51
|
Arshad OA, Venkatasubramani PS, Datta A, Venkatraj J. Using Boolean Logic Modeling of Gene Regulatory Networks to Exploit the Links Between Cancer and Metabolism for Therapeutic Purposes. IEEE J Biomed Health Inform 2014; 20:399-407. [PMID: 25389247 DOI: 10.1109/jbhi.2014.2368391] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The uncontrolled cell proliferation that is characteristically associated with cancer is usually accompanied by alterations in the genome and cell metabolism. Indeed, the phenomenon of cancer cells metabolizing glucose using a less efficient anaerobic process even in the presence of normal oxygen levels, termed the Warburg effect, is currently considered to be one of the hallmarks of cancer. Diabetes, much like cancer, is defined by significant metabolic changes. Recent epidemiological studies have shown that diabetes patients treated with the antidiabetic drug Metformin have significantly lowered risk of cancer as compared to patients treated with other antidiabetic drugs. We utilize a Boolean logic model of the pathways commonly mutated in cancer to not only investigate the efficacy of Metformin for cancer therapeutic purposes but also demonstrate how Metformin in concert with other cancer drugs could provide better and less toxic clinical outcomes as compared to using cancer drugs alone.
Collapse
|
52
|
Rahoui J, Laraqui A, Sbitti Y, Touil N, Ibrahimi A, Ghrab B, Al Bouzidi A, Moussaoui Rahali D, Dehayni M, Ichou M, Zaoui F, Mrani S. Investigating the association of vascular endothelial growth factor polymorphisms with breast cancer: a Moroccan case–control study. Med Oncol 2014; 31:193. [DOI: 10.1007/s12032-014-0193-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/13/2014] [Indexed: 01/12/2023]
|
53
|
Han K, Zhao T, Chen X, Bian N, Yang T, Ma Q, Cai C, Fan Q, Zhou Y, Ma B. microRNA-194 suppresses osteosarcoma cell proliferation and metastasis in vitro and in vivo by targeting CDH2 and IGF1R. Int J Oncol 2014; 45:1437-49. [PMID: 25096247 PMCID: PMC4151797 DOI: 10.3892/ijo.2014.2571] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/25/2014] [Indexed: 01/15/2023] Open
Abstract
Studies have shown that miR-194 functions as a tumor suppressor and is associated with tumor growth and metastasis. We studied the effects of miR-194 in osteosarcoma and the possible mechanism by which miR-194 affected the survival, apoptosis and metastasis of osteosarcoma. Both human osteosarcoma cell lines SOSP-9607 and U2-OS were transfected with recombinant lentiviruses to regulate miR-194 expression. Overexpression of miR-194 partially inhibited the proliferation, migration, and invasion of osteosarcoma cells in vitro, as well as tumor growth and pulmonary metastasis of osteosarcoma cells in vivo. Potential miR-194 target genes were predicted using bioinformatics. Luciferase reporter assay, real-time quantitative PCR and western blotting confirmed that CDH2 (N-cadherin) and IGF1R were targets of miR-194. Using real-time quantitative PCR, we evaluated the expression of miR-194 and two miR-194 target genes, CDH2 and IGF1R in osteosarcoma samples from 107 patients and 99 formalin- or paraformalin-fixed paraffin-embedded tissues. The expressions of the target genes were also examined in osteosarcoma samples using immunohistochemistry. Overexpression of miR-194 inhibited tumor growth and metastasis of osteosarcoma probably by downregulating CDH2 and IGF1R. miR-194 may prove to be a promising therapeutic agent for osteosarcoma.
Collapse
Affiliation(s)
- Kang Han
- Department of Orthopedic Surgery, Orthopedics Oncology Institute of Chinese PLA, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Tingbao Zhao
- Department of Spinal Cord Injury, General Hospital of Jinan Military Area Command of Chinese PLA, Jinan, Shandong, P.R. China
| | - Xiang Chen
- Department of Baylor College of Medicine, Houston, TX, USA
| | - Na Bian
- Department of Orthopedic Surgery, Orthopedics Oncology Institute of Chinese PLA, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Tongtao Yang
- Department of Orthopedic Surgery, Orthopedics Oncology Institute of Chinese PLA, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Qiong Ma
- Department of Orthopedic Surgery, Orthopedics Oncology Institute of Chinese PLA, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Chengkui Cai
- Department of Orthopedic Surgery, Orthopedics Oncology Institute of Chinese PLA, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Qingyu Fan
- Department of Orthopedic Surgery, Orthopedics Oncology Institute of Chinese PLA, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Yong Zhou
- Department of Orthopedic Surgery, Orthopedics Oncology Institute of Chinese PLA, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Baoan Ma
- Department of Orthopedic Surgery, Orthopedics Oncology Institute of Chinese PLA, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
54
|
Dong Y, Xie X, Wang Z, Hu C, Zheng Q, Wang Y, Chen R, Xue T, Chen J, Gao D, Wu W, Ren Z, Cui J. Increasing matrix stiffness upregulates vascular endothelial growth factor expression in hepatocellular carcinoma cells mediated by integrin β1. Biochem Biophys Res Commun 2014; 444:427-32. [PMID: 24472554 DOI: 10.1016/j.bbrc.2014.01.079] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 01/20/2014] [Indexed: 12/11/2022]
Abstract
Matrix stiffness as a novel regulation factor involves in modulating the pathogenesis of hepatocellular carcinoma (HCC) invasion or metastasis. However, the mechanism by which matrix stiffness modulates HCC angiogenesis remains unknown. Here, using buffalo rat HCC models with different liver matrix stiffness backgrounds and an in vitro cell culture system of mechanically tunable Collagen1 (COL1)-coated polyacrylamide gel, we investigated the effects of different matrix stiffness levels on vascular endothelial growth factor (VEGF) expression in HCC cells and explored its regulatory mechanism for controlling HCC angiogenesis. Tissue microarray analysis showed that the expression levels of VEGF and CD31 were gradually upregulated in tumor tissues with increasing COL1 and lysyl oxidase (LOX) expression, indicating a positive correlation between tumor angiogenesis and matrix rigidity. The expression of VEGF and the phosphorylation levels of PI3K and Akt were all upregulated in HCC cells on high-stiffness gel than on low-stiffness gel. Meanwhile, alteration of intergrin β1 expression was found to be the most distinctive, implying that it might mediate the response of HCC cells to matrix stiffness simulation. After integrin β1 was blocked in HCC cells using specific monoclonal antibody, the expression of VEGF and the phosphorylation levels of PI3K and Akt at different culture times were accordingly suppressed and downregulated in the treatment group as compared with those in the control group. All data suggested that the extracellular matrix stiffness stimulation signal was transduced into HCC cells via integrin β1, and this signal activated the PI3K/Akt pathway and upregulated VEGF expression. This study unveils a new paradigm in which matrix stiffness as initiators to modulate HCC angiogenesis.
Collapse
Affiliation(s)
- Yinying Dong
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Xue Yuan Road, Shanghai 200032, PR China
| | - Xiaoying Xie
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Xue Yuan Road, Shanghai 200032, PR China
| | - Zhiming Wang
- Department of Oncology, Zhongshan Hospital Subdivision, Fudan University, Shanghai 200052, PR China
| | - Chao Hu
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, PR China
| | - Qiongdan Zheng
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Xue Yuan Road, Shanghai 200032, PR China
| | - Yaohui Wang
- Department of Radiology, Shanghai Cancer Center, Fudan University, Shanghai 200032, PR China
| | - Rongxin Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Xue Yuan Road, Shanghai 200032, PR China
| | - Tongchun Xue
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Xue Yuan Road, Shanghai 200032, PR China
| | - Jie Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Xue Yuan Road, Shanghai 200032, PR China
| | - Dongmei Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Xue Yuan Road, Shanghai 200032, PR China
| | - Weizhong Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Xue Yuan Road, Shanghai 200032, PR China
| | - Zhenggang Ren
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Xue Yuan Road, Shanghai 200032, PR China
| | - Jiefeng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Xue Yuan Road, Shanghai 200032, PR China.
| |
Collapse
|
55
|
Wang L, Wang G, Yang D, Guo X, Xu Y, Feng B, Kang J. Euphol arrests breast cancer cells at the G1 phase through the modulation of cyclin D1, p21 and p27 expression. Mol Med Rep 2013; 8:1279-85. [PMID: 23969579 DOI: 10.3892/mmr.2013.1650] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 08/12/2013] [Indexed: 11/05/2022] Open
Abstract
Euphorbia tirucalli is a long‑established treatment for a wide variety of cancers. However, the mechanism of its anticancer effect is yet to be elucidated. In the present study, we examined the anticancer effect of euphol, a tetracyclic triterpene alcohol isolated from the sap of Euphorbia tirucalli, in T47D human breast cancer cells. Following the treatment of cells with different doses of euphol for 24, 48 and 72 h, the cell proliferation, cell cycle, and mRNA and protein levels of cell cycle regulatory molecules were analyzed, respectively. Treatment of the cells with euphol resulted in decreased cell viability, which was accompanied by an accumulation of cells in the G1 phase. Further studies demonstrated that euphol treatment downregulated cyclin D1 expression and the hypophosphorylation of Rb. Furthermore, this effect was correlated with the downregulation of cyclin‑dependent kinase 2 (CDK2) expression and the upregulation of the CDK inhibitors p21 and p27. Reduced expression levels of cyclin A and B1 were also observed, corresponding to the decreased distribution of cells in the S and G2/M phases, respectively. These findings indicated that euphol is an active agent in Euphorbia tirucalli that exerts anticancer activity by arresting the cell cycle of cancer cells.
Collapse
Affiliation(s)
- Lin Wang
- Department of Endocrinology, East Hospital, Tongji University School of Medicine, Yangpu, Shanghai 200092, P.R. China
| | | | | | | | | | | | | |
Collapse
|
56
|
IRS1 is highly expressed in localized breast tumors and regulates the sensitivity of breast cancer cells to chemotherapy, while IRS2 is highly expressed in invasive breast tumors. Cancer Lett 2013; 338:239-48. [PMID: 23562473 DOI: 10.1016/j.canlet.2013.03.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 02/14/2013] [Accepted: 03/26/2013] [Indexed: 12/31/2022]
Abstract
Insulin receptor substrate (IRS) proteins have been shown to play an important role in breast cancer by differentially regulating cancer cell survival, proliferation, and motility. Furthermore, the IL-4-induced tyrosine phosphorylation of the transcription factor STAT6 was shown to protect breast cancer cells from apoptosis. Here, we analyzed human breast cancer tissues for the expression of IRS1, IRS2, STAT6, and tyrosine phosphorylated STAT6 (pSTAT6). We found that IRS1 and pSTAT6 were both highly expressed in ductal carcinoma in situ (DCIS). On the other hand, IRS2 expression was low in DCIS, but increased significantly in relation to tumor invasiveness. We utilized cell lines with disparate IRS1 expression, MDA-MB-231, MCF7, and MCF7 cells with depleted IRS1 due to shRNA lentiviral infection, to examine the role of IRS1 and IRS2 in the responsiveness of breast cancer cells to chemotherapy. We report that high IRS1 sensitized MCF7 cells to specific chemotherapeutic agents. These results suggest that high IRS1 with low IRS2 expression may predict the effectiveness of specific types of chemotherapy in breast cancer.
Collapse
|
57
|
Pizon M, Zimon DS, Pachmann U, Pachmann K. Insulin-like growth factor receptor I (IGF-IR) and vascular endothelial growth factor receptor 2 (VEGFR-2) are expressed on the circulating epithelial tumor cells of breast cancer patients. PLoS One 2013; 8:e56836. [PMID: 23418605 PMCID: PMC3572071 DOI: 10.1371/journal.pone.0056836] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 01/17/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Circulating epithelial tumor cell (CETC) analysis is a promising diagnostic field for estimating the risk for metastatic relapse and progression in patients with malignant disease. CETCs characterization can be used as a liquid biopsy for prognostic and predictive purposes in breast and other cancers. IGF-IR and VEGFR-2 play an important role in tumor growth and the progression of cancer disease. The purpose of the current study was therefore to investigate their expression on CETCs. METHODS CETCs were determined from the blood of 50 patients suffering from breast cancer. The number of vital CETCs and the expression of IGF-IR and VEGFR-2 were investigated using the maintrac® method. RESULTS IGF-IR and VEGFR-2 expression on the surface of CETCs were detected in 84% of patients. A statistically high correlation was found between IGF-IR and VEGFR-2 (r = 0.745 and p<0.001) on the CETCs. The co-expression of both receptors was confirmed in some experiments and ranged between 70% and 100%. Statistically significant correlations were observed between the number of CETCs and IGF-IR (r = 0.315 and p<0.05) and VEGFR-2 (r = 0.310 and p<0.05) expression. The presence of CETCs and the level of IGF-IR and VEGFR-2 expression were not associated with tumor stage, hormone receptor status or nodal/distant metastasis. SUMMARY In this study, a parallel and co-expression of IGF-IR and VEGFR-2 was examined on the surface of CETCs in breast cancer patients for the first time. Characterization of CETCs may be a promising approach for the rational design of targeted anticancer therapies.
Collapse
|
58
|
Zhao FL, Hu GD, Wang XF, Zhang XH, Zhang YK, Yu ZS. Serum overexpression of microRNA-10b in patients with bone metastatic primary breast cancer. J Int Med Res 2013; 40:859-66. [PMID: 22906258 DOI: 10.1177/147323001204000304] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Bone metastasis is a major complication of advanced breast cancer. The present prospective case-control study investigated the involvement of microRNA (miR)-10b in the development of bone metastasis arising from primary breast carcinoma. METHODS Serum miR-10b concentrations were determined by quantitative real-time reverse transcription-polymerase chain reaction in 122 patients with breast cancer, with or without bone metastases, and 59 age-matched healthy control subjects. RESULTS Serum miR-10b concentrations were significantly higher in patients with bone metastases than in patients without bone metastases or control subjects. Serum miR-10b had an area under the receiver operating characteristic curve for the presence of bone metastases of 0.769, with 64.8% sensitivity and 69.5% specificity. CONCLUSION These results suggest that serum miR-10b may be a useful biomarker for the identification of bone metastatic breast cancer.
Collapse
Affiliation(s)
- F-L Zhao
- Department of Orthopaedics, The Luhe Teaching Hospital of the Capital Medical University, Beijing, China
| | | | | | | | | | | |
Collapse
|
59
|
Qiu J, Yang R, Rao Y, Du Y, Kalembo FW. Risk factors for breast cancer and expression of insulin-like growth factor-2 (IGF-2) in women with breast cancer in Wuhan City, China. PLoS One 2012; 7:e36497. [PMID: 22662119 PMCID: PMC3360739 DOI: 10.1371/journal.pone.0036497] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 04/06/2012] [Indexed: 11/28/2022] Open
Abstract
Purpose The purpose of this study was to explore the risk factors for breast cancer and establish the expression rate of IGF-2 in female patients. Methods A case control study with 500 people in case group and 500 people in control group. A self-administered questionnaire was used to investigate risk factors for breast cancer. All cases were interviewed during a household survey. Immune-histochemical method was used to inspect the expression of IGF-2 in different tissues (benign breast lesions, breast cancer and tumor-adjacent tissue). Results Multivariate adjusted odds ratios and 95% confidence intervals were calculated using unconditional logistic regression. High body mass index (OR = 1.012,95%CI = 1.008–1.016), working attributes (OR = 1.004, 95%CI = 1.002 = 1.006), long menstrual period (OR = 1.007, 95%CI = 1.005–1.009), high parity OR = 1.003, 95%CI = 1.001–1.005) , frequent artificial abortion (OR = 1.004, 95%CI = 1.001–1.005), family history of cancer (OR = 1.003, 95%CI = 1.000–1.005), period of night shift (OR = 1.003, 95%CI = 1.001–1.006), live in high risk environment (OR = 1.005, 95%CI = 1.002–1.008), and family problems (OR = 1.010, 95%CI = 1.005–1.014) were associated with increased risk for breast cancer. In this study, good sleeping status, positive coping strategies, subjective support, and utility degree of social support were associated with reduced risk for breast cancer (OR = 0.998, 0.997, 0.985, 0.998 respectively; 95%CI = 0.996–1.000, 0.994–1.000, 0.980–0.989, 0.996–1.000, respectively). In benign breast lesions, breast cancer and tumor-adjacent tissue, IGF-2 was mainly expressed in the cytoplasm, but its expression rate was different (p<0.05). Conclusions The incidence of breast cancer is a common result of multiple factors. IGF-2 is involved in the development of breast cancer, and its expression varies in different tissues (benign breast lesions, breast cancer and tumor-adjacent tissue).
Collapse
Affiliation(s)
- Jun Qiu
- Department of Maternal and Child Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | |
Collapse
|