51
|
Li Z, Zhu L, Zhao F, Li J, Zhang X, Kong X, Wu H, Zhang Z. Plant Salinity Stress Response and Nano-Enabled Plant Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:843994. [PMID: 35392516 PMCID: PMC8981240 DOI: 10.3389/fpls.2022.843994] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/25/2022] [Indexed: 05/27/2023]
Abstract
The area of salinized land is gradually expanding cross the globe. Salt stress seriously reduces the yield and quality of crops and endangers food supply to meet the demand of the increased population. The mechanisms underlying nano-enabled plant tolerance were discussed, including (1) maintaining ROS homeostasis, (2) improving plant's ability to exclude Na+ and to retain K+, (3) improving the production of nitric oxide, (4) increasing α-amylase activities to increase soluble sugar content, and (5) decreasing lipoxygenase activities to reduce membrane oxidative damage. The possible commonly employed mechanisms such as alleviating oxidative stress damage and maintaining ion homeostasis were highlighted. Further, the possible role of phytohormones and the molecular mechanisms in nano-enabled plant salt tolerance were discussed. Overall, this review paper aims to help the researchers from different field such as plant science and nanoscience to better understand possible new approaches to address salinity issues in agriculture.
Collapse
Affiliation(s)
- Zengqiang Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Lan Zhu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fameng Zhao
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiaqi Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xin Zhang
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiangjun Kong
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Honghong Wu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhiyong Zhang
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
52
|
Can Nanofertilizers Mitigate Multiple Environmental Stresses for Higher Crop Productivity? SUSTAINABILITY 2022. [DOI: 10.3390/su14063480] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The global food production for the worldwide population mainly depends on the huge contributions of the agricultural sector. The cultivated crops of foods need various elements or nutrients to complete their growth, and these are indirectly consumed by humans. During this production, several environmental constraints or stresses may cause losses in the global agricultural production. These obstacles may include abiotic and biotic stresses, which have already been studied in both individual and combined cases. However, there are very few studies on multiple stresses. On the basis of the myriad benefits of nanotechnology in agriculture, nanofertilizers (or nanonutrients) have become promising tools for agricultural sustainability. Nanofertilizers are also the proper solution to overcoming the environmental and health problems that can result from conventional fertilizers. The role of nanofertilizers has increased, especially under different environmental stresses, which can include individual, combined, and multiple stresses. The stresses are most commonly the result of nature; however, studies are still needed on the different stress levels. Nanofertilizers can play a crucial role in supporting cultivated plants under stress and in improving the plant yield, both quantitatively and qualitatively. Similar to other biological issues, many open-ended questions still require further investigation: Is the right time and era for nanofertilizers in agriculture? Will the nanofertilizers be the dominant source of nutrients in modern agriculture? Are nanofertilizers, and particularly biological synthesized ones, the magic solution for sustainable agriculture? What are the expected damages of multiple stresses on plants?
Collapse
|
53
|
Kusiak M, Oleszczuk P, Jośko I. Cross-examination of engineered nanomaterials in crop production: Application and related implications. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127374. [PMID: 34879568 DOI: 10.1016/j.jhazmat.2021.127374] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
The review presents the current knowledge on the development and implementation of nanotechnology in crop production, giving particular attention to potential opportunities and challenges of the use of nano-sensors, nano-pesticides, and nano-fertilizers. Due to the size-dependent properties, e.g. high reactivity, targeted and controlled delivery of active ingredients, engineered nanomaterials (ENMs) are expected to be more efficient agrochemicals than conventional agents. Growing production and usage of ENMs result in the spread of ENMs in the environment. Because plants constitute an important component of the agri-ecosystem, they are subjected to the ENMs activity. A number of studies have confirmed the uptake and translocation of ENMs by plants as well as their positive/negative effects on plants. Here, these endpoints are briefly summarized to show the diversity of plant responses to ENMs. The review includes a detailed molecular analysis of ENMs-plant interactions. The transcriptomics, proteomics and metabolomics tools have been very recently employed to explore ENMs-induced effects in planta. The omics approach allows a comprehensive understanding of the specific machinery of ENMs occurring at the molecular level. The summary of data will be valuable in defining future studies on the ENMs-plant system, which is crucial for developing a suitable strategy for the ENMs usage.
Collapse
Affiliation(s)
- Magdalena Kusiak
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, Lublin, Poland
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Izabela Jośko
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, Lublin, Poland.
| |
Collapse
|
54
|
Tighe-Neira R, Gonzalez-Villagra J, Nunes-Nesi A, Inostroza-Blancheteau C. Impact of nanoparticles and their ionic counterparts derived from heavy metals on the physiology of food crops. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 172:14-23. [PMID: 35007890 DOI: 10.1016/j.plaphy.2021.12.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/13/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Heavy metals and their engineered nanoparticle (NP) counterparts are emerging contaminants in the environment that have captured the attention of researchers worldwide. Although copper, iron, zinc and manganese are essential micronutrients for food crops, higher concentrations provoke several physiological and biochemical alterations that in extreme cases can lead to plant death. The effects of heavy metals on plants have been studied but the influence of nanoparticles (NPs) derived from these heavy metals, and their comparative effect is less known. In this critical review, we have found similar impacts for copper and manganese ionic and NP counterparts; in contrast, iron and zinc NPs seem less toxic for food crops. Although these nutrients are metals that can be dissociated in water, few authors have conducted joint ionic state and NP assays to evaluate their comparative effect. More efforts are thus required to fully understand the impact of NPs and their ion counterparts at the physiological, metabolic and molecular dimensions in crop plants.
Collapse
Affiliation(s)
- Ricardo Tighe-Neira
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile
| | - Jorge Gonzalez-Villagra
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile; Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Claudio Inostroza-Blancheteau
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile; Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile.
| |
Collapse
|
55
|
Nanopotassium, Nanosilicon, and Biochar Applications Improve Potato Salt Tolerance by Modulating Photosynthesis, Water Status, and Biochemical Constituents. SUSTAINABILITY 2022. [DOI: 10.3390/su14020723] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Salinity is one of the main environmental stresses, and it affects potato growth and productivity in arid and semiarid regions by disturbing physiological process, such as the photosynthesis rate, the absorption of essential nutrients and water, plant hormonal functions, and vital metabolic pathways. Few studies are available on the application of combined nanomaterials to mitigate salinity stress on potato plants (Solanum tuberosum L. cv. Diamont). In order to assess the effects of the sole or combined application of silicon (Si) and potassium (K) nanoparticles and biochar (Bc) on the agro-physiological properties and biochemical constituents of potato plants grown in saline soil, two open-field experiments were executed on a randomized complete block design (RCBD), with five replicates. The results show that the biochar application and nanoelements (n-K and n-Si) significantly improved the plant heights, the fresh and dry plant biomasses, the numbers of stems/plant, the leaf relative water content, the leaf chlorophyll content, the photosynthetic rate (Pn), the leaf stomatal conductance (Gc), and the tuber yields, compared to the untreated potato plants (CT). Moreover, the nanoelements and biochar improved the content of the endogenous elements of the plant tissues (N, P, K, Mg, Fe, Mn, and B), the leaf proline, and the leaf gibberellic acid (GA3), in addition to reducing the leaf abscisic acid content (ABA), the activity of catalase (CAT), and the peroxidase (POD) and polyphenol oxidase (PPO) in the leaves of salt-stressed potato plants. The combined treatment achieved maximum plant growth parameters, physiological parameters, and nutrient concentrations, and minimum transpiration rates (Tr), leaf abscisic acid content (ABA), and activities of the leaf antioxidant enzymes (CAT, POD, and PPO). Furthermore, the combined treatment also showed the highest tuber yield and tuber quality, including the contents of carbohydrates, proteins, and the endogenous nutrients of the tuber tissues (N, P, and K), and the lowest starch content. Moreover, Pearson’s correlation showed that the plant growth and the tuber yields of potato plants significantly and positively correlated with the photosynthesis rate, the internal CO2 concentration, the relative water content, the proline, the chlorophyll content, and the GA3, and that they were negatively correlated with the leaf Na content, PPO, CAT, ABA, MDA, and Tr. It might be concluded that nanoelement (n-K and n-Si) and biochar applications are a promising method to enhance the plant growth and crop productivity of potato plants grown under salinity conditions.
Collapse
|
56
|
Abd-Elsalam KA. Copper-based nanomaterials: Next-generation agrochemicals: A note from the editor. COPPER NANOSTRUCTURES: NEXT-GENERATION OF AGROCHEMICALS FOR SUSTAINABLE AGROECOSYSTEMS 2022:1-14. [DOI: 10.1016/b978-0-12-823833-2.00002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
57
|
Etesami H, Fatemi H, Rizwan M. Interactions of nanoparticles and salinity stress at physiological, biochemical and molecular levels in plants: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112769. [PMID: 34509968 DOI: 10.1016/j.ecoenv.2021.112769] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 05/19/2023]
Abstract
Salinity stress is one of the most destructive non-biological stresses in plants that has adversely affected many agricultural lands in the world. Salinity stress causes many morphological, physiological, epigenetic and genetic changes in plants by increasing sodium and chlorine ions in the plant cells. The plants can alleviate this disorder to some extent through various mechanisms and return the cell to its original state, but if the salt dose is high, the plants may not be able to provide a proper response and can die due to salt stress. Nowadays, scientists have offered many solutions to this problem. Nanotechnology is one of the most emerging and efficient technologies that has been entered in this field and has recorded very brilliant results. Although some studies have confirmed the positive effects of nontechnology on plants under salinity stress, there is no the complete understanding of the relationship and interaction of nanoparticles and intracellular mechanisms in the plants. In the review paper, we have tried to reach a conclusion from the latest articles that how NPs could help salt-stressed plants to recover their cells under salt stress so that we can take a step towards clearing the existing ambiguities for researchers in this field.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, University of Tehran, Karaj, Iran.
| | - Hamideh Fatemi
- Department of Horticulture, Faculty of Agricultural Sciences and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, 38000, Pakistan.
| |
Collapse
|
58
|
Lala S. Nanoparticles as elicitors and harvesters of economically important secondary metabolites in higher plants: A review. IET Nanobiotechnol 2021; 15:28-57. [PMID: 34694730 PMCID: PMC8675826 DOI: 10.1049/nbt2.12005] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/19/2020] [Accepted: 09/02/2020] [Indexed: 01/10/2023] Open
Abstract
Nanoparticles possess some unique properties which improve their biochemical reactivity. Plants, due to their stationary nature, are constantly exposed to nanoparticles present in the environment, which act as abiotic stress agents at sub-toxic concentrations and phytotoxic agents at higher concentrations. In general, nanoparticles exert their toxicological effect by the generation of reactive oxygen species to which plants respond by activating both enzymatic and non-enzymatic anti-oxidant defence mechanisms. One important manifestation of the defence response is the increased or de novo biosynthesis of secondary metabolites, many of which have commercial application. The present review extensively summarizes current knowledge about the application of different metallic, non-metallic and carbon-based nanoparticles as elicitors of economically important secondary metabolites in different plants, both in vivo and in vitro. Elicitation of secondary metabolites with nanoparticles in plant cultures, including hairy root cultures, is discussed. Another emergent technology is the ligand-harvesting of secondary metabolites using surface-functionalized nanoparticles, which is also mentioned. A brief explanation of the mechanism of action of nanoparticles on plant secondary metabolism is included. Optimum conditions and parameters to be evaluated and standardized for the successful commercial exploitation of this technology are also mentioned.
Collapse
Affiliation(s)
- Sanchaita Lala
- Department of Botany, Sarsuna College, University of Calcutta, Kolkata, West Bengal, India
| |
Collapse
|
59
|
Hasanuzzaman M, Raihan MRH, Masud AAC, Rahman K, Nowroz F, Rahman M, Nahar K, Fujita M. Regulation of Reactive Oxygen Species and Antioxidant Defense in Plants under Salinity. Int J Mol Sci 2021; 22:ijms22179326. [PMID: 34502233 PMCID: PMC8430727 DOI: 10.3390/ijms22179326] [Citation(s) in RCA: 214] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023] Open
Abstract
The generation of oxygen radicals and their derivatives, known as reactive oxygen species, (ROS) is a part of the signaling process in higher plants at lower concentrations, but at higher concentrations, those ROS cause oxidative stress. Salinity-induced osmotic stress and ionic stress trigger the overproduction of ROS and, ultimately, result in oxidative damage to cell organelles and membrane components, and at severe levels, they cause cell and plant death. The antioxidant defense system protects the plant from salt-induced oxidative damage by detoxifying the ROS and also by maintaining the balance of ROS generation under salt stress. Different plant hormones and genes are also associated with the signaling and antioxidant defense system to protect plants when they are exposed to salt stress. Salt-induced ROS overgeneration is one of the major reasons for hampering the morpho-physiological and biochemical activities of plants which can be largely restored through enhancing the antioxidant defense system that detoxifies ROS. In this review, we discuss the salt-induced generation of ROS, oxidative stress and antioxidant defense of plants under salinity.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
- Correspondence: (M.H.); (M.F.)
| | - Md. Rakib Hossain Raihan
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
| | - Abdul Awal Chowdhury Masud
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
| | - Khussboo Rahman
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
| | - Farzana Nowroz
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
| | - Mira Rahman
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
| | - Kamrun Nahar
- Department of Agricultural Botany, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho 761-0795, Japan
- Correspondence: (M.H.); (M.F.)
| |
Collapse
|
60
|
Jardón-Maximino N, Pérez-Alvarez M, Cadenas-Pliego G, Lugo-Uribe LE, Cabello-Alvarado C, Mata-Padilla JM, Barriga-Castro ED. Synthesis of Copper Nanoparticles Stabilized with Organic Ligands and Their Antimicrobial Properties. Polymers (Basel) 2021; 13:polym13172846. [PMID: 34502886 PMCID: PMC8433709 DOI: 10.3390/polym13172846] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
In this work, we report the synthesis of copper nanoparticles (Cu NPs), employing the chemical reduction method in an aqueous medium. We used copper sulfate pentahydrate (CuSO4·5H2O) as a metallic precursor; polyethylenimine (PEI), allylamine (AAM), and 4-aminobutyric acid (AABT) as stabilizing agents; and hydrated hydrazine as a reducing agent. The characterization of the obtained nanoparticles consisted of X-ray, TEM, FTIR, and TGA analyses. Through these techniques, it was possible to detect the presence of the used stabilizing agents on the surface of the NPs. Finally, a zeta potential analysis was performed to differentiate the stability of the nanoparticles with a different type of stabilizing agent, from which it was determined that the most stable nanoparticles were the Cu NPs synthesized in the presence of the PEI/AAM mixture. The antimicrobial activity of Cu/PEI/AABT toward P. aeruginosa and S. aureus bacteria was high, inhibiting both bacteria with low contact times and copper concentrations of 50–200 ppm. The synthesis method allowed us to obtain Cu NPs free of oxides, stable to oxidation, and with high yields. The newly functionalized Cu NPs are potential candidates for antimicrobial applications.
Collapse
Affiliation(s)
- Noemi Jardón-Maximino
- Centro de Investigación en Química Aplicada (CIQA), Saltillo 25294, Coahuila, Mexico; (N.J.-M.); (C.C.-A.); (J.M.M.-P.); (E.D.B.-C.)
| | - Marissa Pérez-Alvarez
- Centro de Investigación en Química Aplicada (CIQA), Saltillo 25294, Coahuila, Mexico; (N.J.-M.); (C.C.-A.); (J.M.M.-P.); (E.D.B.-C.)
- Correspondence: (M.P.-A.); (G.C.-P.)
| | - Gregorio Cadenas-Pliego
- Centro de Investigación en Química Aplicada (CIQA), Saltillo 25294, Coahuila, Mexico; (N.J.-M.); (C.C.-A.); (J.M.M.-P.); (E.D.B.-C.)
- Correspondence: (M.P.-A.); (G.C.-P.)
| | - Luis E. Lugo-Uribe
- Centro de Tecnología Avanzada CIATEQ, Lerma 52004, Estado de México, Mexico;
| | - Christian Cabello-Alvarado
- Centro de Investigación en Química Aplicada (CIQA), Saltillo 25294, Coahuila, Mexico; (N.J.-M.); (C.C.-A.); (J.M.M.-P.); (E.D.B.-C.)
- CONACYT-Centro de Investigación y de Innovación del Estado de Tlaxcala, Tlaxcala C.P. 90000, Tlaxcala, Mexico
| | - José M. Mata-Padilla
- Centro de Investigación en Química Aplicada (CIQA), Saltillo 25294, Coahuila, Mexico; (N.J.-M.); (C.C.-A.); (J.M.M.-P.); (E.D.B.-C.)
| | - Enrique Díaz Barriga-Castro
- Centro de Investigación en Química Aplicada (CIQA), Saltillo 25294, Coahuila, Mexico; (N.J.-M.); (C.C.-A.); (J.M.M.-P.); (E.D.B.-C.)
| |
Collapse
|
61
|
Noman M, Ahmed T, Shahid M, Niazi MBK, Qasim M, Kouadri F, Abdulmajeed AM, Alghanem SM, Ahmad N, Zafar M, Ali S. Biogenic copper nanoparticles produced by using the Klebsiella pneumoniae strain NST2 curtailed salt stress effects in maize by modulating the cellular oxidative repair mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112264. [PMID: 33915453 DOI: 10.1016/j.ecoenv.2021.112264] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/05/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
The negative effects of salinity on plant growth and physiology are well-established, which is one of the major threats to food security in semi-arid and arid regions of the world. The current research focuses on biosynthesis of copper nanoparticles (CuNPs) from a bacterial strain NST2, which was genetically identified as Klebsiella pneumoniae based on taxonomic identity of 16S rRNA gene. The strain was selected for bioprospecting of CuNPs owing to its Cu tolerance potential. The biologically-synthesized CuNPs were confirmed in culture by using ultraviolet visible spectroscopy. The material characteristics of green CuNPs were further investigated by using Fourier transform infrared spectroscopy, X-ray diffractometer, scanning electron microscopy and transmission electron microscopy, where crystallite size was ranged from 22.44 nm to 44.26 nm and particles were stabilized by various functional groups, such as carbonyl and amine groups. When 100 mg kg-1 of green CuNPs were mixed in saline soil in a pot experiment, the maize plants showed increased root and shoot length (43.52% and 44.06%, respectively), fresh weight (46.05% and 51.82%, respectively) and dry weight (47.69% and 30.63%, respectively) in comparison to control maize plants without CuNPs application. Moreover, green CuNPs at their highest treatment level (100 mg kg-1 of soil) counteracted the lipid peroxidation and oxidative damage in maize plants by promoting the activities of antioxidants and demoting the cellular levels of reactive oxygen species and ionic contents of Na+ and Cl-. Conclusively, biogenic CuNPs is an emerging and promising technique, which could replace traditional methods of salinity management in agricultural soils.
Collapse
Affiliation(s)
- Muhammad Noman
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan; National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Temoor Ahmed
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan; National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan.
| | - Muhammad Bilal Khan Niazi
- School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, 44000 Islamabad, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Fayza Kouadri
- Biology Department, Faculty of Science, Taibah University, AL-Madina AL-Munawarah, Saudi Arabia
| | - Awatif M Abdulmajeed
- Biology Department, Faculty of Science, University of Tabuk, Umluj 46429, Saudi Arabia
| | | | - Naveed Ahmad
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Mohsin Zafar
- Department of Soil and Environmental Sciences, University of Poonch, Rawalakot, Azad Jammu & Kashmir, Pakistan
| | - Shehbaz Ali
- Department of Bioscience and Technology, Khwaja Farid University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| |
Collapse
|
62
|
Coping with the Challenges of Abiotic Stress in Plants: New Dimensions in the Field Application of Nanoparticles. PLANTS 2021; 10:plants10061221. [PMID: 34203954 PMCID: PMC8232821 DOI: 10.3390/plants10061221] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022]
Abstract
Abiotic stress in plants is a crucial issue worldwide, especially heavy-metal contaminants, salinity, and drought. These stresses may raise a lot of issues such as the generation of reactive oxygen species, membrane damage, loss of photosynthetic efficiency, etc. that could alter crop growth and developments by affecting biochemical, physiological, and molecular processes, causing a significant loss in productivity. To overcome the impact of these abiotic stressors, many strategies could be considered to support plant growth including the use of nanoparticles (NPs). However, the majority of studies have focused on understanding the toxicity of NPs on aquatic flora and fauna, and relatively less attention has been paid to the topic of the beneficial role of NPs in plants stress response, growth, and development. More scientific attention is required to understand the behavior of NPs on crops under these stress conditions. Therefore, the present work aims to comprehensively review the beneficial roles of NPs in plants under different abiotic stresses, especially heavy metals, salinity, and drought. This review provides deep insights about mechanisms of abiotic stress alleviation in plants under NP application.
Collapse
|
63
|
Zinc Oxide Phytonanoparticles' Effects on Yield and Mineral Contents in Fruits of Tomato ( Solanum lycopersicum L. cv. Cherry) under Field Conditions. ScientificWorldJournal 2021; 2021:5561930. [PMID: 34220365 PMCID: PMC8213504 DOI: 10.1155/2021/5561930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/14/2021] [Accepted: 05/27/2021] [Indexed: 11/24/2022] Open
Abstract
The use of phytonanoparticles in agriculture could decrease the use of fertilizers and therefore decrease soil contamination, due to their size being better assimilated in plants. It is important to mention that the nanofertilizer is slow-releasing and improves plant physiological properties and various nutritional parameters. The influence of soil and foliar applications of phytonanoparticles of ZnO with the Moringa oleifera extract under three concentrations (25, 50, and 100 ppm) was evaluated on the cherry tomato crop (Solanum lycopersicum L.). Synthesis of the phytonanoparticles was analyzed with ultraviolet-visible spectroscopy (UV-Vis) and infrared transmission spectroscopy with Fourier transform (FT-IR), as well as the analysis with the dynamic light scattering (DLS) technique. The morphometric parameters were evaluated before and after the application of the nanoparticles. The minerals' content of fruits was done 95 days after planting. Results showed that soil application was better at a concentration of 25 ppm of phytonanoparticles since it allowed the greatest number of flowers and fruits on the plant; however, it was demonstrated that when performing a foliar application, the fruit showed the highest concentrations for the elements Mg, Ca, and Na at concentrations of 511, 4589, and 223 mg kg−1, respectively.
Collapse
|
64
|
Jardón-Maximino N, Cadenas-Pliego G, Ávila-Orta CA, Comparán-Padilla VE, Lugo-Uribe LE, Pérez-Alvarez M, Tavizón SF, Santillán GDJS. Antimicrobial Property of Polypropylene Composites and Functionalized Copper Nanoparticles. Polymers (Basel) 2021; 13:1694. [PMID: 34067323 PMCID: PMC8196837 DOI: 10.3390/polym13111694] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
Copper nanoparticles (CuNPs) functionalized with polyethyleneimine (PEI) and 4-aminobutyric acid (GABA) were used to obtain composites with isotactic polypropylene (iPP). The iPP/CuNPs composites were prepared at copper concentrations of 0.25-5.0 wt % by melt mixing, no evidence of oxidation of the CuNP was observed. Furthermore, the release of copper ions from iPP/CuNPs composites in an aqueous medium was studied. The release of cupric ions was higher in the composites with 2.5 and 5.0 wt %. These composites showed excellent antibacterial activity (AA) toward Pseudomona aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus). The incorporation of CuNP into the iPP polymeric matrix slightly decreased the thermal stability of the composite material but improved the crystallinity and the storage modulus. This evidence suggests that CuNPs could work as nucleating agents in the iPP crystallization process. The iPP/CuNPs composites presented better AA properties compared to similar composites reported previously. This behavior indicates that the new materials have great potential to be used in various applications that can be explored in the future.
Collapse
Affiliation(s)
- Noemi Jardón-Maximino
- Centro de Investigación en Química Aplicada (CIQA), Saltillo, Coahuila 25294, Mexico; (N.J.-M.); (C.A.Á.-O.); (V.E.C.-P.); (M.P.-A.); (S.F.T.)
| | - Gregorio Cadenas-Pliego
- Centro de Investigación en Química Aplicada (CIQA), Saltillo, Coahuila 25294, Mexico; (N.J.-M.); (C.A.Á.-O.); (V.E.C.-P.); (M.P.-A.); (S.F.T.)
| | - Carlos A. Ávila-Orta
- Centro de Investigación en Química Aplicada (CIQA), Saltillo, Coahuila 25294, Mexico; (N.J.-M.); (C.A.Á.-O.); (V.E.C.-P.); (M.P.-A.); (S.F.T.)
| | - Víctor Eduardo Comparán-Padilla
- Centro de Investigación en Química Aplicada (CIQA), Saltillo, Coahuila 25294, Mexico; (N.J.-M.); (C.A.Á.-O.); (V.E.C.-P.); (M.P.-A.); (S.F.T.)
| | - Luis E. Lugo-Uribe
- Centro de Tecnología Avanzada CIATEQ, Lerma, Estado de México 542004, Mexico;
| | - Marissa Pérez-Alvarez
- Centro de Investigación en Química Aplicada (CIQA), Saltillo, Coahuila 25294, Mexico; (N.J.-M.); (C.A.Á.-O.); (V.E.C.-P.); (M.P.-A.); (S.F.T.)
| | - Salvador Fernández Tavizón
- Centro de Investigación en Química Aplicada (CIQA), Saltillo, Coahuila 25294, Mexico; (N.J.-M.); (C.A.Á.-O.); (V.E.C.-P.); (M.P.-A.); (S.F.T.)
| | | |
Collapse
|
65
|
Habas K, Demir E, Guo C, Brinkworth MH, Anderson D. Toxicity mechanisms of nanoparticles in the male reproductive system. Drug Metab Rev 2021; 53:604-617. [PMID: 33989097 DOI: 10.1080/03602532.2021.1917597] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The field of nanotechnology has allowed for increasing nanoparticle (NP) exposure to the male reproductive system. Certain NPs have been reported to have adverse consequences on male germ and somatic cells. Germ cells are the bridge between generations and are responsible for the transmission of genetic and epigenetic information to future generations. A number of NPs have negative impacts on male germ and somatic cells which could ultimately affect fertility or the ability to produce healthy offspring. These impacts are related to NP composition, modification, concentration, agglomeration, and route of administration. NPs can induce severe toxic effects on the male reproduction system after passing through the blood-testis barrier and ultimately damaging the spermatozoa. Therefore, understanding the impacts of NPs on reproduction is necessary. This review will provide a comprehensive overview on the current state of knowledge derived from the previous in vivo and in vitro research on effects of NPs on the male reproductive system at the genetic, cellular, and molecular levels.
Collapse
Affiliation(s)
- Khaled Habas
- School of Chemistry & Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Eşref Demir
- Department of Medical Services and Techniques, Vocational School of Health Services, Medical Laboratory Techniques Programme, Antalya Bilim University, Antalya, Turkey
| | - Chongye Guo
- The Center for Microbial Resource and Big Data, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Martin H Brinkworth
- School of Chemistry & Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Diana Anderson
- School of Chemistry & Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
66
|
Ahmad F, Kamal A, Singh A, Ashfaque F, Alamri S, Siddiqui MH, Khan MIR. Seed priming with gibberellic acid induces high salinity tolerance in Pisum sativum through antioxidants, secondary metabolites and up-regulation of antiporter genes. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23 Suppl 1:113-121. [PMID: 32989871 DOI: 10.1111/plb.13187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Salinity is one of the major abiotic stresses that limit productivity of pulse crops all over the world. Seed priming with phytohormone(s) is one of the most promising, authentic and cost-effective methods to mitigate the deleterious effect of salinity. The study was conducted to investigate potential of seed priming with gibberellic acid (GA3 ) to cope up with the adverse effects of salinity (0, 100, 200 and 300 mm NaCl) in pea (Pisum sativum L.) seedlings. There were different responses to salinity, which induced oxidative stress, higher accumulation of Na+ in shoots and roots and inhibition of photosynthetic traits. However, seed priming with GA3 showed promising effects on physiological traits under salinity stress and alleviated the adverse effects of salinity by inducing the antioxidant system, proline production, total phenol and flavonoid content and regulating ion homeostasis, along with up-regulation of Na+ /H+ antiporters (SOS1 and NHX1). Plants adapt and prevent high salt accumulation by inducing expression of Na+ /H+ antiporter (SOS1 and NHX1) proteins that enhance Na+ sequestration. Thus, seed priming with GA3 is important in alleviation of high salinity stress and can be used as a criterion for developing salt-tolerant cultivars.
Collapse
Affiliation(s)
- F Ahmad
- Department of Bioengineering, Integral University, Lucknow, India
| | - A Kamal
- Department of Bioengineering, Integral University, Lucknow, India
| | - A Singh
- Department of Bioengineering, Integral University, Lucknow, India
| | - F Ashfaque
- Department of Botany, Aligarh Muslim University, Aligarh, India
| | - S Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - M H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - M I R Khan
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
67
|
López-Serrano L, Calatayud Á, López-Galarza S, Serrano R, Bueso E. Uncovering salt tolerance mechanisms in pepper plants: a physiological and transcriptomic approach. BMC PLANT BIOLOGY 2021; 21:169. [PMID: 33832439 PMCID: PMC8028838 DOI: 10.1186/s12870-021-02938-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 03/25/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Pepper is one of the most cultivated crops worldwide, but is sensitive to salinity. This sensitivity is dependent on varieties and our knowledge about how they can face such stress is limited, mainly according to a molecular point of view. This is the main reason why we decided to develop this transcriptomic analysis. Tolerant and sensitive accessions, respectively called A25 and A6, were grown for 14 days under control conditions and irrigated with 70 mM of NaCl. Biomass, different physiological parameters and differentially expressed genes were analysed to give response to differential salinity mechanisms between both accessions. RESULTS The genetic changes found between the accessions under both control and stress conditions could explain the physiological behaviour in A25 by the decrease of osmotic potential that could be due mainly to an increase in potassium and proline accumulation, improved growth (e.g. expansins), more efficient starch accumulation (e.g. BAM1), ion homeostasis (e.g. CBL9, HAI3, BASS1), photosynthetic protection (e.g. FIB1A, TIL, JAR1) and antioxidant activity (e.g. PSDS3, SnRK2.10). In addition, misregulation of ABA signalling (e.g. HAB1, ERD4, HAI3) and other stress signalling genes (e.g. JAR1) would appear crucial to explain the different sensitivity to NaCl in both accessions. CONCLUSIONS After analysing the physiological behaviour and transcriptomic results, we have concluded that A25 accession utilizes different strategies to cope better salt stress, being ABA-signalling a pivotal point of regulation. However, other strategies, such as the decrease in osmotic potential to preserve water status in leaves seem to be important to explain the defence response to salinity in pepper A25 plants.
Collapse
Affiliation(s)
- Lidia López-Serrano
- Centro de Citricultura y Producción Vegetal, Departamento de Horticultura, Instituto Valenciano de Investigaciones Agrarias, CV-315, Km 10,700 Moncada, Valencia, Spain
| | - Ángeles Calatayud
- Centro de Citricultura y Producción Vegetal, Departamento de Horticultura, Instituto Valenciano de Investigaciones Agrarias, CV-315, Km 10,700 Moncada, Valencia, Spain
| | - Salvador López-Galarza
- Departamento de Producción Vegetal, Universitat Politècnica de València, Valencia, Spain
| | - Ramón Serrano
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Camino de Vera s/n, 46022, Valencia, Spain
| | - Eduardo Bueso
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Camino de Vera s/n, 46022, Valencia, Spain.
| |
Collapse
|
68
|
Sofy AR, Sofy MR, Hmed AA, Dawoud RA, Alnaggar AEAM, Soliman AM, El-Dougdoug NK. Ameliorating the Adverse Effects of Tomato mosaic tobamovirus Infecting Tomato Plants in Egypt by Boosting Immunity in Tomato Plants Using Zinc Oxide Nanoparticles. Molecules 2021; 26:1337. [PMID: 33801530 PMCID: PMC7958966 DOI: 10.3390/molecules26051337] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Tomato mosaic virus (ToMV) is one of the economically damageable Tobamovirus infecting the tomato in Egypt that has caused significant losses. It is therefore of great interest to trigger systemic resistance to ToMV. In this endeavor, we aimed to explore the capacity of ZnO-NPs (zinc oxide nanoparticles) to trigger tomato plant resistance against ToMV. Effects of ZnO-NPs on tomato (Solanum lycopersicum L.) growth indices and antioxidant defense system activity under ToMV stress were investigated. Noticeably that treatment with ZnO-NPs showed remarkably increased growth indices, photosynthetic attributes, and enzymatic and non-enzymatic antioxidants compared to the challenge control. Interestingly, oxidative damage caused by ToMV was reduced by reducing malondialdehyde, H2O2, and O2 levels. Overall, ZnO-NPs offer a safe and economic antiviral agent against ToMV.
Collapse
Affiliation(s)
- Ahmed R. Sofy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - Mahmoud R. Sofy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - Ahmed A. Hmed
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - Rehab A. Dawoud
- Virus and Phytoplasma Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt; (R.A.D.); (A.M.S.)
- Department of Biology, Faculty of Science, Jazan University, Box 114, Jazan 45142, Saudi Arabia
| | - Abd El-Aleem M. Alnaggar
- Agriculture Botany Department, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - Ahmed M. Soliman
- Virus and Phytoplasma Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt; (R.A.D.); (A.M.S.)
- Department of Arid Land Agriculture, College of Agricultural & Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Noha K. El-Dougdoug
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13518, Egypt;
| |
Collapse
|
69
|
Zulfiqar F, Ashraf M. Nanoparticles potentially mediate salt stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 160:257-268. [PMID: 33529801 DOI: 10.1016/j.plaphy.2021.01.028] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/18/2021] [Indexed: 05/04/2023]
Abstract
In the era of climate change, salt stress is a promising threat to agriculture, limiting crop production via imposing primary effects such as osmotic and ionic, as well as secondary effects such as oxidative stress, perturbance in hormonal homeostasis, and nutrient imbalance. On the other hand, production areas are expanding into the salt affected regions due to excessive pressure for fulfilling food security targets to meet the needs of continuously increasing human population. Accumulating evidences demonstrate that supplementation of nanoparticles to plants can significantly alleviate the injurious effects caused by various harsh conditions including salt stress, and hence, regulate adaptive mechanisms in plants. Various types of NPs and nanofertilizers have shown a promising evidence so far regarding salt stress management. In this review, we recapitulate recent pioneering progress made towards acquiring salt stress tolerance in crop plants utilizing NPs. Finally, future research directions in this domain to explicate the comprehensive roles of nanoparticles in improving salt tolerance in plants are underscored. To ensure social acceptance and safe use of NPs, some conclusive directions have been elaborated in order to achieve sustainable progress in crop production under saline environments.
Collapse
Affiliation(s)
- Faisal Zulfiqar
- Institute of Horticultural Sciences, Faculty of Agriculture, University of Agriculture Faisalabad, Pakistan.
| | | |
Collapse
|
70
|
González-García Y, Cárdenas-Álvarez C, Cadenas-Pliego G, Benavides-Mendoza A, Cabrera-de-la-Fuente M, Sandoval-Rangel A, Valdés-Reyna J, Juárez-Maldonado A. Effect of Three Nanoparticles (Se, Si and Cu) on the Bioactive Compounds of Bell Pepper Fruits under Saline Stress. PLANTS (BASEL, SWITZERLAND) 2021; 10:217. [PMID: 33498692 PMCID: PMC7912303 DOI: 10.3390/plants10020217] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/13/2021] [Accepted: 01/21/2021] [Indexed: 11/17/2022]
Abstract
The bell pepper is a vegetable with high antioxidant content, and its consumption is important because it can reduce the risk of certain diseases in humans. Plants can be affected by different types of stress, whether biotic or abiotic. Among the abiotic factors, there is saline stress that affects the metabolism and physiology of plants, which causes damage, decreasing productivity and quality of fruits. The objective of this work was to evaluate the application of selenium, silicon and copper nanoparticles and saline stress on the bioactive compounds of bell pepper fruits. The bell pepper plants were exposed to saline stress (25 mM NaCl and 50 mM) in the nutrient solution throughout the crop cycle. The nanoparticles were applied drenching solution of these to substrate (Se NPs 10 and 50 mg L-1, Si NPs 200 and 1000 mg L-1, Cu NPs 100 and 500 mg L-1). The results show that saline stress reduces chlorophylls, lycopene, and β-carotene in leaves; but increased the activity of some enzymes (e.g., glutathione peroxidase and phenylalanine ammonia lyase, and glutathione). In fruits, saline stress decreased flavonoids and glutathione. The nanoparticles increased chlorophylls, lycopene and glutathione peroxidase activity in the leaves; and ascorbate peroxidase, glutathione peroxidase, catalase and phenylalanine ammonia lyase activity, and also phenols, flavonoids, glutathione, β-carotene, yellow carotenoids in fruits. The application of nanoparticles to bell pepper plants under saline stress is efficient to increase the content of bioactive compounds in fruits.
Collapse
Affiliation(s)
- Yolanda González-García
- Doctorado en Ciencias en Agricultura Protegida, Universidad Autónoma Agraria Antonio Narro, Saltillo, Coahuila 25315, Mexico;
| | - Claribel Cárdenas-Álvarez
- Maestría en Ciencias en Horticultura, Universidad Autónoma Agraria Antonio Narro, Saltillo, Coahuila 25315, Mexico;
| | | | - Adalberto Benavides-Mendoza
- Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro, Saltillo, Coahuila 25315, Mexico; (A.B.-M.); (M.C.-d.-l.-F.); (A.S.-R.)
| | - Marcelino Cabrera-de-la-Fuente
- Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro, Saltillo, Coahuila 25315, Mexico; (A.B.-M.); (M.C.-d.-l.-F.); (A.S.-R.)
| | - Alberto Sandoval-Rangel
- Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro, Saltillo, Coahuila 25315, Mexico; (A.B.-M.); (M.C.-d.-l.-F.); (A.S.-R.)
| | - Jesús Valdés-Reyna
- Departamento de Botánica, Universidad Autónoma Agraria Antonio Narro, Saltillo, Coahuila 25315, Mexico;
| | - Antonio Juárez-Maldonado
- Departamento de Botánica, Universidad Autónoma Agraria Antonio Narro, Saltillo, Coahuila 25315, Mexico;
| |
Collapse
|
71
|
Juárez-Maldonado A, Tortella G, Rubilar O, Fincheira P, Benavides-Mendoza A. Biostimulation and toxicity: The magnitude of the impact of nanomaterials in microorganisms and plants. J Adv Res 2021; 31:113-126. [PMID: 34194836 PMCID: PMC8240115 DOI: 10.1016/j.jare.2020.12.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/22/2020] [Accepted: 12/26/2020] [Indexed: 01/02/2023] Open
Abstract
Background Biostimulation and toxicity constitute the continuous response spectrum of a biological organism against physicochemical or biological factors. Among the environmental agents capable of inducing biostimulation or toxicity are nanomaterials. On the < 100 nm scale, nanomaterials impose both physical effects resulting from the core’s and corona’s surface properties, and chemical effects related to the core’s composition and the corona’s functional groups. Aim of Review The purpose of this review is to describe the impact of nanomaterials on microorganisms and plants, considering two of the most studied physical and chemical properties: size and concentration. Key Scientific Concepts of Review Using a graphical analysis, the presence of a continuous biostimulation-toxicity spectrum is shown considering different biological responses. In microorganisms, the results showed high susceptibility to nanomaterials. Simultaneously, in plants, a hormetic response was found related to nanomaterials concentration and, in a few cases, a positive response in the smaller nanomaterials when these were applied at a higher level. With the above, it is concluded that: (1) microorganisms are more susceptible to nanomaterials than plants, (2) practically all nanomaterials seem to induce responses from biostimulation to toxicity in plants, and (3) the kind of response observed will depend in a complex way on the nanomateriaĺs physical and chemical characteristics, of the biological species with which they interact, and of the form and route of application and on the nature of the medium -soil, soil pore water, and biological surfaces- where the interaction occurs.
Collapse
Affiliation(s)
| | - Gonzalo Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile
| | - Olga Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile
| | - Paola Fincheira
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile
| | - Adalberto Benavides-Mendoza
- Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro, 25315 Saltillo, Mexico
- Corresponding author.
| |
Collapse
|
72
|
Alkaladi A, Afifi M, Ali H, Saddick S. Hormonal and molecular alterations induced by sub-lethal toxicity of zinc oxide nanoparticles on Oreochromis niloticus. Saudi J Biol Sci 2020; 27:1296-1301. [PMID: 32346338 PMCID: PMC7182787 DOI: 10.1016/j.sjbs.2020.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/30/2019] [Accepted: 01/06/2020] [Indexed: 11/23/2022] Open
Abstract
This study was carried out to determine the biochemical and molecular potential effects of Zn-ONPs sub-lethal toxicity on the hormonal profile of Oreochromis niloticus (O. niloticus). One hundred and fifty O. niloticus juvenile female were used in this experiment; Ninety for determination of LC50 and other 60 fish were divided into 3 groups with 20 fish each (two replicate in each group). Group I used as control group whereas other groups treated with 1/20 and 1/30 of LC50 respectively for 4 days. Serum, pituitary gland, hepatic, pancreatic and muscular tissues were obtained for hormonal and molecular evaluation. Serum growth hormone (GH), thyroid stimulating hormone (TSH), triiodothyronine (T3), tetraiodothyronine (T4), follicular stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E2), testosterone and insulin hormones were significantly decreased with a significant increase in both Adrenocorticosteroid hormone (ACTH) and cortisol levels with no change in serum glucagon levels. On molecular levels there were a significant down regulation in transcriptional levels of GH, Insulin like growth factor I (IGF-I), insulin and Insulin receptor-A (IRA genes. These results suggested that, hormonal and molecular alterations can be used as an early biomarkers for Zn-ONPs toxicity in fish.
Collapse
Affiliation(s)
- Ali Alkaladi
- University of Jeddah, College of Science, Department of Biology, Jeddah, Saudi Arabia
| | - Mohamed Afifi
- University of Jeddah, College of Science, Department of Biochemistry, Jeddah, Saudi Arabia
- Department of Biochemistry, Faculty of Vet. Medicine, Zagazig University, Zagazig, Egypt
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haytham Ali
- University of Jeddah, College of Science, Department of Biochemistry, Jeddah, Saudi Arabia
- Department of Biochemistry, Faculty of Vet. Medicine, Zagazig University, Zagazig, Egypt
| | - Salina Saddick
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
73
|
Exogenous Application of Proline and Salicylic Acid can Mitigate the Injurious Impacts of Drought Stress on Barley Plants Associated with Physiological and Histological Characters. SUSTAINABILITY 2020. [DOI: 10.3390/su12051736] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Barley is a very important crop worldwide and has good impact in preserving food security. The impacts of 10 mM proline and 0.5 mM salicylic acid were evaluated on water stressed barley plants (Hordeum vulgare L. Giza126). Salicylic acid and proline treatments led to increased stem length, plant dry weights, chlorophyll concentration, relative water content, activity of antioxidant enzymes, and grain yield under drought stress. Nevertheless, lipid peroxidation, electrolyte leakage (EL), superoxide (O2·−), and hydrogen peroxide (H2O2) significantly decreased in treated barley plants with proline and salicylic acid in both growing seasons as compared with drought treatment only, which caused significant decrease in stem length, plant dry weights, chlorophyll concentration, activity of antioxidant enzymes, as well as biological and grain yield. These results demonstrated the importance of salicylic acid and proline as tolerance inducers of drought stress in barley plants.
Collapse
|
74
|
Zhou J, Du B, Liu H, Cui H, Zhang W, Fan X, Cui J, Zhou J. The bioavailability and contribution of the newly deposited heavy metals (copper and lead) from atmosphere to rice (Oryza sativa L.). JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121285. [PMID: 31577969 DOI: 10.1016/j.jhazmat.2019.121285] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/04/2019] [Accepted: 09/21/2019] [Indexed: 06/10/2023]
Abstract
Despite the global importance of atmospheric heavy metal input into agricultural soils, research has primarily focused on the amount of the depositions with limited attention given to the risk of the newly deposited heavy metals. To understand the remobilization of the newly deposited copper (Cu) and lead (Pb) from the atmosphere and explore the metals' mobility and bioavailability to rice (Oryza sativa L.), a soil transplant experiment was conducted in three areas along a gradient of atmospheric depositions. Approximately 61% of the Cu and 76% of the Pb depositions tended to be present in potentially mobile fractions. The soil retention of newly deposited Cu and Pb presented as higher mobile fractions than these in the original soil. The newly deposited Cu and Pb in soils only accounted for 0.34-8.7% and 0.07-0.29% of the total soil Cu and Pb pools, but they contributed 30-84% and 6-41% in rice tissues, respectively. A major implication of these findings is that once the heavy metal is deposited, it may be reactivated in soils and transported to aerial parts or foliar uptake into plant tissues, emphasizing the important role of the newly deposited Cu and Pb in contributing to the edible parts of crops.
Collapse
Affiliation(s)
- Jun Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; College of Resource and Environment, Anhui Science and Technology University, Fengyang, Anhui, 233100, China
| | - Buyun Du
- Nanjing Institute of Environmental Sciences, Ministry of Ecological Environment, Nanjing, 210042, China
| | - Hailong Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongbiao Cui
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Wantong Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xingjun Fan
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, Anhui, 233100, China
| | - Jian Cui
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing, 210014, China
| | - Jing Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; Jiangxi Engineering Research Center of Eco-Remediation of Heavy Metal Pollution, Jiangxi Academy of Science, Nanchang, 330096, China.
| |
Collapse
|
75
|
Kowalczewski PŁ, Radzikowska D, Ivanišová E, Szwengiel A, Kačániová M, Sawinska Z. Influence of Abiotic Stress Factors on the Antioxidant Properties and Polyphenols Profile Composition of Green Barley ( Hordeum vulgare L.). Int J Mol Sci 2020; 21:E397. [PMID: 31936315 PMCID: PMC7014329 DOI: 10.3390/ijms21020397] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 01/19/2023] Open
Abstract
The influence of stress factors on the plant can, on the one hand, lead to worse functioning of the plant and loss of its crop, but on the other, it can have a positive effect on the metabolism of compounds with documented biological activity. In this study, the effect of light and drought intensity on photosynthetic activity and physiological status of two barley varieties, as well as the antimicrobial, antioxidant properties and profile of polyphenolic compounds of green barley were analysed. It was shown that under the conditions of water shortage, the KWS Olof variety showed a smaller decrease in CO2 assimilation and transpiration and higher values of these parameters at both light intensities. Only in the KWS Olof variety increased stress as a result of increased light intensity. It has also been shown that both the intensity of radiation and drought-related stress have a significant impact on the profile of polyphenolic compounds from green barley, without a simple relationship between the impact of stress factors on the content of polyphenols. Changes in the profile of polyphenolic compounds augmented the antioxidant and antimicrobial activity of the material. This, in turn, proposes the possibility of reducing the applied doses of herbal material thanks to a greater content of active substances in extracts obtained from the plants used to produce medicinal preparations.
Collapse
Affiliation(s)
- Przemysław Łukasz Kowalczewski
- Institute of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznań, Poland;
| | - Dominika Radzikowska
- Department of Agronomy, Poznań University of Life Sciences, 11 Dojazd St., 60-632 Poznań, Poland; (D.R.); (Z.S.)
| | - Eva Ivanišová
- Department of Technology and Quality of Plant Products, Slovak University of Agriculture in Nitra, 2 Tr. A. Hlinku St., 949 76 Nitra, Slovakia;
| | - Artur Szwengiel
- Institute of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznań, Poland;
| | - Miroslava Kačániová
- Department of Fruit Sciences, Viticulture and Enology, Slovak University of Agriculture in Nitra, 2 Tr. A. Hlinku St., 949 76 Nitra, Slovakia;
- Department of Bioenergy and Food Technology, Faculty of Biology and Agriculture, University of Rzeszów, 4 Zelwerowicza St., 35-601 Rzeszow, Poland
| | - Zuzanna Sawinska
- Department of Agronomy, Poznań University of Life Sciences, 11 Dojazd St., 60-632 Poznań, Poland; (D.R.); (Z.S.)
| |
Collapse
|
76
|
Kerchev P, van der Meer T, Sujeeth N, Verlee A, Stevens CV, Van Breusegem F, Gechev T. Molecular priming as an approach to induce tolerance against abiotic and oxidative stresses in crop plants. Biotechnol Adv 2019; 40:107503. [PMID: 31901371 DOI: 10.1016/j.biotechadv.2019.107503] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 11/20/2019] [Accepted: 12/30/2019] [Indexed: 12/31/2022]
Abstract
Abiotic stresses, including drought, salinity, extreme temperature, and pollutants, are the main cause of crop losses worldwide. Novel climate-adapted crops and stress tolerance-enhancing compounds are increasingly needed to counteract the negative effects of unfavorable stressful environments. A number of natural products and synthetic chemicals can protect model and crop plants against abiotic stresses through induction of molecular and physiological defense mechanisms, a process known as molecular priming. In addition to their stress-protective effect, some of these compounds can also stimulate plant growth. Here, we provide an overview of the known physiological and molecular mechanisms that induce molecular priming, together with a survey of the approaches aimed to discover and functionally study new stress-alleviating chemicals.
Collapse
Affiliation(s)
- Pavel Kerchev
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic; Phytophthora Research Centre, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Tom van der Meer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Centre for Plant Systems Biology,VIB, 9052 Ghent, Belgium
| | | | - Arno Verlee
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Christian V Stevens
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Centre for Plant Systems Biology,VIB, 9052 Ghent, Belgium
| | - Tsanko Gechev
- Department of Molecular Stress Physiology, Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria; Department of Plant Physiology and Molecular Biology, University of Plovdiv, Plovdiv 4000, Bulgaria.
| |
Collapse
|
77
|
Treatment of Sweet Pepper with Stress Tolerance-Inducing Compounds Alleviates Salinity Stress Oxidative Damage by Mediating the Physio-Biochemical Activities and Antioxidant Systems. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy10010026] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Salinity stress occurs due to the accumulation of high levels of salts in soil, which ultimately leads to the impairment of plant growth and crop loss. Stress tolerance-inducing compounds have a remarkable ability to improve growth and minimize the effects of salinity stress without negatively affecting the environment by controlling the physiological and molecular activities in plants. Two pot experiments were carried out in 2017 and 2018 to study the influence of salicylic acid (1 mM), yeast extract (6 g L−1), and proline (10 mM) on the physiological and biochemical parameters of sweet pepper plants under saline conditions (2000 and 4000 ppm). The results showed that salt stress led to decreasing the chlorophyll content, relative water content, and fruit yields, whereas electrolyte leakage, malondialdehyde (MDA), proline concentration, reactive oxygen species (ROS), and the activities of antioxidant enzymes increased in salt-stressed plants. The application of salicylic acid (1 mM), yeast extract (6 g L−1), and proline (10 mM) markedly improved the physiological characteristics and fruit yields of salt-stressed plants compared with untreated stressed plants. A significant reduction in electrolyte leakage, MDA, and ROS was also recorded for all treatments. In conclusion, our results reveal the important role of proline, SA, and yeast extracts in enhancing sweet pepper growth and tolerance to salinity stress via modulation of the physiological parameters and antioxidants machinery. Interestingly, proline proved to be the best treatment.
Collapse
|
78
|
Sperdouli I, Moustaka J, Antonoglou O, Adamakis IDS, Dendrinou-Samara C, Moustakas M. Leaf Age-Dependent Effects of Foliar-Sprayed CuZn Nanoparticles on Photosynthetic Efficiency and ROS Generation in Arabidopsis thaliana. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2498. [PMID: 31390827 PMCID: PMC6695995 DOI: 10.3390/ma12152498] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/27/2019] [Accepted: 08/03/2019] [Indexed: 12/15/2022]
Abstract
Young and mature leaves of Arabidopsis thaliana were exposed by foliar spray to 30 mg L-1 of CuZn nanoparticles (NPs). The NPs were synthesized by a microwave-assisted polyol process and characterized by dynamic light scattering (DLS), X-ray diffraction (XRD), and transmission electron microscopy (TEM). CuZn NPs effects in Arabidopsis leaves were evaluated by chlorophyll fluorescence imaging analysis that revealed spatiotemporal heterogeneity of the quantum efficiency of PSII photochemistry (ΦPSΙΙ) and the redox state of the plastoquinone (PQ) pool (qp), measured 30 min, 90 min, 180 min, and 240 min after spraying. Photosystem II (PSII) function in young leaves was observed to be negatively influenced, especially 30 min after spraying, at which point increased H2O2 generation was correlated to the lower oxidized state of the PQ pool.. Recovery of young leaves photosynthetic efficiency appeared only after 240 min of NPs spray when also the level of ROS accumulation was similar to control leaves. On the contrary, a beneficial effect on PSII function in mature leaves after 30 min of the CuZn NPs spray was observed, with increased ΦPSΙΙ, an increased electron transport rate (ETR), decreased singlet oxygen (1O2) formation, and H2O2 production at the same level of control leaves.An explanation for this differential response is suggested.
Collapse
Affiliation(s)
- Ilektra Sperdouli
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation-Demeter, Thermi, GR-57001 Thessaloniki, Greece
| | - Julietta Moustaka
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Orestis Antonoglou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis-Dimosthenis S Adamakis
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, Athens 157 72, Greece
| | - Catherine Dendrinou-Samara
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| |
Collapse
|
79
|
García-López JI, Niño-Medina G, Olivares-Sáenz E, Lira-Saldivar RH, Barriga-Castro ED, Vázquez-Alvarado R, Rodríguez-Salinas PA, Zavala-García F. Foliar Application of Zinc Oxide Nanoparticles and Zinc Sulfate Boosts the Content of Bioactive Compounds in Habanero Peppers. PLANTS (BASEL, SWITZERLAND) 2019; 8:E254. [PMID: 31366005 PMCID: PMC6724079 DOI: 10.3390/plants8080254] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/14/2019] [Accepted: 07/24/2019] [Indexed: 11/17/2022]
Abstract
The physiological responses of habanero pepper plants (Capsicum chinense Jacq.) to foliar applications of zinc sulphate and zinc nano-fertilizer were evaluated in greenhouse trials. The effect of the supplement on fruit quality of habanero pepper was particularly observed. Habanero pepper plants were grown to maturity, and during the main stages of phenological development, they were treated with foliar applications of Zn at concentrations of 1000 and 2000 mg L-1 in the form of zinc sulfate (ZnSO4) and zinc oxide nanoparticles (ZnO NPs). Additional Zn was not supplied to the control treatment plants. ZnO NPs at a concentration of 1000 mg L-1 positively affected plant height, stem diameter, and chlorophyll content, and increased fruit yield and biomass accumulation compared to control and ZnSO4 treatments. ZnO NPs at 2000 mg L-1 negatively affected plant growth but significantly increased fruit quality, capsaicin content by 19.3%, dihydrocapsaicin by 10.9%, and Scoville Heat Units by 16.4%. In addition, at 2000 ZnO NPs mg L-1 also increased content of total phenols and total flavonoids (soluble + bound) in fruits (14.50% and 26.9%, respectively), which resulted in higher antioxidant capacity in ABTS (2,2'azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)), DPPH (2,2-diphenyl-1-picrylhydrazyl), and FRAP (ferric reducing antioxidant power) (15.4%, 31.8%, and 20.5%, respectively). These results indicate that application of ZnO NPs could be employed in habanero pepper production to improve yield, quality, and nutraceutical properties of fruits.
Collapse
Affiliation(s)
- Josué I García-López
- Universidad Autónoma de Nuevo León, Laboratorio de Química y Bioquímica, Facultad de Agronomía, Francisco Villa S/N, Col. Ex-Hacienda el Canadá, C.P. 66050 General Escobedo, Nuevo León, Mexico
| | - Guillermo Niño-Medina
- Universidad Autónoma de Nuevo León, Laboratorio de Química y Bioquímica, Facultad de Agronomía, Francisco Villa S/N, Col. Ex-Hacienda el Canadá, C.P. 66050 General Escobedo, Nuevo León, Mexico.
| | - Emilio Olivares-Sáenz
- Universidad Autónoma de Nuevo León, Laboratorio de Química y Bioquímica, Facultad de Agronomía, Francisco Villa S/N, Col. Ex-Hacienda el Canadá, C.P. 66050 General Escobedo, Nuevo León, Mexico
| | - Ricardo H Lira-Saldivar
- Departamento de Agroplasticultura, Centro de Investigación en Química Aplicada (CIQA), CP. 25294 Saltillo, Coahuila, Mexico
| | - Enrique Díaz Barriga-Castro
- Departamento de Agroplasticultura, Centro de Investigación en Química Aplicada (CIQA), CP. 25294 Saltillo, Coahuila, Mexico
| | - Rigoberto Vázquez-Alvarado
- Universidad Autónoma de Nuevo León, Laboratorio de Química y Bioquímica, Facultad de Agronomía, Francisco Villa S/N, Col. Ex-Hacienda el Canadá, C.P. 66050 General Escobedo, Nuevo León, Mexico
| | - Pablo A Rodríguez-Salinas
- Universidad Autónoma de Nuevo León, Laboratorio de Química y Bioquímica, Facultad de Agronomía, Francisco Villa S/N, Col. Ex-Hacienda el Canadá, C.P. 66050 General Escobedo, Nuevo León, Mexico
| | - Francisco Zavala-García
- Universidad Autónoma de Nuevo León, Laboratorio de Química y Bioquímica, Facultad de Agronomía, Francisco Villa S/N, Col. Ex-Hacienda el Canadá, C.P. 66050 General Escobedo, Nuevo León, Mexico.
| |
Collapse
|