51
|
Abstract
The intermediate filament proteins, A- and B-type lamins, form the nuclear lamina scaffold adjacent to the inner nuclear membrane. Lamins also contribute to chromatin regulation and various signaling pathways affecting gene expression. In this review, Osmanagic-Myers et al. focus on the role of nuclear lamins in mechanosensing and also discuss how disease-linked lamin mutants may impair the response of cells to mechanical stimuli and influence the properties of the extracellular matrix. The intermediate filament proteins, A- and B-type lamins, form the nuclear lamina scaffold adjacent to the inner nuclear membrane. B-type lamins confer elasticity, while A-type lamins lend viscosity and stiffness to nuclei. Lamins also contribute to chromatin regulation and various signaling pathways affecting gene expression. The mechanical roles of lamins and their functions in gene regulation are often viewed as independent activities, but recent findings suggest a highly cross-linked and interdependent regulation of these different functions, particularly in mechanosignaling. In this newly emerging concept, lamins act as a “mechanostat” that senses forces from outside and responds to tension by reinforcing the cytoskeleton and the extracellular matrix. A-type lamins, emerin, and the linker of the nucleoskeleton and cytoskeleton (LINC) complex directly transmit forces from the extracellular matrix into the nucleus. These mechanical forces lead to changes in the molecular structure, modification, and assembly state of A-type lamins. This in turn activates a tension-induced “inside-out signaling” through which the nucleus feeds back to the cytoskeleton and the extracellular matrix to balance outside and inside forces. These functions regulate differentiation and may be impaired in lamin-linked diseases, leading to cellular phenotypes, particularly in mechanical load-bearing tissues.
Collapse
|
52
|
Gruenbaum Y, Foisner R. Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu Rev Biochem 2015; 84:131-64. [PMID: 25747401 DOI: 10.1146/annurev-biochem-060614-034115] [Citation(s) in RCA: 402] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lamins are intermediate filament proteins that form a scaffold, termed nuclear lamina, at the nuclear periphery. A small fraction of lamins also localize throughout the nucleoplasm. Lamins bind to a growing number of nuclear protein complexes and are implicated in both nuclear and cytoskeletal organization, mechanical stability, chromatin organization, gene regulation, genome stability, differentiation, and tissue-specific functions. The lamin-based complexes and their specific functions also provide insights into possible disease mechanisms for human laminopathies, ranging from muscular dystrophy to accelerated aging, as observed in Hutchinson-Gilford progeria and atypical Werner syndromes.
Collapse
Affiliation(s)
- Yosef Gruenbaum
- Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | | |
Collapse
|
53
|
Wang AS, Kozlov SV, Stewart CL, Horn HF. Tissue specific loss of A-type lamins in the gastrointestinal epithelium can enhance polyp size. Differentiation 2015; 89:11-21. [PMID: 25578479 DOI: 10.1016/j.diff.2014.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/08/2014] [Accepted: 12/17/2014] [Indexed: 12/19/2022]
Abstract
The nuclear lamina, comprised of the A and B-type lamins, is important in maintaining nuclear shape and in regulating key nuclear functions such as chromatin organization and transcription. Deletion of the A-type lamins results in genome instability and many cancers show altered levels of A-type lamin expression. Loss of function mutations in the mouse Lmna gene result in early postnatal lethality, usually within 3-5 weeks of birth making an analysis of the role of lamins in carcinogenesis difficult. To circumvent early lethality, and determine the role of the A-type lamins in specific tissues in older mice we derived a conditional allele of Lmna(FL/FL) (floxed). Lmna(FL/FL) was specifically deleted in the gastrointestinal (GI) epithelium by crossing the Lmna(FL/FL) mice with Villin-Cre mice. Mice lacking Lmna in the GI are overtly normal with no effects on overall growth, longevity or GI morphology. On a GI specific sensitized (Apc(Min/+)) background, polyp numbers are unchanged, but polyp size is slightly increased, and only in the duodenum. Our findings reveal that although A-type lamins are dispensable in the postnatal GI epithelium, loss of Lmna under malignant conditions may, to a limited extent, enhance polyp size indicating that A-type lamins may regulate cell proliferation in the transformed GI epithelium.
Collapse
Affiliation(s)
- Audrey S Wang
- Developmental and Regenerative Biology, Institute of Medical Biology, 8A Biomedical Grove, 138648, Singapore; Department of Biological Sciences, NUS, Singapore
| | - Serguei V Kozlov
- Center for Advanced Preclinical Research, Science Applications International Corporation-Frederick, Frederick, MD 21702, United States
| | - Colin L Stewart
- Developmental and Regenerative Biology, Institute of Medical Biology, 8A Biomedical Grove, 138648, Singapore; Department of Biological Sciences, NUS, Singapore.
| | - Henning F Horn
- Developmental and Regenerative Biology, Institute of Medical Biology, 8A Biomedical Grove, 138648, Singapore
| |
Collapse
|
54
|
Nuclear lamina remodelling and its implications for human disease. Cell Tissue Res 2014; 360:621-31. [DOI: 10.1007/s00441-014-2069-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/11/2014] [Indexed: 10/24/2022]
|
55
|
Peñagaricano F, Wang X, Rosa GJ, Radunz AE, Khatib H. Maternal nutrition induces gene expression changes in fetal muscle and adipose tissues in sheep. BMC Genomics 2014; 15:1034. [PMID: 25429728 PMCID: PMC4301459 DOI: 10.1186/1471-2164-15-1034] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/19/2014] [Indexed: 01/15/2023] Open
Abstract
Background Maternal nutrition during different stages of pregnancy can induce significant changes in the structure, physiology, and metabolism of the offspring. These changes could have important implications on food animal production especially if these perturbations impact muscle and adipose tissue development. Here, we evaluated the impact of different maternal isoenergetic diets, alfalfa haylage (HY; fiber), corn (CN; starch), and dried corn distillers grains (DG; fiber plus protein plus fat), on the transcriptome of fetal muscle and adipose tissues in sheep. Results Prepartum diets were associated with notable gene expression changes in fetal tissues. In longissimus dorsi muscle, a total of 224 and 823 genes showed differential expression (FDR ≤0.05) in fetuses derived from DG vs. CN and HY vs. CN maternal diets, respectively. Several of these significant genes affected myogenesis and muscle differentiation. In subcutaneous and perirenal adipose tissues, 745 and 208 genes were differentially expressed (FDR ≤0.05), respectively, between CN and DG diets. Many of these genes are involved in adipogenesis, lipogenesis, and adipose tissue development. Pathway analysis revealed that several GO terms and KEGG pathways were enriched (FDR ≤0.05) with differentially expressed genes associated with tissue and organ development, chromatin biology, and different metabolic processes. Conclusions These findings provide evidence that maternal nutrition during pregnancy can alter the programming of fetal muscle and fat tissues in sheep. The ramifications of the observed gene expression changes, in terms of postnatal growth, body composition, and meat quality of the offspring, warrant future investigation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1034) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francisco Peñagaricano
- Department of Animal Sciences, University of Wisconsin-Madison, 1675 Observatory Drive, Madison, WI 53706, USA.
| | | | | | | | | |
Collapse
|
56
|
Carmosino M, Torretta S, Procino G, Gerbino A, Forleo C, Favale S, Svelto M. Role of nuclear Lamin A/C in cardiomyocyte functions. Biol Cell 2014; 106:346-58. [PMID: 25055884 DOI: 10.1111/boc.201400033] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/16/2014] [Indexed: 12/21/2022]
Abstract
Lamin A/C is a structural protein of the nuclear envelope (NE) and cardiac involvement in Lamin A/C mutations was one of the first phenotypes to be reported in humans, suggesting a crucial role of this protein in the cardiomyocytes function. Mutations in LMNA gene cause a class of pathologies generically named 'Lamanopathies' mainly involving heart and skeletal muscles. Moreover, the well-known disease called Hutchinson-Gilford Progeria Syndrome due to extensive mutations in LMNA gene, in addition to the systemic phenotype of premature aging, is characterised by the death of patients at around 13 typically for a heart attack or stroke, suggesting again the heart as the main site sensitive to Lamin A/C disfunction. Indeed, the identification of the roles of the Lamin A/C in cardiomyocytes function is a key area of exploration. One of the primary biological roles recently conferred to Lamin A/C is to affect contractile cells lineage determination and senescence. Then, in differentiated adult cardiomyocytes both the 'structural' and 'gene expression hypothesis' could explain the role of Lamin A in the function of cardiomyocytes. In fact, recent advances in the field propose that the structural weakness/stiffness of the NE, regulated by Lamin A/C amount in NE, can 'consequently' alter gene expression.
Collapse
Affiliation(s)
- Monica Carmosino
- Department of Sciences, University of Basilicata, Potenza, Italy; Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
57
|
Buxboim A, Swift J, Irianto J, Spinler KR, Dingal PCDP, Athirasala A, Kao YRC, Cho S, Harada T, Shin JW, Discher DE. Matrix elasticity regulates lamin-A,C phosphorylation and turnover with feedback to actomyosin. Curr Biol 2014; 24:1909-17. [PMID: 25127216 DOI: 10.1016/j.cub.2014.07.001] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/28/2014] [Accepted: 07/01/2014] [Indexed: 01/01/2023]
Abstract
Tissue microenvironments are characterized not only in terms of chemical composition but also by collective properties such as stiffness, which influences the contractility of a cell, its adherent morphology, and even differentiation. The nucleoskeletal protein lamin-A,C increases with matrix stiffness, confers nuclear mechanical properties, and influences differentiation of mesenchymal stem cells (MSCs), whereas B-type lamins remain relatively constant. Here we show in single-cell analyses that matrix stiffness couples to myosin-II activity to promote lamin-A,C dephosphorylation at Ser22, which regulates turnover, lamina physical properties, and actomyosin expression. Lamin-A,C phosphorylation is low in interphase versus dividing cells, and its levels rise with states of nuclear rounding in which myosin-II generates little to no tension. Phosphorylated lamin-A,C localizes to nucleoplasm, and phosphorylation is enriched on lamin-A,C fragments and is suppressed by a cyclin-dependent kinase (CDK) inhibitor. Lamin-A,C knockdown in primary MSCs suppresses transcripts predominantly among actomyosin genes, especially in the serum response factor (SRF) pathway. Levels of myosin-IIA thus parallel levels of lamin-A,C, with phosphosite mutants revealing a key role for phosphoregulation. In modeling the system as a parsimonious gene circuit, we show that tension-dependent stabilization of lamin-A,C and myosin-IIA can suitably couple nuclear and cell morphology downstream of matrix mechanics.
Collapse
Affiliation(s)
- Amnon Buxboim
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA; Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joe Swift
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jerome Irianto
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyle R Spinler
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - P C Dave P Dingal
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Avathamsa Athirasala
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yun-Ruei C Kao
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sangkyun Cho
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Takamasa Harada
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jae-Won Shin
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dennis E Discher
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA; Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
58
|
Fedorchak GR, Kaminski A, Lammerding J. Cellular mechanosensing: getting to the nucleus of it all. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:76-92. [PMID: 25008017 PMCID: PMC4252489 DOI: 10.1016/j.pbiomolbio.2014.06.009] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 06/28/2014] [Indexed: 12/12/2022]
Abstract
Cells respond to mechanical forces by activating specific genes and signaling pathways that allow the cells to adapt to their physical environment. Examples include muscle growth in response to exercise, bone remodeling based on their mechanical load, or endothelial cells aligning under fluid shear stress. While the involved downstream signaling pathways and mechanoresponsive genes are generally well characterized, many of the molecular mechanisms of the initiating 'mechanosensing' remain still elusive. In this review, we discuss recent findings and accumulating evidence suggesting that the cell nucleus plays a crucial role in cellular mechanotransduction, including processing incoming mechanoresponsive signals and even directly responding to mechanical forces. Consequently, mutations in the involved proteins or changes in nuclear envelope composition can directly impact mechanotransduction signaling and contribute to the development and progression of a variety of human diseases, including muscular dystrophy, cancer, and the focus of this review, dilated cardiomyopathy. Improved insights into the molecular mechanisms underlying nuclear mechanotransduction, brought in part by the emergence of new technologies to study intracellular mechanics at high spatial and temporal resolution, will not only result in a better understanding of cellular mechanosensing in normal cells but may also lead to the development of novel therapies in the many diseases linked to defects in nuclear envelope proteins.
Collapse
Affiliation(s)
- Gregory R Fedorchak
- Department of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Ashley Kaminski
- Department of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jan Lammerding
- Department of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
59
|
Ruan J, Liu XG, Zheng HL, Li JB, Xiong XD, Zhang CL, Luo CY, Zhou ZJ, Shi Q, Weng YG. Deletion of the lmna gene induces growth delay and serum biochemical changes in C57BL/6 mice. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:123-30. [PMID: 25049934 PMCID: PMC4093278 DOI: 10.5713/ajas.2013.13246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/28/2013] [Accepted: 07/27/2013] [Indexed: 01/03/2023]
Abstract
The A-type lamin deficient mouse line (Lmna−/−) has become one of the most frequently used models for providing insights into many different aspects of A-type lamin function. To elucidate the function of Lmna in the growth and metabolism of mice, tissue growth and blood biochemistry were monitored in Lmna-deficient mice, heterozygous (Lmna+/−) and wide-type (Lmna+/+) backcrossed to C57BL/6 background. At 4 weeks after birth, the weight of various organs of the Lmna−/−, Lmna+/− and Lmna+/+ mice was measured. A panel of biochemical analyses consisting of 15 serological tests was examined. The results showed that Lmna deficient mice had significantly decreased body weight and increased the ratio of organ to body weight in most of tissues. Compared with Lmna+/+ and Lmna+/− mice, Lmna−/− mice exhibited lower levels of ALP (alkaline phosphatase), Chol (cholesterol), CR (creatinine), GLU (glucose), HDL (high-density lipoprotein cholesterol) and higher levels of ALT (alanine aminotransferase) (p<0.05). Lmna−/− mice displayed higher AST (aspartate aminotransferase) values and lower LDL (lowdensity lipoprotein cholesterol), CK-MB (creatine kinase-MB) levels than Lmna+/+ mice (p<0.05). There were no significant differences among the three groups of mice with respect to BUN (blood urea nitrogen), CK (creatine kinase), Cyc C (cystatin C), TP (total protein), TG (triacylglycerols) and UA (uric acid) levels (p>0.05). These changes of serological parameters may provide an experimental basis for the elucidation of Lmna gene functions.
Collapse
Affiliation(s)
- J Ruan
- Department of Clinical Laboratory, Chongqing Medical University, Chongqing 400016, China
| | - X G Liu
- Department of Clinical Laboratory, Chongqing Medical University, Chongqing 400016, China
| | - H L Zheng
- Department of Clinical Laboratory, Chongqing Medical University, Chongqing 400016, China
| | - J B Li
- Department of Clinical Laboratory, Chongqing Medical University, Chongqing 400016, China
| | - X D Xiong
- Department of Clinical Laboratory, Chongqing Medical University, Chongqing 400016, China
| | - C L Zhang
- Department of Clinical Laboratory, Chongqing Medical University, Chongqing 400016, China
| | - C Y Luo
- Department of Clinical Laboratory, Chongqing Medical University, Chongqing 400016, China
| | - Z J Zhou
- Department of Clinical Laboratory, Chongqing Medical University, Chongqing 400016, China
| | - Q Shi
- Department of Clinical Laboratory, Chongqing Medical University, Chongqing 400016, China
| | - Y G Weng
- Department of Clinical Laboratory, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
60
|
Swift J, Discher DE. The nuclear lamina is mechano-responsive to ECM elasticity in mature tissue. J Cell Sci 2014; 127:3005-15. [PMID: 24963133 DOI: 10.1242/jcs.149203] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
How cells respond to physical cues in order to meet and withstand the physical demands of their immediate surroundings has been of great interest for many years, with current research efforts focused on mechanisms that transduce signals into gene expression. Pathways that mechano-regulate the entry of transcription factors into the cell nucleus are emerging, and our most recent studies show that the mechanical properties of the nucleus itself are actively controlled in response to the elasticity of the extracellular matrix (ECM) in both mature and developing tissue. In this Commentary, we review the mechano-responsive properties of nuclei as determined by the intermediate filament lamin proteins that line the inside of the nuclear envelope and that also impact upon transcription factor entry and broader epigenetic mechanisms. We summarize the signaling pathways that regulate lamin levels and cell-fate decisions in response to a combination of ECM mechanics and molecular cues. We will also discuss recent work that highlights the importance of nuclear mechanics in niche anchorage and cell motility during development, hematopoietic differentiation and cancer metastasis, as well as emphasizing a role for nuclear mechanics in protecting chromatin from stress-induced damage.
Collapse
Affiliation(s)
- Joe Swift
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dennis E Discher
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
61
|
Guo Y, Kim Y, Shimi T, Goldman RD, Zheng Y. Concentration-dependent lamin assembly and its roles in the localization of other nuclear proteins. Mol Biol Cell 2014; 25:1287-97. [PMID: 24523288 PMCID: PMC3982994 DOI: 10.1091/mbc.e13-11-0644] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 11/11/2022] Open
Abstract
The nuclear lamina (NL) consists of lamin polymers and proteins that bind to the polymers. Disruption of NL proteins such as lamin and emerin leads to developmental defects and human diseases. However, the expression of multiple lamins, including lamin-A/C, lamin-B1, and lamin-B2, in mammals has made it difficult to study the assembly and function of the NL. Consequently, it has been unclear whether different lamins depend on one another for proper NL assembly and which NL functions are shared by all lamins or are specific to one lamin. Using mouse cells deleted of all or different combinations of lamins, we demonstrate that the assembly of each lamin into the NL depends primarily on the lamin concentration present in the nucleus. When expressed at sufficiently high levels, each lamin alone can assemble into an evenly organized NL, which is in turn sufficient to ensure the even distribution of the nuclear pore complexes. By contrast, only lamin-A can ensure the localization of emerin within the NL. Thus, when investigating the role of the NL in development and disease, it is critical to determine the protein levels of relevant lamins and the intricate shared or specific lamin functions in the tissue of interest.
Collapse
Affiliation(s)
- Yuxuan Guo
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| | - Youngjo Kim
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| | - Takeshi Shimi
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Robert D. Goldman
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Yixian Zheng
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| |
Collapse
|
62
|
Stroud MJ, Banerjee I, Veevers J, Chen J. Linker of nucleoskeleton and cytoskeleton complex proteins in cardiac structure, function, and disease. Circ Res 2014; 114:538-48. [PMID: 24481844 DOI: 10.1161/circresaha.114.301236] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex, composed of proteins within the inner and the outer nuclear membranes, connects the nuclear lamina to the cytoskeleton. The importance of this complex has been highlighted by the discovery of mutations in genes encoding LINC complex proteins, which cause skeletal or cardiac myopathies. Herein, this review summarizes structure, function, and interactions of major components of the LINC complex, highlights how mutations in these proteins may lead to cardiac disease, and outlines future challenges in the field.
Collapse
Affiliation(s)
- Matthew J Stroud
- From the Department of Cardiology, University of California San Diego School of Medicine, La Jolla, CA
| | | | | | | |
Collapse
|
63
|
Abstract
Lamins A and C, encoded by LMNA, are constituent of the nuclear lamina, a meshwork of proteins underneath the nuclear envelope first described as scaffolding proteins of the nucleus. Since the discovery of LMNA mutations in highly heterogeneous human disorders (including cardiac and muscular dystrophies, lipodystrophies and progeria), the number of functions described for lamin A/C has expanded. Lamin A/C is notably involved in the regulation of chromatin structure and gene transcription, and in the resistance of cells to mechanical stress. This review focuses on studies performed on knock-out and knock-in Lmna mouse models, which have led to decipher some of the lamin A/C functions in striated muscles and to the first preclinical trials of pharmaceutical therapies.
Collapse
|
64
|
Abstract
In eukaryotes, the function of the cell's nucleus has primarily been considered to be the repository for the organism's genome. However, this rather simplistic view is undergoing a major shift, as it is increasingly apparent that the nucleus has functions extending beyond being a mere genome container. Recent findings have revealed that the structural composition of the nucleus changes during development and that many of these components exhibit cell- and tissue-specific differences. Increasing evidence is pointing to the nucleus being integral to the function of the interphase cytoskeleton, with changes to nuclear structural proteins having ramifications affecting cytoskeletal organization and the cell's interactions with the extracellular environment. Many of these functions originate at the nuclear periphery, comprising the nuclear envelope (NE) and underlying lamina. Together, they may act as a "hub" in integrating cellular functions including chromatin organization, transcriptional regulation, mechanosignaling, cytoskeletal organization, and signaling pathways. Interest in such an integral role has been largely stimulated by the discovery that many diseases and anomalies are caused by defects in proteins of the NE/lamina, the nuclear envelopathies, many of which, though rare, are providing insights into their more common variants that are some of the major issues of the twenty-first century public health. Here, we review the contributions that mouse mutants have made to our current understanding of the NE/lamina, their respective roles in disease and the use of mice in developing potential therapies for treating the diseases.
Collapse
|
65
|
RB and Lamins in Cell Cycle Regulation and Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 773:127-42. [DOI: 10.1007/978-1-4899-8032-8_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
66
|
Swift J, Harada T, Buxboim A, Shin JW, Tang HY, Speicher DW, Discher DE. Label-free mass spectrometry exploits dozens of detected peptides to quantify lamins in wildtype and knockdown cells. Nucleus 2013; 4:450-9. [PMID: 24448480 DOI: 10.4161/nucl.27413] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Label-free quantitation and characterization of proteins by mass spectrometry (MS) is now feasible, especially for moderately expressed structural proteins such as lamins that typically yield dozens of tryptic peptides from tissue cells. Using standard cell culture samples, we describe general algorithms for quantitative analysis of peptides identified in liquid chromatography tandem mass spectrometry (LC-MS/MS). The algorithms were foundational to the discovery that the absolute stoichiometry of A-type to B-type lamins scales with tissue stiffness (Swift et al., Science 2013). Isoform dominance helps make sense of why mutations and changes with age of mechanosensitive lamin-A,C only affect "stiff" tissues such as heart, muscle, bone, or even fat, but not brain. A Peak Ratio Fingerprinting (PRF) algorithm is elaborated here through its application to lamin-A,C knockdown. After demonstrating the large dynamic range of PRF using calibrated mixtures of human and mouse lysates, we validate measurements of partial knockdown with standard cell biology analyses using quantitative immunofluorescence and immunoblotting. Optimal sets of MS-detected peptides as determined by PRF demonstrate that the strongest peptide signals are not necessarily the most reliable for quantitation. After lamin-A,C knockdown, PRF computes an invariant set of "housekeeping" proteins as part of a broader proteomic analysis that also shows the proteome of mesenchymal stem cells (MSCs) is more broadly perturbed than that of a human epithelial cancer line (A549s), with particular variation in nuclear and cytoskeletal proteins. These methods offer exciting prospects for basic and clinical studies of lamin-A,C as well as other MS-detectable proteins.
Collapse
Affiliation(s)
- Joe Swift
- Molecular & Cell Biophysics Laboratory, University of Pennsylvania; Philadelphia PA USA; Center for Systems and Computational Biology; Wistar Institute; Philadelphia PA USA
| | - Takamasa Harada
- Molecular & Cell Biophysics Laboratory, University of Pennsylvania; Philadelphia PA USA
| | - Amnon Buxboim
- Molecular & Cell Biophysics Laboratory, University of Pennsylvania; Philadelphia PA USA
| | - Jae-Won Shin
- Molecular & Cell Biophysics Laboratory, University of Pennsylvania; Philadelphia PA USA
| | - Hsin-Yao Tang
- Center for Systems and Computational Biology; Wistar Institute; Philadelphia PA USA
| | - David W Speicher
- Center for Systems and Computational Biology; Wistar Institute; Philadelphia PA USA
| | - Dennis E Discher
- Molecular & Cell Biophysics Laboratory, University of Pennsylvania; Philadelphia PA USA; Center for Systems and Computational Biology; Wistar Institute; Philadelphia PA USA
| |
Collapse
|
67
|
Davidson PM, Lammerding J. Broken nuclei--lamins, nuclear mechanics, and disease. Trends Cell Biol 2013; 24:247-56. [PMID: 24309562 DOI: 10.1016/j.tcb.2013.11.004] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/04/2013] [Accepted: 11/06/2013] [Indexed: 11/19/2022]
Abstract
Mutations in lamins, which are ubiquitous nuclear intermediate filaments, lead to a variety of disorders including muscular dystrophy and dilated cardiomyopathy. Lamins provide nuclear stability, help connect the nucleus to the cytoskeleton, and can modulate chromatin organization and gene expression. Nonetheless, the diverse functions of lamins remain incompletely understood. We focus here on the role of lamins on nuclear mechanics and their involvement in human diseases. Recent findings suggest that lamin mutations can decrease nuclear stability, increase nuclear fragility, and disturb mechanotransduction signaling, possibly explaining the muscle-specific defects in many laminopathies. At the same time, altered lamin expression has been reported in many cancers, where the resulting increased nuclear deformability could enhance the ability of cells to transit tight interstitial spaces, thereby promoting metastasis.
Collapse
Affiliation(s)
- Patricia M Davidson
- Weill Institute for Cell and Molecular Biology, Cornell University, 526 Campus Road, Ithaca, NY 14853, USA
| | - Jan Lammerding
- Department of Biomedical Engineering/Weill Institute for Cell and Molecular Biology, Cornell University, 526 Campus Road, Ithaca, NY 14853, USA.
| |
Collapse
|
68
|
Abstract
PURPOSE OF REVIEW LMNA gene encodes the nuclear A-type lamins. LMNA mutations are associated with more than 10 clinical entities and represent one of the first causes of inherited dilated cardiomyopathy. LMNA-dilated cardiomyopathy is associated with conduction disease (DCM-CD) and is a severe and aggressive form of DCM. However, pathogenesis remains largely unknown and no specific treatment is currently available for the patients. In this review, we present recent discoveries that improve the understanding of the cardiac pathophysiological roles of A-type lamins and shed light on potential therapeutic targets. RECENT FINDINGS In the last decade, many efforts have been made to elucidate how mutations in A-type lamins, ubiquitous proteins, lead to DCM-CD. No clear genotype/phenotype correlations have been found to help in elucidating those mechanisms. Analysis of several mouse models has helped in deciphering critical pathomechanisms. Among those, Mitogen-activated protein kinases (MAPK) and Akt/mTOR appear to be key early-activated signaling pathways in LMNA DCM-CD in both humans and mice. Inhibition of these signaling pathways has shown encouraging beneficial effects upon cardiac evolution of DCM-CD. SUMMARY These recent findings suggest that targeting MAPK and Akt/mTOR pathways with potent and specific compounds represents a promising intervention for the treatment of LMNA DCM-CD.
Collapse
|
69
|
Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PCDP, Pinter J, Pajerowski JD, Spinler KR, Shin JW, Tewari M, Rehfeldt F, Speicher DW, Discher DE. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 2013; 341:1240104. [PMID: 23990565 DOI: 10.1126/science.1240104] [Citation(s) in RCA: 1385] [Impact Index Per Article: 115.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tissues can be soft like fat, which bears little stress, or stiff like bone, which sustains high stress, but whether there is a systematic relationship between tissue mechanics and differentiation is unknown. Here, proteomics analyses revealed that levels of the nucleoskeletal protein lamin-A scaled with tissue elasticity, E, as did levels of collagens in the extracellular matrix that determine E. Stem cell differentiation into fat on soft matrix was enhanced by low lamin-A levels, whereas differentiation into bone on stiff matrix was enhanced by high lamin-A levels. Matrix stiffness directly influenced lamin-A protein levels, and, although lamin-A transcription was regulated by the vitamin A/retinoic acid (RA) pathway with broad roles in development, nuclear entry of RA receptors was modulated by lamin-A protein. Tissue stiffness and stress thus increase lamin-A levels, which stabilize the nucleus while also contributing to lineage determination.
Collapse
Affiliation(s)
- Joe Swift
- Molecular and Cell Biophysics Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Kim Y, Zheng Y. Generation and characterization of a conditional deletion allele for Lmna in mice. Biochem Biophys Res Commun 2013; 440:8-13. [PMID: 23998933 DOI: 10.1016/j.bbrc.2013.08.082] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 08/24/2013] [Indexed: 12/22/2022]
Abstract
Extensive efforts have been devoted to study A-type lamins because mutations in their gene, LMNA in humans, are associated with a number of diseases. The mouse germline mutations in the A-type lamins (encoded by Lmna) exhibit postnatal lethality at either 4-8 postnatal (P) weeks or P16-18 days, depending on the deletion alleles. These mice exhibit defects in several tissues including hearts and skeletal muscles. Despite numerous studies, how the germline mutation of Lmna, which is expressed in many postnatal tissues, affects only selected tissues remains poorly understood. Addressing the tissue specific functions of Lmna requires the generation and careful characterization of conditional Lmna null alleles. Here we report the creation of a conditional Lmna knockout allele in mice by introducing loxP sites flanking the second exon of Lmna. The Lmna(flox/flox) mice are phenotypically normal and fertile. We show that Lmna homozygous mutants (Lmna(Δ/Δ)) generated by germline Cre expression display postnatal lethality at P16-18 days with defects similar to a recently reported germline Lmna knockout mouse that exhibits the earliest lethality compared to other germline knockout alleles. This conditional knockout mouse strain should serve as an important genetic tool to study the tissue specific roles of Lmna, which would contribute toward the understanding of various human diseases associated with A-type lamins.
Collapse
Affiliation(s)
- Youngjo Kim
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Dr., Baltimore, MD 21218, USA
| | | |
Collapse
|
71
|
Kane MS, Lindsay ME, Judge DP, Barrowman J, Ap Rhys C, Simonson L, Dietz HC, Michaelis S. LMNA-associated cardiocutaneous progeria: an inherited autosomal dominant premature aging syndrome with late onset. Am J Med Genet A 2013; 161A:1599-611. [PMID: 23666920 DOI: 10.1002/ajmg.a.35971] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 03/11/2013] [Indexed: 11/10/2022]
Abstract
Hutchinson-Gilford Progeria Syndrome (HGPS) is a premature aging disorder caused by mutations in LMNA, which encodes the nuclear scaffold proteins lamin A and C. In HGPS and related progerias, processing of prelamin A is blocked at a critical step mediated by the zinc metalloprotease ZMPSTE24. LMNA-linked progerias can be grouped into two classes: (1) the processing-deficient, early onset "typical" progerias (e.g., HGPS), and (2) the processing-proficient "atypical" progeria syndromes (APS) that are later in onset. Here we describe a previously unrecognized progeria syndrome with prominent cutaneous and cardiovascular manifestations belonging to the second class. We suggest the name LMNA-associated cardiocutaneous progeria syndrome (LCPS) for this disorder. Affected patients are normal at birth but undergo progressive cutaneous changes in childhood and die in middle age of cardiovascular complications, including accelerated atherosclerosis, calcific valve disease, and cardiomyopathy. In addition, the proband demonstrated cancer susceptibility, a phenotype rarely described for LMNA-based progeria disorders. The LMNA mutation that caused LCPS in this family is a heterozygous c.899A>G (p.D300G) mutation predicted to alter the coiled-coil domain of lamin A/C. In skin fibroblasts isolated from the proband, the processing and levels of lamin A and C are normal. However, nuclear morphology is aberrant and rescued by treatment with farnesyltransferase inhibitors, as is also the case for HGPS and other laminopathies. Our findings advance knowledge of human LMNA progeria syndromes, and raise the possibility that typical and atypical progerias may converge upon a common mechanism to cause premature aging disease.
Collapse
Affiliation(s)
- Megan S Kane
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Schreiber KH, Kennedy BK. When lamins go bad: nuclear structure and disease. Cell 2013; 152:1365-75. [PMID: 23498943 DOI: 10.1016/j.cell.2013.02.015] [Citation(s) in RCA: 293] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Indexed: 12/17/2022]
Abstract
Mutations in nuclear lamins or other proteins of the nuclear envelope are the root cause of a group of phenotypically diverse genetic disorders known as laminopathies, which have symptoms that range from muscular dystrophy to neuropathy to premature aging syndromes. Although precise disease mechanisms remain unclear, there has been substantial progress in our understanding of not only laminopathies, but also the biological roles of nuclear structure. Nuclear envelope dysfunction is associated with altered nuclear activity, impaired structural dynamics, and aberrant cell signaling. Building on these findings, small molecules are being discovered that may become effective therapeutic agents.
Collapse
|
73
|
Cohen TV, Gnocchi VF, Cohen JE, Phadke A, Liu H, Ellis JA, Foisner R, Stewart CL, Zammit PS, Partridge TA. Defective skeletal muscle growth in lamin A/C-deficient mice is rescued by loss of Lap2α. Hum Mol Genet 2013; 22:2852-69. [PMID: 23535822 DOI: 10.1093/hmg/ddt135] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mutations in lamin A/C result in a range of tissue-specific disorders collectively called laminopathies. Of these, Emery-Dreifuss and Limb-Girdle muscular dystrophy 1B mainly affect striated muscle. A useful model for understanding both laminopathies and lamin A/C function is the Lmna(-/-) mouse. We found that skeletal muscle growth and muscle satellite (stem) cell proliferation were both reduced in Lmna(-/-) mice. Lamins A and C associate with lamina-associated polypeptide 2 alpha (Lap2α) and the retinoblastoma gene product, pRb, to regulate cell cycle exit. We found Lap2α to be upregulated in Lmna(-/-) myoblasts (MBs). To specifically test the contribution of elevated Lap2α to the phenotype of Lmna(-/-) mice, we generated Lmna(-/-)Lap2α(-/-) mice. Lifespan and body mass were increased in Lmna(-/-)Lap2α(-/-) mice compared with Lmna(-/-). Importantly, the satellite cell proliferation defect was rescued, resulting in improved myogenesis. Lmna(-/-) MBs also exhibited increased levels of Smad2/3, which were abnormally distributed in the cell and failed to respond to TGFβ1 stimulation as in control cells. However, using SIS3 to inhibit signaling via Smad3 reduced cell death and augmented MB fusion. Together, our results show that perturbed Lap2α/pRb and Smad2/3 signaling are important regulatory pathways mediating defective muscle growth in Lmna(-/-) mice, and that inhibition of either pathway alone or in combination can ameliorate this deleterious phenotype.
Collapse
Affiliation(s)
- Tatiana V Cohen
- Research Center for Genetic Medicine, Children’s National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Zhang H, Kieckhaefer JE, Cao K. Mouse models of laminopathies. Aging Cell 2013; 12:2-10. [PMID: 23095062 DOI: 10.1111/acel.12021] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2012] [Indexed: 01/02/2023] Open
Abstract
The A- and B-type lamins are nuclear intermediate filament proteins in eukaryotic cells with a broad range of functions, including the organization of nuclear architecture and interaction with proteins in many cellular functions. Over 180 disease-causing mutations, termed 'laminopathies,' have been mapped throughout LMNA, the gene for A-type lamins in humans. Laminopathies can range from muscular dystrophies, cardiomyopathy, to Hutchinson-Gilford progeria syndrome. A number of mouse lines carrying some of the same mutations as those resulting in human diseases have been established. These LMNA-related mouse models have provided valuable insights into the functions of lamin A biogenesis and the roles of individual A-type lamins during tissue development. This review groups these LMNA-related mouse models into three categories: null mutants, point mutants, and progeroid mutants. We compare their phenotypes and discuss their potential implications in laminopathies and aging.
Collapse
Affiliation(s)
- Haoyue Zhang
- Department of Cell Biology and Molecular Genetics; University of Maryland; College Park; MD 20742; USA
| | - Julia E. Kieckhaefer
- Department of Cell Biology and Molecular Genetics; University of Maryland; College Park; MD 20742; USA
| | - Kan Cao
- Department of Cell Biology and Molecular Genetics; University of Maryland; College Park; MD 20742; USA
| |
Collapse
|
75
|
Solovei I, Wang AS, Thanisch K, Schmidt CS, Krebs S, Zwerger M, Cohen TV, Devys D, Foisner R, Peichl L, Herrmann H, Blum H, Engelkamp D, Stewart CL, Leonhardt H, Joffe B. LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell 2013; 152:584-98. [PMID: 23374351 DOI: 10.1016/j.cell.2013.01.009] [Citation(s) in RCA: 601] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 09/14/2012] [Accepted: 01/07/2013] [Indexed: 01/26/2023]
Abstract
Eukaryotic cells have a layer of heterochromatin at the nuclear periphery. To investigate mechanisms regulating chromatin distribution, we analyzed heterochromatin organization in different tissues and species, including mice with mutations in the lamin B receptor (Lbr) and lamin A (Lmna) genes that encode nuclear envelope (NE) proteins. We identified LBR- and lamin-A/C-dependent mechanisms tethering heterochromatin to the NE. The two tethers are sequentially used during cellular differentiation and development: first the LBR- and then the lamin-A/C-dependent tether. The absence of both LBR and lamin A/C leads to loss of peripheral heterochromatin and an inverted architecture with heterochromatin localizing to the nuclear interior. Myoblast transcriptome analyses indicated that selective disruption of the LBR- or lamin-A-dependent heterochromatin tethers have opposite effects on muscle gene expression, either increasing or decreasing, respectively. These results show how changes in NE composition contribute to regulating heterochromatin positioning, gene expression, and cellular differentiation during development.
Collapse
Affiliation(s)
- Irina Solovei
- Department of Biology II, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
|
77
|
Dubinska-Magiera M, Zaremba-Czogalla M, Rzepecki R. Muscle development, regeneration and laminopathies: how lamins or lamina-associated proteins can contribute to muscle development, regeneration and disease. Cell Mol Life Sci 2012; 70:2713-41. [PMID: 23138638 PMCID: PMC3708280 DOI: 10.1007/s00018-012-1190-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 09/28/2012] [Accepted: 10/03/2012] [Indexed: 12/22/2022]
Abstract
The aim of this review article is to evaluate the current knowledge on associations between muscle formation and regeneration and components of the nuclear lamina. Lamins and their partners have become particularly intriguing objects of scientific interest since it has been observed that mutations in genes coding for these proteins lead to a wide range of diseases called laminopathies. For over the last 10 years, various laboratories worldwide have tried to explain the pathogenesis of these rare disorders. Analyses of the distinct aspects of laminopathies resulted in formulation of different hypotheses regarding the mechanisms of the development of these diseases. In the light of recent discoveries, A-type lamins—the main building blocks of the nuclear lamina—together with other key elements, such as emerin, LAP2α and nesprins, seem to be of great importance in the modulation of various signaling pathways responsible for cellular differentiation and proliferation.
Collapse
Affiliation(s)
- Magda Dubinska-Magiera
- Department of Animal Developmental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335, Wroclaw, Poland
| | | | | |
Collapse
|
78
|
Choi JC, Wu W, Muchir A, Iwata S, Homma S, Worman HJ. Dual specificity phosphatase 4 mediates cardiomyopathy caused by lamin A/C (LMNA) gene mutation. J Biol Chem 2012; 287:40513-24. [PMID: 23048029 DOI: 10.1074/jbc.m112.404541] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Mutations in LMNA gene cause cardiomyopathy, for which mechanistic insights are lacking. RESULTS Dusp4 expression is enhanced in hearts with LMNA cardiomyopathy, and its overexpression in mice causes it by activating AKT-mTOR signaling that impairs autophagy. CONCLUSIONS Dusp4 causes cardiac dysfunction and may contribute to the development of LMNA cardiomyopathy. SIGNIFICANCE Revealing pathogenic mechanisms of LMNA cardiomyopathy is essential for the development of mechanism-based therapies. Mutations in the lamin A/C gene (LMNA) cause a diverse spectrum of diseases, the most common of which is dilated cardiomyopathy often with skeletal muscular dystrophy. Lamin A and C are fundamental components of the nuclear lamina, a dynamic meshwork of intermediate filaments lining the nuclear envelope inner membrane. Prevailing evidence suggests that the nuclear envelope functions as a signaling node and that abnormality in the nuclear lamina leads to dysregulated signaling pathways that underlie disease pathogenesis. We previously showed that activated ERK1/2 in hearts of a mouse model of LMNA cardiomyopathy (Lmna(H222P/H222P) mice) contributes to disease, but the complete molecular pathogenesis remains poorly understood. Here we uncover a pathogenic role of dual specificity phosphatase 4 (Dusp4), which is transcriptionally induced by ERK1/2. Dusp4 is highly expressed in the hearts of Lmna(H222P/H222P) mice, and transgenic mice with cardiac-selective overexpression of Dusp4 display heart dysfunction similar to LMNA cardiomyopathy. In both primary tissue and cell culture models, overexpression of Dusp4 positively regulates AKT-mTOR signaling, resulting in impaired autophagy. These findings identify a pathogenic role of Dusp4 in LMNA cardiomyopathy.
Collapse
Affiliation(s)
- Jason C Choi
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
79
|
Jahn D, Schramm S, Schnölzer M, Heilmann CJ, de Koster CG, Schütz W, Benavente R, Alsheimer M. A truncated lamin A in the Lmna -/- mouse line: implications for the understanding of laminopathies. Nucleus 2012; 3:463-74. [PMID: 22895093 PMCID: PMC3474667 DOI: 10.4161/nucl.21676] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
During recent years a number of severe clinical syndromes, collectively termed laminopathies, turned out to be caused by various, distinct mutations in the human LMNA gene. Arising from this, remarkable progress has been made to unravel the molecular pathophysiology underlying these disorders. A great benefit in this context was the generation of an A-type lamin deficient mouse line (Lmna−/−) by Sullivan and others,1 which has become one of the most frequently used models in the field and provided profound insights to many different aspects of A-type lamin function. Here, we report the unexpected finding that these mice express a truncated Lmna gene product on both transcriptional and protein level. Combining different approaches including mass spectrometry, we precisely define this product as a C-terminally truncated lamin A mutant that lacks domains important for protein interactions and post-translational processing. Based on our findings we discuss implications for the interpretation of previous studies using Lmna−/− mice and the concept of human laminopathies.
Collapse
Affiliation(s)
- Daniel Jahn
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg; Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Kubben N, Adriaens M, Meuleman W, Voncken JW, van Steensel B, Misteli T. Mapping of lamin A- and progerin-interacting genome regions. Chromosoma 2012; 121:447-64. [PMID: 22610065 PMCID: PMC3443488 DOI: 10.1007/s00412-012-0376-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 04/23/2012] [Accepted: 04/26/2012] [Indexed: 12/15/2022]
Abstract
Mutations in the A-type lamins A and C, two major components of the nuclear lamina, cause a large group of phenotypically diverse diseases collectively referred to as laminopathies. These conditions often involve defects in chromatin organization. However, it is unclear whether A-type lamins interact with chromatin in vivo and whether aberrant chromatin–lamin interactions contribute to disease. Here, we have used an unbiased approach to comparatively map genome-wide interactions of gene promoters with lamin A and progerin, the mutated lamin A isoform responsible for the premature aging disorder Hutchinson–Gilford progeria syndrome (HGPS) in mouse cardiac myoytes and embryonic fibroblasts. We find that lamin A-associated genes are predominantly transcriptionally silent and that loss of lamin association leads to the relocation of peripherally localized genes, but not necessarily to their activation. We demonstrate that progerin induces global changes in chromatin organization by enhancing interactions with a specific subset of genes in addition to the identified lamin A-associated genes. These observations demonstrate disease-related changes in higher order genome organization in HGPS and provide novel insights into the role of lamin–chromatin interactions in chromatin organization.
Collapse
Affiliation(s)
- Nard Kubben
- Genome Cell Biology Group, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
81
|
Bertrand AT, Renou L, Papadopoulos A, Beuvin M, Lacène E, Massart C, Ottolenghi C, Decostre V, Maron S, Schlossarek S, Cattin ME, Carrier L, Malissen M, Arimura T, Bonne G. DelK32-lamin A/C has abnormal location and induces incomplete tissue maturation and severe metabolic defects leading to premature death. Hum Mol Genet 2012; 21:1037-48. [PMID: 22090424 DOI: 10.1093/hmg/ddr534] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The LMNA gene encodes lamin A/C intermediate filaments that polymerize beneath the nuclear membrane, and are also found in the nucleoplasm in an uncharacterized assembly state. They are thought to have structural functions and regulatory roles in signaling pathways via interaction with transcription factors. Mutations in LMNA have been involved in numerous inherited human diseases, including severe congenital muscular dystrophy (L-CMD). We created the Lmna(ΔK32) knock-in mouse harboring a L-CMD mutation. Lmna(ΔK32/ΔK32) mice exhibited striated muscle maturation delay and metabolic defects, including reduced adipose tissue and hypoglycemia leading to premature death. The level of mutant proteins was markedly lower in Lmna(ΔK32/ΔK32), and while wild-type lamin A/C proteins were progressively relocated from nucleoplasmic foci to the nuclear rim during embryonic development, mutant proteins were maintained in nucleoplasmic foci. In the liver and during adipocyte differentiation, expression of ΔK32-lamin A/C altered sterol regulatory element binding protein 1 (SREBP-1) transcriptional activities. Taken together, our results suggest that lamin A/C relocation at the nuclear lamina seems important for tissue maturation potentially by releasing its inhibitory function on transcriptional factors, including but not restricted to SREBP-1. And importantly, L-CMD patients should be investigated for putative metabolic disorders.
Collapse
|