51
|
Cheng K, Wu F, Cao F. Intramyocardial autologous cell engraftment in patients with ischaemic heart failure: a meta-analysis of randomised controlled trials. Heart Lung Circ 2013; 22:887-94. [PMID: 23806195 DOI: 10.1016/j.hlc.2013.04.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/30/2013] [Accepted: 04/09/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND Intramyocardial cellular delivery provides a promising therapeutic strategy for ischaemic cardiac dysfunction. However, individual studies have reported controversial results. METHODS Relevant trials were identified by systematic search of MEDLINE, EMBASE, the Cochrane database, and CINAH database. Studies, which applied randomised design and compared intramyocardial cell injection with placebo or optimal medical therapy in patients with chronic ischaemic heart failure, were eligible. RESULTS A total of 210 participants in five randomised controlled trials were included. The pooled analyses showed that cell therapy did not significantly improve left ventricular ejection fraction compared with the control (95% CI -0.35 to 0.31, p=0.91). Nevertheless, cell therapy provided a benefit in increasing 6-min walk distance (95% CI 21.09 m-142.62 m, p=0.008), improving MLHF score (95% CI -25.21 to -3.55, p=0.009), and lowering the incidence of NYHA functional class deterioration (95% CI 0.05-0.76, p=0.02). However, the novel procedure did not result in a significant reduction in all-cause mortality. Conversely, cell therapy did not significantly increase the risk of ventricular tachycardia or acute heart failure, however we were underpowered to evaluate these endpoints. CONCLUSIONS Intramyocardial cell therapy was feasible in treating patients with ischaemic heart failure.
Collapse
Affiliation(s)
- Kang Cheng
- Department of Cardiology, XiJing Hospital, Fourth Military Medical University, Xi'an ShanXi 710032, China.
| | | | | |
Collapse
|
52
|
O'Blenes SB, Li AW, Bowen C, Debay D, Althobaiti M, Clarke J. Impact of hepatocyte growth factor on skeletal myoblast transplantation late after myocardial infarction. Drug Target Insights 2013; 7:9-17. [PMID: 23700363 PMCID: PMC3653889 DOI: 10.4137/dti.s11802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
In clinical studies, skeletal myoblast (SKMB) transplantation late after myocardial infarction (MI) has minimal impact on left ventricular (LV) function. This may be related to our previous observation that the extent of SKMB engraftment is minimal in chronic MI when compared to acute MI, which correlates with decreased hepatocyte growth factor (HGF) expression, an important regulator of SKMB function. Here, we investigated delivery of exogenous HGF as a strategy for augmenting SKMB engraftment late after MI. Rats underwent SKMB transplantation 4 weeks after coronary ligation. HGF or vehicle control was delivered intravenously during the subsequent 2 weeks. LV function was assessed by MRI before and 2 weeks after SKMB transplantation. We evaluated HGF delivery, SKMB engraftment, and expression of genes associated with post-MI remodeling. Serum HGF was 6.2 ± 2.4 ng/mL after 2 weeks of HGF infusion (n = 7), but undetectable in controls (n = 7). LV end-diastolic volume and ejection fraction did not improve with HGF treatment (321 ± 27 mm3, 42% ± 2% vs. 285 ± 33 mm3, 43% ± 2%, HGF vs. control). MIs were larger in HGF-treated animals (50 ± 7 vs. 30 ± 6 mm3, P = 0.046), but the volume of engrafted SKMBs or percentage of MIs occupied by SKMBs did not increase with HGF (1.7 ± 0.3 mm3, 4.7% ± 1.9% vs. 1.4 ± 0.4 mm3, 5.3% ± 1.6%, HGF vs. control). Expression of genes associated with post-infarction remodeling was not altered by HGF. Delivery of exogenous HGF failed to augment SKMB engraftment and functional recovery in chronic MI. Expression of genes associated with LV remodeling was not altered by HGF. Alternative strategies to enhance engraftment of SKMB must be explored to optimize the clinical efficacy of SKMB transplantation.
Collapse
Affiliation(s)
- Stacy B O'Blenes
- IWK Health Centre, Halifax, Nova Scotia, Canada. ; Dalhousie University Department of Surgery, Halifax, Nova Scotia, Canada. ; Dalhousie University Department of Physiology and Biophysics, Halifax, Nova Scotia, Canada
| | | | | | | | | | | |
Collapse
|
53
|
Human cardiospheres as a source of multipotent stem and progenitor cells. Stem Cells Int 2013; 2013:916837. [PMID: 23766771 PMCID: PMC3666231 DOI: 10.1155/2013/916837] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/19/2013] [Indexed: 12/20/2022] Open
Abstract
Cardiospheres (CSs) are self-assembling multicellular clusters from the cellular outgrowth from cardiac explants cultured in nonadhesive substrates. They contain a core of primitive, proliferating cells, and an outer layer of mesenchymal/stromal cells and differentiating cells that express cardiomyocyte proteins and connexin 43. Because CSs contain both primitive cells and committed progenitors for the three major cell types present in the heart, that is, cardiomyocytes, endothelial cells, and smooth muscle cells, and because they are derived from percutaneous endomyocardial biopsies, they represent an attractive cell source for cardiac regeneration. In preclinical studies, CS-derived cells (CDCs) delivered to infarcted hearts resulted in improved cardiac function. CDCs have been tested safely in an initial phase-1 clinical trial in patients after myocardial infarction. Whether or not CDCs are superior to purified populations, for example, c-kit(+) cardiac stem cells, or to gene therapy approaches for cardiac regeneration remains to be evaluated.
Collapse
|
54
|
Kirkton RD, Bursac N. Genetic engineering of somatic cells to study and improve cardiac function. Europace 2013; 14 Suppl 5:v40-v49. [PMID: 23104914 DOI: 10.1093/europace/eus269] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIMS To demonstrate the utility of genetically engineered excitable cells for studies of basic electrophysiology and cardiac cell therapy. METHODS AND RESULTS 'Zig-zag' networks of neonatal rat ventricular myocytes (NRVMs) were micropatterned onto thin elastomeric films to mimic the slow action potential (AP) conduction found in fibrotic myocardium. Addition of genetically engineered excitable human embryonic kidney cells (HEK-293 cells) ('Ex-293' cells stably expressing Kir2.1, Na(v)1.5, and Cx43 channels) increased both cardiac conduction velocity by 370% and twitch force amplitude by 64%. Furthermore, we stably expressed mutant Na(v)1.5 [A1924T (fast sodium channel mutant (substitution of alanine by threonine at amino acid 1924)] channels with hyperpolarized steady-state activation and showed that, despite a 71.6% reduction in peak I(Na), these cells propagated APs at the same velocity as the wild-type Na(v)1.5-expressing Ex-293 cells. Stable expression of Ca(v)3.3 (T-type voltage-gated calcium) channels in Ex-293 cells (to generate an 'ExCa-293' line) significantly increased their AP duration and reduced repolarization gradients in cocultures of these cells and NRVMs. Additional expression of an optogenetic construct [ChIEF (light-gated Channelrhodopsin mutant)]enabled light-based control of AP firing in ExCa-293 cells. CONCLUSION We show that, despite being non-contractile, genetically engineered excitable cells can significantly improve both electrical and mechanical function of engineered cardiac tissues in vitro. We further demonstrate the utility of engineered cells for tissue-level studies of basic electrophysiology and cardiac channelopathies. In the future, this novel platform could be utilized in the high-throughput design of new genetically encoded indicators of cell electrical function, validation, and improvement of computer models of AP conduction, and development of novel engineered somatic cell therapies for the treatment of cardiac infarction and arrhythmias.
Collapse
Affiliation(s)
- Robert D Kirkton
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
55
|
Takashima SI, Tempel D, Duckers HJ. Current outlook of cardiac stem cell therapy towards a clinical application. Heart 2013; 99:1772-84. [PMID: 23525708 DOI: 10.1136/heartjnl-2012-303308] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Shin-Ichiro Takashima
- University Medical Center Utrecht, Division Cardiology & Pulmonology, Interventional Cardiology Department, Utrecht, The Netherlands
| | | | | |
Collapse
|
56
|
|
57
|
Abstract
Cellular cardiomyoplasty is a cell therapy using stem cells or progenitor cells for myocardial regeneration to improve cardiac function and mitigate heart failure. Since we first published cellular cardiomyoplasty in 1989, this procedure became the innovative method to treat damaged myocardium other than heart transplantation. A significant improvement in cardiac function, metabolism, and perfusion is generally observed in experimental and clinical studies, but the improvement is mild and incomplete. Although safety, feasibility, and efficacy have been well documented for the procedure, the beneficial mechanisms remain unclear and optimization of the procedure requires further study. This chapter briefly reviews the stem cells used for cellular cardiomyoplasty and their clinical outcomes with possible improvements in future studies.
Collapse
Affiliation(s)
- Elizabeth K Lamb
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | | | | |
Collapse
|
58
|
Do we have a future with transcatheter adventitial delivery of stem cells? Int J Cardiol 2012; 165:217-21. [PMID: 23218580 DOI: 10.1016/j.ijcard.2012.11.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/11/2012] [Indexed: 11/20/2022]
Abstract
Critically evaluating the methodology of the adventitial delivery of stem cells, some specific options should be underlined. Adventitia as the most superficial layer, consisting of connective tissue has to be distinguished of perivascular tissues. By strict definition, an adventitia is the outermost connective tissue covering any organ, or vessel. The "adventitial" delivery of stem cells with a 1mm micro-needle means a delivery to superficial so called pericardial myocardium, perivascular fat tissues, including a risk of perforation and injury of soft tissues. In fact, the mapping of the artery with visualization of the three-layer vessel structure and perivascular tissues as well as pericardial space with the state-of-the-art imaging approaches including IVUS (intravascular ultrasound) or OCT (optical coherence tomography) allows to find an optimal site for injection, prevents any technical complications and improves efficacy. NOGA magnetic navigation system still remains the optimal tool for the stem cell delivery to myocardium with appropriate visualization of necrosis and peri-infarct tissues. Potentially, more advanced imaging provides a chance to deliver infusate to the adventitial layer, which is a gate to the vessel wall for inflammation as well as a source of stem and progenitor cells, and myofibroblasts.
Collapse
|
59
|
Hsiao LC, Carr C, Chang KC, Lin SZ, Clarke K. Stem cell-based therapy for ischemic heart disease. Cell Transplant 2012; 22:663-75. [PMID: 23044395 DOI: 10.3727/096368912x655109] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Despite great advances in therapy over the past decades, ischemic heart disease (IHD) remains the leading cause of death worldwide because the decrease in mortality after acute myocardial infarction (AMI) leads to a longer life span in patients with chronic postinfarct heart failure (HF). There are no existing medical treatments that can cure chronic HF and the only currently available therapeutic option for end-stage HF is heart transplantation. However, transplantation is limited by the shortage of donor organs and patients require lifelong immunosuppression. In the past 10 years, stem cell-based cardiac therapy has been proposed as a promising approach for the treatment of IHD. There is a variety of potential stem cell types for cardiac repair and regeneration, including bone marrow cells (BMCs), resident cardiac stem cells (CSCs) and induced pluripotent stem cells (iPSCs). Stem cell-based therapy may comprise cell transplantation or cardiac tissue engineering (CTE), which might be an attractive alternative to solve the problems of low retention and poor survival of transplanted cells. This review focuses on the characteristics of stem cells from various sources and discusses the strategies of stem cell-based therapy for the treatment of IHD.
Collapse
Affiliation(s)
- Lien-Cheng Hsiao
- Cardiac Metabolism Research Group, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | | | | | | | | |
Collapse
|
60
|
Mozid AM, Jones D, Arnous S, Saunders N, Wragg A, Martin J, Agrawal S, Mathur A. The effects of age, disease state, and granulocyte colony-stimulating factor on progenitor cell count and function in patients undergoing cell therapy for cardiac disease. Stem Cells Dev 2012; 22:216-23. [PMID: 22834565 DOI: 10.1089/scd.2012.0139] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The potential of autologous bone marrow (BM)-derived progenitor/stem cell (BMSC) therapy for cardiac repair maybe limited by patient-related factors, such as age and the disease process itself. In this exploratory analysis, we assessed the impact of age, different disease states, and granulocyte colony-stimulating factor (G-CSF) therapy on progenitor cell concentration and function in patients recruited to our clinical trials of BMSC therapy for ischaemic heart failure (IHD), dilated cardiomyopathy (DCM), and acute myocardial infarction (AMI). The concentrations of CD34+ cells and endothelial progenitor cells (EPCs) were measured in the peripheral blood (PB) and BM of 201 patients. Additionally, cell mobilization following G-CSF and the functional capability of CD34+ cells (using a colony-forming unit assay) were assessed. We found that older age was associated with a lower PB CD34+ cell concentration in the whole study group as well as blunting the effect of G-CSF on BMSC mobilization in IHD patients. Nonischaemic heart failure (DCM) was associated with a significantly higher baseline PB CD34+ and EPC concentration compared to IHD. Following G-CSF treatment, the CD34+ cell concentration was greater in the BM compared to PB, however, the PB CD34+ cells appeared to have a greater and improved (compared to baseline) functional potential. Our results suggest treatment with G-CSF improves the functional potential of mobilized circulating progenitor cells compared to those in the BM. Further work is required to determine which source of cells is best for the purposes of cardiac repair following G-CSF therapy.
Collapse
Affiliation(s)
- Abdul M Mozid
- Department of Cardiology, London Chest Hospital, Barts Health NHS Trust, London, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Rationale and design of the first randomized, double-blind, placebo-controlled trial of intramyocardial injection of autologous bone-marrow derived Mesenchymal Stromal Cells in chronic ischemic Heart Failure (MSC-HF Trial). Am Heart J 2012; 164:285-91. [PMID: 22980293 DOI: 10.1016/j.ahj.2012.05.026] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 05/25/2012] [Indexed: 01/16/2023]
Abstract
BACKGROUND Stem cell therapy is an emerging treatment modality in cardiovascular disease. The best cell type and delivery method in different cardiovascular diseases remain to be determined. STUDY DESIGN The MSC-HF trial is a phase 2, single-center, double-blind, randomized, placebo-controlled trial of intramyocardial delivery of autologous bone-marrow derived mesenchymal stromal cells (MSCs) in patients with chronic ischemic heart failure. A total of 60 patients will be randomized in a 2:1 pattern to receive intramyocardial injections of either MSCs or placebo. Patients will be followed up for 12 months. METHODS Bone marrow will be obtained by aspiration from the iliac crest. Mesenchymal stromal cells will be isolated, and culture will be expanded for 6 to 8 weeks. A total of 12 to 15 MSC or placebo injections will be placed in an ischemic viable region of the myocardium using the electromechanical NOGA-XP system (Biologics Delivery Systems Group, Johnson & Johnson, Irwindale, CA). ENDPOINTS The primary endpoint is change in left ventricle end-systolic volume, measured by magnetic resonance imaging (MRI) or computed tomography (CT) at 6-month follow-up. Secondary endpoints are left ventricle ejection fraction, ventricular volumes, wall thickness, and systolic wall thickening measured by MRI or CT in addition to measurement of myocardial scar tissue by MRI. Other secondary endpoints are safety of treatment, clinical symptoms and functional capacity, weekly angina attacks, use of short-term nitroglycerine, and quality of life. CONCLUSION A randomized, double-blind, placebo-controlled, clinical trial of intramyocardial delivery of MSCs in patients with ischemic heart failure has been set up to confirm the positive findings in open-labeled clinical trials.
Collapse
|
62
|
Liu Y, Tse HF. The proarrhythmic risk of cell therapy for cardiovascular diseases. Expert Rev Cardiovasc Ther 2012; 9:1593-601. [PMID: 22103878 DOI: 10.1586/erc.11.171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Stem cell therapy is an emerging therapeutic approach for the treatment of cardiovascular diseases. Experimental studies have demonstrated that different types of stem cells, including bone marrow-derived cells, mesenchymal stem cells, skeletal myoblasts, and cardiac progenitor cells and embryonic stem cells, can improve cardiac function after myocardial injuries. Nevertheless, the potential proarrhythmic risk after stem cell transplantation remains a major concern. Several mechanisms, including the immaturity of electrical phenotypes of the transplanted cardiomyocytes, poor cell-cell coupling and cardiac nerve sprouting, may contribute to arrhythmogenic risk after stem cell transplantation. This review summarizes the potential theoretical arrhythmogenic mechanisms associated with different types of stem cells for the treatment of cardiovascular diseases. Nevertheless, current experimental and clinical data on the proarrhythmic risk for different types of stem cell transplantation are limited, and await further experimental and clinical investigation.
Collapse
Affiliation(s)
- Yuan Liu
- Cardiology Division, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, HKSAR, China
| | | |
Collapse
|
63
|
Campbell NG, Suzuki K. Cell delivery routes for stem cell therapy to the heart: current and future approaches. J Cardiovasc Transl Res 2012; 5:713-26. [PMID: 22648235 DOI: 10.1007/s12265-012-9378-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 05/15/2012] [Indexed: 12/21/2022]
Abstract
An important factor to determine the success of stem cell therapy to the heart is the choice of cell delivery route. This will affect the fate of donor cells and subsequently influence the outcome of treatment; however, there is currently no optimum cell delivery route appropriate for every disease condition or every donor cell type. This review summarises currently available approaches for administering cells to the heart, with a particular focus on cell retention/survival and the therapeutic benefits seen in preclinical and clinical studies. Two major approaches are intracoronary and intramyocardial injection, which have been widely used for the delivery of various types of cells. Although there are advantages to both approaches, donor cell retention and survival are poor using these methods, potentially limiting therapeutic effects. Various attempts to improve current approaches, along with the development of emerging new approaches, are also described and discussed in this review.
Collapse
Affiliation(s)
- Niall G Campbell
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
| | | |
Collapse
|
64
|
Fraccarollo D, Galuppo P, Bauersachs J. Novel therapeutic approaches to post-infarction remodelling. Cardiovasc Res 2012; 94:293-303. [PMID: 22387461 DOI: 10.1093/cvr/cvs109] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Adverse cardiac remodelling is a major cause of morbidity and mortality following acute myocardial infarction (MI). Mechanical and neurohumoral factors involved in structural and molecular post-infarction remodelling were important targets in research and treatment for years. More recently, therapeutic strategies that address myocardial regeneration and pathophysiological mechanisms of infarct wound healing appear to be useful novel tools to prevent progressive ventricular dilation, functional deterioration, life-threatening arrhythmia, and heart failure. This review provides an overview of future and emerging therapies for cardiac wound healing and remodelling after MI.
Collapse
Affiliation(s)
- Daniela Fraccarollo
- Klinik fuer Kardiologie und Angiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | | | | |
Collapse
|
65
|
Xu M, Millard RW, Ashraf M. Role of GATA-4 in differentiation and survival of bone marrow mesenchymal stem cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 111:217-41. [PMID: 22917233 DOI: 10.1016/b978-0-12-398459-3.00010-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell and tissue regeneration is a relatively new research field and it incorporates a novel application of molecular genetics. Combinatorial approaches for stem-cell-based therapies wherein guided differentiation into cardiac lineage cells and cells secreting paracrine factors may be necessary to overcome the limitations and shortcomings of a singular approach. GATA-4, a GATA zinc-finger transcription factor family member, has been shown to regulate differentiation, growth, and survival of a wide range of cell types. In this chapter, we discuss whether overexpression of GATA-4 increases mesenchymal stem cell (MSC) transdifferentiation into cardiac phenotype and enhances the MSC secretome, thereby increasing cell survival and promoting postinfarction cardiac angiogenesis. MSCs engineered with GATA-4 enhance their capacity to differentiate into cardiac cell phenotypes, improve survival of the cardiac progenitor cells and their offspring, and modulate the paracrine activity of stem cells to support their angiomyogenic potential and cardioprotective effects.
Collapse
Affiliation(s)
- Meifeng Xu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | |
Collapse
|
66
|
MacLean S, Khan WS, Malik AA, Anand S, Snow M. The potential of stem cells in the treatment of skeletal muscle injury and disease. Stem Cells Int 2011; 2012:282348. [PMID: 22220178 PMCID: PMC3246792 DOI: 10.1155/2012/282348] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 09/18/2011] [Indexed: 01/05/2023] Open
Abstract
Tissue engineering is a pioneering field with huge advances in recent times. These advances are not only in the understanding of how cells can be manipulated but also in potential clinical applications. Thus, tissue engineering, when applied to skeletal muscle cells, is an area of huge prospective benefit to patients with muscle disease/damage. This could include damage to muscle from trauma and include genetic abnormalities, for example, muscular dystrophies. Much of this research thus far has been focused on satellite cells, however, mesenchymal stem cells have more recently come to the fore. In particular, results of trials and further research into their use in heart failure, stress incontinence, and muscular dystrophies are eagerly awaited. Although no doubt, stem cells will have much to offer in the future, the results of further research still limit their use.
Collapse
Affiliation(s)
- S. MacLean
- University of Manchester, Manchester M13 9PL, UK
| | - W. S. Khan
- Institute of Orthpaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital, Stanmore, Middlesex HA7 4LP, UK
| | - A. A. Malik
- Spinal Deformity Unit, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, Middlesex HA7 4LP, UK
| | - S. Anand
- Stepping Hill Hospital, Stockport SK2 7JE, UK
| | - M. Snow
- Department of Sports Inury, Royal National Orthopaedic Hospital, Birimingham B31 2AP, UK
| |
Collapse
|
67
|
Psaltis PJ, Simari RD, Rodriguez-Porcel M. Emerging roles for integrated imaging modalities in cardiovascular cell-based therapeutics: a clinical perspective. Eur J Nucl Med Mol Imaging 2011; 39:165-81. [PMID: 21901381 DOI: 10.1007/s00259-011-1925-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/18/2011] [Indexed: 12/20/2022]
Abstract
Despite preclinical promise, the progress of cell-based therapy to clinical cardiovascular practice has been slowed by several challenges and uncertainties that have been highlighted by the conflicting results of human trials. Most telling has been the revelation that current strategies fall short of achieving sufficient retention and engraftment of cells to meet the ambitious objective of myocardial regeneration. This has sparked novel research into the refinement of cell biology and delivery to overcome these shortcomings. Within this context, molecular imaging has emerged as a valuable tool for providing noninvasive surveillance of cell fate in vivo. Direct and indirect labelling of cells can be coupled with clinically relevant imaging modalities, such as radionuclide single photon emission computed tomography and positron emission tomography, and magnetic resonance imaging, to assess their short- and long-term distributions, along with their viability, proliferation and functional interaction with the host myocardium. This review details the strengths and limitations of the different cell labelling and imaging techniques and their potential application to the clinical realm. We also consider the broader, multifaceted utility of imaging throughout the cell therapy process, providing a discussion of its considerable value during cell delivery and its importance during the evaluation of cardiac outcomes in clinical studies.
Collapse
Affiliation(s)
- Peter J Psaltis
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | |
Collapse
|
68
|
Abstract
Stem cell therapy has emerged as a potential therapeutic strategy for myocardial infarction (MI). Multiple cell types used to regenerate the injured heart have been tested in clinical trials. The results of studies of skeletal myoblasts (SKMs) have been resoundingly negative, and the bone marrow-derived-cell experience leaves much to be desired. A number of lessons arise from the large-scale bone marrow-derived-cell trials: (i) efficacy has been inconsistent and, overall, modest; however, unexpectedly meaningful benefits on clinical end points have been reported; (ii) cardiac engraftment of cells is disappointingly low, and delivery methods need to be optimized and combined with strategies to boost retention; (iii) the cardiomyogenic potential of bone marrow cells is low; however, functional benefit can be achieved through indirect pathways; and (iv) autologous cell therapy has severe limitations; highly standardized allogeneic cell products are attractive. Given the spotty trajectory of cell therapy to date, a more systematic approach to product development and preclinical optimization will facilitate more effective clinical translation.
Collapse
|
69
|
Henry T, Taylor D. Skeletal myoblasts for myocardial regeneration in patients with congestive heart failure: where have all the answers gone? EUROINTERVENTION 2011; 6:789-93. [DOI: 10.4244/eijv6i7a135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
70
|
Abstract
INTRODUCTION Stem cell therapy has emerged as a promising strategy for the treatment of ischemic cardiomyopathy. SOURCES OF DATA Multiple candidate cell types have been used in preclinical animal models and in clinical trials to repair or regenerate the injured heart either directly (through formation of new transplanted tissue) or indirectly (through paracrine effects activating endogenous regeneration). AREAS OF AGREEMENT (i) Clinical trials examining the safety and efficacy of bone marrow derived cells in patients with heart disease are promising, but results leave much room for improvement. (ii) The safety profile has been quite favorable. (iii) Efficacy has been inconsistent and, overall, modest. (iv) Tissue retention of cells after delivery into the heart is disappointingly low. (v) The beneficial effects of adult stem cell therapy are predominantly mediated by indirect paracrine mechanisms. AREAS OF CONTROVERSY The cardiogenic potential of bone marrow-derived cells, the mechanism whereby small numbers of poorly-retained cells translate to measurable clinical benefit, and the overall impact on clinical outcomes are hotly debated. GROWING POINTS/AREAS TIMELY FOR DEVELOPING RESEARCH: This overview of the field leaves us with cautious optimism, while motivating a search for more effective delivery methods, better strategies to boost cell engraftment, more apt patient populations, safe and effective 'off the shelf' cell products and more potent cell types.
Collapse
|