51
|
Yagishita A, Katsuragawa M, Takeda S, Shirakami Y, Ooe K, Toyoshima A, Takahashi T, Watabe T. Development and Utility of an Imaging System for Internal Dosimetry of Astatine-211 in Mice. Bioengineering (Basel) 2023; 11:25. [PMID: 38247903 PMCID: PMC11154565 DOI: 10.3390/bioengineering11010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
In targeted radionuclide therapy, determining the absorbed dose of the ligand distributed to the whole body is vital due to its direct influence on therapeutic and adverse effects. However, many targeted alpha therapy drugs present challenges for in vivo quantitative imaging. To address this issue, we developed a planar imaging system equipped with a cadmium telluride semiconductor detector that offers high energy resolution. This system also comprised a 3D-printed tungsten collimator optimized for high sensitivity to astatine-211, an alpha-emitting radionuclide, and adequate spatial resolution for mouse imaging. The imager revealed a spectrum with a distinct peak for X-rays from astatine-211 owing to the high energy resolution, clearly distinguishing these X-rays from the fluorescent X-rays of tungsten. High collimator efficiency (4.5 × 10-4) was achieved, with the maintenance of the spatial resolution required for discerning mouse tissues. Using this system, the activity of astatine-211 in thyroid cancer tumors with and without the expression of the sodium iodide symporter (K1-NIS/K1, respectively) was evaluated through in vivo imaging. The K1-NIS tumors had significantly higher astatine-211 activity (sign test, p = 0.031, n = 6) and significantly decreased post-treatment tumor volume (Student's t-test, p = 0.005, n = 6). The concurrent examination of intratumor drug distribution and treatment outcome could be performed with the same mice.
Collapse
Affiliation(s)
- Atsushi Yagishita
- Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa 277-8583, Japan; (M.K.); (S.T.); (T.T.)
| | - Miho Katsuragawa
- Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa 277-8583, Japan; (M.K.); (S.T.); (T.T.)
| | - Shin’ichiro Takeda
- Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa 277-8583, Japan; (M.K.); (S.T.); (T.T.)
| | - Yoshifumi Shirakami
- Institute for Radiation Sciences, Osaka University, 1-1, Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.S.); (K.O.); (A.T.); (T.W.)
| | - Kazuhiro Ooe
- Institute for Radiation Sciences, Osaka University, 1-1, Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.S.); (K.O.); (A.T.); (T.W.)
| | - Atsushi Toyoshima
- Institute for Radiation Sciences, Osaka University, 1-1, Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.S.); (K.O.); (A.T.); (T.W.)
| | - Tadayuki Takahashi
- Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa 277-8583, Japan; (M.K.); (S.T.); (T.T.)
| | - Tadashi Watabe
- Institute for Radiation Sciences, Osaka University, 1-1, Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.S.); (K.O.); (A.T.); (T.W.)
| |
Collapse
|
52
|
Simms ME, Sibley MM, Driscoll DM, Kertesz V, Damron JT, Ivanov AS, White FD, Thiele NA. Reining in Radium for Nuclear Medicine: Extra-Large Chelator Development for an Extra-Large Ion. Inorg Chem 2023; 62:20834-20843. [PMID: 37811965 DOI: 10.1021/acs.inorgchem.3c02985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Targeted α therapy (TAT) of soft-tissue cancers using the α particle-emitting radionuclide 223Ra holds great potential because of its favorable nuclear properties, adequate availability, and established clinical use for treating metastatic prostate cancer of the bone. Despite these advantages, the use of 223Ra has been largely overshadowed by other α emitters due to its challenging chelation chemistry. A key criterion that needs to be met for a radionuclide to be used in TAT is its stable attachment to a targeting vector via a bifunctional chelator. The low charge density of Ra2+ arising from its large ionic radius weakens its electrostatic binding interactions with chelators, leading to insufficient complex stability in vivo. In this study, we synthesized and evaluated macropa-XL as a novel chelator for 223Ra. It bears a large 21-crown-7 macrocyclic core and two picolinate pendent groups, which we hypothesized would effectively saturate the large coordination sphere of the Ra2+ ion. The structural chemistry of macropa-XL was first established with the nonradioactive Ba2+ ion using X-ray diffraction and X-ray absorption spectroscopy, which revealed the formation of an 11-coordinate complex in a rare anti pendent-arm configuration. Subsequently, the stability constant of the [Ra(macropa-XL)] complex was determined via competitive cation exchange with 223Ra and 224Ra radiotracers and compared with that of macropa, the current state-of-the-art chelator for Ra2+. A moderate log KML value of 8.12 was measured for [Ra(macropa-XL)], which is approximately 1.5 log K units lower than the stability constant of [Ra(macropa)]. This relative decrease in Ra2+ complex stability for macropa-XL versus macropa was further probed using density functional theory calculations. Additionally, macropa-XL was radiolabeled with 223Ra, and the kinetic stability of the resulting complex was evaluated in human serum. Although macropa-XL could effectively bind 223Ra under mild conditions, the complex appeared to be unstable to transchelation. Collectively, this study sheds additional light on the chelation chemistry of the exotic Ra2+ ion and contributes to the small, but growing, number of chelator development efforts for 223Ra-based TAT.
Collapse
Affiliation(s)
- Megan E Simms
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Megan M Sibley
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Darren M Driscoll
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Vilmos Kertesz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Joshua T Damron
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Alexander S Ivanov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Frankie D White
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Nikki A Thiele
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
53
|
Kopp I, Cieslik P, Anger K, Josephy T, Neupert L, Velmurugan G, Gast M, Wadepohl H, Brühlmann SA, Walther M, Kopka K, Bachmann M, Stephan H, Kubeil M, Comba P. Bispidine Chelators for Radiopharmaceutical Applications with Lanthanide, Actinide, and Main Group Metal Ions. Inorg Chem 2023; 62:20754-20768. [PMID: 37707798 DOI: 10.1021/acs.inorgchem.3c02340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Octadentate and specifically nonadentate ligands with a bispidine scaffold (3,7-diazabicyclo[3.3.1]nonane) are known to be efficiently coordinated to a range of metal ions of interest in radiopharmaceutical chemistry and lead to exceedingly stable and inert complexes. Nonadentate bispidine L2 (with a tridentate bipyridine acetate appended to N3 and a picolinate at N7) has been shown before to be an ideal chelator for 111In3+, 177Lu3+, and 225Ac3+, nuclides of interest for diagnosis and therapy, and a proof-of-principle study with an SSTR2-specific octreotate has shown potential for theranostic applications. We now have extended these studies in two directions. First, we present ligand derivative L3, in which the bipyridine acetate is substituted with terpyridine, a softer donor for metal ions with a preference for more covalency. L3 did not fulfill the hopes because complexation is much less efficient. While for Bi3+ and Pb2+ the ligand is an excellent chelator with properties similar to those of L2, Lu3+ and La3+ show very slow and inefficient complexation with L3 in contrast to L2, and 225Ac3+ is not fully coordinated, even at an increased temperature (92% radiochemical yield at 80 °C, 60 min, [L3] = 10-4 M). These observations have led to a hypothesis for the complexation pathway that is in line with all of the experimental data and supported by a preliminary density functional theory analysis, which is important for the design of further optimized bispidine chelators. Second, the coordination chemistry of L2 has been extended to Bi3+, La3+, and Pb2+, including solid state and solution structural work, complex stabilities, radiolabeling, and radiostability studies. All complexes of this ligand (La3+, Ac3+, Lu3+, Bi3+, In3+, and Pb2+), including nuclides for targeted α therapy (TAT), single-photon emission computed tomography, and positron emission tomography, are formed efficiently under physiological conditions, i.e., suitable for the labeling of delicate biological vectors such as antibodies, and the complexes are very stable and inert. Importantly, for TAT with 225Ac, the daughter nuclides 213Bi and 209Pb also form stable complexes, and this is important for reducing damage to healthy tissue.
Collapse
Affiliation(s)
- Ina Kopp
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Patrick Cieslik
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, 69120 Heidelberg, Germany
| | - Karl Anger
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Thomas Josephy
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, 69120 Heidelberg, Germany
| | - Lucca Neupert
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, 69120 Heidelberg, Germany
| | - Gunasekaran Velmurugan
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, 69120 Heidelberg, Germany
| | - Michael Gast
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, 69120 Heidelberg, Germany
| | - Hubert Wadepohl
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, 69120 Heidelberg, Germany
| | - Santiago Andrés Brühlmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Martin Walther
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, School of Science, 01069 Dresden, Germany
- National Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- National Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307 Dresden, Germany
- Technische Universität Dresden, Medical Faculty Carl Gustav Carus, 01069 Dresden, Germany
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Manja Kubeil
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Peter Comba
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, 69120 Heidelberg, Germany
- Universität Heidelberg, Interdisciplinary Center for Scientific Computing, INF 205, 69120 Heidelberg, Germany
| |
Collapse
|
54
|
Woods JJ, Cosby AG, Wacker JN, Aguirre Quintana LM, Peterson A, Minasian SG, Abergel RJ. Macrocyclic 1,2-Hydroxypyridinone-Based Chelators as Potential Ligands for Thorium-227 and Zirconium-89 Radiopharmaceuticals. Inorg Chem 2023; 62:20721-20732. [PMID: 37590371 DOI: 10.1021/acs.inorgchem.3c02164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Thorium-227 (227Th) is an α-emitting radionuclide that has shown preclinical and clinical promise for use in targeted α-therapy (TAT), a type of molecular radiopharmaceutical treatment that harnesses high energy α particles to eradicate cancerous lesions. Despite these initial successes, there still exists a need for bifunctional chelators that can stably bind thorium in vivo. Toward this goal, we have prepared two macrocyclic chelators bearing 1,2-hydroxypyridinone groups. Both chelators can be synthesized in less than six steps from readily available starting materials, which is an advantage over currently available platforms. The complex formation constants (log βmlh) of these ligands with Zr4+ and Th4+, measured by spectrophotometric titrations, are greater than 34 for both chelators, indicating the formation of exceedingly stable complexes. Radiolabeling studies were performed to show that these ligands can bind [227Th]Th4+ at concentrations as low as 10-6 M, and serum stability experiments demonstrate the high kinetic stability of the formed complexes under biological conditions. Identical experiments with zirconium-89 (89Zr), a positron-emitting radioisotope used for positron emission tomography (PET) imaging, demonstrate that these chelators can also effectively bind Zr4+ with high thermodynamic and kinetic stability. Collectively, the data reported herein highlight the suitability of these ligands for use in 89Zr/227Th paired radioimmunotheranostics.
Collapse
Affiliation(s)
- Joshua J Woods
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alexia G Cosby
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jennifer N Wacker
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Luis M Aguirre Quintana
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Appie Peterson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Stefan G Minasian
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Nuclear Engineering, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
55
|
Jalloul W, Ghizdovat V, Stolniceanu CR, Ionescu T, Grierosu IC, Pavaleanu I, Moscalu M, Stefanescu C. Targeted Alpha Therapy: All We Need to Know about 225Ac's Physical Characteristics and Production as a Potential Theranostic Radionuclide. Pharmaceuticals (Basel) 2023; 16:1679. [PMID: 38139806 PMCID: PMC10747780 DOI: 10.3390/ph16121679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The high energy of α emitters, and the strong linear energy transfer that goes along with it, lead to very efficient cell killing through DNA damage. Moreover, the degree of oxygenation and the cell cycle state have no impact on these effects. Therefore, α radioisotopes can offer a treatment choice to individuals who are not responding to β- or gamma-radiation therapy or chemotherapy drugs. Only a few α-particle emitters are suitable for targeted alpha therapy (TAT) and clinical applications. The majority of available clinical research involves 225Ac and its daughter nuclide 213Bi. Additionally, the 225Ac disintegration cascade generates γ decays that can be used in single-photon emission computed tomography (SPECT) imaging, expanding the potential theranostic applications in nuclear medicine. Despite the growing interest in applying 225Ac, the restricted global accessibility of this radioisotope makes it difficult to conduct extensive clinical trials for many radiopharmaceutical candidates. To boost the availability of 225Ac, along with its clinical and potential theranostic applications, this review attempts to highlight the fundamental physical properties of this α-particle-emitting isotope, as well as its existing and possible production methods.
Collapse
Affiliation(s)
- Wael Jalloul
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- North East Regional Innovative Cluster for Structural and Molecular Imaging (Imago-Mol), 700115 Iasi, Romania
| | - Vlad Ghizdovat
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- North East Regional Innovative Cluster for Structural and Molecular Imaging (Imago-Mol), 700115 Iasi, Romania
| | - Cati Raluca Stolniceanu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- North East Regional Innovative Cluster for Structural and Molecular Imaging (Imago-Mol), 700115 Iasi, Romania
| | - Teodor Ionescu
- Department of Morpho-Functional Sciences (Pathophysiology), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Irena Cristina Grierosu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ioana Pavaleanu
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mihaela Moscalu
- Department of Preventive Medicine and Interdisciplinarity, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cipriana Stefanescu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- North East Regional Innovative Cluster for Structural and Molecular Imaging (Imago-Mol), 700115 Iasi, Romania
| |
Collapse
|
56
|
Donati I, Christensen BE. Alginate-metal cation interactions: Macromolecular approach. Carbohydr Polym 2023; 321:121280. [PMID: 37739522 DOI: 10.1016/j.carbpol.2023.121280] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/21/2023] [Accepted: 08/08/2023] [Indexed: 09/24/2023]
Abstract
Alginates are a broad family of linear (unbranched) polysaccharides derived from brown seaweeds and some bacteria. Despite having only two monomers, i.e. β-d-mannuronate (M) and its C5 epimer α-l-guluronate (G), their blockwise arrangement in oligomannuronate (..MMM..), oligoguluronate (..GGG..), and polyalternating (..MGMG..) blocks endows it with a rather complex interaction pattern with specific counterions and salts. Classic polyelectrolyte theories well apply to alginate as polyanion in the interaction with monovalent and non-gelling divalent cations. The use of divalent gelling ions, such as Ca2+, Ba2+ or Sr2+, provides thermostable homogeneous or heterogeneous hydrogels where the block composition affects both macroscopic and microscopic properties. The mechanism of alginate gelation is still explained in terms of the original egg-box model, although over the years some novel insights have been proposed. In this review we summarize several decades of research related to structure-functionships in alginates in the presence of non-gelling and gelling cations and present some novel applications in the field of self-assembling nanoparticles and use of radionuclides.
Collapse
Affiliation(s)
- Ivan Donati
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | - Bjørn E Christensen
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, 7491 Trondheim, Norway.
| |
Collapse
|
57
|
Léost F, Barbet J, Beyler M, Chérel M, Delpon G, Garcion E, Lacerda S, Lepareur N, Rbah-Vidal L, Vaugier L, Visvikis D. ["New Modalities in Cancer Imaging and Therapy" XVth edition of the workshop organized by the network "Tumor Targeting, Imaging, Radiotherapies" of the Cancéropôle Grand-Ouest, 5-8 October 2022, France]. Bull Cancer 2023; 110:1322-1331. [PMID: 37880044 DOI: 10.1016/j.bulcan.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/16/2023] [Accepted: 08/13/2023] [Indexed: 10/27/2023]
Abstract
The fifteenth edition of the international workshop organized by the "Tumour Targeting and Radiotherapies network" of the Cancéropôle Grand-Ouest focused on the latest advances in internal and external radiotherapy from different disciplinary angles: chemistry, biology, physics, and medicine. The workshop covered several deliberately diverse topics: the role of artificial intelligence, new tools for imaging and external radiotherapy, theranostic aspects, molecules and contrast agents, vectors for innovative combined therapies, and the use of alpha particles in therapy.
Collapse
Affiliation(s)
- Françoise Léost
- Cancéropôle Grand-Ouest, IRS-UN, 8, quai Moncousu, 44007 Nantes cedex 1, France.
| | | | - Maryline Beyler
- Université de Brest, UMR CNRS-UBO 6521 CEMCA, 6, avenue V.-Le-Gorgeu, 29200 Brest, France
| | - Michel Chérel
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI(2)NA, Nantes, France
| | - Grégory Delpon
- Institut de cancérologie de l'Ouest, département de physique médicale, boulevard Jacques-Monod, 44800 Saint-Herblain, France; Laboratoire SUBATECH, UMR 6457 CNRS-IN2P3, IMT Atlantique, 4, rue Alfred-Kastler, 44307 Nantes cedex 3, France
| | - Emmanuel Garcion
- Université d'Angers, Inserm, CNRS, Nantes Université, CRCI(2)NA, Angers, France
| | - Sara Lacerda
- Université d'Orléans, centre de biophysique moléculaire, CNRS UPR 4301, rue Charles-Sadron, 45071 Orléans cedex 2, France
| | - Nicolas Lepareur
- Université de Rennes, Inrae, Inserm, CLCC Eugène-Marquis, institut nutrition, métabolismes et cancer (NUMECAN), UMR 1317, Rennes, France
| | - Latifa Rbah-Vidal
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI(2)NA, Nantes, France
| | - Loïg Vaugier
- Institut de cancérologie de l'Ouest, département de physique médicale, boulevard Jacques-Monod, 44800 Saint-Herblain, France; Laboratoire SUBATECH, UMR 6457 CNRS-IN2P3, IMT Atlantique, 4, rue Alfred-Kastler, 44307 Nantes cedex 3, France
| | - Dimitris Visvikis
- Inserm, LaTIM, UMR 1101, IBSAM, UBO, UBL, 22, rue Camille-Desmoulins, 29238 Brest, France
| |
Collapse
|
58
|
Pekeč T, Venkatachalapathy S, Shim AR, Paysan D, Grzmil M, Schibli R, Béhé M, Shivashankar GV. Detecting radio- and chemoresistant cells in 3D cancer co-cultures using chromatin biomarkers. Sci Rep 2023; 13:20662. [PMID: 38001169 PMCID: PMC10673941 DOI: 10.1038/s41598-023-47287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
The heterogenous treatment response of tumor cells limits the effectiveness of cancer therapy. While this heterogeneity has been linked to cell-to-cell variability within the complex tumor microenvironment, a quantitative biomarker that identifies and characterizes treatment-resistant cell populations is still missing. Herein, we use chromatin organization as a cost-efficient readout of the cells' states to identify subpopulations that exhibit distinct responses to radiotherapy. To this end, we developed a 3D co-culture model of cancer spheroids and patient-derived fibroblasts treated with radiotherapy. Using the model we identified treatment-resistant cells that bypassed DNA damage checkpoints and exhibited an aggressive growth phenotype. Importantly, these cells featured more condensed chromatin which primed them for treatment evasion, as inhibiting chromatin condensation and DNA damage repair mechanisms improved the efficacy of not only radio- but also chemotherapy. Collectively, our work shows the potential of using chromatin organization to cost-effectively study the heterogeneous treatment susceptibility of cells and guide therapeutic design.
Collapse
Affiliation(s)
- Tina Pekeč
- Laboratory for Nanoscale Biology, Paul Scherrer Institute, Villigen, Switzerland
| | | | - Anne R Shim
- Laboratory for Nanoscale Biology, Paul Scherrer Institute, Villigen, Switzerland
| | - Daniel Paysan
- Laboratory for Nanoscale Biology, Paul Scherrer Institute, Villigen, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Michal Grzmil
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Martin Béhé
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
| | - G V Shivashankar
- Laboratory for Nanoscale Biology, Paul Scherrer Institute, Villigen, Switzerland.
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
59
|
Franchi S, Asti M, Di Marco V, Tosato M. The Curies' element: state of the art and perspectives on the use of radium in nuclear medicine. EJNMMI Radiopharm Chem 2023; 8:38. [PMID: 37947909 PMCID: PMC10638329 DOI: 10.1186/s41181-023-00220-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND The alpha-emitter radium-223 (223Ra) is presently used in nuclear medicine for the palliative treatment of bone metastases from castration-resistant prostate cancer. This application arises from its advantageous decay properties and its intrinsic ability to accumulate in regions of high bone turnover when injected as a simple chloride salt. The commercial availability of [223Ra]RaCl2 as a registered drug (Xofigo®) is a further additional asset. MAIN BODY The prospect of extending the utility of 223Ra to targeted α-therapy of non-osseous cancers has garnered significant interest. Different methods, such as the use of bifunctional chelators and nanoparticles, have been explored to incorporate 223Ra in proper carriers designed to precisely target tumor sites. Nevertheless, the search for a suitable scaffold remains an ongoing challenge, impeding the diffusion of 223Ra-based radiopharmaceuticals. CONCLUSION This review offers a comprehensive overview of the current role of radium radioisotopes in nuclear medicine, with a specific focus on 223Ra. It also critically examines the endeavors conducted so far to develop constructs capable of incorporating 223Ra into cancer-targeting drugs. Particular emphasis is given to the chemical aspects aimed at providing molecular scaffolds for the bifunctional chelator approach.
Collapse
Affiliation(s)
- Sara Franchi
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padua, Italy
| | - Mattia Asti
- Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, AUSL di Reggio Emilia: Azienda Unità Sanitaria Locale - IRCCS Tecnologie Avanzate e Modelli Assistenziali in Oncologia di Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy
| | - Valerio Di Marco
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padua, Italy
| | - Marianna Tosato
- Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, AUSL di Reggio Emilia: Azienda Unità Sanitaria Locale - IRCCS Tecnologie Avanzate e Modelli Assistenziali in Oncologia di Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy.
| |
Collapse
|
60
|
Hassan M, Bokhari TH, Lodhi NA, Khosa MK, Usman M. A review of recent advancements in Actinium-225 labeled compounds and biomolecules for therapeutic purposes. Chem Biol Drug Des 2023; 102:1276-1292. [PMID: 37715360 DOI: 10.1111/cbdd.14311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/03/2023] [Accepted: 07/17/2023] [Indexed: 09/17/2023]
Abstract
In nuclear medicine, cancers that cannot be cured or can only be treated partially by traditional techniques like surgery or chemotherapy are killed by ionizing radiation as a form of therapeutic treatment. Actinium-225 is an alpha-emitting radionuclide that is highly encouraging as a therapeutic approach and more promising for targeted alpha therapy (TAT). Actinium-225 is the best candidate for tumor cells treatment and has physical characteristics such as high (LET) linear energy transfer (150 keV per μm), half-life (t1/2 = 9.92d), and short ranges (400-100 μm) which prevent the damage of normal healthy tissues. The introduction of various new radiopharmaceuticals and radioisotopes has significantly assisted the advancement of nuclear medicine. Ac-225 radiopharmaceuticals continuously demonstrate their potential as targeted alpha therapeutics. 225 Ac-labeled radiopharmaceuticals have confirmed their importance in medical and clinical areas by introducing [225 Ac]Ac-PSMA-617, [225 Ac]Ac-DOTATOC, [225 Ac]Ac-DOTA-substance-P, reported significantly improved response in patients with prostate cancer, neuroendocrine, and glioma, respectively. The development of these radiopharmaceuticals required a suitable buffer, incubation time, optimal pH, and reaction temperature. There is a growing need to standardize quality control (QC) testing techniques such as radiochemical purity (RCP). This review aims to summarize the development of the Ac-225 labeled compounds and biomolecules. The current state of their reported resulting clinical applications is also summarized as well.
Collapse
Affiliation(s)
- Maria Hassan
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | | | - Nadeem Ahmed Lodhi
- Isotope Production Division, Pakistan institute of Nuclear Science & Technology (PINSTECH), Islamabad, Pakistan
| | | | - Muhammad Usman
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| |
Collapse
|
61
|
Sharma S, Pandey MK. Radiometals in Imaging and Therapy: Highlighting Two Decades of Research. Pharmaceuticals (Basel) 2023; 16:1460. [PMID: 37895931 PMCID: PMC10610335 DOI: 10.3390/ph16101460] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
The present article highlights the important progress made in the last two decades in the fields of molecular imaging and radionuclide therapy. Advancements in radiometal-based positron emission tomography, single photon emission computerized tomography, and radionuclide therapy are illustrated in terms of their production routes and ease of radiolabeling. Applications in clinical diagnostic and radionuclide therapy are considered, including human studies under clinical trials; their current stages of clinical translations and findings are summarized. Because the metalloid astatine is used for imaging and radionuclide therapy, it is included in this review. In regard to radionuclide therapy, both beta-minus (β-) and alpha (α)-emitting radionuclides are discussed by highlighting their production routes, targeted radiopharmaceuticals, and current clinical translation stage.
Collapse
Affiliation(s)
| | - Mukesh K. Pandey
- Division of Nuclear Medicine, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA;
| |
Collapse
|
62
|
Carrasco-Hernandez J, Ramos-Méndez J, Padilla-Rodal E, Avila-Rodriguez MA. Cellular lethal damage of 64Cu incorporated in mammalian genome evaluated with Monte Carlo methods. Front Med (Lausanne) 2023; 10:1253746. [PMID: 37841004 PMCID: PMC10575761 DOI: 10.3389/fmed.2023.1253746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Purpose Targeted Radionuclide Therapy (TRT) with Auger Emitters (AE) is a technique that allows targeting specific sites on tumor cells using radionuclides. The toxicity of AE is critically dependent on its proximity to the DNA. The aim of this study is to quantify the DNA damage and radiotherapeutic potential of the promising AE radionuclide copper-64 (64Cu) incorporated into the DNA of mammalian cells using Monte Carlo track-structure simulations. Methods A mammalian cell nucleus model with a diameter of 9.3 μm available in TOPAS-nBio was used. The cellular nucleus consisted of double-helix DNA geometrical model of 2.3 nm diameter surrounded by a hydration shell with a thickness of 0.16 nm, organized in 46 chromosomes giving a total of 6.08 giga base-pairs (DNA density of 14.4 Mbp/μm3). The cellular nucleus was irradiated with monoenergetic electrons and radiation emissions from several radionuclides including 111In, 125I, 123I, and 99mTc in addition to 64Cu. For monoenergetic electrons, isotropic point sources randomly distributed within the nucleus were modeled. The radionuclides were incorporated in randomly chosen DNA base pairs at two positions near to the central axis of the double-helix DNA model at (1) 0.25 nm off the central axis and (2) at the periphery of the DNA (1.15 nm off the central axis). For all the radionuclides except for 99mTc, the complete physical decay process was explicitly simulated. For 99mTc only total electron spectrum from published data was used. The DNA Double Strand Breaks (DSB) yield per decay from direct and indirect actions were quantified. Results obtained for monoenergetic electrons and radionuclides 111In, 125I, 123I, and 99mTc were compared with measured and calculated data from the literature for verification purposes. The DSB yields per decay incorporated in DNA for 64Cu are first reported in this work. The therapeutic effect of 64Cu (activity that led 37% cell survival after two cell divisions) was determined in terms of the number of atoms incorporated into the nucleus that would lead to the same DSBs that 100 decays of 125I. Simulations were run until a 2% statistical uncertainty (1 standard deviation) was achieved. Results The behavior of DSBs as a function of the energy for monoenergetic electrons was consistent with published data, the DSBs increased with the energy until it reached a maximum value near 500 eV followed by a continuous decrement. For 64Cu, when incorporated in the genome at evaluated positions (1) and (2), the DSB were 0.171 ± 0.003 and 0.190 ± 0.003 DSB/decay, respectively. The number of initial atoms incorporated into the genome (per cell) for 64Cu that would cause a therapeutic effect was estimated as 3,107 ± 28, that corresponds to an initial activity of 47.1 ± 0.4 × 10-3 Bq. Conclusion Our results showed that TRT with 64Cu has comparable therapeutic effects in cells as that of TRT with radionuclides currently used in clinical practice.
Collapse
Affiliation(s)
- Jhonatan Carrasco-Hernandez
- Departamento de Estructura de la Materia, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Ramos-Méndez
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, United States
| | - Elizabeth Padilla-Rodal
- Departamento de Estructura de la Materia, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Miguel A. Avila-Rodriguez
- Unidad Radiofarmacia-Ciclotrón, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
63
|
Hoshi S, Yaginuma K, Meguro S, Onagi A, Matsuoka K, Hata J, Sato Y, Akaihata H, Kataoka M, Ogawa S, Uemura M, Kojima Y. PSMA Targeted Molecular Imaging and Radioligand Therapy for Prostate Cancer: Optimal Patient and Treatment Issues. Curr Oncol 2023; 30:7286-7302. [PMID: 37623010 PMCID: PMC10453875 DOI: 10.3390/curroncol30080529] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Theranostics (therapy + diagnosis) targeting prostate-specific membrane antigen (PSMA) is an emerging therapeutic modality that could alter treatment strategies for prostate cancer. Although PSMA-targeted radioligand therapy (PSMA-RLT) has a highly therapeutic effect on PSMA-positive tumor tissue, the efficacy of PSMA-RLT depends on PSMA expression. Moreover, predictors of treatment response other than PSMA expression are under investigation. Therefore, the optimal patient population for PSMA-RLT remains unclear. This review provides an overview of the current status of theranostics for prostate cancer, focusing on PSMA ligands. In addition, we summarize various findings regarding the efficacy and problems of PSMA-RLT and discuss the optimal patient for PSMA-RLT.
Collapse
Affiliation(s)
- Seiji Hoshi
- Departments of Urology, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan; (K.Y.); (S.M.); (A.O.); (K.M.); (J.H.); (Y.S.); (H.A.); (M.K.); (S.O.); (M.U.); (Y.K.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Jang A, Kendi AT, Johnson GB, Halfdanarson TR, Sartor O. Targeted Alpha-Particle Therapy: A Review of Current Trials. Int J Mol Sci 2023; 24:11626. [PMID: 37511386 PMCID: PMC10380274 DOI: 10.3390/ijms241411626] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/08/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Radiopharmaceuticals are rapidly developing as a field, with the successful use of targeted beta emitters in neuroendocrine tumors and prostate cancer serving as catalysts. Targeted alpha emitters are in current development for several potential oncologic indications. Herein, we review the three most prevalently studied conjugated/chelated alpha emitters (225actinium, 212lead, and 211astatine) and focus on contemporary clinical trials in an effort to more fully appreciate the breadth of the current evaluation. Phase I trials targeting multiple diseases are now underway, and at least one phase III trial (in selected neuroendocrine cancers) is currently in the initial stages of recruitment. Combination trials are now also emerging as alpha emitters are integrated with other therapies in an effort to create solutions for those with advanced cancers. Despite the promise of targeted alpha therapies, many challenges remain. These challenges include the development of reliable supply chains, the need for a better understanding of the relationships between administered dose and absorbed dose in both tissue and tumor and how that predicts outcomes, and the incomplete understanding of potential long-term deleterious effects of the alpha emitters. Progress on multiple fronts is necessary to bring the potential of targeted alpha therapies into the clinic.
Collapse
Affiliation(s)
- Albert Jang
- Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ayse T Kendi
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Geoffrey B Johnson
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Oliver Sartor
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Urology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
65
|
Obata H, Ogawa M, Zalutsky MR. DNA Repair Inhibitors: Potential Targets and Partners for Targeted Radionuclide Therapy. Pharmaceutics 2023; 15:1926. [PMID: 37514113 PMCID: PMC10384049 DOI: 10.3390/pharmaceutics15071926] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
The present review aims to explore the potential targets/partners for future targeted radionuclide therapy (TRT) strategies, wherein cancer cells often are not killed effectively, despite receiving a high average tumor radiation dose. Here, we shall discuss the key factors in the cancer genome, especially those related to DNA damage response/repair and maintenance systems for escaping cell death in cancer cells. To overcome the current limitations of TRT effectiveness due to radiation/drug-tolerant cells and tumor heterogeneity, and to make TRT more effective, we propose that a promising strategy would be to target the DNA maintenance factors that are crucial for cancer survival. Considering their cancer-specific DNA damage response/repair ability and dysregulated transcription/epigenetic system, key factors such as PARP, ATM/ATR, amplified/overexpressed transcription factors, and DNA methyltransferases have the potential to be molecular targets for Auger electron therapy; moreover, their inhibition by non-radioactive molecules could be a partnering component for enhancing the therapeutic response of TRT.
Collapse
Affiliation(s)
- Honoka Obata
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Departments of Radiology and Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Mikako Ogawa
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Michael R Zalutsky
- Departments of Radiology and Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
66
|
Laszlo GS, Sandmaier BM, Kehret AR, Orozco JJ, Hamlin DK, Dexter SL, Lim SYT, Cole FM, Huo J, Wilbur DS, Walter RB. [ 211At]astatine-based anti-CD22 radioimmunotherapy for B-cell malignancies. Leuk Lymphoma 2023; 64:1335-1339. [PMID: 37170642 PMCID: PMC10529842 DOI: 10.1080/10428194.2023.2210710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Affiliation(s)
- George S. Laszlo
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Brenda M. Sandmaier
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA
| | - Allie R. Kehret
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Johnnie J. Orozco
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA
| | - Donald K. Hamlin
- Department of Radiation Oncology, University of Washington, Seattle, WA
| | - Shannon L. Dexter
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Sheryl Y. T. Lim
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Frances M. Cole
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jenny Huo
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - D. Scott Wilbur
- Department of Radiation Oncology, University of Washington, Seattle, WA
| | - Roland B. Walter
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Medicine, Division of Hematology, University of Washington, Seattle, WA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA
- Department of Epidemiology, University of Washington, Seattle, WA
| |
Collapse
|
67
|
Lepareur N, Ramée B, Mougin-Degraef M, Bourgeois M. Clinical Advances and Perspectives in Targeted Radionuclide Therapy. Pharmaceutics 2023; 15:1733. [PMID: 37376181 DOI: 10.3390/pharmaceutics15061733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Targeted radionuclide therapy has become increasingly prominent as a nuclear medicine subspecialty. For many decades, treatment with radionuclides has been mainly restricted to the use of iodine-131 in thyroid disorders. Currently, radiopharmaceuticals, consisting of a radionuclide coupled to a vector that binds to a desired biological target with high specificity, are being developed. The objective is to be as selective as possible at the tumor level, while limiting the dose received at the healthy tissue level. In recent years, a better understanding of molecular mechanisms of cancer, as well as the appearance of innovative targeting agents (antibodies, peptides, and small molecules) and the availability of new radioisotopes, have enabled considerable advances in the field of vectorized internal radiotherapy with a better therapeutic efficacy, radiation safety and personalized treatments. For instance, targeting the tumor microenvironment, instead of the cancer cells, now appears particularly attractive. Several radiopharmaceuticals for therapeutic targeting have shown clinical value in several types of tumors and have been or will soon be approved and authorized for clinical use. Following their clinical and commercial success, research in that domain is particularly growing, with the clinical pipeline appearing as a promising target. This review aims to provide an overview of current research on targeting radionuclide therapy.
Collapse
Affiliation(s)
- Nicolas Lepareur
- Comprehensive Cancer Center Eugène Marquis, 35000 Rennes, France
- Inserm, INRAE, Institut NUMECAN (Nutrition, Métabolismes et Cancer)-UMR 1317, Univ Rennes, 35000 Rennes, France
| | - Barthélémy Ramée
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
| | - Marie Mougin-Degraef
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
- Inserm, CNRS, CRCI2NA (Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes-Angers)-UMR 1307, Université de Nantes, ERL 6001, 44000 Nantes, France
| | - Mickaël Bourgeois
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
- Inserm, CNRS, CRCI2NA (Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes-Angers)-UMR 1307, Université de Nantes, ERL 6001, 44000 Nantes, France
- Groupement d'Intérêt Public ARRONAX, 1 Rue Aronnax, 44817 Saint Herblain, France
| |
Collapse
|
68
|
Timperanza C, Jensen H, Bäck T, Lindegren S, Aneheim E. Pretargeted Alpha Therapy of Disseminated Cancer Combining Click Chemistry and Astatine-211. Pharmaceuticals (Basel) 2023; 16:ph16040595. [PMID: 37111352 PMCID: PMC10145095 DOI: 10.3390/ph16040595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
To enhance targeting efficacy in the radioimmunotherapy of disseminated cancer, several pretargeting strategies have been developed. In pretargeted radioimmunotherapy, the tumor is pretargeted with a modified monoclonal antibody that has an affinity for both tumor antigens and radiolabeled carriers. In this work, we aimed to synthesize and evaluate poly-L-lysine-based effector molecules for pretargeting applications based on the tetrazine and trans-cyclooctene reaction using 211At for targeted alpha therapy and 125I as a surrogate for the imaging radionuclides 123, 124I. Poly-L-lysine in two sizes was functionalized with a prosthetic group, for the attachment of both radiohalogens, and tetrazine, to allow binding to the trans-cyclooctene-modified pretargeting agent, maintaining the structural integrity of the polymer. Radiolabeling resulted in a radiochemical yield of over 80% for astatinated poly-L-lysines and a range of 66-91% for iodinated poly-L-lysines. High specific astatine activity was achieved without affecting the stability of the radiopharmaceutical or the binding between tetrazine and transcyclooctene. Two sizes of poly-L-lysine were evaluated, which displayed similar blood clearance profiles in a pilot in vivo study. This work is a first step toward creating a pretargeting system optimized for targeted alpha therapy with 211At.
Collapse
Affiliation(s)
- Chiara Timperanza
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Holger Jensen
- PET and Cyclotron Unit, KF-3982, Copenhagen University Hospital, DK2100 Copenhagen, Denmark
| | - Tom Bäck
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Sture Lindegren
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Emma Aneheim
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
- Department of Oncology, Sahlgrenska University Hospital, Region Västra Götaland, 413 45 Gothenburg, Sweden
| |
Collapse
|
69
|
Rubira L, Deshayes E, Santoro L, Kotzki PO, Fersing C. 225Ac-Labeled Somatostatin Analogs in the Management of Neuroendocrine Tumors: From Radiochemistry to Clinic. Pharmaceutics 2023; 15:1051. [PMID: 37111537 PMCID: PMC10146019 DOI: 10.3390/pharmaceutics15041051] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
The widespread use of peptide receptor radionuclide therapy (PRRT) represents a major therapeutic breakthrough in nuclear medicine, particularly since the introduction of 177Lu-radiolabeled somatostatin analogs. These radiopharmaceuticals have especially improved progression-free survival and quality of life in patients with inoperable metastatic gastroenteropancreatic neuroendocrine tumors expressing somatostatin receptors. In the case of aggressive or resistant disease, the use of somatostatin derivatives radiolabeled with an alpha-emitter could provide a promising alternative. Among the currently available alpha-emitting radioelements, actinium-225 has emerged as the most suitable candidate, especially regarding its physical and radiochemical properties. Nevertheless, preclinical and clinical studies on these radiopharmaceuticals are still few and heterogeneous, despite the growing momentum for their future use on a larger scale. In this context, this report provides a comprehensive and extensive overview of the development of 225Ac-labeled somatostatin analogs; particular emphasis is placed on the challenges associated with the production of 225Ac, its physical and radiochemical properties, as well as the place of 225Ac-DOTATOC and 225Ac-DOTATATE in the management of patients with advanced metastatic neuroendocrine tumors.
Collapse
Affiliation(s)
- Léa Rubira
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
| | - Emmanuel Deshayes
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Lore Santoro
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Pierre Olivier Kotzki
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Cyril Fersing
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- IBMM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| |
Collapse
|
70
|
Lucio-Martínez F, Esteban-Gómez D, Valencia L, Horváth D, Szücs D, Fekete A, Szikra D, Tircsó G, Platas-Iglesias C. Rigid H 4OCTAPA derivatives as model chelators for the development of Bi(III)-based radiopharmaceuticals. Chem Commun (Camb) 2023; 59:3443-3446. [PMID: 36857648 DOI: 10.1039/d2cc06876a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Octadentate ligands containing ethyl (H4OCTAPA), cyclohexyl (H4CHXOCTAPA) or cyclopentyl (H4CpOCTAPA) spacers were assessed as chelators for Bi(III)-based radiopharmaceuticals. The H4CHXOCTAPA chelator displays excellent properties, including 205/206Bi-nuclide radiolabelling under mild conditions, excellent stability in serum and in the presence of competing cations or H5DTPA. The poor performance of H4CpOCTAPA appears to be related to the stereochemical activity of the Bi(III) lone pair.
Collapse
Affiliation(s)
- Fátima Lucio-Martínez
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| | - David Esteban-Gómez
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| | - Laura Valencia
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidade de Vigo, As Lagoas, Marcosende, Pontevedra 36310, Spain
| | - Dávid Horváth
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary.
- Doctoral School of Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| | - Dániel Szücs
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary.
- Doctoral School of Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen H-4032, Hungary.
| | - Anikó Fekete
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen H-4032, Hungary.
| | - Dezső Szikra
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen H-4032, Hungary.
| | - Gyula Tircsó
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary.
| | - Carlos Platas-Iglesias
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| |
Collapse
|
71
|
Cunha L, Baete K, Leijen C, Jamar F. Main challenges in radiation protection with emerging radionuclide therapies. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2023; 67:14-28. [PMID: 36598760 DOI: 10.23736/s1824-4785.22.03502-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The recent development of radionuclide therapy and radioligand therapy has raised a call for achieving the highest quality standards, for either radiopharmacy or radiation protection. Novel radionuclides are now being used, either under the form of in-house production radiopharmaceuticals or available from companies. Over the last 20 years, they include radiolabeled microspheres for selective internal radiotherapy (SIRT), the introduction of the first commercially available alpha emitter radiopharmaceutical, 223Ra, and the radiosynoviorthesis which is highly variable across Europe. More important is the development of radioligand therapy, often called theranostics. In this concept, a diagnostic radiopharmaceutical can determine the chance of success of a therapeutic one. Typically, diagnostic radiopharmaceuticals for positron emission tomography, are labeled with 18F or 68Ga, such as the PSMA ligands or somatostatin analogs, and the therapeutic radiopharmaceutical is labeled with 177Lu. This has revolutionized the world of Nuclear Medicine, but also all concepts that shall be applied to properly apply quality assurance and radiation protection in the field. This article will follow the example of 131I as the main used radionuclide for therapy during the last 80 years. Proposals can be general, and in parallel expert's articles will give specific guidance on issues with particular radionuclides, i.e., alpha emitters and 177Lu. This article will also give insight in the radiation protection issues related to the use of microspheres radiolabeled with either 90Y or 166Ho.
Collapse
Affiliation(s)
- Lidia Cunha
- Department of Nuclear Medicine and Molecular Imaging, IsoPor-Azores, Azores, Portugal
| | - Kristof Baete
- Department of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium.,Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University of Leuven, Leuven, Belgium
| | - Carolien Leijen
- Department of Radiation Protection, University Medical Center Utrecht, Utrecht, the Netherlands
| | - François Jamar
- Department of Nuclear Medicine, Saint-Luc University Clinic and Institute of Clinical and Experimental Research (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium -
| |
Collapse
|
72
|
Takács MP. Measuring the half-life of 215Po by low-level liquid scintillation counting. Appl Radiat Isot 2023; 193:110674. [PMID: 36682309 DOI: 10.1016/j.apradiso.2023.110674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/27/2022] [Accepted: 01/13/2023] [Indexed: 01/16/2023]
Abstract
The half-life of short-lived 215Po was studied in a new experimental setup by means of liquid scintillation counting. The new value of 1.781 (5) ms was obtained by offline data analysis using the delayed coincidence method. Along with the half-life determination, a careful assessment of uncertainties was carried out. The result was compared with data available from the literature.
Collapse
Affiliation(s)
- Marcell P Takács
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116, Braunschweig, Germany.
| |
Collapse
|
73
|
Karlsson J, Schatz CA, Wengner AM, Hammer S, Scholz A, Cuthbertson A, Wagner V, Hennekes H, Jardine V, Hagemann UB. Targeted thorium-227 conjugates as treatment options in oncology. Front Med (Lausanne) 2023; 9:1071086. [PMID: 36726355 PMCID: PMC9885765 DOI: 10.3389/fmed.2022.1071086] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/15/2022] [Indexed: 01/10/2023] Open
Abstract
Targeted alpha therapy (TAT) is a promising approach for addressing unmet needs in oncology. Inherent properties make α-emitting radionuclides well suited to cancer therapy, including high linear energy transfer (LET), penetration range of 2-10 cell layers, induction of complex double-stranded DNA breaks, and immune-stimulatory effects. Several alpha radionuclides, including radium-223 (223Ra), actinium-225 (225Ac), and thorium-227 (227Th), have been investigated. Conjugation of tumor targeting modalities, such as antibodies and small molecules, with a chelator moiety and subsequent radiolabeling with α-emitters enables specific delivery of cytotoxic payloads to different tumor types. 223Ra dichloride, approved for the treatment of patients with metastatic castration-resistant prostate cancer (mCRPC) with bone-metastatic disease and no visceral metastasis, is the only approved and commercialized alpha therapy. However, 223Ra dichloride cannot currently be complexed to targeting moieties. In contrast to 223Ra, 227Th may be readily chelated, which allows radiolabeling of tumor targeting moieties to produce targeted thorium conjugates (TTCs), facilitating delivery to a broad range of tumors. TTCs have shown promise in pre-clinical studies across a range of tumor-cell expressing antigens. A clinical study in hematological malignancy targeting CD22 has demonstrated early signs of activity. Furthermore, pre-clinical studies show additive or synergistic effects when TTCs are combined with established anti-cancer therapies, for example androgen receptor inhibitors (ARI), DNA damage response inhibitors such as poly (ADP)-ribose polymerase inhibitors or ataxia telangiectasia and Rad3-related kinase inhibitors, as well as immune checkpoint inhibitors.
Collapse
|
74
|
Bruland ØS, Larsen RH, Baum RP, Juzeniene A. Editorial: Targeted alpha particle therapy in oncology. Front Med (Lausanne) 2023; 10:1165747. [PMID: 36960341 PMCID: PMC10029265 DOI: 10.3389/fmed.2023.1165747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/09/2023] Open
Affiliation(s)
- Øyvind Sverre Bruland
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Richard Paul Baum
- Curanosticum Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, Wiesbaden, Germany
| | - Asta Juzeniene
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
- *Correspondence: Asta Juzeniene
| |
Collapse
|
75
|
Edelmann MR. Radiolabelling small and biomolecules for tracking and monitoring. RSC Adv 2022; 12:32383-32400. [PMID: 36425706 PMCID: PMC9650631 DOI: 10.1039/d2ra06236d] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022] Open
Abstract
Radiolabelling small molecules with beta-emitters has been intensively explored in the last decades and novel concepts for the introduction of radionuclides continue to be reported regularly. New catalysts that induce carbon/hydrogen activation are able to incorporate isotopes such as deuterium or tritium into small molecules. However, these established labelling approaches have limited applicability for nucleic acid-based drugs, therapeutic antibodies, or peptides, which are typical of the molecules now being investigated as novel therapeutic modalities. These target molecules are usually larger (significantly >1 kDa), mostly multiply charged, and often poorly soluble in organic solvents. However, in preclinical research they often require radiolabelling in order to track and monitor drug candidates in metabolism, biotransformation, or pharmacokinetic studies. Currently, the most established approach to introduce a tritium atom into an oligonucleotide is based on a multistep synthesis, which leads to a low specific activity with a high level of waste and high costs. The most common way of tritiating peptides is using appropriate precursors. The conjugation of a radiolabelled prosthetic compound to a functional group within a protein sequence is a commonly applied way to introduce a radionuclide or a fluorescent tag into large molecules. This review highlights the state-of-the-art in different radiolabelling approaches for oligonucleotides, peptides, and proteins, as well as a critical assessment of the impact of the label on the properties of the modified molecules. Furthermore, applications of radiolabelled antibodies in biodistribution studies of immune complexes and imaging of brain targets are reported.
Collapse
Affiliation(s)
- Martin R Edelmann
- Department of Pharmacy and Pharmacology, University of Bath Bath BA2 7AY UK
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Therapeutic Modalities, Small Molecule Research, Isotope Synthesis, F. Hoffmann-La Roche Ltd CH-4070 Basel Switzerland
| |
Collapse
|
76
|
Reissig F, Zarschler K, Novy Z, Petrik M, Bendova K, Kurfurstova D, Bouchal J, Ludik MC, Brandt F, Kopka K, Khoylou M, Pietzsch HJ, Hajduch M, Mamat C. Modulating the pharmacokinetic profile of Actinium-225-labeled macropa-derived radioconjugates by dual targeting of PSMA and albumin. Theranostics 2022; 12:7203-7215. [PMID: 36438496 PMCID: PMC9691366 DOI: 10.7150/thno.78043] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
Rationale: Small 225Ac-labeled prostate-specific membrane antigen (PSMA)-targeted radioconjugates have been described for targeted alpha therapy of metastatic castration-resistant prostate cancer. Transient binding to serum albumin as a highly abundant, inherent transport protein represents a commonly applied strategy to modulate the tissue distribution profile of such low-molecular-weight radiotherapeutics and to enhance radioactivity uptake into tumor lesions with the ultimate objective of improved therapeutic outcome. Methods: Two ligands mcp-M-alb-PSMA and mcp-D-alb-PSMA were synthesized by combining a macropa-derived chelator with either one or two lysine-ureido-glutamate-based PSMA- and 4-(p-iodophenyl)butyrate albumin-binding entities using multistep peptide-coupling chemistry. Both compounds were labeled with [225Ac]Ac3+ under mild conditions and their reversible binding to serum albumin was analyzed by an ultrafiltration assay as well as microscale thermophoresis measurements. Saturation binding studies and clonogenic survival assays using PSMA-expressing LNCaP cells were performed to evaluate PSMA-mediated cell binding and to assess the cytotoxic potency of the novel radioconjugates [225Ac]Ac-mcp-M-alb-PSMA and [225Ac]Ac-mcp-D-alb-PSMA, respectively. Biodistributions of both 225Ac-radioconjugates were investigated using LNCaP tumor-bearing SCID mice. Histological examinations of selected organs were performed to analyze the occurrence of necrosis using H&E staining, DNA damage via γH2AX staining and proliferation via Ki67 expression in the tissue samples. Results: Enhanced binding to serum components in general and to human serum albumin in particular was revealed for [225Ac]Ac-mcp-M-alb-PSMA and [225Ac]Ac-mcp-D-alb-PSMA, respectively. Moreover, the novel derivatives are highly potent PSMA ligands as their KD values in the nanomolar range (23.38 and 11.56 nM) are comparable to the reference radioconjugates [225Ac]Ac-mcp-M-PSMA (30.83 nM) and [225Ac]Ac-mcp-D-PSMA (10.20 nM) without albumin binders. The clonogenic activity of LNCaP cells after treatment with the 225Ac-labeled ligands was affected in a dose- and time-dependent manner, whereas the bivalent radioconjugate [225Ac]Ac-mcp-D-alb-PSMA has a stronger impact on the clonogenic cell survival than its monovalent counterpart [225Ac]Ac-mcp-M-alb-PSMA. Biodistribution studies performed in LNCaP tumor xenografts showed prolonged blood circulation times for both albumin-binding radioconjugates and a substantially increased tumor uptake (46.04 ± 7.77 %ID/g for [225Ac]Ac-mcp-M-alb-PSMA at 128 h p.i. and 153.48 ± 37.76 %ID/g at 168 h p.i. for [225Ac]Ac-mcp-D-alb-PSMA) with favorable tumor-to-background ratios. Consequently, a clear histological indication of DNA damage was discovered in the tumor tissues, whereas DNA double-strand break formation in kidney and liver sections was less pronounced. Conclusion: The modification of the PSMA-based 225Ac-radioconjugates with one or two albumin-binding entities resulted in an improved radiopharmacological behavior including a greatly enhanced tumor accumulation combined with a rather low uptake in most non-targeted organs combined with a high excretion via the kidneys.
Collapse
Affiliation(s)
- Falco Reissig
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D‑01328 Dresden, Germany
- Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, D-01062 Dresden, Germany
| | - Kristof Zarschler
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D‑01328 Dresden, Germany
| | - Zbynek Novy
- Palacky University Olomouc, Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine and Czech Advanced Technology and Research Institute, Hnevotinska 1333/5, 779 00 Olomouc, Czech Republic
| | - Milos Petrik
- Palacky University Olomouc, Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine and Czech Advanced Technology and Research Institute, Hnevotinska 1333/5, 779 00 Olomouc, Czech Republic
| | - Katerina Bendova
- Palacky University Olomouc, Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine and Czech Advanced Technology and Research Institute, Hnevotinska 1333/5, 779 00 Olomouc, Czech Republic
| | - Daniela Kurfurstova
- Palacky University Olomouc, Faculty of Medicine and Dentistry, Institute of Clinical and Molecular Pathology, Hnevotinska 976/3, 775 15 Olomouc, Czech Republic
| | - Jan Bouchal
- Palacky University Olomouc, Faculty of Medicine and Dentistry, Institute of Clinical and Molecular Pathology, Hnevotinska 976/3, 775 15 Olomouc, Czech Republic
| | - Marie-Charlotte Ludik
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D‑01328 Dresden, Germany
| | - Florian Brandt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D‑01328 Dresden, Germany
- Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, D-01062 Dresden, Germany
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D‑01328 Dresden, Germany
- Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, D-01062 Dresden, Germany
| | - Marta Khoylou
- Palacky University Olomouc, Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine and Czech Advanced Technology and Research Institute, Hnevotinska 1333/5, 779 00 Olomouc, Czech Republic
| | - Hans-Jürgen Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D‑01328 Dresden, Germany
| | - Marian Hajduch
- Palacky University Olomouc, Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine and Czech Advanced Technology and Research Institute, Hnevotinska 1333/5, 779 00 Olomouc, Czech Republic
| | - Constantin Mamat
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D‑01328 Dresden, Germany
- Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, D-01062 Dresden, Germany
| |
Collapse
|
77
|
Ling SW, de Blois E, Hooijman E, van der Veldt A, Brabander T. Advances in 177Lu-PSMA and 225Ac-PSMA Radionuclide Therapy for Metastatic Castration-Resistant Prostate Cancer. Pharmaceutics 2022; 14:2166. [PMID: 36297601 PMCID: PMC9607057 DOI: 10.3390/pharmaceutics14102166] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 08/26/2023] Open
Abstract
For patients with metastatic castration-resistant prostate cancer (mCRPC), the survival benefit of classic treatment options with chemotherapy and drugs targeting androgen signaling is limited. Therefore, beta and alpha radionuclide therapy (RNT) have emerged as novel treatment options for patients with mCRPC. Radioligands target the prostate-specific membrane antigen (PSMA) epitopes, which are upregulated up to a thousand times more in prostate cancer cells compared to the cells in normal tissues. For this reason, PSMA is an excellent target for both imaging and therapy. Over the past years, many studies have investigated the treatment effects of lutetium-177 labeled PSMA (177Lu-PSMA) and actinium-225 labeled PSMA (225Ac-PSMA) RNT in patients with mCRPC. While promising results have been achieved, this field is still in development. In this review, we have summarized and discussed the clinical data of 177Lu-PSMA and 225Ac-PSMA RNT in patients with mCRPC.
Collapse
Affiliation(s)
- Sui Wai Ling
- Department of Radiology & Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Erik de Blois
- Department of Radiology & Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Eline Hooijman
- Department of Radiology & Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Astrid van der Veldt
- Department of Radiology & Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Tessa Brabander
- Department of Radiology & Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
78
|
Efficient Production of the PET Radionuclide 133La for Theranostic Purposes in Targeted Alpha Therapy Using the 134Ba(p,2n) 133La Reaction. Pharmaceuticals (Basel) 2022; 15:ph15101167. [PMID: 36297279 PMCID: PMC9611457 DOI: 10.3390/ph15101167] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 01/18/2023] Open
Abstract
Targeted Alpha Therapy is a research field of highest interest in specialized radionuclide therapy. Over the last decades, several alpha-emitting radionuclides have entered and left research topics towards their clinical translation. Especially, 225Ac provides all necessary physical and chemical properties for a successful clinical application, which has already been shown by [225Ac]Ac-PSMA-617. While PSMA-617 carries the DOTA moiety as the complexing agent, the chelator macropa as a macrocyclic alternative provides even more beneficial properties regarding labeling and complex stability in vivo. Lanthanum-133 is an excellent positron-emitting diagnostic lanthanide to radiolabel macropa-functionalized therapeutics since 133La forms a perfectly matched theranostic pair of radionuclides with the therapeutic radionuclide 225Ac, which itself can optimally be complexed by macropa as well. 133La was thus produced by cyclotron-based proton irradiation of an enriched 134Ba target. The target (30 mg of [134Ba]BaCO3) was irradiated for 60 min at 22 MeV and 10−15 µA beam current. Irradiation side products in the raw target solution were identified and quantified: 135La (0.4%), 135mBa (0.03%), 133mBa (0.01%), and 133Ba (0.0004%). The subsequent workup and anion-exchange-based product purification process took approx. 30 min and led to a total amount of (1.2−1.8) GBq (decay-corrected to end of bombardment) of 133La, formulated as [133La]LaCl3. After the complete decay of 133La, a remainder of ca. 4 kBq of long-lived 133Ba per 100 MBq of 133La was detected and rated as uncritical regarding personal dose and waste management. Subsequent radiolabeling was successfully performed with previously published macropa-derived PSMA inhibitors at a micromolar range (quantitative labeling at 1 µM) and evaluated by radio-TLC and radio-HPLC analyses. The scale-up to radioactivity amounts that are needed for clinical application purposes would be easy to achieve by increasing target mass, beam current, and irradiation time to produce 133La of high radionuclide purity (>99.5%) regarding labeling properties and side products.
Collapse
|
79
|
Wharton L, Jaraquemada-Peláez MDG, Zhang C, Zeisler J, Rodríguez-Rodríguez C, Osooly M, Radchenko V, Yang H, Lin KS, Bénard F, Schaffer P, Orvig C. H 4picoopa─Robust Chelate for 225Ac/ 111In Theranostics. Bioconjug Chem 2022; 33:1900-1921. [DOI: 10.1021/acs.bioconjchem.2c00364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Luke Wharton
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| | | | - Chengcheng Zhang
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Jutta Zeisler
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Cristina Rodríguez-Rodríguez
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
- Department of Physics and Astronomy, University of British Columbia, 6224 Agronomy Road, Vancouver, BC V6T 1Z1, Canada
| | - Maryam Osooly
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hua Yang
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - François Bénard
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Paul Schaffer
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
80
|
Batra V, Samanta M, Makvandi M, Groff D, Martorano P, Elias J, Ranieri P, Tsang M, Hou C, Li Y, Pawel B, Martinez D, Vaidyanathan G, Carlin S, Pryma DA, Maris JM. Preclinical Development of [211At]meta- astatobenzylguanidine ([211At]MABG) as an Alpha Particle Radiopharmaceutical Therapy for Neuroblastoma. Clin Cancer Res 2022; 28:4146-4157. [PMID: 35861867 PMCID: PMC9475242 DOI: 10.1158/1078-0432.ccr-22-0400] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE [131I]meta-iodobenzylguanidine ([131I]MIBG) is a targeted radiotherapeutic administered systemically to deliver beta particle radiation in neuroblastoma. However, relapses in the bone marrow are common. [211At]meta-astatobenzylguanidine ([211At] MABG) is an alpha particle emitter with higher biological effectiveness and short path length which effectively sterilizes microscopic residual disease. Here we investigated the safety and antitumor activity [211At]MABG in preclinical models of neuroblastoma. EXPERIMENTAL DESIGN We defined the maximum tolerated dose (MTD), biodistribution, and toxicity of [211At]MABG in immunodeficient mice in comparison with [131I]MIBG. We compared the antitumor efficacy of [211At]MABG with [131I]MIBG in three murine xenograft models. Finally, we explored the efficacy of [211At]MABG after tail vein xenografting designed to model disseminated neuroblastoma. RESULTS The MTD of [211At]MABG was 66.7 MBq/kg (1.8 mCi/kg) in CB17SC scid-/- mice and 51.8 MBq/kg (1.4 mCi/kg) in NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice. Biodistribution of [211At]MABG was similar to [131I]MIBG. Long-term toxicity studies on mice administered with doses up to 41.5 MBq/kg (1.12 mCi/kg) showed the radiotherapeutic to be well tolerated. Both 66.7 MBq/kg (1.8 mCi/kg) single dose and fractionated dosing 16.6 MBq/kg/fraction (0.45 mCi/kg) × 4 over 11 days induced marked tumor regression in two of the three models studied. Survival was significantly prolonged for mice treated with 12.9 MBq/kg/fraction (0.35 mCi/kg) × 4 doses over 11 days [211At]MABG in the disseminated disease (IMR-05NET/GFP/LUC) model (P = 0.003) suggesting eradication of microscopic disease. CONCLUSIONS [211At]MABG has significant survival advantage in disseminated models of neuroblastoma. An alpha particle emitting radiopharmaceutical may be effective against microscopic disseminated disease, warranting clinical development.
Collapse
Affiliation(s)
- Vandana Batra
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Minu Samanta
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Mehran Makvandi
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David Groff
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Paul Martorano
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jimmy Elias
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Pietro Ranieri
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Matthew Tsang
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Catherine Hou
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yimei Li
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Bruce Pawel
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles and Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Daniel Martinez
- Division of Anatomic Pathology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | - Sean Carlin
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel A. Pryma
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John M. Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Corresponding Author: John M. Maris, Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, 3501 Civic Center Boulevard, Philadelphia, PA 19104. Phone: 215-590-5242; E-mail:
| |
Collapse
|
81
|
Liu W, Ma H, Liang R, Chen X, Li H, Lan T, Yang J, Liao J, Qin Z, Yang Y, Liu N, Li F. Targeted Alpha Therapy of Glioma Using 211At-Labeled Heterodimeric Peptide Targeting Both VEGFR and Integrins. Mol Pharm 2022; 19:3206-3216. [PMID: 35993583 DOI: 10.1021/acs.molpharmaceut.2c00349] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Targeted radionuclide therapy based on α-emitters plays an increasingly important role in cancer treatment. In this study, we proposed to apply a heterodimeric peptide (iRGD-C6-lys-C6-DA7R) targeting both VEGFR and integrins as a new vector for 211At radiolabeling to obtain high-performance radiopharmaceuticals with potential in targeted alpha therapy (TAT). An astatinated peptide, iRGD-C6-lys(211At-ATE)-C6-DA7R, was prepared with a radiochemical yield of ∼45% and high radiochemical purity of >95% via an electrophilic radioastatodestannylation reaction. iRGD-C6-lys(211At-ATE)-C6-DA7R showed good stability in vitro and high binding ability to U87MG (glioma) cells. Systematic in vitro antitumor investigations involving cytotoxicity, apoptosis, distribution of the cell cycle, and reactive oxygen species (ROS) clearly demonstrated that 211At-labeled heterodimeric peptides could significantly inhibit cell viability, induce cell apoptosis, arrest the cell cycle in G2/M phase, and increase intracellular ROS levels in a dose-dependent manner. Biodistribution revealed that iRGD-C6-lys(211At-ATE)-C6-DA7R had rapid tumor accumulation and fast normal tissue/organ clearance, which was mainly excreted through the kidneys. Moreover, in vivo therapeutic evaluation indicated that iRGD-C6-lys(211At-ATE)-C6-DA7R was able to obviously inhibit tumor growth and prolong the survival of mice bearing glioma xenografts without notable toxicity to normal organs. All these results suggest that TAT mediated by iRGD-C6-lys(211At-ATE)-C6-DA7R can provide an effective and promising strategy for the treatment of glioma and some other tumors.
Collapse
Affiliation(s)
- Weihao Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Huan Ma
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Ranxi Liang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Xijian Chen
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Hongyan Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.,Gansu Provincial Isotope Laboratory, Lanzhou 730300, P. R. China
| | - Tu Lan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Jijun Yang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Jiali Liao
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Zhi Qin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.,Gansu Provincial Isotope Laboratory, Lanzhou 730300, P. R. China
| | - Yuanyou Yang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
82
|
Hu A, Simms ME, Kertesz V, Wilson JJ, Thiele NA. Chelating Rare-Earth Metals (Ln 3+) and 225Ac 3+ with the Dual-Size-Selective Macrocyclic Ligand Py 2-Macrodipa. Inorg Chem 2022; 61:12847-12855. [PMID: 35914099 DOI: 10.1021/acs.inorgchem.2c01998] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Radioisotopes of metallic elements, or radiometals, are widely employed in both therapeutic and diagnostic nuclear medicine. For this application, chelators that efficiently bind the radiometal of interest and form a stable metal-ligand complex with it are required. Toward the development of new chelators for nuclear medicine, we recently reported a novel class of 18-membered macrocyclic chelators that is characterized by their ability to form stable complexes with both large and small rare-earth metals (Ln3+), a property referred to as dual size selectivity. A specific chelator in this class called py-macrodipa, which contains one pyridyl group within its macrocyclic core, was established as a promising candidate for 135La3+, 213Bi3+, and 44Sc3+ chelation. Building upon this prior work, here we report the synthesis and characterization of a new chelator called py2-macrodipa with two pyridyl units fused into the macrocyclic backbone. Its coordination chemistry with the Ln3+ series was investigated by NMR spectroscopy, X-ray crystallography, density functional theory (DFT) calculations, analytical titrations, and transchelation assays. These studies reveal that py2-macrodipa retains the expected dual size selectivity and possesses an enhanced thermodynamic affinity for all Ln3+ compared to py-macrodipa. By contrast, the kinetic stability of Ln3+ complexes with py2-macrodipa is only improved for the light, large Ln3+ ions. Based upon these observations, we further assessed the suitability of py2-macrodipa for use with 225Ac3+, a large radiometal with valuable properties for targeted α therapy. Radiolabeling and stability studies revealed py2-macrodipa to efficiently incorporate 225Ac3+ and to form a complex that is inert in human serum over 3 weeks. Although py2-macrodipa does not surpass the state-of-the-art chelator macropa for 225Ac3+ chelation, it does provide another effective 225Ac3+ chelator. These studies shed light on the fundamental coordination chemistry of the Ln3+ series and may inspire future chelator design efforts.
Collapse
Affiliation(s)
- Aohan Hu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Megan E Simms
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Vilmos Kertesz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Nikki A Thiele
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
83
|
Compton imaging for medical applications. Radiol Phys Technol 2022; 15:187-205. [PMID: 35867197 DOI: 10.1007/s12194-022-00666-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 12/18/2022]
Abstract
Compton imaging exploits inelastic scattering, known as Compton scattering, using a Compton camera consisting of a scatterer detector in the front layer and an absorber detector in the back layer. This method was developed for astronomy, and in recent years, research and development for environmental and medical applications has been actively conducted. Compton imaging can discriminate gamma rays over a wide energy range from several hundred keV to several MeV. Therefore, it is expected to be applied to the simultaneous imaging of multiple nuclides in nuclear medicine and prompt gamma ray imaging for range verification in particle therapy. In addition, multiple gamma coincidence imaging is expected to be realized, which allows the source position to be determined from a single coincidence event using nuclides that emit multiple gamma rays simultaneously, such as nuclides that emit a single gamma ray simultaneously with positron decay. This review introduces various efforts toward the practical application of Compton imaging in the medical field, including in vivo studies, and discusses its prospects.
Collapse
|
84
|
Separation of radium and actinium using zirconia. Appl Radiat Isot 2022; 185:110238. [DOI: 10.1016/j.apradiso.2022.110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 11/23/2022]
|
85
|
Stenberg VY, Tornes AJK, Nilsen HR, Revheim ME, Bruland ØS, Larsen RH, Juzeniene A. Factors Influencing the Therapeutic Efficacy of the PSMA Targeting Radioligand 212Pb-NG001. Cancers (Basel) 2022; 14:cancers14112784. [PMID: 35681766 PMCID: PMC9179904 DOI: 10.3390/cancers14112784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/18/2022] [Accepted: 06/01/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Prostate-specific membrane antigen (PSMA) is a protein overexpressed in metastatic castration-resistant prostate cancer and a promising target for targeted radionuclide therapy. PSMA-targeted alpha therapy is of growing interest due to the high-emission energy and short range of alpha particles, resulting in a prominent cytotoxic potency. This study assesses the influence of various factors on the in vitro and in vivo therapeutic efficacy of the alpha particle generating PSMA-targeting radioligand 212Pb-NG001. Abstract This study aimed to determine the influence of cellular PSMA expression, radioligand binding and internalization, and repeated administrations on the therapeutic effects of the PSMA-targeting radioligand 212Pb-NG001. Cellular binding and internalization, cytotoxicity, biodistribution, and the therapeutic efficacy of 212Pb-NG001 were investigated in two human prostate cancer cell lines with different PSMA levels: C4-2 (PSMA+) and PC-3 PIP (PSMA+++). Despite 10-fold higher PSMA expression on PC-3 PIP cells, cytotoxicity and therapeutic efficacy of the radioligand was only 1.8-fold better than for the C4-2 model, possibly explained by lower cellular internalization and less blood-rich stroma in PC-3 PIP xenografts. Mice bearing subcutaneous PC-3 PIP xenografts were treated with 0.2, 0.4, and 0.8 MBq of 212Pb-NG001 that resulted in therapeutic indexes of 2.7, 3.0, and 3.5, respectively. A significant increase in treatment response was observed in mice that received repeated injections compared to the corresponding single dose (therapeutic indexes of 3.6 for 2 × 0.2 MBq and 4.4 for 2 × 0.4 MBq). The results indicate that 212Pb-NG001 can induce therapeutic effects at clinically transferrable doses, both in the C4-2 model that resembles solid tumors and micrometastases with natural PSMA expression and in the PC-3 PIP model that mimics poorly vascularized metastases.
Collapse
Affiliation(s)
- Vilde Yuli Stenberg
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (A.J.K.T.); (A.J.)
- Nucligen AS, 0379 Oslo, Norway;
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; (M.-E.R.); (Ø.S.B.)
- Correspondence: ; Tel.: +47-9012-8434
| | - Anna Julie Kjøl Tornes
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (A.J.K.T.); (A.J.)
- Nucligen AS, 0379 Oslo, Norway;
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; (M.-E.R.); (Ø.S.B.)
| | - Hogne Røed Nilsen
- Department of Pathology, Rikshospitalet, Oslo University Hospital, 0372 Oslo, Norway;
| | - Mona-Elisabeth Revheim
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; (M.-E.R.); (Ø.S.B.)
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, 0379 Oslo, Norway
| | - Øyvind Sverre Bruland
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; (M.-E.R.); (Ø.S.B.)
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | | | - Asta Juzeniene
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (A.J.K.T.); (A.J.)
| |
Collapse
|
86
|
Abstract
Theranostic applications with radio-isotopes currently are rapidly progressing and expand nuclear medicine application in clinical routine. Alpha emitting isotopes, in particular, have long been hypothesized to achieve relevant advances for the treatment of malignancies. Here, an overview of their properties and the knowledge of radiobiology is reviewed in view of clinical translation. Clinical evidence of radiopharmaceuticals based on alpha emitters is summarized with a focus on recent developments for treatment of metastasized castration resistant prostate cancer.
Collapse
Affiliation(s)
- Matthias Miederer
- Department of Nuclear Medicine, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
87
|
Daly SR, Bellott BJ, McAlister DR, Horwitz EP, Girolami GS. Pr(H 3BNMe 2BH 3) 3 and Pr(thd) 3 as Volatile Carriers for Actinium-225. Deposition of Actinium-Doped Praseodymium Boride Thin Films for Potential Use in Brachytherapy. Inorg Chem 2022; 61:7217-7221. [PMID: 35510902 DOI: 10.1021/acs.inorgchem.2c00442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Here we show that the praseodymium N,N-dimethylaminodiboranate complex Pr(H3BNMe2BH3)3 and the 2,2,6,6-tetramethylheptane-3,5-dionate complex Pr(thd)3 can serve as volatile carriers for 225Ac. The actinium coordination complexes Ac(H3BNMe2BH3)3 and Ac(thd)3 are the likely species subliming with the carrier material. A sample of 225Ac-doped Pr(H3BNMe2BH3)3 was used to deposit amorphous 225Ac-doped praseodymium boride films on glass and Si(100) at 300 °C. The α emission spectra of the refractory films are well-resolved, suggesting that they could be used as radioactive implants for brachytherapy and related treatments.
Collapse
Affiliation(s)
- Scott R Daly
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242, United States.,School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Brian J Bellott
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States.,Department of Chemistry, Western Illinois University, 214 Currens Hall, 1 University Circle, Macomb, Illinois 61455, United States
| | - Daniel R McAlister
- Eichrom Technologies, LLC, 1955 University Lane, Lisle, Illinois 60532, United States
| | - E Philip Horwitz
- Eichrom Technologies, LLC, 1955 University Lane, Lisle, Illinois 60532, United States
| | - Gregory S Girolami
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
88
|
Walter RB. Where do we stand with radioimmunotherapy for acute myeloid leukemia? Expert Opin Biol Ther 2022; 22:555-561. [PMID: 35350938 PMCID: PMC9090441 DOI: 10.1080/14712598.2022.2060735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/29/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Despite the approval of several new drugs, deaths from acute myeloid leukemia (AML) remain common. Because of well-defined cell surface antigens, easy accessibility, and radiosensitivity of leukemia cells, there is long-standing interest in radiolabeled antibodies (radioimmunotherapy [RIT]) to complement or replace existing treatments and improve outcomes in AML. AREAS COVERED Targeting primarily CD33, CD45, or CD66, early RIT efforts have focused on β-emitters, including iodine-131 (131I) and yttrium-90, mostly to intensify conditioning therapy before allogeneic hematopoietic cell transplantation (HCT). An 131I-labeled CD45 antibody (Iomab-B [apamistamab-I131]) is currently studied in the registration-type phase 3 SIERRA trial (NCT02665065) for this purpose. Of growing interest as therapeutic payloads are α-particle emitting radionuclides such as actinium-225 (225Ac) or astatine-211 (211At) since they deliver substantially higher decay energies over a much shorter distance than β-emitters, rendering them more suitable for precise, potent, and efficient target cell killing while minimizing toxicity to surrounding bystander cells, possibly allowing use outside of HCT. Clinical efforts with 211At-labeled CD45 antibodies and 225Ac-labeled CD33 antibodies (e.g. 225Ac-lintuzumab [Actimab-A]) are ongoing. EXPERT OPINION A first anti-AML RIT may soon become available. This might propel further work to develop RIT-based treatments for AML, with many such efforts already ongoing.
Collapse
Affiliation(s)
- Roland B Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, Division of Hematology, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
89
|
Wharton L, Zhang C, Yang H, Zeisler J, Radchenko V, Rodríguez-Rodríguez C, Osooly M, Patrick BO, Lin KS, Bénard F, Schaffer P, Orvig C. [ 213Bi]Bi 3+/[ 111In]In 3+-neunpa-cycMSH: Theranostic Radiopharmaceutical Targeting Melanoma─Structural, Radiochemical, and Biological Evaluation. Bioconjug Chem 2022; 33:505-522. [PMID: 35239331 DOI: 10.1021/acs.bioconjchem.2c00038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
With the emergence of [225Ac]Ac3+ as a therapeutic radionuclide for targeted α therapy (TAT), access to clinical quantities of the potent, short-lived α-emitter [213Bi]Bi3+ (t1/2 = 45.6 min) will increase over the next decade. With this in mind, the nonadentate chelator, H4neunpa-NH2, has been investigated as a ligand for chelation of [213Bi]Bi3+ in combination with [111In]In3+ as a suitable radionuclidic pair for TAT and single photon emission computed tomography (SPECT) diagnostics. Nuclear magnetic resonance (NMR) spectroscopy was utilized to assess the coordination characteristics of H4neunpa-NH2 on complexation of [natBi]Bi3+, while the solid-state structure of [natBi][Bi(neunpa-NH3)] was characterized via X-ray diffraction (XRD) studies, and density functional theory (DFT) calculations were performed to elucidate the conformational geometries of the metal complex in solution. H4neunpa-NH2 exhibited fast complexation kinetics with [213Bi]Bi3+ at RT achieving quantitative radiolabeling within 5 min at 10-8 M ligand concentration, which was accompanied by the formation of a kinetically inert complex. Two bioconjugates incorporating the melanocortin 1 receptor (MC1R) targeting peptide Nle-CycMSHhex were synthesized featuring two different covalent linkers for in vivo evaluation with [213Bi]Bi3+ and [111In]In3+. High molar activities of 7.47 and 21.0 GBq/μmol were achieved for each of the bioconjugates with [213Bi]Bi3+. SPECT/CT scans of the [111In]In3+-labeled tracer showed accumulation in the tumor over time, which was accompanied by high liver uptake and clearance via the hepatic pathway due to the high lipophilicity of the covalent linker. In vivo biodistribution studies in C57Bl/6J mice bearing B16-F10 tumor xenografts showed good tumor uptake (5.91% ID/g) at 1 h post-administration with [213Bi][Bi(neunpa-Ph-Pip-Nle-CycMSHhex)]. This study demonstrates H4neunpa-NH2 to be an effective chelating ligand for [213Bi]Bi3+ and [111In]In3+, with promising characteristics for further development toward theranostic applications.
Collapse
Affiliation(s)
- Luke Wharton
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada.,Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Chengcheng Zhang
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia V5Z 1L3, Canada
| | - Hua Yang
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada.,Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Jutta Zeisler
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia V5Z 1L3, Canada
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada.,Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Cristina Rodríguez-Rodríguez
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada.,Department of Physics and Astronomy, University of British Columbia, 6224 Agronomy Road, Vancouver, British Columbia V6T 1Z1, Canada
| | - Maryam Osooly
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Brian O Patrick
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia V5Z 1L3, Canada.,Department of Radiology, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - François Bénard
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia V5Z 1L3, Canada.,Department of Radiology, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Paul Schaffer
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada.,Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Department of Radiology, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
90
|
Recent progress of astatine-211 in endoradiotherapy: Great advances from fundamental properties to targeted radiopharmaceuticals. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
91
|
Peptide Receptor Radionuclide Therapy with [ 177Lu]Lu-DOTA-TATE in Patients with Advanced GEP NENS: Present and Future Directions. Cancers (Basel) 2022; 14:cancers14030584. [PMID: 35158852 PMCID: PMC8833790 DOI: 10.3390/cancers14030584] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Neuroendocrine neoplasms have been usually described as infrequent tumors, but their incidence has been rising over time. [177Lu]Lu-DOTA-TATE (PRRT-Lu) was approved by the European Medicines Agency and by the Food and Drug Administration as the first radiopharmaceutical for peptide receptor radionuclide therapy in progressive gastroenteropancreatic NET. PRRT-Lu is considered a therapeutic option in progressive SSTR-positive NETs with homogenous SSTR expression. The NETTER-1 study demonstrated that PRRT-Lu yielded a statistically and clinically significant improvement in PFS as a primary endpoint (HR: 0.18, p < 0.0001), as well as a clinical trend towards improvement in OS. These results made scientific societies incorporate PRRT-Lu into their clinical guidelines; however, some questions still remain unanswered. Abstract This review article summarizes findings published in the last years on peptide receptor radionuclide therapy in GEP NENs, as well as potential future developments and directions. Unanswered questions remain, such as the following: Which is the correct dose and individual dosimetry? Which is the place for salvage PRRT-Lu? Whicht is the role of PRRT-Lu in the pediatric population? Which is the optimal sequencing of PRRT-Lu in advanced GEP NETs? Which is the place of PRRT-Lu in G3 NENs? These, and future developments such as inclusion new radiopharmaceuticals and combination therapy with different agents, such as radiosensitizers, will be discussed.
Collapse
|
92
|
Wagstaff P, Gabiña PM, Mínguez R, Roeske JC. Alpha particle microdosimetry calculations using a shallow neural network. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac499c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/10/2022] [Indexed: 11/12/2022]
Abstract
Abstract
A shallow neural network was trained to accurately calculate the microdosimetric parameters, 〈z
1〉 and 〈z
1
2〉 (the first and second moments of the single-event specific energy spectra, respectively) for use in alpha-particle microdosimetry calculations. The regression network of four inputs and two outputs was created in MATLAB and trained on a data set consisting of both previously published microdosimetric data and recent Monte Carlo simulations. The input data consisted of the alpha-particle energies (3.97–8.78 MeV), cell nuclei radii (2–10 μm), cell radii (2.5–20 μm), and eight different source-target configurations. These configurations included both single cells in suspension and cells in geometric clusters. The mean square error (MSE) was used to measure the performance of the network. The sizes of the hidden layers were chosen to minimize MSE without overfitting. The final neural network consisted of two hidden layers with 13 and 20 nodes, respectively, each with tangential sigmoid transfer functions, and was trained on 1932 data points. The overall training/validation resulted in a MSE = 3.71 × 10−7. A separate testing data set included input values that were not seen by the trained network. The final test on 892 separate data points resulted in a MSE = 2.80 × 10−7. The 95th percentile testing data errors were within ±1.4% for 〈z
1〉 outputs and ±2.8% for 〈z
1
2〉 outputs, respectively. Cell survival was also predicted using actual versus neural network generated microdosimetric moments and showed overall agreement within ±3.5%. In summary, this trained neural network can accurately produce microdosimetric parameters used for the study of alpha-particle emitters. The network can be exported and shared for tests on independent data sets and new calculations.
Collapse
|
93
|
Hu A, Brown V, MacMillan SN, Radchenko V, Yang H, Wharton L, Ramogida CF, Wilson JJ. Chelating the Alpha Therapy Radionuclides 225Ac 3+ and 213Bi 3+ with 18-Membered Macrocyclic Ligands Macrodipa and Py-Macrodipa. Inorg Chem 2022; 61:801-806. [PMID: 34965102 PMCID: PMC9372718 DOI: 10.1021/acs.inorgchem.1c03670] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The radionuclides 225Ac3+ and 213Bi3+ possess favorable physical properties for targeted alpha therapy (TAT), a therapeutic approach that leverages α radiation to treat cancers. A chelator that effectively binds and retains these radionuclides is required for this application. The development of ligands for this purpose, however, is challenging because the large ionic radii and charge-diffuse nature of these metal ions give rise to weaker metal-ligand interactions. In this study, we evaluated two 18-membered macrocyclic chelators, macrodipa and py-macrodipa, for their ability to complex 225Ac3+ and 213Bi3+. Their coordination chemistry with Ac3+ was probed computationally and with Bi3+ experimentally via NMR spectroscopy and X-ray crystallography. Furthermore, radiolabeling studies were conducted, revealing the efficient incorporation of both 225Ac3+ and 213Bi3+ by py-macrodipa that matches or surpasses the well-known chelators macropa and DOTA. Incubation in human serum at 37 °C showed that ∼90% of the 225Ac3+-py-macrodipa complex dissociates after 1 d. The Bi3+-py-macrodipa complex possesses remarkable kinetic inertness reflected by an EDTA transchelation challenge study, surpassing that of Bi3+-macropa. This work establishes py-macrodipa as a valuable candidate for 213Bi3+ TAT, providing further motivation for its implementation within new radiopharmaceutical agents.
Collapse
Affiliation(s)
- Aohan Hu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Victoria Brown
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Hua Yang
- Life Sciences Division, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| | - Luke Wharton
- Life Sciences Division, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Caterina F. Ramogida
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Life Sciences Division, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
94
|
Kafle A, Armentrout PB. Experimental and computational investigation of the bond energy of thorium dicarbonyl cation and theoretical elucidation of its isomerization mechanism to the thermodynamically most stable isomer, thorium oxide ketenylidene cation, OTh +CCO. Phys Chem Chem Phys 2022; 24:842-853. [PMID: 34908066 DOI: 10.1039/d1cp04263g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Collision-induced dissociation (CID) of [Th,2C,2O]+ with Xe is performed using a guided ion beam tandem mass spectrometer (GIBMS). The only products observed are ThCO+ and Th+ by sequential loss of CO ligands. The experimental findings and theoretical calculations support that the structure of [Th,2C,2O]+ is the bent homoleptic thorium dicarbonyl cation, Th+(CO)2, having quartet spin, which is both thermodynamically and kinetically stable enough in the gas phase to be observed in our GIBMS instrument. Analysis of the kinetic energy-dependent cross sections for this CID reaction yields the first experimental determination of the bond dissociation energy (BDE) of (CO)Th+-CO at 0 K as 1.05 ± 0.09 eV. A theoretical BDE calculated at the CCSD(T) level with cc-pVXZ (X = T and Q) basis sets and a complete basis set (CBS) extrapolation is in very good agreement with the experimental result. Although the doublet spin bent thorium oxide ketenylidene cation, OTh+CCO, is calculated to be the most thermodynamically stable structure, it is not observed in our experiment where [Th,2C,2O]+ is formed by association of Th+ and CO in a direct current discharge flow tube (DC/FT) ion source. Potential energy profiles of both quartet and doublet spin are constructed to elucidate the isomerization mechanism of Th+(CO)2 to OTh+CCO. The failure to observe OTh+CCO is attributed to a barrier associated with C-C bond formation, which makes OTh+CCO kinetically inaccessible under our experimental conditions. Chemical bonding patterns in low-lying states of linear and bent Th+(CO)2 and OTh+CCO isomers are also investigated.
Collapse
Affiliation(s)
- Arjun Kafle
- Department of Chemistry, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, UT 84112, USA.
| | - P B Armentrout
- Department of Chemistry, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, UT 84112, USA.
| |
Collapse
|
95
|
Maingueneau C, Berdal M, Eychenne R, Gaschet J, Chérel M, Gestin JF, Guérard F. 211At and 125I-labeling of (hetero)aryliodonium ylides: astatine wins again. Chemistry 2021; 28:e202104169. [PMID: 34965315 DOI: 10.1002/chem.202104169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Indexed: 11/09/2022]
Abstract
Despite the growing interest in radioiodine and 211 At-labeled radiopharmaceuticals, the search for radiolabeling reactions has been somewhat neglected, resulting in a limited number of available radiosynthetic strategies. Herein we report a comparative study of nucleophilic 125 I and 211 At-labeling of aryliodonium ylides. Whereas radioiodination efficiency was low, 211 At-labeling performed efficiently on a broad scope of precursors. The most activated aryliodonium ylides led rapidly to quantitative reactions at room temperature in acetonitrile. For deactivated precursors, heating up to 90°C in glyme and addition of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) as radical scavenger appeared essential to avoid precursor degradation and to achieve high radiochemical yields and molar activity. The approach was applied successfully to the preparation of 4-[ 211 At]astatophenylalanine (4-APA), an amino acid derivative increasingly studied as radiotherapeutic drug for cancers. This validated aryliodonium ylides as a valuable tool for nucleophilic 211 At-labeling and will complement the short but now growing list of available astatination reactions.
Collapse
Affiliation(s)
- Clémence Maingueneau
- CRCINA: ERL Centre de Cancerologie et d'Immunologie Nantes-Angers, team 13, 8 Quai Moncousu,, 44007, Nantes, FRANCE
| | | | | | | | | | | | | |
Collapse
|
96
|
Neels OC, Kopka K, Liolios C, Afshar-Oromieh A. Radiolabeled PSMA Inhibitors. Cancers (Basel) 2021; 13:6255. [PMID: 34944875 PMCID: PMC8699044 DOI: 10.3390/cancers13246255] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/16/2022] Open
Abstract
PSMA has shown to be a promising target for diagnosis and therapy (theranostics) of prostate cancer. We have reviewed developments in the field of radio- and fluorescence-guided surgery and targeted photodynamic therapy as well as multitargeting PSMA inhibitors also addressing albumin, GRPr and integrin αvβ3. An overview of the regulatory status of PSMA-targeting radiopharmaceuticals in the USA and Europe is also provided. Technical and quality aspects of PSMA-targeting radiopharmaceuticals are described and new emerging radiolabeling strategies are discussed. Furthermore, insights are given into the production, application and potential of alternatives beyond the commonly used radionuclides for radiolabeling PSMA inhibitors. An additional refinement of radiopharmaceuticals is required in order to further improve dose-limiting factors, such as nephrotoxicity and salivary gland uptake during endoradiotherapy. The improvement of patient treatment achieved by the advantageous combination of radionuclide therapy with alternative therapies is also a special focus of this review.
Collapse
Affiliation(s)
- Oliver C. Neels
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, 01328 Dresden, Germany;
| | - Klaus Kopka
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, 01328 Dresden, Germany;
- Faculty of Chemistry and Food Chemistry, School of Science, Technical University Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Christos Liolios
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National & Kapodistrian University of Athens, Zografou, 15771 Athens, Greece;
- INRASTES, Radiochemistry Laboratory, NCSR “Demokritos”, Ag. Paraskevi Attikis, 15310 Athens, Greece
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Bern University Hospital (Inselspital), Freiburgstrasse 18, 3010 Bern, Switzerland;
| |
Collapse
|
97
|
Somatostatin and Somatostatin Receptors: From Signaling to Clinical Applications in Neuroendocrine Neoplasms. Biomedicines 2021; 9:biomedicines9121810. [PMID: 34944626 PMCID: PMC8699000 DOI: 10.3390/biomedicines9121810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/26/2022] Open
Abstract
Neuroendocrine neoplasms (NENs) are heterogeneous neoplasms which arise from neuroendocrine cells that are distributed widely throughout the body. Although heterogenous, many of them share their ability to overexpress somatostatin receptors (SSTR) on their cell surface. Due to this, SSTR and somatostatin have been a large subject of interest in the discovery of potential biomarkers and treatment options for the disease. The aim of this review is to describe the molecular characteristics of somatostatin and somatostatin receptors and its application in diagnosis and therapy on patients with NENs as well as the use in the near future of somatostatin antagonists.
Collapse
|
98
|
Hydroxypyridinones as a Very Promising Platform for Targeted Diagnostic and Therapeutic Radiopharmaceuticals. Molecules 2021. [DOI: 10.3390/molecules26226997
expr 973886017 + 973118332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Hydroxypyridinones (HOPOs) have been used in the chelation therapy of iron and actinide metals. Their application in metal-based radiopharmaceuticals has also been increasing in recent years. This review article focuses on how multidentate HOPOs can be used in targeted radiometal-based diagnostic and therapeutic radiopharmaceuticals. The general structure of radiometal-based targeted radiopharmaceuticals, a brief description of siderophores, the basic structure and properties of bidentate HOPO, some representative HOPO multidentate chelating agents, radiopharmaceuticals based on HOPO multidentate bifunctional chelators for gallium-68, thorium-227 and zirconium-89, as well as the future prospects of HOPO multidentate bifunctional chelators in other metal-based radiopharmaceuticals are described and discussed in turn. The HOPO metal-based radiopharmaceuticals that have shown good prospects in clinical and preclinical studies are gallium-68, thorium-227 and zirconium-89 radiopharmaceuticals. We expect HOPO multidentate bifunctional chelators to be a very promising platform for building novel targeted radiometal-based diagnostic and therapeutic radiopharmaceuticals.
Collapse
|
99
|
Zhou X, Dong L, Shen L. Hydroxypyridinones as a Very Promising Platform for Targeted Diagnostic and Therapeutic Radiopharmaceuticals. Molecules 2021; 26:6997. [PMID: 34834087 PMCID: PMC8619595 DOI: 10.3390/molecules26226997&set/a 916769719+956065658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Hydroxypyridinones (HOPOs) have been used in the chelation therapy of iron and actinide metals. Their application in metal-based radiopharmaceuticals has also been increasing in recent years. This review article focuses on how multidentate HOPOs can be used in targeted radiometal-based diagnostic and therapeutic radiopharmaceuticals. The general structure of radiometal-based targeted radiopharmaceuticals, a brief description of siderophores, the basic structure and properties of bidentate HOPO, some representative HOPO multidentate chelating agents, radiopharmaceuticals based on HOPO multidentate bifunctional chelators for gallium-68, thorium-227 and zirconium-89, as well as the future prospects of HOPO multidentate bifunctional chelators in other metal-based radiopharmaceuticals are described and discussed in turn. The HOPO metal-based radiopharmaceuticals that have shown good prospects in clinical and preclinical studies are gallium-68, thorium-227 and zirconium-89 radiopharmaceuticals. We expect HOPO multidentate bifunctional chelators to be a very promising platform for building novel targeted radiometal-based diagnostic and therapeutic radiopharmaceuticals.
Collapse
Affiliation(s)
- Xu Zhou
- HTA Co., Ltd., Beijing 102413, China;
- China Isotope & Radiation Corporation, Beijing 100089, China;
| | - Linlin Dong
- China Isotope & Radiation Corporation, Beijing 100089, China;
| | - Langtao Shen
- HTA Co., Ltd., Beijing 102413, China;
- China Isotope & Radiation Corporation, Beijing 100089, China;
- National Isotope Center of Engineering and Technology, China Institute of Atomic Energy, Beijing 102413, China
- Correspondence:
| |
Collapse
|
100
|
Zhou X, Dong L, Shen L. Hydroxypyridinones as a Very Promising Platform for Targeted Diagnostic and Therapeutic Radiopharmaceuticals. Molecules 2021; 26:6997. [PMID: 34834087 PMCID: PMC8619595 DOI: 10.3390/molecules26226997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 01/30/2023] Open
Abstract
Hydroxypyridinones (HOPOs) have been used in the chelation therapy of iron and actinide metals. Their application in metal-based radiopharmaceuticals has also been increasing in recent years. This review article focuses on how multidentate HOPOs can be used in targeted radiometal-based diagnostic and therapeutic radiopharmaceuticals. The general structure of radiometal-based targeted radiopharmaceuticals, a brief description of siderophores, the basic structure and properties of bidentate HOPO, some representative HOPO multidentate chelating agents, radiopharmaceuticals based on HOPO multidentate bifunctional chelators for gallium-68, thorium-227 and zirconium-89, as well as the future prospects of HOPO multidentate bifunctional chelators in other metal-based radiopharmaceuticals are described and discussed in turn. The HOPO metal-based radiopharmaceuticals that have shown good prospects in clinical and preclinical studies are gallium-68, thorium-227 and zirconium-89 radiopharmaceuticals. We expect HOPO multidentate bifunctional chelators to be a very promising platform for building novel targeted radiometal-based diagnostic and therapeutic radiopharmaceuticals.
Collapse
Affiliation(s)
- Xu Zhou
- HTA Co., Ltd., Beijing 102413, China;
- China Isotope & Radiation Corporation, Beijing 100089, China;
| | - Linlin Dong
- China Isotope & Radiation Corporation, Beijing 100089, China;
| | - Langtao Shen
- HTA Co., Ltd., Beijing 102413, China;
- China Isotope & Radiation Corporation, Beijing 100089, China;
- National Isotope Center of Engineering and Technology, China Institute of Atomic Energy, Beijing 102413, China
| |
Collapse
|