51
|
Damaj MB, Jifon JL, Woodard SL, Vargas-Bautista C, Barros GOF, Molina J, White SG, Damaj BB, Nikolov ZL, Mandadi KK. Unprecedented enhancement of recombinant protein production in sugarcane culms using a combinatorial promoter stacking system. Sci Rep 2020; 10:13713. [PMID: 32792533 PMCID: PMC7426418 DOI: 10.1038/s41598-020-70530-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/21/2020] [Indexed: 11/09/2022] Open
Abstract
Plants represent a safe and cost-effective platform for producing high-value proteins with pharmaceutical properties; however, the ability to accumulate these in commercially viable quantities is challenging. Ideal crops to serve as biofactories would include low-input, fast-growing, high-biomass species such as sugarcane. The objective of this study was to develop an efficient expression system to enable large-scale production of high-value recombinant proteins in sugarcane culms. Bovine lysozyme (BvLz) is a potent broad-spectrum antimicrobial enzyme used in the food, cosmetics and agricultural industries. Here, we report a novel strategy to achieve high-level expression of recombinant proteins using a combinatorial stacked promoter system. We demonstrate this by co-expressing BvLz under the control of multiple constitutive and culm-regulated promoters on separate expression vectors and combinatorial plant transformation. BvLz accumulation reached 1.4% of total soluble protein (TSP) (10.0 mg BvLz/kg culm mass) in stacked multiple promoter:BvLz lines, compared to 0.07% of TSP (0.56 mg/kg) in single promoter:BvLz lines. BvLz accumulation was further boosted to 11.5% of TSP (82.5 mg/kg) through event stacking by re-transforming the stacked promoter:BvLz lines with additional BvLz expression vectors. The protein accumulation achieved with the combinatorial promoter stacking expression system was stable in multiple vegetative propagations, demonstrating the feasibility of using sugarcane as a biofactory for producing high-value proteins and bioproducts.
Collapse
Affiliation(s)
- Mona B Damaj
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA.
| | - John L Jifon
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843-2133, USA
| | - Susan L Woodard
- National Center for Therapeutics Manufacturing, Texas A&M University, 100 Discovery Drive, College Station, TX, 77843-4482, USA
| | - Carol Vargas-Bautista
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA
- College of Medicine, Texas A&M University, 8447 Riverside Parkway, Bryan, TX, 77807, USA
| | - Georgia O F Barros
- BioSeparation Laboratory, Biological and Agricultural Engineering Department, College Station, TX, 77843-2117, USA
| | - Joe Molina
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA
| | - Steven G White
- BioSeparation Laboratory, Biological and Agricultural Engineering Department, College Station, TX, 77843-2117, USA
| | - Bassam B Damaj
- Innovus Pharmaceuticals, Inc., 8845 Rehco Road, San Diego, CA, 92121, USA
| | - Zivko L Nikolov
- BioSeparation Laboratory, Biological and Agricultural Engineering Department, College Station, TX, 77843-2117, USA
| | - Kranthi K Mandadi
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA.
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843-2132, USA.
| |
Collapse
|
52
|
Abstract
Biotechnology uses microorganisms and/or enzymes to obtain specific products through fermentative processes and/or genetic engineering techniques. Examples of these products are active ingredients, such as hyaluronic acid, kojic acid, resveratrol, and some enzymes, which are used in skin anti-aging products. In addition, certain growth factors, algae, stem cells, and peptides have been included in cosmetics and aesthetic medicines. Thus, biotechnology, cosmetics and aesthetic medicines are now closely linked, through the production of high-quality active ingredients, which are more effective and safer. This work describes the most used active ingredients that are produced from biotechnological processes. Although there are a vast number of active ingredients, the number of biotechnological active ingredients reported in the literature is not significantly high.
Collapse
|
53
|
Shanmugaraj B, Malla A, Phoolcharoen W. Emergence of Novel Coronavirus 2019-nCoV: Need for Rapid Vaccine and Biologics Development. Pathogens 2020; 9:E148. [PMID: 32098302 PMCID: PMC7168632 DOI: 10.3390/pathogens9020148] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/24/2022] Open
Abstract
Novel Coronavirus (2019-nCoV) is an emerging pathogen that was first identified in Wuhan, China in late December 2019. This virus is responsible for the ongoing outbreak that causes severe respiratory illness and pneumonia-like infection in humans. Due to the increasing number of cases in China and outside China, the WHO declared coronavirus as a global health emergency. Nearly 35,000 cases were reported and at least 24 other countries or territories have reported coronavirus cases as early on as February. Inter-human transmission was reported in a few countries, including the United States. Neither an effective anti-viral nor a vaccine is currently available to treat this infection. As the virus is a newly emerging pathogen, many questions remain unanswered regarding the virus's reservoirs, pathogenesis, transmissibility, and much more is unknown. The collaborative efforts of researchers are needed to fill the knowledge gaps about this new virus, to develop the proper diagnostic tools, and effective treatment to combat this infection. Recent advancements in plant biotechnology proved that plants have the ability to produce vaccines or biopharmaceuticals rapidly in a short time. In this review, the outbreak of 2019-nCoV in China, the need for rapid vaccine development, and the potential of a plant system for biopharmaceutical development are discussed.
Collapse
Affiliation(s)
- Balamurugan Shanmugaraj
- Research unit for Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand; (B.S.); (A.M.)
- Department of Pharmacognosy and Pharmaceutical Botany, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ashwini Malla
- Research unit for Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand; (B.S.); (A.M.)
- Department of Pharmacognosy and Pharmaceutical Botany, Chulalongkorn University, Bangkok 10330, Thailand
| | - Waranyoo Phoolcharoen
- Research unit for Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand; (B.S.); (A.M.)
- Department of Pharmacognosy and Pharmaceutical Botany, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
54
|
Diego-Martin B, González B, Vazquez-Vilar M, Selma S, Mateos-Fernández R, Gianoglio S, Fernández-del-Carmen A, Orzáez D. Pilot Production of SARS-CoV-2 Related Proteins in Plants: A Proof of Concept for Rapid Repurposing of Indoor Farms Into Biomanufacturing Facilities. FRONTIERS IN PLANT SCIENCE 2020; 11:612781. [PMID: 33424908 PMCID: PMC7785703 DOI: 10.3389/fpls.2020.612781] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/02/2020] [Indexed: 05/21/2023]
Abstract
The current CoVid-19 crisis is revealing the strengths and the weaknesses of the world's capacity to respond to a global health crisis. A critical weakness has resulted from the excessive centralization of the current biomanufacturing capacities, a matter of great concern, if not a source of nationalistic tensions. On the positive side, scientific data and information have been shared at an unprecedented speed fuelled by the preprint phenomena, and this has considerably strengthened our ability to develop new technology-based solutions. In this work, we explore how, in a context of rapid exchange of scientific information, plant biofactories can serve as a rapid and easily adaptable solution for local manufacturing of bioreagents, more specifically recombinant antibodies. For this purpose, we tested our ability to produce, in the framework of an academic lab and in a matter of weeks, milligram amounts of six different recombinant monoclonal antibodies against SARS-CoV-2 in Nicotiana benthamiana. For the design of the antibodies, we took advantage, among other data sources, of the DNA sequence information made rapidly available by other groups in preprint publications. mAbs were engineered as single-chain fragments fused to a human gamma Fc and transiently expressed using a viral vector. In parallel, we also produced the recombinant SARS-CoV-2 N protein and the receptor binding domain (RBD) of the Spike protein in planta and used them to test the binding specificity of the recombinant mAbs. Finally, for two of the antibodies, we assayed a simple scale-up production protocol based on the extraction of apoplastic fluid. Our results indicate that gram amounts of anti-SARS-CoV-2 antibodies could be easily produced in little more than 6 weeks in repurposed greenhouses with little infrastructure requirements using N. benthamiana as production platform. Similar procedures could be easily deployed to produce diagnostic reagents and, eventually, could be adapted for rapid therapeutic responses.
Collapse
|