounds derived from diet can exert neuroprotective effects against chronic stress, and moreover improve important neuronal processes vulnerable to the stress response, such as plasticity and neurogenesis. Phospholipids are naturally occurring amphipathic molecules with promising potential to promote brain health. However, it is unclear whether phospholipids are able to modulate neuronal function directly under a stress-related context. In this study, we investigate the neuroprotective effects of phosphatidylcholine (PC), lysophosphatidylcholine (LPC), phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylglycerol (PG), phosphatidic acid (PA), sphingomyelin (SM) and cardiolipin (CL) against corticosterone (CORT)-induced cytotoxicity in primary cultured rat cortical neurons. In addition, we examine their capacity to modulate proliferation and differentiation of hippocampal neural progenitor cells (NPCs). We show that PS, PG and PE can reverse CORT-induced cytotoxicity and neuronal depletion in cortical cells. On the other hand, phospholipid exposure was unable to prevent the decrease of Bdnf expression produced by CORT. Interestingly, PS was able to increase hippocampal NPCs neurosphere size, and PE elicited a significant increase in astrocytic differentiation in hippocampal NPCs. Together, these results indicate that specific phospholipids protect cortical cells against CORT-induced cytotoxicity and improve proliferation and astrocytic differentiation in hippocampal NPCs, suggesting potential implications on neurodevelopmental and neuroprotective pathways relevant for stress-related disorders.
Collapse
Affiliation(s)
- Francisco Donoso
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry & Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Marina Schverer
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | | | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry & Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
67
|
Alterations in One-Carbon Metabolism in Celiac Disease. Nutrients 2020; 12:nu12123723. [PMID: 33276620 PMCID: PMC7761552 DOI: 10.3390/nu12123723] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
Celiac disease (CD) is an autoimmune enteropathy associated with alterations of metabolism. Metabolomics studies, although limited, showed changes in choline, choline-derived lipids, and methionine concentrations, which could be ascribed to alterations in one-carbon metabolism. To date, no targeted metabolomics analysis investigating differences in the plasma choline/methionine metabolome of CD subjects are reported. This work is a targeted metabolomic study that analyzes 37 metabolites of the one-carbon metabolism in 17 children with CD, treated with a gluten-free diet and 17 healthy control siblings, in order to establish the potential defects in this metabolic network. Our results demonstrate the persistence of defects in the transsulfuration pathway of CD subjects, despite dietary treatment, while choline metabolism, methionine cycle, and folate cycle seem to be reversed and preserved to healthy levels. These findings describe for the first time, a metabolic defect in one-carbon metabolism which could have profound implications in the physiopathology and treatment of CD.
Collapse
|
68
|
Ebert T, Painer J, Bergman P, Qureshi AR, Giroud S, Stalder G, Kublickiene K, Göritz F, Vetter S, Bieber C, Fröbert O, Arnemo JM, Zedrosser A, Redtenbacher I, Shiels PG, Johnson RJ, Stenvinkel P. Insights in the regulation of trimetylamine N-oxide production using a comparative biomimetic approach suggest a metabolic switch in hibernating bears. Sci Rep 2020; 10:20323. [PMID: 33230252 PMCID: PMC7684304 DOI: 10.1038/s41598-020-76346-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
Experimental studies suggest involvement of trimethylamine N-oxide (TMAO) in the aetiology of cardiometabolic diseases and chronic kidney disease (CKD), in part via metabolism of ingested food. Using a comparative biomimetic approach, we have investigated circulating levels of the gut metabolites betaine, choline, and TMAO in human CKD, across animal species as well as during hibernation in two animal species. Betaine, choline, and TMAO levels were associated with renal function in humans and differed significantly across animal species. Free-ranging brown bears showed a distinct regulation pattern with an increase in betaine (422%) and choline (18%) levels during hibernation, but exhibited undetectable levels of TMAO. Free-ranging brown bears had higher betaine, lower choline, and undetectable TMAO levels compared to captive brown bears. Endogenously produced betaine may protect bears and garden dormice during the vulnerable hibernating period. Carnivorous eating habits are linked to TMAO levels in the animal kingdom. Captivity may alter the microbiota and cause a subsequent increase of TMAO production. Since free-ranging bears seems to turn on a metabolic switch that shunts choline to generate betaine instead of TMAO, characterisation and understanding of such an adaptive switch could hold clues for novel treatment options in burden of lifestyle diseases, such as CKD.
Collapse
Affiliation(s)
- Thomas Ebert
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Johanna Painer
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, Veterinary University Vienna, Savoyenstreet 1, 1160, Vienna, Austria
| | - Peter Bergman
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Abdul Rashid Qureshi
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Sylvain Giroud
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, Veterinary University Vienna, Savoyenstreet 1, 1160, Vienna, Austria
| | - Gabrielle Stalder
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, Veterinary University Vienna, Savoyenstreet 1, 1160, Vienna, Austria
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Frank Göritz
- Leibniz Institute for Zoo and Wildlife Ecology, Berlin, Germany
| | - Sebastian Vetter
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, Veterinary University Vienna, Savoyenstreet 1, 1160, Vienna, Austria
| | - Claudia Bieber
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, Veterinary University Vienna, Savoyenstreet 1, 1160, Vienna, Austria
| | - Ole Fröbert
- Department of Cardiology, Faculty of Health, Örebro University, Örebro, Sweden
| | - Jon M Arnemo
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, Koppang, Norway.,Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Andreas Zedrosser
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Bø i Telemark, Norway.,Institute for Wildlife Biology and Game Management, University for Natural Resources and Life Sciences, Vienna, Austria
| | | | - Paul G Shiels
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Richard J Johnson
- Division of Renal Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden. .,Department of Renal Medicine M99, Karolinska University Hospital, 141 86, Stockholm, Sweden.
| |
Collapse
|
69
|
Waddell J, Hill E, Tang S, Jiang L, Xu S, Mooney SM. Choline Plus Working Memory Training Improves Prenatal Alcohol-Induced Deficits in Cognitive Flexibility and Functional Connectivity in Adulthood in Rats. Nutrients 2020; 12:E3513. [PMID: 33202683 PMCID: PMC7696837 DOI: 10.3390/nu12113513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/27/2020] [Accepted: 11/12/2020] [Indexed: 12/28/2022] Open
Abstract
Fetal alcohol spectrum disorder (FASD) is the leading known cause of intellectual disability, and may manifest as deficits in cognitive function, including working memory. Working memory capacity and accuracy increases during adolescence when neurons in the prefrontal cortex undergo refinement. Rats exposed to low doses of ethanol prenatally show deficits in working memory during adolescence, and in cognitive flexibility in young adulthood. The cholinergic system plays a crucial role in learning and memory processes. Here we report that the combination of choline and training on a working memory task during adolescence significantly improved cognitive flexibility (performance on an attentional set shifting task) in young adulthood: 92% of all females and 81% of control males formed an attentional set, but only 36% of ethanol-exposed males did. Resting state functional magnetic resonance imaging showed that functional connectivity among brain regions was different between the sexes, and was altered by prenatal ethanol exposure and by choline + training. Connectivity, particularly between prefrontal cortex and striatum, was also different in males that formed a set compared with those that did not. Together, these findings indicate that prenatal exposure to low doses of ethanol has persistent effects on brain functional connectivity and behavior, that these effects are sex-dependent, and that an adolescent intervention could mitigate some of the effects of prenatal ethanol exposure.
Collapse
Affiliation(s)
- Jaylyn Waddell
- Division of Neonatology, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (E.H.); (S.M.M.)
| | - Elizabeth Hill
- Division of Neonatology, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (E.H.); (S.M.M.)
| | - Shiyu Tang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.T.); (L.J.); (S.X.)
| | - Li Jiang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.T.); (L.J.); (S.X.)
| | - Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.T.); (L.J.); (S.X.)
| | - Sandra M. Mooney
- Division of Neonatology, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (E.H.); (S.M.M.)
- Department of Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| |
Collapse
|
70
|
Arias N, Arboleya S, Allison J, Kaliszewska A, Higarza SG, Gueimonde M, Arias JL. The Relationship between Choline Bioavailability from Diet, Intestinal Microbiota Composition, and Its Modulation of Human Diseases. Nutrients 2020; 12:nu12082340. [PMID: 32764281 PMCID: PMC7468957 DOI: 10.3390/nu12082340] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Choline is a water-soluble nutrient essential for human life. Gut microbial metabolism of choline results in the production of trimethylamine (TMA), which, upon absorption by the host is converted into trimethylamine-N-oxide (TMAO) in the liver. A high accumulation of both components is related to cardiovascular disease, inflammatory bowel disease, non-alcoholic fatty liver disease, and chronic kidney disease. However, the relationship between the microbiota production of these components and its impact on these diseases still remains unknown. In this review, we will address which microbes contribute to TMA production in the human gut, the extent to which host factors (e.g., the genotype) and diet affect TMA production, and the colonization of these microbes and the reversal of dysbiosis as a therapy for these diseases.
Collapse
Affiliation(s)
- Natalia Arias
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33003 Oviedo, Asturias, Spain; (S.G.H.); (J.L.A.)
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (J.A.); (A.K.)
- Correspondence:
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33003 Oviedo, Asturias, Spain; (S.A.); (M.G.)
| | - Joseph Allison
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (J.A.); (A.K.)
| | - Aleksandra Kaliszewska
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (J.A.); (A.K.)
| | - Sara G. Higarza
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33003 Oviedo, Asturias, Spain; (S.G.H.); (J.L.A.)
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, s/n, 33003 Oviedo, Asturias, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33003 Oviedo, Asturias, Spain; (S.A.); (M.G.)
| | - Jorge L. Arias
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33003 Oviedo, Asturias, Spain; (S.G.H.); (J.L.A.)
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, s/n, 33003 Oviedo, Asturias, Spain
| |
Collapse
|
71
|
Derbyshire E, Obeid R. Choline, Neurological Development and Brain Function: A Systematic Review Focusing on the First 1000 Days. Nutrients 2020; 12:E1731. [PMID: 32531929 PMCID: PMC7352907 DOI: 10.3390/nu12061731] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/22/2022] Open
Abstract
The foundations of neurodevelopment across an individual's lifespan are established in the first 1000 days of life (2 years). During this period an adequate supply of nutrients are essential for proper neurodevelopment and lifelong brain function. Of these, evidence for choline has been building but has not been widely collated using systematic approaches. Therefore, a systematic review was performed to identify the animal and human studies looking at inter-relationships between choline, neurological development, and brain function during the first 1000 days of life. The database PubMed was used, and reference lists were searched. In total, 813 publications were subject to the title/abstract review, and 38 animal and 16 human studies were included after evaluation. Findings suggest that supplementing the maternal or child's diet with choline over the first 1000 days of life could subsequently: (1) support normal brain development (animal and human evidence), (2) protect against neural and metabolic insults, particularly when the fetus is exposed to alcohol (animal and human evidence), and (3) improve neural and cognitive functioning (animal evidence). Overall, most offspring would benefit from increased choline supply during the first 1000 days of life, particularly in relation to helping facilitate normal brain development. Health policies and guidelines should consider re-evaluation to help communicate and impart potential choline benefits through diet and/or supplementation approaches across this critical life stage.
Collapse
Affiliation(s)
| | - Rima Obeid
- Department of Clinical Chemistry, University Hospital of the Saarland, Building 57, 66424 Homburg, Germany;
| |
Collapse
|
72
|
Enomoto H, Furukawa T, Takeda S, Hatta H, Zaima N. Unique Distribution of Diacyl-, Alkylacyl-, and Alkenylacyl-Phosphatidylcholine Species Visualized in Pork Chop Tissues by Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging. Foods 2020; 9:foods9020205. [PMID: 32079116 PMCID: PMC7073967 DOI: 10.3390/foods9020205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/22/2022] Open
Abstract
Phosphatidylcholine (PC) is the major phospholipid in meat and influences meat qualities, such as healthiness. PC is classified into three groups based on the bond at the sn-1 position: Diacyl, alkylacyl, and alkenylacyl. To investigate their composition and distribution in pork tissues, including longissimus thoracis et lumborum (loin) spinalis muscles, intermuscular fat, and transparent tissues, we performed matrix-assisted laser desorption/ionization–mass spectrometry imaging (MALDI–MSI). Eleven diacyl-, seven alkylacyl-, and six alkenylacyl-PCs were identified using liquid chromatography (LC)-tandem MS (MS/MS) analysis. Despite many alkylacyl- and alkenylacyl-PC species sharing identical m/z values, we were able to visualize these PC species using MALDI–MSI. Diacyl- and alkylacyl- and/or alkenylacyl-PC species showed unique distribution patterns in the tissues, suggesting that their distribution patterns were dependent on their fatty acid compositions. PCs are a major dietary source of choline in meat, and the amount was significantly higher in the muscle tissues. Consumption of choline mitigates age-related memory decline and neurodegenerative diseases; therefore, the consumption of pork muscle tissues could help to mitigate these diseases. These results support the use of MALDI–MSI analysis for assessing the association between PC species and the quality parameters of meat.
Collapse
Affiliation(s)
- Hirofumi Enomoto
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya 320-8551, Japan
- Division of Integrated Science and Engineering, Graduate School of Science and Engineering, Teikyo University, Utsunomiya 320-8551, Japan
- Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya 320-8551, Japan
- Correspondence: ; Tel.: +81-28-627-7312
| | - Tomohiro Furukawa
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya 320-8551, Japan
| | - Shiro Takeda
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan;
| | - Hajime Hatta
- Department of Food and Nutrition, Faculty of Home Economics, Kyoto Women’s University, Kyoto 605-8501, Japan;
| | - Nobuhiro Zaima
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara 631-8505, Japan;
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara 631-8505, Japan
| |
Collapse
|