51
|
Jain S, Annett SL, Morgan MP, Robson T. The Cancer Stem Cell Niche in Ovarian Cancer and Its Impact on Immune Surveillance. Int J Mol Sci 2021; 22:4091. [PMID: 33920983 PMCID: PMC8071330 DOI: 10.3390/ijms22084091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is an aggressive gynaecological cancer with extremely poor prognosis, due to late diagnosis as well as the development of chemoresistance after first-line therapy. Research advances have found stem-like cells present in ovarian tumours, which exist in a dynamic niche and persist through therapy. The stem cell niche interacts extensively with the immune and non-immune components of the tumour microenvironment. Significant pathways associated with the cancer stem cell niche have been identified which interfere with the immune component of the tumour microenvironment, leading to immune surveillance evasion, dysfunction and suppression. This review aims to summarise current evidence-based knowledge on the cancer stem cell niche within the ovarian cancer tumour microenvironment and its effect on immune surveillance. Furthermore, the review seeks to understand the clinical consequences of this dynamic interaction by highlighting current therapies which target these processes.
Collapse
Affiliation(s)
| | | | | | - Tracy Robson
- School of Pharmacy and Biomolecular Science, RCSI University of Medicine and Health Sciences, 123 St Stephen’s Green, D02 YN77 Dublin, Ireland; (S.J.); (S.L.A.); (M.P.M.)
| |
Collapse
|
52
|
Russo A, Colina JA, Moy J, Baligod S, Czarnecki AA, Varughese P, Lantvit DD, Dean MJ, Burdette JE. Silencing PTEN in the fallopian tube promotes enrichment of cancer stem cell-like function through loss of PAX2. Cell Death Dis 2021; 12:375. [PMID: 33828085 PMCID: PMC8027874 DOI: 10.1038/s41419-021-03663-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/11/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
High-grade serous ovarian cancer (HGSOC) is the most lethal gynecological malignancy that is primarily detected at the metastatic stage. Most HGSOC originates from the fallopian tube epithelium (FTE) and metastasizes to the ovary before invading the peritoneum; therefore, it is crucial to study disease initiation and progression using FTE-derived models. We previously demonstrated that loss of PTEN from the FTE leads to ovarian cancer. In the present study, loss of PTEN in FTE led to the enrichment of cancer stem cell markers such as LGR5, WNT4, ALDH1, CD44. Interestingly, loss of the transcription factor PAX2, which is a common and early alteration in HGSOC, played a pivotal role in the expression of cancer stem-like cells (CSC) markers and cell function. In addition, loss of PTEN led to the generation of two distinct subpopulations of cells with different CSC marker expression, tumorigenicity, and chemoresistance profiles. Taken together, these data suggest that loss of PTEN induces reprogramming of the FTE cells into a more stem-like phenotype due to loss of PAX2 and provides a model to study early events during the FTE-driven ovarian cancer tumor formation.
Collapse
Affiliation(s)
- Angela Russo
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| | - Jose A Colina
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Junlone Moy
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Seth Baligod
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Austin A Czarnecki
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Peter Varughese
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Daniel D Lantvit
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Matthew J Dean
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| |
Collapse
|
53
|
Motohara T, Yoshida GJ, Katabuchi H. The hallmarks of ovarian cancer stem cells and niches: Exploring their harmonious interplay in therapy resistance. Semin Cancer Biol 2021; 77:182-193. [PMID: 33812986 DOI: 10.1016/j.semcancer.2021.03.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 03/20/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022]
Abstract
The concept of a "cancer stem cell" has evolved over the past decades, and research on cancer stem cell biology has entered into a stage of remarkable progress. Cancer stem cells are a major determining factor contributing to the establishment of phenotypic and functional intratumoral heterogeneity in synchronization with their surrounding "cancer stem cell niches." They serve as the driving force for cancer initiation, metastasis, and therapeutic resistance in various types of malignancies. In verity, reciprocal interplay between ovarian cancer stem cells and their niches involves a complex but ingeniously orchestrated tumor microenvironment within the intraperitoneal milieu and especially contribute to chemotherapy resistance in patients with advanced ovarian cancer. Herein, we review the principles of our current understanding of the biological features of ovarian cancer stem cells, focusing mainly on the precise mechanisms underlying acquired chemotherapy resistance. Furthermore, we highlight the specific roles of various cancer-associated stromal and immune cells in creating possible cancer stem cell niches that regulate ovarian cancer stemness.
Collapse
Affiliation(s)
- Takeshi Motohara
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto City, Kumamoto, 860-8556, Japan.
| | - Go J Yoshida
- Department of Immunological Diagnosis, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hidetaka Katabuchi
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto City, Kumamoto, 860-8556, Japan
| |
Collapse
|
54
|
Werbowetski-Ogilvie TE. From sorting to sequencing in the molecular era: the evolution of the cancer stem cell model in medulloblastoma. FEBS J 2021; 289:1765-1778. [PMID: 33714236 DOI: 10.1111/febs.15817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022]
Abstract
The cancer stem cell (CSC) model posits that tumors contain subpopulations that display defining features of normal stem cells including self-renewal capacity and differentiation. Tumor cells exhibiting these features are now considered to be responsible for tumor propagation and drug resistance in a wide variety of cancers. Therefore, the identification of robust CSC markers and characterization of CSC-specific molecular signatures may lead to the identification of novel therapeutics that selectively abolish this clinically relevant cell population while preserving normal tissue. Brain tumor researchers have been at the forefront of the CSC field. From initial in vitro cell sorting experiments to the sophisticated bioinformatic technologies that now exquisitely resolve primary brain tumors at a single-cell level, recent glioma and medulloblastoma (MB) studies have integrated developmental state with genomic and transcriptome data to identify the spectrum of cell types that may drive tumor progression. This review will examine the last two decades of CSC studies in the field. Seminal discoveries, emerging controversies, and outstanding questions will be covered with a particular focus on MB, the most common malignant primary brain tumor in children.
Collapse
Affiliation(s)
- Tamra E Werbowetski-Ogilvie
- Department of Biochemistry and Medical Genetics and Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
55
|
Zhou HM, Zhang JG, Zhang X, Li Q. Targeting cancer stem cells for reversing therapy resistance: mechanism, signaling, and prospective agents. Signal Transduct Target Ther 2021; 6:62. [PMID: 33589595 PMCID: PMC7884707 DOI: 10.1038/s41392-020-00430-1] [Citation(s) in RCA: 245] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/26/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) show a self-renewal capacity and differentiation potential that contribute to tumor progression and therapy resistance. However, the underlying processes are still unclear. Elucidation of the key hallmarks and resistance mechanisms of CSCs may help improve patient outcomes and reduce relapse by altering therapeutic regimens. Here, we reviewed the identification of CSCs, the intrinsic and extrinsic mechanisms of therapy resistance in CSCs, the signaling pathways of CSCs that mediate treatment failure, and potential CSC-targeting agents in various tumors from the clinical perspective. Targeting the mechanisms and pathways described here might contribute to further drug discovery and therapy.
Collapse
Affiliation(s)
- He-Ming Zhou
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China
| | - Ji-Gang Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China
| | - Xue Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China
| | - Qin Li
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China.
| |
Collapse
|
56
|
Distinct Side Population Cell Subtypes Have Different Stemness Levels in Human Ovarian Cancer Cells. Curr Med Sci 2021; 41:127-132. [PMID: 33582916 DOI: 10.1007/s11596-021-2327-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 09/30/2020] [Indexed: 10/22/2022]
Abstract
The stemness of different side population (SP) cell subtypes in ovarian cancer cells was studied, and the heterogeneity of ovarian cancer stem cells was analyzed. The cisplatin-resistant human serous ovarian cancer cell line C13 was stained with the bisbenzimide Hoechst 33342. A flow cytometry-based fluorescence-activated sorting method was used to obtain lower-SP (LSP) cells, upper-SP (USP) cells, and non-SP cells (NSP) based on their sensitivity to the staining time and Hoechst dye concentration. The sphere-forming capability, expression levels of stem cell markers, resistance to high concentrations of cisplatin, and subcutaneous tumorigenicity in NOD/SCID mice of the different cell subtypes were evaluated. The C13 cells contained SP cells with stemness characteristics, and the LSP cell subtype expressed higher levels of stem cell markers, had higher in vitro sphere-forming capability, higher cisplatin resistance and higher in vivo subcutaneous tumorigenesis than USP cells (P<0.05). NSP cells had no stemness. In conclusion, different subtypes of ovarian cancer SP cells have different stemness levels, and ovarian cancer stem cells may be heterogeneous.
Collapse
|
57
|
Ovarian Cancer Stem Cells: Characterization and Role in Tumorigenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1330:151-169. [PMID: 34339036 DOI: 10.1007/978-3-030-73359-9_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ovarian cancer is a heterogenous disease with variable clinicopathological and molecular mechanisms being responsible for tumorigenesis. Despite substantial technological improvement, lack of early diagnosis contributes to its highest mortality. Ovarian cancer is considered to be the most lethal female gynaecological cancer across the world. Conventional treatment modules with platinum- and Taxane-based chemotherapy can cause an initial satisfactory improvement in ovarian cancer patients. However, approximately 75-80% patients of advanced stage ovarian cancer, experience relapse and nearly 40% have overall poor survival rate. It has been observed that a subpopulation of cells referred as cancer stem cells (CSCs), having self renewal property, escape the conventional chemotherapy because of their quiescent nature. Later, these CSCs following its interaction with microenvironment and release of various inflammatory cytokines, chemokines and matrix metalloproteinases, induce invasion and propagation to distant organs of the body mainly peritoneal cavity. These CSCs can be enriched by their specific surface markers such as CD44, CD117, CD133 and intracellular enzyme such as aldehyde dehydrogenase. This tumorigenicity is further aggravated by the epithelial to mesenchymal transition of CSCs and neovascularisation via epigenetic reprogramming and over-expression of various signalling cascades such as Wnt/β-catenin, NOTCH, Hedgehog, etc. to name a few. Hence, a comprehensive understanding of various cellular events involving interaction between cancer cells and cancer stem cells as well as its surrounding micro environmental components would be of unmet need to achieve the ultimate goal of better management of ovarian cancer patients. This chapter deals with the impact of ovarian cancer stem cells in tumorigenesis which would help in the implementation of basic research into the clinical field in the form of translational research in order to reduce the morbidity and mortality in ovarian cancer patients through amelioration of diagnosis and impoverishment of therapeutic resistance.
Collapse
|
58
|
Huang Z, Kondoh E, Visco ZR, Baba T, Matsumura N, Dolan E, Whitaker RS, Konishi I, Fujii S, Berchuck A, Murphy SK. Targeting Dormant Ovarian Cancer Cells In Vitro and in an In Vivo Mouse Model of Platinum Resistance. Mol Cancer Ther 2021; 20:85-95. [PMID: 33037137 PMCID: PMC11562011 DOI: 10.1158/1535-7163.mct-20-0119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/31/2020] [Accepted: 09/30/2020] [Indexed: 11/16/2022]
Abstract
Spheroids exhibit drug resistance and slow proliferation, suggesting involvement in cancer recurrence. The protein kinase C inhibitor UCN-01 (7-hydroxystaurosporine) has shown higher efficacy against slow proliferating and/or quiescent ovarian cancer cells. In this study, tumorigenic potential was assessed using anchorage-independent growth assays and spheroid-forming capacity, which was determined with ovarian cancer cell lines as well as primary ovarian cancers. Of 12 cell lines with increased anchorage-independent growth, 8 formed spheroids under serum-free culture conditions. Spheroids showed reduced proliferation (P < 0.0001) and Ki-67 immunostaining (8% vs. 87%) relative to monolayer cells. Spheroid formation was associated with increased expression of mitochondrial pathway genes (P ≤ 0.001) from Affymetrix HT U133A gene expression data. UCN-01, a kinase inhibitor/mitochondrial uncoupler that has been shown to lead to Puma-induced mitochondrial apoptosis as well as ATP synthase inhibitor oligomycin, demonstrated effectiveness against spheroids, whereas spheroids were refractory to cisplatin and paclitaxel. By live in vivo imaging, ovarian cancer xenograft tumors were reduced after primary treatment with carboplatin. Continued treatment with carboplatin was accompanied by an increase in tumor signal, whereas there was little or no increase in tumor signal observed with subsequent treatment with UCN-01 or oltipraz. Taken together, our findings suggest that genes involved in mitochondrial function in spheroids may be an important therapeutic target in preventing disease recurrence.
Collapse
Affiliation(s)
- Zhiqing Huang
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Duke University Medical Center, Durham, North Carolina
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, North Carolina
| | - Eiji Kondoh
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, North Carolina
- Department of Gynecology and Obstetrics, Kyoto University, Kyoto, Japan
| | - Zachary R Visco
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Duke University Medical Center, Durham, North Carolina
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, North Carolina
| | - Tsukasa Baba
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, North Carolina
- Department of Gynecology and Obstetrics, Kyoto University, Kyoto, Japan
- Iwate Medical University, Morioka Iwate, Japan
| | - Noriomi Matsumura
- Department of Gynecology and Obstetrics, Kyoto University, Kyoto, Japan
- Department of Obstetrics and Gynecology, Kindai University, Higashiosaka, Japan
| | - Emma Dolan
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Duke University Medical Center, Durham, North Carolina
| | - Regina S Whitaker
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, North Carolina
| | - Ikuo Konishi
- Department of Gynecology and Obstetrics, Kyoto University, Kyoto, Japan
- National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Shingo Fujii
- Department of Gynecology and Obstetrics, Kyoto University, Kyoto, Japan
- Kyoto Okamoto Memorial Hospital, Kyoto, Japan
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, North Carolina
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Duke University Medical Center, Durham, North Carolina.
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
59
|
Bates M, Spillane CD, Gallagher MF, McCann A, Martin C, Blackshields G, Keegan H, Gubbins L, Brooks R, Brooks D, Selemidis S, O’Toole S, O’Leary JJ. The role of the MAD2-TLR4-MyD88 axis in paclitaxel resistance in ovarian cancer. PLoS One 2020; 15:e0243715. [PMID: 33370338 PMCID: PMC7769460 DOI: 10.1371/journal.pone.0243715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/25/2020] [Indexed: 01/29/2023] Open
Abstract
Despite the use of front-line anticancer drugs such as paclitaxel for ovarian cancer treatment, mortality rates have remained almost unchanged for the past three decades and the majority of patients will develop recurrent chemoresistant disease which remains largely untreatable. Overcoming chemoresistance or preventing its onset in the first instance remains one of the major challenges for ovarian cancer research. In this study, we demonstrate a key link between senescence and inflammation and how this complex network involving the biomarkers MAD2, TLR4 and MyD88 drives paclitaxel resistance in ovarian cancer. This was investigated using siRNA knockdown of MAD2, TLR4 and MyD88 in two ovarian cancer cell lines, A2780 and SKOV-3 cells and overexpression of MyD88 in A2780 cells. Interestingly, siRNA knockdown of MAD2 led to a significant increase in TLR4 gene expression, this was coupled with the development of a highly paclitaxel-resistant cell phenotype. Additionally, siRNA knockdown of MAD2 or TLR4 in the serous ovarian cell model OVCAR-3 resulted in a significant increase in TLR4 or MAD2 expression respectively. Microarray analysis of SKOV-3 cells following knockdown of TLR4 or MAD2 highlighted a number of significantly altered biological processes including EMT, complement, coagulation, proliferation and survival, ECM remodelling, olfactory receptor signalling, ErbB signalling, DNA packaging, Insulin-like growth factor signalling, ion transport and alteration of components of the cytoskeleton. Cross comparison of the microarray data sets identified 7 overlapping genes including MMP13, ACTBL2, AMTN, PLXDC2, LYZL1, CCBE1 and CKS2. These results demonstrate an important link between these biomarkers, which to our knowledge has never before been shown in ovarian cancer. In the future, we hope that triaging patients into alterative treatment groups based on the expression of these three biomarkers or therapeutic targeting of the mechanisms they are involved in will lead to improvements in patient outcome and prevent the development of chemoresistance.
Collapse
Affiliation(s)
- Mark Bates
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland
- Trinity St James’s Cancer Institute, Dublin, Ireland
- Department of Obstetrics and Gynaecology, Trinity College Dublin, Dublin, Ireland
- * E-mail:
| | - Cathy D. Spillane
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland
- Trinity St James’s Cancer Institute, Dublin, Ireland
| | - Michael F. Gallagher
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland
- Trinity St James’s Cancer Institute, Dublin, Ireland
| | - Amanda McCann
- College of Health Sciences, University College Dublin, Belfield, Dublin, Ireland
| | - Cara Martin
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland
- Trinity St James’s Cancer Institute, Dublin, Ireland
- Department of Pathology, Coombe Women & Infants University Hospital, Dublin, Ireland
| | - Gordon Blackshields
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland
- Trinity St James’s Cancer Institute, Dublin, Ireland
- Department of Pathology, Coombe Women & Infants University Hospital, Dublin, Ireland
| | - Helen Keegan
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland
- Trinity St James’s Cancer Institute, Dublin, Ireland
- Department of Pathology, Coombe Women & Infants University Hospital, Dublin, Ireland
| | - Luke Gubbins
- College of Health Sciences, University College Dublin, Belfield, Dublin, Ireland
| | - Robert Brooks
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Doug Brooks
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology, Bundoora, Australia
| | - Sharon O’Toole
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland
- Trinity St James’s Cancer Institute, Dublin, Ireland
- Department of Obstetrics and Gynaecology, Trinity College Dublin, Dublin, Ireland
| | - John J. O’Leary
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland
- Trinity St James’s Cancer Institute, Dublin, Ireland
- Department of Pathology, Coombe Women & Infants University Hospital, Dublin, Ireland
| |
Collapse
|
60
|
Martincuks A, Li PC, Zhao Q, Zhang C, Li YJ, Yu H, Rodriguez-Rodriguez L. CD44 in Ovarian Cancer Progression and Therapy Resistance-A Critical Role for STAT3. Front Oncol 2020; 10:589601. [PMID: 33335857 PMCID: PMC7736609 DOI: 10.3389/fonc.2020.589601] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Despite significant progress in cancer therapy over the last decades, ovarian cancer remains the most lethal gynecologic malignancy worldwide with the five-year overall survival rate less than 30% due to frequent disease recurrence and chemoresistance. CD44 is a non-kinase transmembrane receptor that has been linked to cancer metastatic progression, cancer stem cell maintenance, and chemoresistance development via multiple mechanisms across many cancers, including ovarian, and represents a promising therapeutic target for ovarian cancer treatment. Moreover, CD44-mediated signaling interacts with other well-known pro-tumorigenic pathways and oncogenes during cancer development, such as signal transducer and activator of transcription 3 (STAT3). Given that both CD44 and STAT3 are strongly implicated in the metastatic progression and chemoresistance of ovarian tumors, this review summarizes currently available evidence about functional crosstalk between CD44 and STAT3 in human malignancies with an emphasis on ovarian cancer. In addition to the role of tumor cell-intrinsic CD44 and STAT3 interaction in driving cancer progression and metastasis, we discuss how CD44 and STAT3 support the pro-tumorigenic tumor microenvironment and promote tumor angiogenesis, immunosuppression, and cancer metabolic reprogramming in favor of cancer progression. Finally, we review the current state of therapeutic CD44 targeting and propose superior treatment possibilities for ovarian cancer.
Collapse
Affiliation(s)
- Antons Martincuks
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Pei-Chuan Li
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Qianqian Zhao
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Chunyan Zhang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Yi-Jia Li
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Hua Yu
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | | |
Collapse
|
61
|
Stoica AF, Chang CH, Pauklin S. Molecular Therapeutics of Pancreatic Ductal Adenocarcinoma: Targeted Pathways and the Role of Cancer Stem Cells. Trends Pharmacol Sci 2020; 41:977-993. [PMID: 33092892 DOI: 10.1016/j.tips.2020.09.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/01/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers in humans due to late detection and highly metastatic characteristics. PDAC cells vary in their tumorigenic capabilities with the presence of a subset of PDAC cells known as pancreatic cancer stem cells (CSCs), which are more resistant to currently used therapeutics. Here, we describe the role of CSCs and tumour stroma in developing therapeutic strategies for PDAC and suggest that developmental plasticity could be considered a hallmark of cancers. We provide an overview of the molecular targets in PDAC treatments, including targeted therapies of cellular processes such as proliferation, evasion of growth suppressors, activating metastasis, and metabolic effects. Since PDAC is an inflammation-driven cancer, we also revisit therapeutic strategies targeting inflammation and immunotherapy. Lastly, we suggest that targeting epigenetic mechanisms opens therapeutic routes for heterogeneous cancer cell populations, including CSCs.
Collapse
Affiliation(s)
- Andrei-Florian Stoica
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, UK
| | - Chao-Hui Chang
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, UK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, UK.
| |
Collapse
|
62
|
Wang H, Cui G, Yu B, Sun M, Yang H. Cancer Stem Cell Niche in Colorectal Cancer and Targeted Therapies. Curr Pharm Des 2020; 26:1979-1993. [PMID: 32268862 DOI: 10.2174/1381612826666200408102305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/06/2020] [Indexed: 12/11/2022]
Abstract
Cancer stem cells (CSCs), also known as tumor-initiating cells, are a sub-population of tumor cells found in many human cancers that are endowed with self-renewal and pluripotency. CSCs may be more resistant to conventional anticancer therapies than average cancer cells, as they can easily escape the cytotoxic effects of standard chemotherapy, thereby resulting in tumor relapse. Despite significant progress in related research, effective elimination of CSCs remains an unmet clinical need. CSCs are localized in a specialized microenvironment termed the niche, which plays a pivotal role in cancer multidrug resistance. The niche components of CSCs, such as the extracellular matrix, also physically shelter CSCs from therapeutic agents. Colorectal cancer is the most common malignancy worldwide and presents a relatively transparent process of cancer initiation and development, making it an ideal model for CSC niche research. Here, we review recent advances in the field of CSCs using colorectal cancer as an example to illustrate the potential therapeutic value of targeting the CSC niche. These findings not only provide a novel theoretical basis for in-depth discussions on tumor occurrence, development, and prognosis evaluation, but also offer new strategies for the targeted treatment of cancer.
Collapse
Affiliation(s)
- Hao Wang
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University, Dalian, China.,Laboratory medical college, Jilin Medical University, Jilin, China
| | - Guihua Cui
- School of Pharmacy, Jilin Medical University, Jilin, China
| | - Bo Yu
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University, Dalian, China
| | - Meiyan Sun
- Laboratory medical college, Jilin Medical University, Jilin, China
| | - Hong Yang
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University, Dalian, China
| |
Collapse
|
63
|
Saha P, Mandal T, Talukdar AD, Kumar D, Kumar S, Tripathi PP, Wang QE, Srivastava AK. DNA polymerase eta: A potential pharmacological target for cancer therapy. J Cell Physiol 2020; 236:4106-4120. [PMID: 33184862 DOI: 10.1002/jcp.30155] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/21/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022]
Abstract
In the last two decades, intensive research has been carried out to improve the survival rates of cancer patients. However, the development of chemoresistance that ultimately leads to tumor relapse poses a critical challenge for the successful treatment of cancer patients. Many cancer patients experience tumor relapse and ultimately die because of treatment failure associated with acquired drug resistance. Cancer cells utilize multiple lines of self-defense mechanisms to bypass chemotherapy and radiotherapy. One such mechanism employed by cancer cells is translesion DNA synthesis (TLS), in which specialized TLS polymerases bypass the DNA lesion with the help of monoubiquitinated proliferating cell nuclear antigen. Among all TLS polymerases (Pol η, Pol ι, Pol κ, REV1, Pol ζ, Pol μ, Pol λ, Pol ν, and Pol θ), DNA polymerase eta (Pol η) is well studied and majorly responsible for the bypass of cisplatin and UV-induced DNA damage. TLS polymerases contribute to chemotherapeutic drug-induced mutations as well as therapy resistance. Therefore, targeting these polymerases presents a novel therapeutic strategy to combat chemoresistance. Mounting evidence suggests that inhibition of Pol η may have multiple impacts on cancer therapy such as sensitizing cancer cells to chemotherapeutics, suppressing drug-induced mutagenesis, and inhibiting the development of secondary tumors. Herein, we provide a general introduction of Pol η and its clinical implications in blocking acquired drug resistance. In addition; this review addresses the existing gaps and challenges of Pol η mediated TLS mechanisms in human cells. A better understanding of the Pol η mediated TLS mechanism will not merely establish it as a potential pharmacological target but also open possibilities to identify novel drug targets for future therapy.
Collapse
Affiliation(s)
- Priyanka Saha
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Tanima Mandal
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Anupam D Talukdar
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Deepak Kumar
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Sanjay Kumar
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Andhra Pradesh, India
| | - Prem P Tripathi
- Cell Biology & Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Qi-En Wang
- Department of Radiation Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Amit K Srivastava
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| |
Collapse
|
64
|
Lassa-VSV chimeric virus targets and destroys human and mouse ovarian cancer by direct oncolytic action and by initiating an anti-tumor response. Virology 2020; 555:44-55. [PMID: 33453650 DOI: 10.1016/j.virol.2020.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/18/2020] [Accepted: 10/28/2020] [Indexed: 11/24/2022]
Abstract
Ovarian cancer is the third most common female cancer, with poor survival in later stages of metastatic spread. We test a chimeric virus consisting of genes from Lassa and vesicular stomatitis viruses, LASV-VSV; the native VSV glycoprotein is replaced by the Lassa glycoprotein, greatly reducing neurotropism. Human ovarian cancer cells in immunocompromised nude mice were lethal in controls. Chemotherapeutic paclitaxel and cisplatin showed modest cancer inhibition and survival extension. In contrast, a single intraperitoneal injection of LASV-VSV selectively infected and killed ovarian cancer cells, generating long-term survival. Mice with human ovarian cancer cells in brain showed rapid deterioration; LASV-VSV microinjection into brain blocked cancer growth, and generated long-term survival. Treatment of immunocompetent mice with infected mouse ovarian cancer cells blocked growth of non-infected ovarian cancer cells peritoneally and in brain. These results suggest LASV-VSV is a viable candidate for further study and may be of use in the treatment of ovarian cancer.
Collapse
|
65
|
Characteristics of CD133-Sustained Chemoresistant Cancer Stem-Like Cells in Human Ovarian Carcinoma. Int J Mol Sci 2020; 21:ijms21186467. [PMID: 32899775 PMCID: PMC7554888 DOI: 10.3390/ijms21186467] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) are considered to be the origin of ovarian cancer (OC) development, recurrence, and chemoresistance. We investigated changes in expression levels of the CSC biomarker, cluster of differentiation 133 (CD133), from primary OC cell lines to induction of CSC-spheres in an attempt to explore the mechanisms related to modulation of stemness, drug resistance, and tumorigenesis in CSCs, thus facilitating the search for new therapeutics for OC. The effect of CD133 overexpression on the induction of CSC properties was evaluated by sphere-forming assays, RT-qPCR, flow cytometry, cell viability assays, and in vivo xenograft experiments. Moreover, the potential signaling molecules that participate in CD133 maintenance of stemness were screened by RNA-sequencing. CD133 expression was upregulated during OCSC induction and chemotherapeutic drug treatment over time, which increased the expressions of stemness-related markers (SOX2, OCT4, and Nanog). CD133 overexpression also promoted tumorigenesis in NOD/SCID mice. Several signalings were controlled by CD133 spheres, including extracellular matrix receptor interactions, chemokine signaling, and Wnt signaling, all of which promote cell survival and cell cycle progression. Our findings suggest that CD133 possesses the ability to maintain functional stemness and tumorigenesis of OCSCs by promoting cell survival signaling and may serve as a potential target for stem cell-targeted therapy of OC.
Collapse
|
66
|
Howard CM, Zgheib NB, Bush S, DeEulis T, Cortese A, Mollo A, Lirette ST, Denning K, Valluri J, Claudio PP. Clinical relevance of cancer stem cell chemotherapeutic assay for recurrent ovarian cancer. Transl Oncol 2020; 13:100860. [PMID: 32862103 PMCID: PMC7475270 DOI: 10.1016/j.tranon.2020.100860] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/18/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction Disease recurrence and progression of ovarian cancer is common with the development of platinum-resistant or refractory disease. This is due in large part to the presence of chemo-resistant cancer stem cells (CSCs) that contribute to tumor propagation, maintenance, and treatment resistance. We developed a CSCs drug cytotoxicity assay (ChemoID) to identify the most effective chemotherapy treatment from a panel of FDA approved chemotherapies. Methods Ascites and pleural fluid samples were collected under physician order from 45 consecutive patients affected by 3rd-5th relapsed ovarian cancer. Test results from the assay were used to treat patients with the highest cell kill drugs, taking into consideration their health status and using dose reductions, as needed. A retrospective chart review of CT and PET scans was used to determine patients' outcomes for tumor response, time to recurrence, progression-free survival (PFS), and overall survival (OS). Results We observed that recurrent ovarian cancer patients treated with high-cell kill chemotherapy agents guided by the CSCs drug response assay had an improvement in the median PFS corresponding to 5.4 months (3rd relapse), 3.6 months (4th relapse), and 3.9 months (5th relapse) when compared to historical data. Additionally, we observed that ovarian cancer patients identified as non-responders by the CSC drug response assay had 30 times the hazard of death compared to those women that were identified as responders with respective median survivals of 6 months vs. 13 months. We also found that ChemoID treated patients on average had an incremental cost-effectiveness ratio (ICER) between -$18,421 and $7,241 per life-year saved (LYS). Conclusions This study demonstrated improved PFS and OS for recurrent ovarian cancer patients treated with assay-guided chemotherapies while decreasing the cost of treatment. Ovarian cancer progression and recurrence is mostly attributed to the presence of cancer stem cells (CSCs), which are chemo-resistant. Eliminating CSCs is a strategy that could improve patients' outcome. We developed a CSC drug cytotoxicity assay to identify the most effective chemotherapy treatment from a panel of FDA approved chemotherapies. Recurrent ovarian cancer patients treated with high-cell kill chemotherapy agents guided by the CSCs drug response assay had an improvement in the median PFS when compared to historical data.
Collapse
Affiliation(s)
- Candace M Howard
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Nadim Bou Zgheib
- Gynecologic Oncology, Edwards Comprehensive Cancer Center, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Stephen Bush
- Gynecologic Oncology, Charleston Area Medical Center Hospital, Charleston, WV, USA
| | - Timothy DeEulis
- Gynecologic Oncology, Women's Oncologic Palliative Medicine, St. Mary's Hospital, Huntington, WV, USA
| | - Antonio Cortese
- Department of Medicine and Surgery, University of Salerno, Italy
| | - Antonio Mollo
- Obstetric and Gynecologic Unit, Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Seth T Lirette
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS, USA
| | - Krista Denning
- Department of Anatomy and Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Jagan Valluri
- Department of Biological Sciences, Marshall University, Huntington, WV, USA
| | - Pier Paolo Claudio
- Department of BioMolecular Sciences, National Center for Natural Products Research, and Department of Radiation Oncology, University of Mississippi Medical Center Cancer Institute, Jackson, MS, USA.
| |
Collapse
|
67
|
Giampaolino P, Foreste V, Della Corte L, Di Filippo C, Iorio G, Bifulco G. Role of biomarkers for early detection of ovarian cancer recurrence. Gland Surg 2020; 9:1102-1111. [PMID: 32953625 DOI: 10.21037/gs-20-544] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ovarian cancer is frequently diagnosed at an advanced stage and a fraction of these patients fail to respond to primary therapy and relapses in 70% of cases. On account of the high recurrence probability and the poor outcomes after recurrence, there is an urgent need to predict progression as early as possible and thus found the strategies to detect and prevent a recurrence. Considering that biomarkers have contributed to the management of ovarian cancer by distinguishing benign and malignant pelvic masses and monitoring response to treatment, in this review, we aim to discuss the latest evidence reported in the literature about the use of biomarkers to detect OC recurrence. In detail, we summarized all the evidence of the most quoted biomarkers like HE4, osteopontin, mesothelin (MSLN), Folate receptor α (FOLR1), paraneoplastic antigens, miRNA, cancer stem cells (CSCs) and a combination of them to evaluate their role as prognostic biomarkers for ovarian cancer recurrence.
Collapse
Affiliation(s)
- Pierluigi Giampaolino
- Department of Public Health, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Virginia Foreste
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Luigi Della Corte
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Claudia Di Filippo
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Giuseppe Iorio
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Giuseppe Bifulco
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
68
|
Gu Y, Zheng X, Ji J. Liver cancer stem cells as a hierarchical society: yes or no? Acta Biochim Biophys Sin (Shanghai) 2020; 52:723-735. [PMID: 32490517 DOI: 10.1093/abbs/gmaa050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer stem cells (CSCs) are cells possessing abilities of self-renewal, differentiation, and tumorigenicity in NOD/SCID mice. Based on this definition, multiple cell surface markers (such as CD24, CD133, CD90, and EpCAM) as well as chemical methods are discovered to enrich liver CSCs in the recent decade. Accumulated studies have revealed molecular signatures and signaling pathways involved in regulating different liver CSCs. Among liver CSCs positive for different markers, some molecular features and regulatory pathways are commonly shared, while some are only unique in certain CSC populations. These studies imply that liver CSCs exhibit diverse heterogeneity, while a functional relationship also exists. The aim of this review is to revisit the society of liver CSCs and summarize the common or unique molecular features of known liver CSCs. We hope to call for attention of researchers on the relationship of the liver CSC subgroups and to provide clues on the hierarchical structure of the liver CSC society.
Collapse
Affiliation(s)
- Yuanzhuo Gu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xin Zheng
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Junfang Ji
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
69
|
Harrington BS, Ozaki MK, Caminear MW, Hernandez LF, Jordan E, Kalinowski NJ, Goldlust IS, Guha R, Ferrer M, Thomas C, Shetty J, Tran B, Wong N, House CD, Annunziata CM. Drugs Targeting Tumor-Initiating Cells Prolong Survival in a Post-Surgery, Post-Chemotherapy Ovarian Cancer Relapse Model. Cancers (Basel) 2020; 12:cancers12061645. [PMID: 32575908 PMCID: PMC7352549 DOI: 10.3390/cancers12061645] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 01/06/2023] Open
Abstract
Disease recurrence is the major cause of morbidity and mortality of ovarian cancer (OC). In terms of maintenance therapies after platinum-based chemotherapy, PARP inhibitors significantly improve the overall survival of patients with BRCA mutations but is of little benefit to patients without homologous recombination deficiency (HRD). The stem-like tumor-initiating cell (TIC) population within OC tumors are thought to contribute to disease recurrence and chemoresistance. Therefore, there is a need to identify drugs that target TICs to prevent relapse in OC without HRD. RNA sequencing analysis of OC cells grown in TIC conditions revealed a strong enrichment of genes involved in drug metabolism, oxidative phosphorylation and reactive oxygen species (ROS) pathways. Concurrently, a high-throughput drug screen identified drugs that showed efficacy against OC cells grown as TICs compared to adherent cells. Four drugs were chosen that affected drug metabolism and ROS response: disulfiram, bardoxolone methyl, elesclomol and salinomycin. The drugs were tested in vitro for effects on viability, sphere formation and markers of stemness CD133 and ALDH in TICs compared to adherent cells. The compounds promoted ROS accumulation and oxidative stress and disulfiram, elesclomol and salinomycin increased cell death following carboplatin treatment compared to carboplatin alone. Disulfiram and salinomycin were effective in a post-surgery, post-chemotherapy OC relapse model in vivo, demonstrating that enhancing oxidative stress in TICs can prevent OC recurrence.
Collapse
Affiliation(s)
- Brittney S. Harrington
- Women’s Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.S.H.); (M.K.O.); (M.W.C.); (L.F.H.); (E.J.); (N.J.K.); (C.D.H.)
| | - Michelle K. Ozaki
- Women’s Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.S.H.); (M.K.O.); (M.W.C.); (L.F.H.); (E.J.); (N.J.K.); (C.D.H.)
| | - Michael W. Caminear
- Women’s Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.S.H.); (M.K.O.); (M.W.C.); (L.F.H.); (E.J.); (N.J.K.); (C.D.H.)
| | - Lidia F. Hernandez
- Women’s Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.S.H.); (M.K.O.); (M.W.C.); (L.F.H.); (E.J.); (N.J.K.); (C.D.H.)
| | - Elizabeth Jordan
- Women’s Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.S.H.); (M.K.O.); (M.W.C.); (L.F.H.); (E.J.); (N.J.K.); (C.D.H.)
| | - Nicholas J. Kalinowski
- Women’s Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.S.H.); (M.K.O.); (M.W.C.); (L.F.H.); (E.J.); (N.J.K.); (C.D.H.)
| | - Ian S. Goldlust
- The National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA; (I.S.G.); (R.G.); (M.F.); (C.T.)
| | - Rajarshi Guha
- The National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA; (I.S.G.); (R.G.); (M.F.); (C.T.)
| | - Marc Ferrer
- The National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA; (I.S.G.); (R.G.); (M.F.); (C.T.)
| | - Craig Thomas
- The National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA; (I.S.G.); (R.G.); (M.F.); (C.T.)
| | - Jyoti Shetty
- CCR Sequencing Facility, Leidos Biomedical Research, Inc., FNLCR, Frederick, MD 21701, USA; (J.S.); (B.T.)
| | - Bao Tran
- CCR Sequencing Facility, Leidos Biomedical Research, Inc., FNLCR, Frederick, MD 21701, USA; (J.S.); (B.T.)
| | - Nathan Wong
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Carrie D. House
- Women’s Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.S.H.); (M.K.O.); (M.W.C.); (L.F.H.); (E.J.); (N.J.K.); (C.D.H.)
| | - Christina M. Annunziata
- Women’s Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.S.H.); (M.K.O.); (M.W.C.); (L.F.H.); (E.J.); (N.J.K.); (C.D.H.)
- Correspondence:
| |
Collapse
|
70
|
Li D, Zhao L, Li Y, Kang X, Zhang S. Gastro-Protective Effects of Calycosin Against Precancerous Lesions of Gastric Carcinoma in Rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2207-2219. [PMID: 32606591 PMCID: PMC7294567 DOI: 10.2147/dddt.s247958] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/07/2020] [Indexed: 01/05/2023]
Abstract
Aim Gastric cancer is a leading cause of cancer death worldwide. In-depth research of precancerous lesions of gastric carcinoma (PLGC) with malignant transformation potential is a key measure to prevent the development of gastric carcinoma. Recently, calycosin has been shown to have anticancer effects in vitro and in vivo. The molecular mechanism by which calycosin affects PLGC, however, has not yet been elucidated. The purpose of this study was to evaluate the effect and mechanism of calycosin in N‐methyl‐Nʹ‐nitro‐N‐nitrosoguanidine (MNNG)-induced PLGC rats. Methods The effects of calycosin in the gastric mucosa of rats with PLGC were evaluated using histopathology and transmission electron microscopy (TEM). For further characterization, the expression levels of integrin β1, nuclear factor kappa B (NF-κB), p-NF-κB, DARPP-32 and signal transducer and activator of transcription 3 (STAT3) were determined by Western blot assay and immunohistochemistry. Results Hematoxylin–eosin and high iron diamine–Alcian blue–periodic acid-Schiff (HID-AB-PAS) staining showed that intestinal metaplasia and dysplasia were significantly ameliorated in the calycosin intervention groups compared with the model group. Further, TEM results showed that calycosin intervention tempered microvascular abnormalities and cell morphology of primary and parietal cells in PLGC tissues. The results suggested that calycosin had gastro-protective effects in MNNG-induced PLGC rats. Western blot and immunohistochemistry analysis showed that the increased protein expression levels of NF-κB, p-NF-κB, DARPP-32 and STAT3 in the model group were downregulated by calycosin. The upregulation of integrin β1 expression induced by MNNG was decreased in the calycosin groups. Conclusion Collectively, calycosin protected against gastric mucosal injury in part via regulation of the integrin β1/NF-κB/DARPP-32 pathway and suppressed the expression of STAT3 in PLGC. The elucidation of this effect and mechanism of calycosin in PLGC provides a potential therapeutic strategy for treatment of gastric precancerous lesions.
Collapse
Affiliation(s)
- Danyan Li
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Luqing Zhao
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Yuxin Li
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China.,Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Xiuhong Kang
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Shengsheng Zhang
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
71
|
Muñoz-Galván S, Carnero A. Targeting Cancer Stem Cells to Overcome Therapy Resistance in Ovarian Cancer. Cells 2020; 9:cells9061402. [PMID: 32512891 PMCID: PMC7349391 DOI: 10.3390/cells9061402] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy due to its late detection and high recurrence rate. Resistance to conventional platinum-based therapies and metastasis are attributed to a population of cells within tumors called cancer stem cells, which possess stem-like features and are able to recapitulate new tumors. Recent studies have deepened the understanding of the biology of ovarian cancer stem cells and their special properties and have identified multiple markers and signaling pathways responsible for their self-renewal abilities. Targeting cancer stem cells represents the most promising strategy for overcoming therapy resistance and reducing mortality in ovarian cancer, but further efforts must be made to improve our understanding of the mechanisms involved in therapy resistance. In this review, we summarize our current knowledge about ovarian cancer stem cells, their involvement in metastasis and their interactions with the tumor microenvironment; we also discuss the therapeutic approaches that are being developed to target them to prevent tumor relapse.
Collapse
Affiliation(s)
- Sandra Muñoz-Galván
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013 Seville, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (S.M.-G.); (A.C.); Tel.: +34-955-923-115 (S.M.-G); +34-955-923-110 (A.C.)
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013 Seville, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (S.M.-G.); (A.C.); Tel.: +34-955-923-115 (S.M.-G); +34-955-923-110 (A.C.)
| |
Collapse
|
72
|
Plasticity in Ovarian Cancer: The Molecular Underpinnings and Phenotypic Heterogeneity. J Indian Inst Sci 2020. [DOI: 10.1007/s41745-020-00174-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
73
|
Ascites-derived ALDH+CD44+ tumour cell subsets endow stemness, metastasis and metabolic switch via PDK4-mediated STAT3/AKT/NF-κB/IL-8 signalling in ovarian cancer. Br J Cancer 2020; 123:275-287. [PMID: 32390009 PMCID: PMC7374705 DOI: 10.1038/s41416-020-0865-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 01/27/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
Background Ovarian cancer is characterised by frequent recurrence due to persistent presence of residual cancer stem cells (CSCs). Here, we identify and characterise tumour subsets from ascites-derived tumour cells with stemness, metastasis and metabolic switch properties and to delineate the involvement of pyruvate dehydrogenase kinase 4 (PDK4) in such process. Methods Ovarian cancer cells/cell lines derived from ascites were used for tumourspheres/ALDH+CD44+ subset isolation. The functional roles and downstream signalling of PDK4 were explored. Its association with clinical outcome of ovarian cancer was analysed. Results We demonstrated enhanced CSC characteristics of tumour cells derived from ovarian cancer ascites, concomitant with ALDH and CD44 subset enrichment and high PDK4 expression, compared to primary tumours. We further showed tumourspheres/ALDH+CD44+ subsets from ascites-derived tumour cells/cell lines with CSC properties and enhanced glycolysis. Clinically, PDK4 expression was correlated with aggressive features. Notably, blockade of PDK4 in tumourspheres/ALDH+CD44+ subsets led to inhibition of CSC characteristics, glycolysis and activation of STAT3/AKT/NF-κB/IL-8 (signal transducer and activator of transcription 3/protein kinases B/nuclear factor-κB/interleukin-8) signalling. Conversely, overexpression of PDK4 in ALDH−CD44– subsets exerted the opposite effects. Conclusion Ascites-derived ALDH+CD44+ tumour cell subsets endow stemness, metastatic and metabolic switch properties via PDK4-mediated STAT3/AKT/NF-κB/IL-8 signalling, suggesting PDK4 as a viable therapeutic molecular target for ovarian cancer management.
Collapse
|
74
|
Bouberhan S, Philp L, Hill S, Al-Alem LF, Rueda B. Exploiting the Prevalence of Homologous Recombination Deficiencies in High-Grade Serous Ovarian Cancer. Cancers (Basel) 2020; 12:E1206. [PMID: 32403357 PMCID: PMC7281458 DOI: 10.3390/cancers12051206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 01/07/2023] Open
Abstract
High-grade serous ovarian cancer (HGSOC) remains the most lethal gynecologic cancer in the United States. Genomic analysis revealed roughly half of HGSOC display homologous repair deficiencies. An improved understanding of the genomic and somatic mutations that influence DNA repair led to the development of poly(ADP-ribose) polymerase inhibitors for the treatment of ovarian cancer. In this review, we explore the preclinical and clinical studies that led to the development of FDA approved drugs that take advantage of the synthetic lethality concept, the implementation of the early phase trials, the development of companion diagnostics and proposed mechanisms of resistance.
Collapse
Affiliation(s)
- Sara Bouberhan
- Department of Hematology/Medical Oncology, Massachusetts General Hospital, Boston, MA 02114, USA;
- Department of Hematology/Medical Oncology, Harvard Medical School, Boston, MA 02115, USA
| | - Lauren Philp
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA;
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA;
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah Hill
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA;
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Linah F. Al-Alem
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA;
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Bo Rueda
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA;
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA;
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
75
|
Li J, Alvero AB, Nuti S, Tedja R, Roberts CM, Pitruzzello M, Li Y, Xiao Q, Zhang S, Gan Y, Wu X, Mor G, Yin G. CBX7 binds the E-box to inhibit TWIST-1 function and inhibit tumorigenicity and metastatic potential. Oncogene 2020; 39:3965-3979. [PMID: 32205869 PMCID: PMC8343988 DOI: 10.1038/s41388-020-1269-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 03/05/2020] [Accepted: 03/11/2020] [Indexed: 12/16/2022]
Abstract
Deaths from ovarian cancer usually occur when patients succumb to overwhelmingly numerous and widespread micrometastasis. Whereas epithelial-mesenchymal transition is required for epithelial ovarian cancer cells to acquire metastatic potential, the cellular phenotype at secondary sites and the mechanisms required for the establishment of metastatic tumors are not fully determined. Using in vitro and in vivo models we show that secondary epithelial ovarian cancer cells (sEOC) do not fully reacquire the molecular signature of the primary epithelial ovarian cancer cells from which they are derived. Despite displaying an epithelial morphology, sEOC maintains a high expression of the mesenchymal effector, TWIST-1. TWIST-1 is however transcriptionally nonfunctional in these cells as it is precluded from binding its E-box by the PcG protein, CBX7. Deletion of CBX7 in sEOC was sufficient to reactivate TWIST-1-induced transcription, prompt mesenchymal transformation, and enhanced tumorigenicity in vivo. This regulation allows secondary tumors to achieve an epithelial morphology while conferring the advantage of prompt reversal to a mesenchymal phenotype upon perturbation of CBX7. We also describe a subclassification of ovarian tumors based on CBX7 and TWIST-1 expression, which predicts clinical outcomes and patient prognosis.
Collapse
Affiliation(s)
- Juanni Li
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Ayesha B Alvero
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Sudhakar Nuti
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Roslyn Tedja
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Cai M Roberts
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Mary Pitruzzello
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Yimin Li
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Qing Xiao
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Sai Zhang
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Yaqi Gan
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Xiaoying Wu
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Gil Mor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA.
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA.
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China.
| |
Collapse
|
76
|
Yousefzadeh Y, Hallaj S, Baghi Moornani M, Asghary A, Azizi G, Hojjat-Farsangi M, Ghalamfarsa G, Jadidi-Niaragh F. Tumor associated macrophages in the molecular pathogenesis of ovarian cancer. Int Immunopharmacol 2020; 84:106471. [PMID: 32305830 DOI: 10.1016/j.intimp.2020.106471] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/23/2022]
Abstract
The tumor microenvironment is a critical factor that enhances cancer progression, drug resistance, and failure of therapeutic approaches. Several cellular and non-cellular factors are involved in cancer promotion. Among the several cell populations in the tumor microenvironment, macrophages, as one of the most abundant innate immune cells within the tumor milieu, have attracted extensive attention among several researchers because of their critical role in innate pathophysiology of multiple disorders, as well as ovarian cancer. High plasticity and consequent high ability to adapt to environmental alternations by adjusting their cellular metabolism and immunological phenotype is the notable characteristic of macrophages. Therefore, the critical function of tumor-associated macrophages in ovarian cancer is highlighted in the growing body of recent studies. In this article, we will comprehensively focus on significant impacts of the macrophages on ovarian cancer progression, by discussing the role of macrophages as one of the fundamental immune cells present in tumor milieu, in metabolic reprogramming of transformed cells, and involvement of these cells in the ovarian cancer initiation, progression, invasion, and angiogenesis. Moreover, we will summarise recent studies evaluating the effects of targeting macrophages in ovarian cancer.
Collapse
Affiliation(s)
- Yousef Yousefzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahin Hallaj
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Baghi Moornani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Asghary
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden; The Persian Gulf Marine Biotechnology Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ghasem Ghalamfarsa
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
77
|
The Capacity of High-Grade Serous Ovarian Cancer Cells to Form Multicellular Structures Spontaneously along Disease Progression Correlates with Their Orthotopic Tumorigenicity in Immunosuppressed Mice. Cancers (Basel) 2020; 12:cancers12030699. [PMID: 32188032 PMCID: PMC7140084 DOI: 10.3390/cancers12030699] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
Many studies have examined the biology, genetics, and chemotherapeutic response of ovarian cancer's solid component; its liquid facet, however, remains critically underinvestigated. Floating within peritoneal effusions known as ascites, ovarian cancer cells form multicellular structures, creating a cancer niche in suspension. This study explores the pathobiology of spontaneously formed, multicellular, ovarian cancer structures derived from serous ovarian cancer cells isolated along disease evolution. It also tests their capacity to cause peritoneal disease in immunosuppressed mice. Results stem from an analysis of cell lines representing the most frequently diagnosed ovarian cancer histotype (high-grade serous ovarian cancer), derived from ascites of the same patient at distinct stages of disease progression. When cultured under adherent conditions, in addition to forming cellular monolayers, the cultures developed areas in which the cells grew upwards, forming densely packed multilayers that ultimately detached from the bottom of the plates and lived as free-floating, multicellular structures. The capacity to form foci and to develop multicellular structures was proportional to disease progression at the time of ascites extraction. Self-assembled in culture, these structures varied in size, were either compact or hollow, irregular, or spheroidal, and exhibited replicative capacity and an epithelial nature. Furthermore, they fully recreated ovarian cancer disease in immunosuppressed mice: accumulation of malignant ascites and pleural effusions; formation of discrete, solid, macroscopic, peritoneal tumors; and microscopic growths in abdominal organs. They also reproduced the histopathological features characteristic of high-grade serous ovarian cancer when diagnosed in patients. The following results encourage the development of therapeutic interventions to interrupt the formation and/or survival of multicellular structures that constitute a floating niche in the peritoneal fluid, which in turn halts disease progression and prevents recurrence.
Collapse
|
78
|
Ovarian Cancer, Cancer Stem Cells and Current Treatment Strategies: A Potential Role of Magmas in the Current Treatment Methods. Cells 2020; 9:cells9030719. [PMID: 32183385 PMCID: PMC7140629 DOI: 10.3390/cells9030719] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/01/2020] [Accepted: 03/06/2020] [Indexed: 12/18/2022] Open
Abstract
Epithelial ovarian cancer (EOC) constitutes 90% of ovarian cancers (OC) and is the eighth most common cause of cancer-related death in women. The cancer histologically and genetically is very complex having a high degree of tumour heterogeneity. The pathogenic variability in OC causes significant impediments in effectively treating patients, resulting in a dismal prognosis. Disease progression is predominantly influenced by the peritoneal tumour microenvironment rather than properties of the tumor and is the major contributor to prognosis. Standard treatment of OC patients consists of debulking surgery, followed by chemotherapy, which in most cases end in recurrent chemoresistant disease. This review discusses the different origins of high-grade serous ovarian cancer (HGSOC), the major sub-type of EOC. Tumour heterogeneity, genetic/epigenetic changes, and cancer stem cells (CSC) in facilitating HGSOC progression and their contribution in the circumvention of therapy treatments are included. Several new treatment strategies are discussed including our preliminary proof of concept study describing the role of mitochondria-associated granulocyte macrophage colony-stimulating factor signaling protein (Magmas) in HGSOC and its unique potential role in chemotherapy-resistant disease.
Collapse
|
79
|
Scott EM, Frost S, Khalique H, Freedman JD, Seymour LW, Lei-Rossmann J. Use of Liquid Patient Ascites Fluids as a Preclinical Model for Oncolytic Virus Activity. Methods Mol Biol 2020; 2058:261-270. [PMID: 31486044 DOI: 10.1007/978-1-4939-9794-7_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
The translational success of oncolytic virotherapies would benefit from the widespread use of clinically relevant ex vivo models. Malignant ascites, an accumulation of fluid in the peritoneum due to disseminated cancer, recapitulates many features of the tumor microenvironment, making it a valuable model for studying oncolytic virus activity. Here, we describe a method for the separation and storage of cellular and acellular components of malignant ascites, followed by flow cytometric characterization of the cellular fraction. We then outline a simple experiment using whole ascites to assess the activity of a bispecific T cell engager (BiTE)-expressing oncolytic adenovirus.
Collapse
Affiliation(s)
- Eleanor M Scott
- Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Sally Frost
- Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Hena Khalique
- Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Joshua D Freedman
- Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Len W Seymour
- Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Janet Lei-Rossmann
- Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, UK.
| |
Collapse
|
80
|
Oza AM, Matulonis UA, Alvarez Secord A, Nemunaitis J, Roman LD, Blagden SP, Banerjee S, McGuire WP, Ghamande S, Birrer MJ, Fleming GF, Markham MJ, Hirte HW, Provencher DM, Basu B, Kristeleit R, Armstrong DK, Schwartz B, Braly P, Hall GD, Nephew KP, Jueliger S, Oganesian A, Naim S, Hao Y, Keer H, Azab M, Matei D. A Randomized Phase II Trial of Epigenetic Priming with Guadecitabine and Carboplatin in Platinum-resistant, Recurrent Ovarian Cancer. Clin Cancer Res 2019; 26:1009-1016. [PMID: 31831561 DOI: 10.1158/1078-0432.ccr-19-1638] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/16/2019] [Accepted: 12/05/2019] [Indexed: 01/12/2023]
Abstract
PURPOSE Platinum resistance in ovarian cancer is associated with epigenetic modifications. Hypomethylating agents (HMA) have been studied as carboplatin resensitizing agents in ovarian cancer. This randomized phase II trial compared guadecitabine, a second-generation HMA, and carboplatin (G+C) against second-line chemotherapy in women with measurable or detectable platinum-resistant ovarian cancer. PATIENTS AND METHODS Patients received either G+C (guadecitabine 30 mg/m2 s.c. once-daily for 5 days and carboplatin) or treatment of choice (TC; topotecan, pegylated liposomal doxorubicin, paclitaxel, or gemcitabine) in 28-day cycles until progression or unacceptable toxicity. The primary endpoint was progression-free survival (PFS); secondary endpoints were RECIST v1.1 and CA-125 response rate, 6-month PFS, and overall survival (OS). RESULTS Of 100 patients treated, 51 received G+C and 49 received TC, of which 27 crossed over to G+C. The study did not meet its primary endpoint as the median PFS was not statistically different between arms (16.3 weeks vs. 9.1 weeks in the G+C and TC groups, respectively; P = 0.07). However, the 6-month PFS rate was significantly higher in the G+C group (37% vs. 11% in TC group; P = 0.003). The incidence of grade 3 or higher toxicity was similar in G+C and TC groups (51% and 49%, respectively), with neutropenia and leukopenia being more frequent in the G+C group. CONCLUSIONS Although this trial did not show superiority for PFS of G+C versus TC, the 6-month PFS increased in G+C treated patients. Further refinement of this strategy should focus on identification of predictive markers for patient selection.
Collapse
Affiliation(s)
- Amit M Oza
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto Canada
| | | | | | - John Nemunaitis
- University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Lynda D Roman
- USC Norris Comprehensive Cancer Center, Los Angeles, California
| | | | | | | | - Sharad Ghamande
- Augusta University (Georgia Regents University), Augusta, Georgia
| | | | | | | | | | - Diane M Provencher
- Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Canada
| | - Bristi Basu
- Department of Oncology, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | | | | | | | | | - Geoff D Hall
- St James University Hospital, Leeds, United Kingdom
| | - Kenneth P Nephew
- Indiana University School of Medicine, IU Simon Cancer Center, Bloomington, Indiana
| | | | | | - Sue Naim
- Astex Pharmaceuticals Inc., Pleasanton, California
| | - Yong Hao
- Astex Pharmaceuticals Inc., Pleasanton, California
| | - Harold Keer
- Astex Pharmaceuticals Inc., Pleasanton, California
| | | | - Daniela Matei
- Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
81
|
Keyvani V, Farshchian M, Esmaeili SA, Yari H, Moghbeli M, Nezhad SRK, Abbaszadegan MR. Ovarian cancer stem cells and targeted therapy. J Ovarian Res 2019; 12:120. [PMID: 31810474 PMCID: PMC6896744 DOI: 10.1186/s13048-019-0588-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Ovarian cancer has the highest ratio of mortality among gynecologic malignancies. Chemotherapy is one of the most common treatment options for ovarian cancer. However, tumor relapse in patients with advanced tumor stage is still a therapeutic challenge for its clinical management. MAIN BODY Therefore, it is required to clarify the molecular biology and mechanisms which are involved in chemo resistance to improve the survival rate of ovarian cancer patients. Cancer stem cells (CSCs) are a sub population of tumor cells which are related to drug resistance and tumor relapse. CONCLUSION In the present review, we summarized the recent findings about the role of CSCs in tumor relapse and drug resistance among ovarian cancer patients. Moreover, we focused on the targeted and combinational therapeutic methods against the ovarian CSCs.
Collapse
Affiliation(s)
- Vahideh Keyvani
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Moein Farshchian
- Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Bu‐Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Hadi Yari
- Human Genetics Division, Medical Biotechnology Department, National Institute of Genetics Engineering and Biotechnology, Tehran, Iran
| | - Meysam Moghbeli
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | | |
Collapse
|
82
|
Wang C, Wang F, Zhang J, Liu L, Xu G, Dou H. Fluorescent Polysaccharide Nanogels for the Detection of Tumor Heterogeneity in Drug-Surviving Cancer Cells. ACTA ACUST UNITED AC 2019; 4:e1900213. [PMID: 32293135 DOI: 10.1002/adbi.201900213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/03/2019] [Indexed: 12/19/2022]
Abstract
Tumor metastasis, recurrence, and drug resistance have been associated with tumor heterogeneity, and thus the identification of tumor heterogeneity has great significance in medicine. The approach provides a way to identify and isolate various cell subtypes from drug-surviving ovarian cancer cells, by synthesizing a series of polysaccharide nanogels and using them in flow cytometry analysis. The results show that the drug-surviving OVCAR-3 cells that are subjected to paclitaxel intervention comprise various cell subtypes, including drug-resistant and non-drug-resistant cell subtypes. Besides, there are significant differences between the drug-resistant cell subtype and non-drug-resistant cell subtype in terms of their migration and invasion behavior. In addition, the phenotype switch genes are detected by mRNA sequencing, and it is found that different subtypes show significant genetic differences with regard to their drug resistance, metastasis, and proliferation. In particular, modifying polysaccharide nanogels with lipids can promote the uptake of nanogels by drug-resistant cells, and thus the lipid modification can enhance the effectiveness of a chemotherapy drug carrier against drug-resistant cells. These studies reveal the heterogeneity of drug-surviving tumor cells, as well as the significant differences in drug-resistance, migration, and invasion capabilities of different subtypes, and demonstrate a way to overcome drug resistance.
Collapse
Affiliation(s)
- Chenglong Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Fanchen Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, P. R. China
| | - Jinguo Zhang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, P. R. China
| | - Lingshan Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, P. R. China
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
83
|
Dai X, Zhang S, Cheng H, Cai D, Chen X, Huang Z. FA2H Exhibits Tumor Suppressive Roles on Breast Cancers via Cancer Stemness Control. Front Oncol 2019; 9:1089. [PMID: 31709178 PMCID: PMC6821679 DOI: 10.3389/fonc.2019.01089] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/02/2019] [Indexed: 12/31/2022] Open
Abstract
Background: Triple negative breast cancers are aggressive, enriched with cancer stem cells, and lack effective targeted therapies with little side effects. Methods: We isolated cancer stem cells from two triple negative breast cancer cell lines via cell sorting following transcriptome sequencing, bioinformatics analysis, experimental and clinical validations, as well as functional investigations to explore genes capturing triple negative breast cancer features for improved diagnosis and therapeutics in clinics. Results: We found that FA2H is under-expressed in triple negative breast cancers both in vitro and in clinics, and FA2H suppresses cancer stemness via inhibiting the STAT3/IL6 axis and NFkB signaling. Conclusions: This study reports the tumor suppressive roles of FA2H on breast cancer cells through cancer stemness control. FA2H and other candidates unveiled in this study that capture the features of cancer stem cells may contribute as diagnostic marker and/or effective therapeutic targets for improved triple negative breast cancer management.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, JiangNan University, Wuxi, China
| | - Shuo Zhang
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hongye Cheng
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Dongyan Cai
- Wuxi School of Medicine, JiangNan University, Wuxi, China
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiao Chen
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhaohui Huang
- Wuxi School of Medicine, JiangNan University, Wuxi, China
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
84
|
Hoter A, Naim HY. Heat Shock Proteins and Ovarian Cancer: Important Roles and Therapeutic Opportunities. Cancers (Basel) 2019; 11:E1389. [PMID: 31540420 PMCID: PMC6769485 DOI: 10.3390/cancers11091389] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022] Open
Abstract
Ovarian cancer is a serious cause of death in gynecological oncology. Delayed diagnosis and poor survival rates associated with late stages of the disease are major obstacles against treatment efforts. Heat shock proteins (HSPs) are stress responsive molecules known to be crucial in many cancer types including ovarian cancer. Clusterin (CLU), a unique chaperone protein with analogous oncogenic criteria to HSPs, has also been proven to confer resistance to anti-cancer drugs. Indeed, these chaperone molecules have been implicated in diagnosis, prognosis, metastasis and aggressiveness of various cancers. However, relative to other cancers, there is limited body of knowledge about the molecular roles of these chaperones in ovarian cancer. In the current review, we shed light on the diverse roles of HSPs as well as related chaperone proteins like CLU in the pathogenesis of ovarian cancer and elucidate their potential as effective drug targets.
Collapse
Affiliation(s)
- Abdullah Hoter
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| |
Collapse
|
85
|
Harrington BS, Annunziata CM. NF-κB Signaling in Ovarian Cancer. Cancers (Basel) 2019; 11:cancers11081182. [PMID: 31443240 PMCID: PMC6721592 DOI: 10.3390/cancers11081182] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
The NF-κB signaling pathway is a master and commander in ovarian cancer (OC) that promotes chemoresistance, cancer stem cell maintenance, metastasis and immune evasion. Many signaling pathways are dysregulated in OC and can activate NF-κB signaling through canonical or non-canonical pathways which have both overlapping and distinct roles in tumor progression. The activation of canonical NF-κB signaling has been well established for anti-apoptotic and immunomodulatory functions in response to the tumor microenvironment and the non-canonical pathway in cancer stem cell maintenance and tumor re-initiation. NF-κB activity in OC cells helps to create an immune-evasive environment and to attract infiltrating immune cells with tumor-promoting phenotypes, which in turn, drive constitutive NF-κB activation in OC cells to promote cell survival and metastasis. For these reasons, NF-κB is an attractive target in OC, but current strategies are limited and broad inhibition of this major signaling pathway in normal physiological and immunological functions may produce unwanted side effects. There are some promising pre-clinical outcomes from developing research to target and inhibit NF-κB only in the tumor-reinitiating cancer cell population of OC and concurrently activate canonical NF-κB signaling in immune cells to promote anti-tumor immunity.
Collapse
|
86
|
3-acetyl-11-keto-beta-boswellic acid decreases the malignancy of taxol resistant human ovarian cancer by inhibiting multidrug resistance (MDR) proteins function. Biomed Pharmacother 2019; 116:108992. [DOI: 10.1016/j.biopha.2019.108992] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/25/2019] [Accepted: 05/13/2019] [Indexed: 01/16/2023] Open
|
87
|
Roberts CM, Cardenas C, Tedja R. The Role of Intra-Tumoral Heterogeneity and Its Clinical Relevance in Epithelial Ovarian Cancer Recurrence and Metastasis. Cancers (Basel) 2019; 11:E1083. [PMID: 31366178 PMCID: PMC6721439 DOI: 10.3390/cancers11081083] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/22/2019] [Accepted: 07/27/2019] [Indexed: 12/14/2022] Open
Abstract
Epithelial ovarian cancer is the deadliest gynecologic cancer, due in large part to recurrent tumors. Recurrences tend to have metastasized, mainly in the peritoneal cavity and developed resistance to the first line chemotherapy. Key to the progression and ultimate lethality of ovarian cancer is the existence of extensive intra-tumoral heterogeneity (ITH). In this review, we describe the genetic and epigenetic changes that have been reported to give rise to different cell populations in ovarian cancer. We also describe at length the contributions made to heterogeneity by both linear and parallel models of clonal evolution and the existence of cancer stem cells. We dissect the key biological signals from the tumor microenvironment, both directly from other cell types in the vicinity and soluble or circulating factors. Finally, we discuss the impact of tumor heterogeneity on the choice of therapeutic approaches in the clinic. Variability in ovarian tumors remains a major barrier to effective therapy, but by leveraging future research into tumor heterogeneity, we may be able to overcome this barrier and provide more effective, personalized therapy to patients.
Collapse
Affiliation(s)
- Cai M Roberts
- Obstetrics, Gynecology and Reproductive Sciences Department, Yale School of Medicine, New Haven, CT 06520, USA
| | - Carlos Cardenas
- Obstetrics, Gynecology and Reproductive Sciences Department, Yale School of Medicine, New Haven, CT 06520, USA
| | - Roslyn Tedja
- Obstetrics, Gynecology and Reproductive Sciences Department, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
88
|
Ward Rashidi MR, Mehta P, Bregenzer M, Raghavan S, Fleck EM, Horst EN, Harissa Z, Ravikumar V, Brady S, Bild A, Rao A, Buckanovich RJ, Mehta G. Engineered 3D Model of Cancer Stem Cell Enrichment and Chemoresistance. Neoplasia 2019; 21:822-836. [PMID: 31299607 PMCID: PMC6624324 DOI: 10.1016/j.neo.2019.06.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 06/03/2019] [Accepted: 06/12/2019] [Indexed: 12/14/2022] Open
Abstract
Intraperitoneal dissemination of ovarian cancers is preceded by the development of chemoresistant tumors with malignant ascites. Despite the high levels of chemoresistance and relapse observed in ovarian cancers, there are no in vitro models to understand the development of chemoresistance in situ. Method: We describe a highly integrated approach to establish an in vitro model of chemoresistance and stemness in ovarian cancer, using the 3D hanging drop spheroid platform. The model was established by serially passaging non-adherent spheroids. At each passage, the effectiveness of the model was evaluated via measures of proliferation, response to treatment with cisplatin and a novel ALDH1A inhibitor. Concomitantly, the expression and tumor initiating capacity of cancer stem-like cells (CSCs) was analyzed. RNA-seq was used to establish gene signatures associated with the evolution of tumorigenicity, and chemoresistance. Lastly, a mathematical model was developed to predict the emergence of CSCs during serial passaging of ovarian cancer spheroids. Results: Our serial passage model demonstrated increased cellular proliferation, enriched CSCs, and emergence of a platinum resistant phenotype. In vivo tumor xenograft assays indicated that later passage spheroids were significantly more tumorigenic with higher CSCs, compared to early passage spheroids. RNA-seq revealed several gene signatures supporting the emergence of CSCs, chemoresistance, and malignant phenotypes, with links to poor clinical prognosis. Our mathematical model predicted the emergence of CSC populations within serially passaged spheroids, concurring with experimentally observed data. Conclusion: Our integrated approach illustrates the utility of the serial passage spheroid model for examining the emergence and development of chemoresistance in ovarian cancer in a controllable and reproducible format.
Collapse
Affiliation(s)
- Maria R Ward Rashidi
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Pooja Mehta
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Michael Bregenzer
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Shreya Raghavan
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Elyse M Fleck
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Eric N Horst
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Zainab Harissa
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Visweswaran Ravikumar
- Department of Bioinformatics and Computational Biology, Division of Quantitative Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samuel Brady
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Andrea Bild
- Division of Molecular Pharmacology, Department of Medical Oncology and Therapeutics, City of Hope Cancer Institute, Duarte, CA, USA
| | - Arvind Rao
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Radiation Oncology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Ronald J Buckanovich
- Director of Ovarian Cancer Research, Magee Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Geeta Mehta
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, USA..
| |
Collapse
|
89
|
Ovarian Cancer Stem Cells: Role in Metastasis and Opportunity for Therapeutic Targeting. Cancers (Basel) 2019; 11:cancers11070934. [PMID: 31277278 PMCID: PMC6678643 DOI: 10.3390/cancers11070934] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/29/2019] [Accepted: 06/30/2019] [Indexed: 02/08/2023] Open
Abstract
Ovarian cancer (OC) is a heterogeneous disease usually diagnosed at a late stage. Cancer stem cells (CSCs) that exist within the bulk tumor survive first-line chemotherapy and contribute to resistant disease with metastasis. Understanding the key features of CSC biology provides valuable opportunities to develop OCSC-directed therapeutics, which will eventually improve the clinical outcomes of patients. Although significant developments have occurred since OCSCs were first described, the involvement of CSCs in ovarian tumor metastasis is not fully understood. Here, we discuss putative CSC markers and the fundamental role of CSCs in facilitating tumor dissemination in OC. Additionally, we focus on promising CSC-targeting strategies in preclinical and clinical studies of OC and discuss potential challenges in CSC research.
Collapse
|
90
|
Kogan EA, Unanyan AL, Namiot VA, Baburin DV, Udaltsov SN. A Precision Approach to the Diagnosis and Choice of Tactics in the Treatment of Endometrial Hyperplasia in Perimenopause. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919040055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
91
|
Ovarian Cancer Stemness: Biological and Clinical Implications for Metastasis and Chemotherapy Resistance. Cancers (Basel) 2019; 11:cancers11070907. [PMID: 31261739 PMCID: PMC6678827 DOI: 10.3390/cancers11070907] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 01/04/2023] Open
Abstract
Epithelial ovarian cancer is a highly lethal gynecological malignancy that is characterized by the early development of disseminated metastasis. Though ovarian cancer has been generally considered to preferentially metastasize via direct transcoelomic dissemination instead of the hematogenous route, emerging evidence has indicated that the hematogenous spread of cancer cells plays a larger role in ovarian cancer metastasis than previously thought. Considering the distinctive biology of ovarian cancer, an in-depth understanding of the biological and molecular mechanisms that drive metastasis is critical for developing effective therapeutic strategies against this fatal disease. The recent “cancer stem cell theory” postulates that cancer stem cells are principally responsible for tumor initiation, metastasis, and chemotherapy resistance. Even though the hallmarks of ovarian cancer stem cells have not yet been completely elucidated, metastasized ovarian cancer cells, which have a high degree of chemoresistance, seem to manifest cancer stem cell properties and play a key role during relapse at metastatic sites. Herein, we review our current understanding of the cell-biological mechanisms that regulate ovarian cancer metastasis and chemotherapy resistance, with a pivotal focus on ovarian cancer stem cells, and discuss the potential clinical implications of evolving cancer stem cell research and resultant novel therapeutic approaches.
Collapse
|
92
|
Yang R, Wei Z, Wu S. Lumiflavin increases the sensitivity of ovarian cancer stem-like cells to cisplatin by interfering with riboflavin. J Cell Mol Med 2019; 23:5329-5339. [PMID: 31187586 PMCID: PMC6652702 DOI: 10.1111/jcmm.14409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/05/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022] Open
Abstract
Here, we used lumiflavin, an inhibitor of riboflavin, as a new potential therapeutic chemosensitizer to ovarian cancer stem‐like cells (CSCs). This study demonstrates that the enrichment of riboflavin in CSCs is an important cause of its resistance to chemotherapy. Lumiflavin can effectively reduce the riboflavin enrichment in CSCs and sensitize the effect of cisplatin Diamminedichloroplatinum (DDP) on CSCs. In this study, CSCs of human ovarian cancer cell lines HO8910 were separated using a magnetic bead (CD133+). We also show the overexpression of the mRNA and protein of riboflavin transporter 2 and the high content of riboflavin in CSCs compared to non‐CSCs (NON‐CSCs). Moreover, CSCs were less sensitive to DDP than NON‐CSCs, whereas, the synergistic effect of lumiflavin and DDP on CSCs was more sensitive than NON‐CSCs. Further research showed that lumiflavin had synergistic effects with DDP on CSCs in increasing mitochondrial function damage and apoptosis rates and decreasing clonic function. In addition, we found that the combination of DDP and lumiflavin therapy in vivo has a synergistic cytotoxic effect on an ovarian cancer nude mice model by enhancing the DNA‐damage response and increasing the apoptotic protein expression. Notably, the effect of lumiflavin is associated with reduced riboflavin concentration, and riboflavin could reverse the effect of DDP in vitro and in vivo. Accordingly, we conclude that lumiflavin interfered with the riboflavin metabolic pathways, resulting in a significant increase in tumour sensitivity to DDP therapy. Our study suggests that lumiflavin may be a novel treatment alternative for ovarian cancer and its recurrence.
Collapse
Affiliation(s)
- Ruhui Yang
- Department of Pharmacology, College of Medicine and Health, Lishui University, Lishui, China
| | - Zhe Wei
- Department of Rehabilitation Medicine, College of Medicine and Health, Lishui University, Lishui, China
| | - Songquan Wu
- Department of Immunology, College of Medicine and Health, Lishui University, Lishui, China
| |
Collapse
|
93
|
Pelupessy NU, Andrijono A, Sutrisna B, Harahap AR, Kanoko M, Nuranna L, Siregar B, Wulandari D. CD133, CD44, and ALDH1A1 as cancer stem cell markers and prognostic factors in epithelial ovarian cancer. MEDICAL JOURNAL OF INDONESIA 2019. [DOI: 10.13181/mji.v28i1.2863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Ovarian cancer is a heterogeneous disease, and most patients are diagnosed at an advanced stage. Epithelial ovarian cancer type II is characterized by rapid tumor growth and is genetically more labile than type I. This study was aimed to demonstrate the prognostic value of CSC by using the markers CD133, CD44, and ALDH1A1 in EOC.METHODS Clinicopathological and demographic data were collected from medical records. The markers CD133, CD44, and ALDH1A1 were examined with flow cytometry and immunohistochemistry. Cancer stem cell (CSC) marker expression in patients with ovarian cancer types I and II were related to chemotherapy and survival. In multivariate analysis, the prognosis model was tested for ten months.RESULTS The largest demographic consisted of patients aged ≥45 years, with stage I, poor differentiation, and type II, of which there were 40 samples (72.7%), 23 samples (41.8%), 30 samples (54.5%), and 16 samples (29.1%), respectively. There is a high correlation between the 10-month chemotherapy response and the 4 variables, i.e., age ≥45 years, type II, stage III–IV, and CD44, with an ROC of 80.75% and a post-test probability of 82.5%. Using the ROC curve, the highest chemoresistance score was 0.841, based on the combination of CSCs markers and clinicopathological factors, that is stage III–IV, age ≥45 years, poor differentiation, type II, negative CD133, high CD44, and high ALDH1A1.CONCLUSIONS CSC (CD133, CD44, and ALDH1A1) markers and clinicopathological factors are prognostic of epithelial ovarian cancer.
Collapse
|
94
|
Zhu Y, Zhang H, Zhang G, Shi Y, Huang J. Co-expression of CD44/MyD88 is a poor prognostic factor in advanced epithelial ovarian cancer. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:91. [PMID: 31019941 DOI: 10.21037/atm.2019.01.28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Cluster of differentiation 44 (CD44)/myeloid differentiation factor 88 (MyD88) is the molecular characterization of EOC stem cells. An important characteristic of CD44+/MyD88+ epithelial ovarian cancer (EOC) cells, which differentiate them from the CD44-/MyD88- EOC cells, is the presence of a functional TLR4-MyD88-NFkB pathway. The aim of our study is to investigate the clinical significance of CD44/MyD88 co-expression in EOC. Methods A total of 138 specimens of ovarian tissues was detected CD44 and MyD88 expression by immunocytochemistry, including EOC (N=108), borderline tumors (N=10), benign cysts (N=10) and normal ovarian tissue (N=10). The association of CD44/MyD88 co-expression with clinicopathological factors and outcomes was analyzed. Results The expression of CD44 was showed distinct difference in EOC (53 of 108, 49.1%), in borderline tumors (3 of 10, 30.0%), in benign cysts (2 of 10, 20.0%) and normal ovarian (2 of 10, 20.0%). A total of 41 (38.0%) cancers showed a combined expression of CD44/MyD88. The expression of CD44 and MyD88 had definitely correlativity (r=0.21, P=0.026). CD44/MyD88 co-expression was associated with tumor progression, metastasis, and recurrence in advanced EOC, and an independent prognostic factor for disease-free survival and overall survival. Conclusions CD44/MyD88 co-expression has been shown to contribute to EOC progression and outcome directly and has a promising as a therapeutic target in EOC.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Gynaecologic Oncology, Sichuan Cancer Hospital & Institute, Cancer Hospital Affiliated to School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China.,Department of Ultrasound, Sichuan Cancer Hospital & Institute, Cancer Hospital Affiliated to School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Hongtao Zhang
- Department of Obstetrics and Gynecology, Sichuan Jinxin Women and Children's Hospital, Chengdu 610000, China
| | - Guonan Zhang
- Department of Gynaecologic Oncology, Sichuan Cancer Hospital & Institute, Cancer Hospital Affiliated to School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Yu Shi
- Department of Gynaecologic Oncology, Sichuan Cancer Hospital & Institute, Cancer Hospital Affiliated to School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Jianming Huang
- Department of Gynaecologic Oncology, Sichuan Cancer Hospital & Institute, Cancer Hospital Affiliated to School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China.,Department of Biochemistry & Molecular Biology, Sichuan Cancer Hospital & Institute, Cancer Hospital Affiliated to School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| |
Collapse
|
95
|
Nwani NG, Condello S, Wang Y, Swetzig WM, Barber E, Hurley T, Matei D. A Novel ALDH1A1 Inhibitor Targets Cells with Stem Cell Characteristics in Ovarian Cancer. Cancers (Basel) 2019; 11:cancers11040502. [PMID: 30965686 PMCID: PMC6521036 DOI: 10.3390/cancers11040502] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/30/2019] [Accepted: 04/03/2019] [Indexed: 01/04/2023] Open
Abstract
A small of population of slow cycling and chemo-resistant cells referred to as cancer stem cells (CSC) have been implicated in cancer recurrence. There is emerging interest in developing targeted therapeutics to eradicate CSCs. Aldehyde-dehydrogenase (ALDH) activity was shown to be a functional marker of CSCs in ovarian cancer (OC). ALDH activity is increased in cells grown as spheres versus monolayer cultures under differentiating conditions and in OC cells after treatment with platinum. Here, we describe the activity of CM37, a newly identified small molecule with inhibitory activity against ALDH1A1, in OC models enriched in CSCs. Treatment with CM37 reduced OC cells' proliferation as spheroids under low attachment growth conditions and the expression of stemness-associated markers (OCT4 and SOX2) in ALDH+ cells fluorescence-activated cell sorting (FACS)-sorted from cell lines and malignant OC ascites. Likewise, siRNA-mediated ALDH1A1 knockdown reduced OC cells' proliferation as spheres, expression of stemness markers, and delayed tumor initiation capacity in vivo. Treatment with CM37 promoted DNA damage in OC cells, as evidenced by induction of γH2AX. This corresponded to increased expression of genes involved in DNA damage response, such as NEIL3, as measured in ALDH+ cells treated with CM37 or in cells where ALDH1A1 was knocked down. By inhibiting ALDH1A1, CM37 augmented intracellular ROS accumulation, which in turn led to increased DNA damage and reduced OC cell viability. Cumulatively, our findings demonstrate that a novel ALDH1A1 small molecule inhibitor is active in OC models enriched in CSCs. Further optimization of this new class of small molecules could provide a novel strategy for targeting treatment-resistant OC.
Collapse
Affiliation(s)
- Nkechiyere G Nwani
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, USA.
| | - Salvatore Condello
- Department of Obstetrics and Gynecology, Indiana University, Indianapolis, IN 46202, USA.
| | - Yinu Wang
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, USA.
| | - Wendy M Swetzig
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, USA.
| | - Emma Barber
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, USA.
| | - Thomas Hurley
- Department of Biochemistry and molecular Biology, Indiana University, Indianapolis, IN 46202, USA.
- Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA.
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, USA.
- Robert H Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA.
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
96
|
Brown Y, Hua S, Tanwar PS. Extracellular matrix-mediated regulation of cancer stem cells and chemoresistance. Int J Biochem Cell Biol 2019; 109:90-104. [DOI: 10.1016/j.biocel.2019.02.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 12/12/2022]
|
97
|
Sherman-Samis M, Onallah H, Holth A, Reich R, Davidson B. SOX2 and SOX9 are markers of clinically aggressive disease in metastatic high-grade serous carcinoma. Gynecol Oncol 2019; 153:651-660. [PMID: 30904337 DOI: 10.1016/j.ygyno.2019.03.099] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/27/2019] [Accepted: 03/10/2019] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The aim of this study was to analyze the expression, biological role and clinical relevance of cancer stem cell markers in high-grade serous carcinoma (HGSC). METHODS mRNA expression by qRT-PCR of NANOG, OCT4, SOX2, SOX4, SOX9, LIN28A and LIN28B was analyzed in 134 HGSC specimens (84 effusions, 50 surgical specimens). Nanog, OCT3/4, SOX2 and SOX9 protein expression by immunohistochemistry was analyzed in 52 HGSC effusions. Nanog protein expression in exosomes from 80 HGSC effusions was studied by Western Blotting. OVCAR3 cells underwent CRISPR/Cas9 Nanog knockout (KO), and the effect of Nanog KO on migration, invasion, proliferation and proteolytic activity was analyzed in OVCAR3 and OVCAR8 cells. RESULTS OCT4 mRNA was overexpressed in effusions compared to solid specimens (p = 0.046), whereas SOX9 was overexpressed in the ovarian tumors compared to effusions and solid metastases (p = 0.003). Higher SOX2 and SOX9 expression was associated with primary (intrinsic) chemoresistance (p = 0.009 and p = 0.02, respectively). Higher SOX9 levels were associated with shorter overall survival in univariate (p = 0.04) and multivariate (p = 0.049) analysis. OCT3/4, SOX2 and SOX9 proteins were found in HGSC cells, whereas Nanog was detected only in exosomes. Higher SOX2 protein expression was associated with shorter overall survival in univariate analysis (p = 0.049). OVCAR cells exposed to OVCAR3 NANOG KO exosomes had reduced migration, invasion and MMP9 activity. CONCLUSIONS SOX2 and SOX9 mRNA levels in HGSC effusions may be markers of clinically aggressive disease. Nanog is secreted in HGSC exosomes in effusions and modulates tumor-promoting cellular processes in vitro.
Collapse
Affiliation(s)
- Miriam Sherman-Samis
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Hadil Onallah
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Arild Holth
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, N-0310 Oslo, Norway
| | - Reuven Reich
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| | - Ben Davidson
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, N-0310 Oslo, Norway; University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, N-0316 Oslo, Norway.
| |
Collapse
|
98
|
Khelwatty SA, Essapen S, Bagwan I, Green M, Seddon AM, Modjtahedi H. Co-expression and prognostic significance of putative CSC markers CD44, CD133, wild-type EGFR and EGFRvIII in metastatic colorectal cancer. Oncotarget 2019; 10:1704-1715. [PMID: 30899442 PMCID: PMC6422200 DOI: 10.18632/oncotarget.26722] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/15/2019] [Indexed: 12/24/2022] Open
Abstract
The presence of colorectal cancer stem cells (CSCs) have been associated with tumour initiation and resistance to therapy. This study investigated the co-expression and prognostic significance of the CSCs biomarkers CD44 and CD133 with wild-type EGFR (wtEGFR) and EGFRvIII in colorectal cancer (CRC). The expression of these biomarkers were determined in tumours from 70 patients with metastatic CRC by immunohistochemistry, and in a panel of human CRC cell lines, and their variants with acquired-resistance to EGFR inhibitors, by flow cytometry. The expression of CD44, CD133, wtEGFR and EGFRvIII were present in 17%, 23%, 26% and 13% of cases and the co-expression of CD44/CD133 with wtEGFR and EGFRvIII were present in 9% and 3% of the cases respectively. Only co-expression of CSCs/EGFRvIII (P = 0.037), and amphiregulin (P = 0.017) were associated with worse overall survival. Interestingly, disease-free survival was improved in BTC expressing patients (P = 0.025). In vitro CD133 expression and its co-expression with CD44 were associated with primary-resistance to irinotecan and acquired-resistance to anti-EGFR inhibitors respectively. Our results suggest co-expression of CSCs and EGFRvIII could be potential biomarkers of worse overall survival and resistance to therapy in patients with mCRC and warrants further validation in a larger cohort.
Collapse
Affiliation(s)
| | - Sharadah Essapen
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston, UK.,St. Luke's Cancer Centre, Royal Surrey County Hospital, Guildford, Surrey, UK
| | - Izhar Bagwan
- Department of Histopathology, Royal Surrey County Hospital, Guildford, Surrey, UK
| | - Margaret Green
- Department of Histopathology, Royal Surrey County Hospital, Guildford, Surrey, UK
| | - Alan M Seddon
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston, UK
| | - Helmout Modjtahedi
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston, UK
| |
Collapse
|
99
|
Tedja R, Roberts CM, Alvero AB, Cardenas C, Yang-Hartwich Y, Spadinger S, Pitruzzello M, Yin G, Glackin CA, Mor G. Protein kinase Cα-mediated phosphorylation of Twist1 at Ser-144 prevents Twist1 ubiquitination and stabilizes it. J Biol Chem 2019; 294:5082-5093. [PMID: 30733340 DOI: 10.1074/jbc.ra118.005921] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/31/2019] [Indexed: 12/21/2022] Open
Abstract
Twist1 is a basic helix-loop-helix transcription factor that plays a key role in embryonic development, and its expression is down-regulated in adult cells. However, Twist1 is highly expressed during cancer development, conferring a proliferative, migratory, and invasive phenotype to malignant cells. Twist1 expression can be regulated post-translationally by phosphorylation or ubiquitination events. We report in this study a previously unknown and relevant Twist1 phosphorylation site that controls its stability. To identify candidate phosphorylation sites in Twist1, we first conducted an in silico analysis of the Twist1 protein, which yielded several potential sites. Because most of these sites were predicted to be phosphorylated by protein kinase C (PKC), we overexpressed PKCα in several cell lines and found that it phosphorylates Twist1 on Ser-144. Using a combination of immunoblotting, immunoprecipitation, protein overexpression, and CRISPR/Cas9-mediated PKCα knockout experiments, we observed that PKCα-mediated Twist1 phosphorylation at Ser-144 inhibits Twist1 ubiquitination and consequently stabilizes it. These results provide evidence for a direct association between PKCα and Twist1 and yield critical insights into the PKCα/Twist1 signaling axis that governs cancer aggressiveness.
Collapse
Affiliation(s)
- Roslyn Tedja
- From the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06511
| | - Cai M Roberts
- From the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06511
| | - Ayesha B Alvero
- From the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06511
| | - Carlos Cardenas
- From the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06511
| | - Yang Yang-Hartwich
- From the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06511
| | - Sydney Spadinger
- From the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06511
| | - Mary Pitruzzello
- From the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06511
| | - Gang Yin
- the Department of Pathology, Xiangya Hospital School of Basic Medical Sciences, Central South University, Changsa, Hunan Province 410083, China, and
| | - Carlotta A Glackin
- the Department of Stem Cell and Developmental Biology, City of Hope, Duarte, California 91010
| | - Gil Mor
- From the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06511,
| |
Collapse
|
100
|
Hatina J, Boesch M, Sopper S, Kripnerova M, Wolf D, Reimer D, Marth C, Zeimet AG. Ovarian Cancer Stem Cell Heterogeneity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1139:201-221. [PMID: 31134503 DOI: 10.1007/978-3-030-14366-4_12] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ovarian carcinoma features pronounced clinical, histopathological, and molecular heterogeneity. There is good reason to believe that parts of this heterogeneity can be explained by differences in the respective cell of origin, with a self-renewing fallopian tube secretory cell being likely responsible for initiation of an overwhelming majority of high-grade serous ovarian carcinomas (i.e., type II tumors according to the recent dualistic classification), whereas there are several mutually non-exclusive possibilities for the initiation of type I tumors, including ovarian surface epithelium stem cells, endometrial cells, or even cells of extra-Müllerian origin. Interestingly, both fallopian tube self-renewing secretory cells and ovarian surface epithelium stem cells seem to be characterized by an overlapping array of stemness signaling pathways, especially Wnt/β-catenin. Apart from this variability in the respective cell of origin, the particular clinical behavior of ovarian carcinoma strongly suggests an underlying stem cell component with a crucial impact. This becomes especially evident in high-grade serous ovarian carcinomas treated with classical chemotherapy, which entails a gradual evolution of chemoresistant disease without any apparent selection of clones carrying obvious chemoresistance-associated mutations. Several cell surface markers (e.g., CD24, CD44, CD117, CD133, and ROR1) as well as functional approaches (ALDEFLUOR™ and side population assays) have been used to identify and characterize putative ovarian carcinoma stem cells. We have recently shown that side population cells exhibit marked heterogeneity on their own, which can hamper their straightforward therapeutic targeting. An alternative strategy for stemness-depleting interventions is to target the stem cell niche, i.e., the specific microanatomical structure that secures stem cell maintenance and survival through provision of a set of stem cell-promoting and differentiation-antagonizing factors. Besides identifying direct or indirect therapeutic targets, profiling of side population cells and other ovarian carcinoma stem cell subpopulations can reveal relevant prognostic markers, as exemplified by our recent discovery of the Vav3.1 transcript variant, which filters out a fraction of prognostically unfavorable ovarian carcinoma cases.
Collapse
Affiliation(s)
- Jiri Hatina
- Faculty of Medicine in Pilsen, Institute of Biology, Charles University, Pilsen, Czech Republic
| | | | - Sieghart Sopper
- Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Michaela Kripnerova
- Faculty of Medicine in Pilsen, Institute of Biology, Charles University, Pilsen, Czech Republic
| | - Dominik Wolf
- Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniel Reimer
- Department of Gynecology and Obstetrics, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Marth
- Department of Gynecology and Obstetrics, Medical University of Innsbruck, Innsbruck, Austria
| | - Alain G Zeimet
- Department of Gynecology and Obstetrics, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|