51
|
Nair AB, Al-Dhubiab BE, Shah J, Gorain B, Jacob S, Attimarad M, Sreeharsha N, Venugopala KN, Morsy MA. Constant Voltage Iontophoresis Technique to Deliver Terbinafine via Transungual Delivery System: Formulation Optimization Using Box-Behnken Design and In Vitro Evaluation. Pharmaceutics 2021; 13:pharmaceutics13101692. [PMID: 34683985 PMCID: PMC8538220 DOI: 10.3390/pharmaceutics13101692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
Topical therapy of antifungals is primarily restricted due to the low innate transport of drugs through the thick multi-layered keratinized nail plate. The objective of this investigation was to develop a gel formulation, and to optimize and evaluate the transungual delivery of terbinafine using the constant voltage iontophoresis technique. Statistical analysis was performed using Box–Behnken design to optimize the transungual delivery of terbinafine by examining crucial variables namely concentration of polyethylene glycol, voltage, and duration of application (2–6 h). Optimization data in batches (F1–F17) demonstrated that chemical enhancer, applied voltage, and application time have influenced terbinafine nail delivery. Higher ex vivo permeation and drug accumulation into the nail tissue were noticed in the optimized batch (F8) when compared with other batches (F1–F17). A greater amount of terbinafine was released across the nails when the drug was accumulated by iontophoresis than the passive counterpart. A remarkably higher zone of inhibition was observed in nails with greater drug accumulation due to iontophoresis, as compared to the passive process. The results here demonstrate that the optimized formulation with low voltage iontophoresis could be a viable and alternative tool in the transungual delivery of terbinafine, which in turn could improve the success rate of topical nail therapy in onychomycosis.
Collapse
Affiliation(s)
- Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (B.E.A.-D.); (M.A.); (N.S.); (K.N.V.); (M.A.M.)
- Correspondence: ; Tel.: +966-536-219-868
| | - Bandar E. Al-Dhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (B.E.A.-D.); (M.A.); (N.S.); (K.N.V.); (M.A.M.)
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
- Centre for Drug Delivery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (B.E.A.-D.); (M.A.); (N.S.); (K.N.V.); (M.A.M.)
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (B.E.A.-D.); (M.A.); (N.S.); (K.N.V.); (M.A.M.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (B.E.A.-D.); (M.A.); (N.S.); (K.N.V.); (M.A.M.)
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4000, South Africa
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (B.E.A.-D.); (M.A.); (N.S.); (K.N.V.); (M.A.M.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| |
Collapse
|
52
|
Dalal R, Shah J, Gorain B, Choudhury H, Jacob S, Mehta TA, Shah H, Nair AB. Development and Optimization of Asenapine Sublingual Film Using QbD Approach. AAPS PharmSciTech 2021; 22:244. [PMID: 34608546 DOI: 10.1208/s12249-021-02132-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/02/2021] [Indexed: 11/30/2022] Open
Abstract
Asenapine, an atypical antipsychotic agent, has been approved for the acute and maintenance treatment of schizophrenia and manic episodes of bipolar disorder. However, the extensive hepatic metabolism limits its oral bioavailability. Therefore, the objective of the current investigation was to develop sublingual film containing asenapine to enhance the therapeutic efficacy. Sublingual films containing asenapine were fabricated using polyethylene oxide and hydroxypropyl methylcellulose by solvent casting method. Design of experiment was used as a statistical tool to optimize the proportion of the film-forming polymers in order to establish the critical quality attributes of the drug formulation. The process was studied in detail by assessing risk of each step as well as parameters and material attributes to reduce the risk to a minimum. A control strategy was defined to ensure manufacture of films according to the target product profile by evaluation of intermediate quality attributes at the end of each process step. Results of optimized formulations showed rapid disintegration, adequate folding endurance, good percentage elongation, tensile strength, and viscosity. Besides, the results from the in vitro dissolution/ex vivo permeation studies showed rapid dissolution (100% in 6 min) and higher asenapine permeation (~ 80% in 90 min) through the sublingual epithelium. In vivo study indicates greater asenapine absorption (31.18 ± 5.01% of administered dose) within 5 min and was comparable with marketed formulation. In summary, the designing plan to develop asenapine formulation was successfully achieved with desired characteristics of the delivery tool for sublingual administration.
Collapse
|
53
|
Alhakamy NA, Al-Rabia MW, Asfour HZ, Alshehri S, Alharbi WS, Halawani A, Alamoudi AJ, Noor AO, Bannan DF, Fahmy UA, Kotta S. 2-Methoxy-estradiol Loaded Alpha Lipoic Acid Nanoparticles Augment Cytotoxicity in MCF-7 Breast Cancer Cells. Dose Response 2021; 19:15593258211055023. [PMID: 34987331 PMCID: PMC8669132 DOI: 10.1177/15593258211055023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/02/2021] [Indexed: 12/25/2022] Open
Abstract
The therapeutic effectiveness of anticancer drugs with a selective target for the nucleus of cancer cells may be improved by experimental approaches. In this regard, the formulation of anticancer drugs is considered one of the best ways to improve their effectiveness in targeting cancerous tissues. To enhance the anticancer activity of 2-methoxy-estradiol (2 ME) for breast cancer, 2-methoxyestradiol loaded alpha lipoic acid nanoparticles have been formulated. The prepared formula was observed to be spherical with a nanometer-scale and low PDI size (.234). The entrapment efficiency of the 2ME-ALA NPs was 87.32 ± 2.21% with > 85% release of 2 ME within 24 h. There was a 1.2-fold increase in apoptosis and a 3.46-fold increase in necrosis of the MCF-7 cells when incubated with 2ME-ALA NPs when compared to control cells. This increased apoptosis was also associated with increased ROS and increased p53 expression in 2ME-ALA NPs treated cells compared to the raw-2 ME group. Evaluation of cell-cycle data showed a substantial arrest of the G2-M phase of the MCF-7 cells when incubated with 2ME-ALA NPs. At the same time, a dramatically increased number of pre-G1 cells showed the increased apoptotic potential of the 2 ME when administered via the proposed formulation. In the end, the differential upregulation of caspase-3, p53, and ROS in MCF-7 cells established the superiority of the 2ME-ALA-Ms approach in targeting breast cancer. In summary, these results demonstrate that 2ME-ALA NPs are an efficient delivery tool for controlling the growth of breast cancer cells.
Collapse
Affiliation(s)
- Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed W. Al-Rabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Z. Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Samah Alshehri
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waleed S. Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulrahman Halawani
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulmohsin J. Alamoudi
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad O. Noor
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Douha F. Bannan
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sabna Kotta
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
54
|
Gadhave D, Tupe S, Tagalpallewar A, Gorain B, Choudhury H, Kokare C. Nose-to-brain delivery of amisulpride-loaded lipid-based poloxamer-gellan gum nanoemulgel: In vitro and in vivo pharmacological studies. Int J Pharm 2021; 607:121050. [PMID: 34454028 DOI: 10.1016/j.ijpharm.2021.121050] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/16/2021] [Accepted: 08/23/2021] [Indexed: 12/22/2022]
Abstract
Unfavorable side effects of available antipsychotics limit the use of conventional delivery systems, where limited exposure of the drugs to the systemic circulation could reduce the associated risks. The potential of intranasal delivery is gaining interest to treat brain disorders by delivering the drugs directly to the brain circumventing the tight junctions of the blood-brain barrier with limited systemic exposure of the entrapped therapeutic. Therefore, the present research was aimed to fabricate, optimize and investigate the therapeutic efficacy of amisulpride (AMS)-loaded intranasal in situ nanoemulgel (AMS-NG) in the treatment of schizophrenia. In this context, AMS nanoemulsion (AMS-NE) was prepared by employing aqueous-titration method and optimized using Box-Behnken statistical design. The optimized nanoemulsion was subjected to evaluation of globule size, transmittance, zeta potential, and mucoadhesive strength, which were found to be 92.15 nm, 99.57%, -18.22 mV, and 8.90 g, respectively. The AMS-NE was converted to AMS-NG using poloxamer 407 and gellan gum. Following pharmacokinetic evaluation in Wistar rats, the brain Cmax for intranasal AMS-NG was found to be 1.48-folds and 3.39-folds higher when compared to intranasal AMS-NE and intravenous AMS-NE, respectively. Moreover, behavioral investigations of developed formulations were devoid of any extrapyramidal side effects in the experimental model. Finally, outcomes of the in vivo hematological study confirmed that intranasal administration of formulation for 28 days did not alter leukocytes and agranulocytes count. In conclusion, the promising results of the developed and optimized intranasal AMS-NG could provide a novel platform for the effective and safe delivery of AMS in schizophrenic patients.
Collapse
Affiliation(s)
- Dnyandev Gadhave
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India; Department of Pharmaceutics, HSBPVTS, GOI, College of Pharmacy (Affiliated to Savitribai Phule Pune University), Kashti, Ahmednagar 414701, Maharashtra, India
| | - Shrikant Tupe
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India
| | - Amol Tagalpallewar
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India; School of Pharmacy, Department of Pharmaceutics, MIT World Peace University, Pune 411038, Maharashtra, India
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor 47500, Malaysia.
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Chandrakant Kokare
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India.
| |
Collapse
|
55
|
Chakraborty T, Gupta S, Nair A, Chauhan S, Saini V. Wound healing potential of insulin-loaded nanoemulsion with Aloe vera gel in diabetic rats. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
56
|
Singh A, Maqsood Z, Iqubal MK, Ali J, Baboota S. Compendium of Conventional and Targeted Drug Delivery Formulation Used for the Treatment and Management of the Wound Healing. Curr Drug Deliv 2021; 19:192-211. [PMID: 34315364 DOI: 10.2174/1567201818666210727165916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/21/2021] [Accepted: 07/01/2021] [Indexed: 11/22/2022]
Abstract
Wound healing is a complex and dynamic phenomenon that involves the restoration of normal physiology and functioning of injured tissue. The process of wound healing is primarily regulated by various cytokines, inflammatory mediators, and growth factors at the molecular level. Any intervention in the normal wound healing process leads to further tissue damage, which in turn leads to delayed wound healing. Several natural, synthetic drugs and their combinations were used to restored and accelerate the wound healing process. However, the conventional delivery carriers were not much effective, and thus, nowadays, nanocarriers are gaining much popularity since they are playing a pivotal role in drug delivery. Since nanocarriers have their own applicability and benefits (enhance the bioavailability, site-specific targeting) so, they can accelerate wound healing more efficiently. This review briefly discussed about the various events that take place during the wound healing process with emphasis on various natural, synthetic, and combination drug therapy used for accelerating wound healing and the role of nanotechnology-based approaches in chronic wound healing.
Collapse
Affiliation(s)
- Ajay Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Zeba Maqsood
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
57
|
Alhakamy NA, Ahmed OA, Fahmy UA, Asfour HZ, Alghaith AF, Mahdi WA, Alshehri S, Md S. Development, Optimization and Evaluation of 2-Methoxy-Estradiol Loaded Nanocarrier for Prostate Cancer. Front Pharmacol 2021; 12:682337. [PMID: 34335251 PMCID: PMC8322574 DOI: 10.3389/fphar.2021.682337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/28/2021] [Indexed: 01/23/2023] Open
Abstract
The therapeutic efficacy of antineoplastic agents possessing a selective target to the nucleus of the cancer cells could be enhanced through novel formulation approaches. Thus, toward the improvement of the anticancer potential of 2-methoxy estradiol (2 ME) on prostate cancer, the drug was entrapped into the hydrophobic micelles core formulated with Phospholipon 90G and d-α-tocopheryl polyethylene glycol succinate (TPGS). Optimization of the formulation was done by Box-Behnken statistical design using Statgraphics software to standardize percentages of TPGS and phospholipid to obtain the smallest particle size. The optimized formulation was found to be spherical with nanometer size of 152 ± 5.2 nm, and low PDI (0.234). The entrapment efficiency of the micelles was 88.67 ± 3.21% with >93% release of 2 ME within 24 h. There was a 16-fold increase in apoptosis and an 8-fold increase in necrosis of the PC-3 cells when incubated with 2 ME micellar delivery compared to control cells (2.8 ± 0.2%). This increased apoptosis was further correlated with increased BAX expression (11.6 ± 0.7) and decreased BCL-2 expression (0.29 ± 0.05) in 2 ME micelles treated cells when compared to the control group. Further, loss of mitochondrial membrane potential (∼50-fold) by the drug-loaded micelles and free drug compared to control cells was found to be due to the generation of ROS. Findings on cell cycle analysis revealed the significant arrest of the G2-M phase of the PC-3 cells when incubated with the optimized formulation. Simultaneously, a significantly increased number of cells in pre-G1 revealed the maximum apoptotic potential of the drug when delivered via micellar formulation. Finally, upregulation of caspase-9, p53, and NO, with downregulation of TNF-α, NF-κβ, and inflammatory mediators of the PC-3 cells established the superiority of the micellar approach against prostate cancer. In summary, the acquired results highlighted the potentiality of the 2 ME-micellar delivery tool for controlling the growth of prostate cancer cells for improved efficacy.
Collapse
Affiliation(s)
- Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia.,Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Usama A Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Z Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adel F Alghaith
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wael A Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
58
|
Shah H, Nair AB, Shah J, Jacob S, Bharadia P, Haroun M. Proniosomal vesicles as an effective strategy to optimize naproxen transdermal delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102479] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
59
|
Development and optimization of Clotrimazole‒Rosehip oil nanoethosomal-gel for oral thrush and gingivitis. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
60
|
Vllasaliu D. Non-Invasive Drug Delivery Systems. Pharmaceutics 2021; 13:pharmaceutics13050611. [PMID: 33922587 PMCID: PMC8145673 DOI: 10.3390/pharmaceutics13050611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
Non-invasive drug delivery generally refers to painless drug administration methods involving drug delivery across the biological barriers of the mucosal surfaces or the skin [...].
Collapse
Affiliation(s)
- Driton Vllasaliu
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
61
|
Pandey M, Choudhury H, binti Abd Aziz A, Bhattamisra SK, Gorain B, Su JST, Tan CL, Chin WY, Yip KY. Potential of Stimuli-Responsive In Situ Gel System for Sustained Ocular Drug Delivery: Recent Progress and Contemporary Research. Polymers (Basel) 2021; 13:1340. [PMID: 33923900 PMCID: PMC8074213 DOI: 10.3390/polym13081340] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/20/2021] [Indexed: 12/19/2022] Open
Abstract
Eyesight is one of the most well-deserved blessings, amid all the five senses in the human body. It captures the raw signals from the outside world to create detailed visual images, granting the ability to witness and gain knowledge about the world. Eyes are exposed directly to the external environment; they are susceptible to the vicissitudes of diseases. The World Health Organization has predicted that the number of individuals affected by eye diseases will rise enormously in the next decades. However, the physical barriers of the eyes and the problems associated with conventional ocular formulations are significant challenges in ophthalmic drug development. This has generated the demand for a sustained ocular drug delivery system, which serves to deliver effective drug concentration at a reduced frequency for consistent therapeutic effect and better patient treatment adherence. Recent advancement in pharmaceutical dosage design has demonstrated that a stimuli-responsive in situ gel system exhibits the favorable characteristics for providing sustained ocular drug delivery and enhanced ocular bioavailability. Stimuli-responsive in situ gels undergo a phase transition (solution-gelation) in response to the ocular environmental temperature, pH, and ions. These stimuli transform the formulation into a gel at the cul de sac to overcome the shortcomings of conventional eye drops, such as rapid nasolacrimal drainage and short contact time with the ocular surface This review highlights the recent successful research outcomes of stimuli-responsive in situ gelling systems in treating in vivo models with glaucoma and various ocular infections. Additionally, it also presents the mechanism, recent development, and safety considerations of stimuli-sensitive in situ gel as the potential sustained ocular delivery system for treating common eye disorders.
Collapse
Affiliation(s)
- Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Azila binti Abd Aziz
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia;
| | - Subrat Kumar Bhattamisra
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia;
- Center for Drug Delivery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia
| | - Jocelyn Sziou Ting Su
- Undergraduate, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (J.S.T.S.); (C.L.T.); (W.Y.C.); (K.Y.Y.)
| | - Choo Leey Tan
- Undergraduate, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (J.S.T.S.); (C.L.T.); (W.Y.C.); (K.Y.Y.)
| | - Woon Yee Chin
- Undergraduate, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (J.S.T.S.); (C.L.T.); (W.Y.C.); (K.Y.Y.)
| | - Khar Yee Yip
- Undergraduate, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (J.S.T.S.); (C.L.T.); (W.Y.C.); (K.Y.Y.)
| |
Collapse
|
62
|
Chaudhary S, Nair AB, Shah J, Gorain B, Jacob S, Shah H, Patel V. Enhanced Solubility and Bioavailability of Dolutegravir by Solid Dispersion Method: In Vitro and In Vivo Evaluation-a Potential Approach for HIV Therapy. AAPS PharmSciTech 2021; 22:127. [PMID: 33835317 DOI: 10.1208/s12249-021-01995-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
Being a candidate of BCS class II, dolutegravir (DTG), a recently approved antiretroviral drug, possesses solubility issues. The current research was aimed to improve the solubility of the DTG and thereby enhance its efficacy using the solid dispersion technique. In due course, the miscibility study of the drug was performed with different polymers, where Poloxamer 407 (P407) was found suitable to move forward. The solid dispersion of DTG and P407 was formulated using solvent evaporation technique with a 1:1 proportion of drug and polymer, where the solid-state characterization was performed using differential scanning calorimetry, Fourier transform infrared spectroscopy and X-ray diffraction. No physicochemical interaction was found between the DTG and P407 in the fabricated solid dispersion; however, crystalline state of the drug was changed to amorphous as evident from the X-ray diffractogram. A rapid release of DTG was observed from the solid dispersion (>95%), which is highly significant (p<0.05) as compared to pure drug (11.40%), physical mixture (20.07%) and marketed preparation of DTG (35.30%). The drug release from the formulated solid dispersion followed Weibull model kinetics. Finally, the rapid drug release from the solid dispersion formulation revealed increased Cmax (14.56 μg/mL) when compared to the physical mixture (4.12 μg/mL) and pure drug (3.45 μg/mL). This was further reflected by improved bioavailability of DTG (AUC: 105.99±10.07 μg/h/mL) in the experimental Wistar rats when compared to the AUC of animals administered with physical mixture (54.45±6.58 μg/h/mL) and pure drug (49.27±6.16 μg/h/mL). Therefore, it could be concluded that the dissolution profile and simultaneously the bioavailability of DTG could be enhanced by means of the solid dispersion platform using the hydrophilic polymer, P407, which could be projected towards improved efficacy of the drug in HIV/AIDS.
Collapse
|
63
|
Recent update of toxicity aspects of nanoparticulate systems for drug delivery. Eur J Pharm Biopharm 2021; 161:100-119. [PMID: 33639254 DOI: 10.1016/j.ejpb.2021.02.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/07/2021] [Accepted: 02/20/2021] [Indexed: 12/18/2022]
|
64
|
Naringenin Nano-Delivery Systems and Their Therapeutic Applications. Pharmaceutics 2021; 13:pharmaceutics13020291. [PMID: 33672366 PMCID: PMC7926828 DOI: 10.3390/pharmaceutics13020291] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 12/18/2022] Open
Abstract
Naringenin (NRG) is a polyphenolic phytochemical belonging to the class of flavanones and is widely distributed in citrus fruits and some other fruits such as bergamot, tomatoes, cocoa, and cherries. NRG presents several interesting pharmacological properties, such as anti-cancer, anti-oxidant, and anti-inflammatory activities. However, the therapeutic potential of NRG is hampered due to its hydrophobic nature, which leads to poor bioavailability. Here, we review a wide range of nanocarriers that have been used as delivery systems for NRG, including polymeric nanoparticles, micelles, liposomes, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), nanosuspensions, and nanoemulsions. These nanomedicine formulations of NRG have been applied as a potential treatment for several diseases, using a wide range of in vitro, ex vivo, and in vivo models and different routes of administration. From this review, it can be concluded that NRG is a potential therapeutic option for the treatment of various diseases such as cancer, neurological disorders, liver diseases, ocular disorders, inflammatory diseases, skin diseases, and diabetes when formulated in the appropriate nanocarriers.
Collapse
|
65
|
Irfan MM, Shah SU, Khan IU, Munir MU, Khan NR, Shah KU, Rehman SU, Sohaib M, Basit HM, Mahmood S. Physicochemical Characterization of Finasteride Nanosystem for Enhanced Topical Delivery. Int J Nanomedicine 2021; 16:1207-1220. [PMID: 33623383 PMCID: PMC7896786 DOI: 10.2147/ijn.s296793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/21/2021] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION The current work aimed to formulate a novel chitosan-based finasteride nanosystem (FNS-NS) for skin delivery to optimize the drug availability in skin for a longer time and enhance ex vivo performance of finasteride against androgenic alopecia. METHODS Both undecorated and chitosan decorated FNS-NSs were synthesized by a high energy emulsification technique. All the prepared nanosystems were further subjected to physicochemical characterizations like pH, viscosity, encapsulation efficiency, surface morphology and in vitro drug release behavior. The influence of the nanosystem on the drug permeation and retention in rat skin was examined using Franz diffusion cell apparatus. RESULTS The droplet size of developed nanosystems ranged from 41 to 864 nm with a low polydispersity index. The zeta potential of the nanosystems was between -10 mV and +56 mV. This chitosan decorated nanosystem exhibited controlled drug release, ie about 78-97% in 24 h. Among all the nanosystems, our chitosan decorated formulation (F5) had low drug permeation (16.35 µg/cm2) and higher drug retention (10.81 µg/cm2). CONCLUSION The abovementioned results demonstrate satisfactory in vitro drug release, skin retention profiles and ex vivo performance with chitosan decorated FNS-NS (F5). This optimized formulation could increase drug availability in skin and could become a promising carrier for topical delivery to treat androgenic alopecia.
Collapse
Affiliation(s)
- Malik Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, D.I. Khan, 29050, KPK, Pakistan
- Gomal Centre for Skin/Regenerative Medicine and Drug Delivery Research (GCSRDDR), Faculty of Pharmacy, Gomal University, D.I. Khan, 29050, KPK, Pakistan
| | - Shefaat Ullah Shah
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, D.I. Khan, 29050, KPK, Pakistan
- Gomal Centre for Skin/Regenerative Medicine and Drug Delivery Research (GCSRDDR), Faculty of Pharmacy, Gomal University, D.I. Khan, 29050, KPK, Pakistan
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University Sakaka, Aljouf, 72388, Saudi Arabia
| | - Nauman Rahim Khan
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, D.I. Khan, 29050, KPK, Pakistan
- Gomal Centre for Skin/Regenerative Medicine and Drug Delivery Research (GCSRDDR), Faculty of Pharmacy, Gomal University, D.I. Khan, 29050, KPK, Pakistan
| | - Kifayat Ullah Shah
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, D.I. Khan, 29050, KPK, Pakistan
| | - Saif Ur Rehman
- Department of Pharmacy, Faculty of Medical and Health Sciences, University of Poonch, Rawlakot, AJK, Pakistan
| | - Muhammad Sohaib
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, D.I. Khan, 29050, KPK, Pakistan
- Gomal Centre for Skin/Regenerative Medicine and Drug Delivery Research (GCSRDDR), Faculty of Pharmacy, Gomal University, D.I. Khan, 29050, KPK, Pakistan
| | - Hafiz Muhammad Basit
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, D.I. Khan, 29050, KPK, Pakistan
- Gomal Centre for Skin/Regenerative Medicine and Drug Delivery Research (GCSRDDR), Faculty of Pharmacy, Gomal University, D.I. Khan, 29050, KPK, Pakistan
| | - Saima Mahmood
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, D.I. Khan, 29050, KPK, Pakistan
- Gomal Centre for Skin/Regenerative Medicine and Drug Delivery Research (GCSRDDR), Faculty of Pharmacy, Gomal University, D.I. Khan, 29050, KPK, Pakistan
| |
Collapse
|
66
|
Kumbhar SA, Kokare CR, Shrivastava B, Gorain B, Choudhury H. Antipsychotic Potential and Safety Profile of TPGS-Based Mucoadhesive Aripiprazole Nanoemulsion: Development and Optimization for Nose-To-Brain Delivery. J Pharm Sci 2021; 110:1761-1778. [PMID: 33515583 DOI: 10.1016/j.xphs.2021.01.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022]
Abstract
Delivering therapeutics to the brain using conventional dosage forms is always a challenge, thus the present study was aimed to formulate mucoadhesive nanoemulsion (MNE) of aripiprazole (ARP) for intranasal delivery to transport the drug directly to the brain. Therefore, a TPGS based ARP-MNE was formulated and optimized using the Box-Behnken statistical design. The improved in vitro release profile of the formulation was in agreement to enhanced ex vivo permeation through sheep mucous membranes with a maximum rate of permeation co-efficient (62.87 cm h-1 × 103) and flux (31.43 μg cm-2.h-1). The pharmacokinetic profile following single-dose administration showed the maximum concentration of drug in the brain (Cmax) of 15.19 ± 2.51 μg mL-1 and Tmax of 1 h in animals with ARP-MNE as compared to 10.57 ± 1.88 μg mL-1 and 1 h, and 2.52 ± 0.38 μg mL-1 and 3 h upon intranasal and intravenous administration of ARP-NE, respectively. Further, higher values of % drug targeting efficiency (96.9%) and % drug targeting potential (89.73%) of ARP-MNE through intranasal administration were investigated. The studies in Wistar rats showed no existence of extrapyramidal symptoms through the catalepsy test and forelimb retraction results. No ex vivo ciliotoxicity on nasal mucosa reflects the safety of the components and delivery tool. Further, findings on locomotor activity and hind-limb retraction test in ARP-MNE treated animals established its antipsychotic efficacy. Thus, it can be inferred that the developed ARP-MNE could effectively be explored as brain delivery cargo in the effective treatment of schizophrenia without producing any toxic manifestation.
Collapse
Affiliation(s)
- Santosh Ashok Kumbhar
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur 302 017, Rajasthan, India; Department of Pharmaceutics, STES's Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411 041, Maharashtra, India
| | - Chandrakant R Kokare
- Department of Pharmaceutics, STES's Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411 041, Maharashtra, India
| | - Birendra Shrivastava
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur 302 017, Rajasthan, India.
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Science, Taylor's University, Subang Jaya, Selangor, Malaysia; Centre for Drug Delivery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia; Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, Bukit jalil, 57000 Kuala Lumpur, Malaysia.
| |
Collapse
|
67
|
Shah R, Soni T, Shah U, Suhagia BN, Patel MN, Patel T, Gabr GA, Gorain B, Kesharwani P. Formulation development and characterization of lumefantrine nanosuspension for enhanced antimalarial activity. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:833-857. [PMID: 33380264 DOI: 10.1080/09205063.2020.1870378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Variable and low oral bioavailability (4-11%) of lumefantrine (LUF), an anti-malarial agent, is characterized by very low solubility in aqueous vehicle. Thus, the present study was intended to formulate lyophilized nanosuspensions of LUF to resolve its solubility issues for the improvement of oral bioavailability. A three level 32 factorial design was applied to analyze the influence of independent variables, concentration of polysorbate 80 (X1) and sonication time (X2) on the responses for dependent variables, particle size (Y1) and time to 90% release of LUF (t90) (Y2). Optimized formulation (F3) has shown to possess lowest particle size (95.34 nm) with minimum t90 value (⁓3 mins), which was lyophilized to obtain the dry powder form of the nanosuspension. The characterization parameters confirmed the amorphous form of LUF with good stability and no chemical interactions of the drug with the incorporated components. Further, saturation solubility study revealed increased solubility of the LUF nanosuspension (1670 µg/mL) when compared to the pure drug (212.33 µg/mL). Further, rate of dissolution of LUF from the nanosuspension formulations were found to be significantly (p < 0.05) higher when compared to the pure drug. Fabricated lyophilized nanosuspension was found to be stable at 25 ± 2 °C/60 ± 5% RH and 40 ± 2 °C/75 ± 5% RH for the duration of three months. In conclusion, lyophilized nanosuspension showed ∼8-folds increase in drug release, which indicated a better way to offer higher release of LUF in controlling malaria.
Collapse
Affiliation(s)
- Ripalkumar Shah
- Faculty of Pharmacy, Dharamsinh Desai University, Nadiad, Gujarat, India.,Caplin Point Laboratories Limited (R&D), Chennai, Tamilnadu, India
| | - Tejal Soni
- Faculty of Pharmacy, Dharamsinh Desai University, Nadiad, Gujarat, India
| | - Unnati Shah
- Caplin Point Laboratories Limited (R&D), Chennai, Tamilnadu, India
| | - B N Suhagia
- Faculty of Pharmacy, Dharamsinh Desai University, Nadiad, Gujarat, India
| | - M N Patel
- Faculty of Pharmacy, Dharamsinh Desai University, Nadiad, Gujarat, India
| | - Tejas Patel
- Faculty of Pharmacy, Dharamsinh Desai University, Nadiad, Gujarat, India
| | - Gamal A Gabr
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.,Agricultural Genetic Engineering Research Institute, Agriculture Research Center, Giza, Egypt
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Science, Taylor's University, Subang Jaya, Selengor, Malaysia.,Centre for Drug Delivery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, Delhi, India
| |
Collapse
|
68
|
Alkhalidi HM, Hosny KM, Rizg WY. Oral Gel Loaded by Fluconazole‒Sesame Oil Nanotransfersomes: Development, Optimization, and Assessment of Antifungal Activity. Pharmaceutics 2020; 13:E27. [PMID: 33375740 PMCID: PMC7823766 DOI: 10.3390/pharmaceutics13010027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/29/2022] Open
Abstract
Candidiasis is one of the frequently encountered opportunistic infections in the oral cavity and can be found in acute and chronic presentations. The study aimed to develop fluconazole-loaded sesame oil containing nanotransfersomes (FS-NTF) by the thin-layer evaporation technique to improve the local treatment of oral candidiasis. Optimization of the formulation was performed using the Box‒Behnken statistical design to determine the variable parameters that influence the vesicle size, entrapment efficiency, zone of inhibition, and ulcer index. Finally, the formulated FS-NTF was embedded within the hyaluronic acid‒based hydrogel (HA-FS-NTF). The rheological behavior of the optimized HA-FS-NTF was assessed and the thixotropic behavior with the pseudoplastic flow was recorded; this is desirable for an oral application. An in vitro release study revealed the rapid release of fluconazole from the HA-FS-NTF. This was significantly higher when compared with the fluconazole suspension and hyaluronic acid hydrogel containing fluconazole. Correspondingly, the ex vivo permeation was also found to be higher in HA-FS-NTF in sheep buccal mucosa (400 μg/cm2) when compared with the fluconazole suspension (122 μg/cm2) and hyaluronic acid hydrogel (294 μg/cm2). The optimized formulation had an inhibition zone of 14.33 ± 0.76 mm and enhanced antifungal efficacy for the ulcer index (0.67 ± 0.29) in immunocompromised animals with Candida infection; these findings were superior to those of other tested formulations. Hence, it can be summarized that fluconazole can effectively be delivered for the treatment of oral candidiasis when it is entrapped in a nanotransfersome carrier and embedded into cross-linked hyaluronic acid hydrogel.
Collapse
Affiliation(s)
- Hala M. Alkhalidi
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
69
|
Fahmy UA, Fahmy O, Alhakamy NA. Optimized Icariin Cubosomes Exhibit Augmented Cytotoxicity against SKOV-3 Ovarian Cancer Cells. Pharmaceutics 2020; 13:E20. [PMID: 33374293 PMCID: PMC7823966 DOI: 10.3390/pharmaceutics13010020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Clinical application of icariin (ICA) is limited, despite its activity against cancer growth, because of the low solubility of ICA in an aqueous environment. Therefore, the present study attempted to develop and optimize ICA-loaded cubosome delivery and to explore its efficacy and possible mechanism of action against ovarian cancer. The optimization of the cubosome formulation was performed using the Box‒Behnken statistical design; during the characterization, the particle sizes were in the range of 73 to 183 nm and the entrapment efficiency was 78.3% to 97.3%. Optimized ICA-loaded cubosomes (ICA-Cubs) exhibited enhanced cytotoxicity and apoptotic potential, compared with ICA-raw, against ovarian cancer cell lines (SKOV-3 and Caov 3). The optimized ICA-Cubs showed a relatively non-cytotoxic effect on normal EA.hy926 endothelial cells. Further analysis of cell cycle arrest suggested a potential role in the pre-G1 and G2/M phases for ICA-Cubs in comparison with ICA-raw. ICA-Cubs increased the generation of reactive oxygen species (ROS) and the overexpression of p53 and caspase-3 in the SKOV-3 cell line. In conclusion, the cubosomal delivery of ICA might provide a prospective approach towards the superior control of ovarian cancer cell growth. Its improved efficacy compared with that of the free drug might be due to the improved solubility and cellular permeability of ICA.
Collapse
Affiliation(s)
- Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Omar Fahmy
- Department of Urology, University Putra Malaysia (UPM), Selangor 43400, Malaysia;
- Department of Urology, University Hospital of Tübingen, Eberhard-Karls University, 72076 Tübingen, Germany
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
70
|
Tan ZM, Lai GP, Pandey M, Srichana T, Pichika MR, Gorain B, Bhattamishra SK, Choudhury H. Novel Approaches for the Treatment of Pulmonary Tuberculosis. Pharmaceutics 2020; 12:pharmaceutics12121196. [PMID: 33321797 PMCID: PMC7763148 DOI: 10.3390/pharmaceutics12121196] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) is a contagious airborne disease caused by Mycobacterium tuberculosis, which primarily affects human lungs. The progression of drug-susceptible TB to drug-resistant strains, MDR-TB and XDR-TB, has become worldwide challenge in eliminating TB. The limitations of conventional TB treatment including frequent dosing and prolonged treatment, which results in patient’s noncompliance to the treatment because of treatment-related adverse effects. The non-invasive pulmonary drug administration provides the advantages of targeted-site delivery and avoids first-pass metabolism, which reduced the dose requirement and systemic adverse effects of the therapeutics. With the modification of the drugs with advanced carriers, the formulations may possess sustained released property, which helps in reducing the dosing frequency and enhanced patients’ compliances. The dry powder inhaler formulation is easy to handle and storage as it is relatively stable compared to liquids and suspension. This review mainly highlights the aerosolization properties of dry powder inhalable formulations with different anti-TB agents to understand and estimate the deposition manner of the drug in the lungs. Moreover, the safety profile of the novel dry powder inhaler formulations has been discussed. The results of the studies demonstrated that dry powder inhaler formulation has the potential in enhancing treatment efficacy.
Collapse
Affiliation(s)
- Zhi Ming Tan
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (Z.M.T.); (G.P.L.)
| | - Gui Ping Lai
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (Z.M.T.); (G.P.L.)
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, Kuala Lumpur 57000, Malaysia
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur 57000, Malaysia;
- Correspondence: (M.P.); (H.C.)
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Prince of Songkla University, Songkhla 90110, Thailand;
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla 90110, Thailand
| | - Mallikarjuna Rao Pichika
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur 57000, Malaysia;
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia;
- Centre for Drug Delivery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia
| | - Subrat Kumar Bhattamishra
- Department of Life Science, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, Kuala Lumpur 57000, Malaysia
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur 57000, Malaysia;
- Correspondence: (M.P.); (H.C.)
| |
Collapse
|