51
|
Pourali G, Kazemi D, Chadeganipour AS, Arastonejad M, Kashani SN, Pourali R, Maftooh M, Akbarzade H, Fiuji H, Hassanian SM, Ghayour-Mobarhan M, Ferns GA, Khazaei M, Avan A. Microbiome as a biomarker and therapeutic target in pancreatic cancer. BMC Microbiol 2024; 24:16. [PMID: 38183010 PMCID: PMC10768369 DOI: 10.1186/s12866-023-03166-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024] Open
Abstract
Studying the effects of the microbiome on the development of different types of cancer has recently received increasing research attention. In this context, the microbial content of organs of the gastrointestinal tract has been proposed to play a potential role in the development of pancreatic cancer (PC). Proposed mechanisms for the pathogenesis of PC include persistent inflammation caused by microbiota leading to an impairment of antitumor immune surveillance and altered cellular processes in the tumor microenvironment. The limited available diagnostic markers that can currently be used for screening suggest the importance of microbial composition as a non-invasive biomarker that can be used in clinical settings. Samples including saliva, stool, and blood can be analyzed by 16 s rRNA sequencing to determine the relative abundance of specific bacteria. Studies have shown the potentially beneficial effects of prebiotics, probiotics, antibiotics, fecal microbial transplantation, and bacteriophage therapy in altering microbial diversity, and subsequently improving treatment outcomes. In this review, we summarize the potential impact of the microbiome in the pathogenesis of PC, and the role these microorganisms might play as biomarkers in the diagnosis and determining the prognosis of patients. We also discuss novel treatment methods being used to minimize or prevent the progression of dysbiosis by modulating the microbial composition. Emerging evidence is supportive of applying these findings to improve current therapeutic strategies employed in the treatment of PC.
Collapse
Affiliation(s)
- Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Danial Kazemi
- Student Research Committee, Isfahan University of Medical Sciences, Hezar Jerib Street, Isfahan, Iran
| | | | - Mahshid Arastonejad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Roozbeh Pourali
- Student Research Committee, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Akbarzade
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fiuji
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Department of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq.
- School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane City, QLD, 4000, Australia.
| |
Collapse
|
52
|
Shen X, Xie A, Li Z, Jiang C, Wu J, Li M, Yue X. Research Progress for Probiotics Regulating Intestinal Flora to Improve Functional Dyspepsia: A Review. Foods 2024; 13:151. [PMID: 38201179 PMCID: PMC10778471 DOI: 10.3390/foods13010151] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
Functional dyspepsia (FD) is a common functional gastrointestinal disorder. The pathophysiology remains poorly understood; however, alterations in the small intestinal microbiome have been observed. Current treatments for FD with drugs are limited, and there are certain safety problems. A class of active probiotic bacteria can control gastrointestinal homeostasis, nutritional digestion and absorption, and the energy balance when taken in certain dosages. Probiotics play many roles in maintaining intestinal microecological balance, improving the intestinal barrier function, and regulating the immune response. The presence and composition of intestinal microorganisms play a vital role in the onset and progression of FD and serve as a critical factor for both regulation and potential intervention regarding the management of this condition. Thus, there are potential advantages to alleviating FD by regulating the intestinal flora using probiotics, targeting intestinal microorganisms. This review summarizes the research progress of probiotics regarding improving FD by regulating intestinal flora and provides a reference basis for probiotics to improve FD.
Collapse
Affiliation(s)
- Xinyu Shen
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (X.S.); (Z.L.); (C.J.); (J.W.)
| | - Aijun Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 119077, Singapore;
| | - Zijing Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (X.S.); (Z.L.); (C.J.); (J.W.)
| | - Chengxi Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (X.S.); (Z.L.); (C.J.); (J.W.)
| | - Jiaqi Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (X.S.); (Z.L.); (C.J.); (J.W.)
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (X.S.); (Z.L.); (C.J.); (J.W.)
| | - Xiqing Yue
- Shenyang Key Laboratory of Animal Product Processing, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
53
|
Thornton T, Mills D, Bliss E. The impact of lipopolysaccharide on cerebrovascular function and cognition resulting from obesity-induced gut dysbiosis. Life Sci 2024; 336:122337. [PMID: 38072189 DOI: 10.1016/j.lfs.2023.122337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
Obesity is a worldwide epidemic coinciding with a concomitant increase in the incidence of neurodegenerative diseases, particularly dementia. Obesity is characterised by increased adiposity, chronic low-grade systemic inflammation, and oxidative stress, which promote endothelial dysfunction. Endothelial dysfunction reduces cerebrovascular function leading to reduced cerebral blood flow and, eventually, cognitive decline, thus predisposing to a neurodegenerative disease. Obesity is also characterised by gut dysbiosis and a subsequent increase in the lipopolysaccharide which increasingly activates toll-like receptor 4 (TLR4) and further promotes chronic low-grade systemic inflammation. This also disrupts the crosstalk within the gut-brain axis, thus influencing the functions of the central nervous system, including cognition. However, the mechanisms by which obesity-related increases in oxidative stress, inflammation and endothelial dysfunction are driven by, or associated with, increased systemic lipopolysaccharide leading to reduced cerebrovascular function and cognition, beyond normal ageing, have not been elucidated. Hence, this review examines how increased concentrations of lipopolysaccharide and the subsequent increased TLR4 activation observed in obesity exacerbate the development of obesity-induced reductions in cerebrovascular function and cognition.
Collapse
Affiliation(s)
- Tammy Thornton
- School of Health and Medical Sciences, University of Southern Queensland, Ipswich, QLD 4305, Australia; Respiratory and Exercise Physiology Research Group, School of Health and Medical Sciences, University of Southern Queensland, Ipswich, QLD 4305, Australia.
| | - Dean Mills
- School of Health and Medical Sciences, University of Southern Queensland, Ipswich, QLD 4305, Australia; Respiratory and Exercise Physiology Research Group, School of Health and Medical Sciences, University of Southern Queensland, Ipswich, QLD 4305, Australia; Centre for Health Research, Institute for Resilient Regions, University of Southern Queensland, Ipswich, QLD 4305, Australia; Molecular Biomarkers Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Edward Bliss
- School of Health and Medical Sciences, University of Southern Queensland, Ipswich, QLD 4305, Australia; Respiratory and Exercise Physiology Research Group, School of Health and Medical Sciences, University of Southern Queensland, Ipswich, QLD 4305, Australia; Centre for Health Research, Institute for Resilient Regions, University of Southern Queensland, Ipswich, QLD 4305, Australia; Molecular Biomarkers Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| |
Collapse
|
54
|
Elsasser TH, Faulkenberg S. Physiology of Gut Water Balance and Pathomechanics of Diarrhea. PRODUCTION DISEASES IN FARM ANIMALS 2024:179-209. [DOI: 10.1007/978-3-031-51788-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
55
|
Mishra V, Yadav D, Solanki KS, Koul B, Song M. A Review on the Protective Effects of Probiotics against Alzheimer's Disease. BIOLOGY 2023; 13:8. [PMID: 38248439 PMCID: PMC10813289 DOI: 10.3390/biology13010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024]
Abstract
This review summarizes the protective effects of probiotics against Alzheimer's disease (AD), one of the most common neurodegenerative disorders affecting older adults. This disease is characterized by the deposition of tau and amyloid β peptide (Aβ) in different parts of the brain. Symptoms observed in patients with AD include struggles with writing, speech, memory, and knowledge. The gut microbiota reportedly plays an important role in brain functioning due to its bidirectional communication with the gut via the gut-brain axis. The emotional and cognitive centers in the brain are linked to the functions of the peripheral intestinal system via this gut-brain axis. Dysbiosis has been linked to neurodegenerative disorders, indicating the significance of gut homeostasis for proper brain function. Probiotics play an important role in protecting against the symptoms of AD as they restore gut-brain homeostasis to a great extent. This review summarizes the characteristics, status of gut-brain axis, and significance of gut microbiota in AD. Review and research articles related to the role of probiotics in the treatment of AD were searched in the PubMed database. Recent studies conducted using animal models were given preference. Recent clinical trials were searched for separately. Several studies conducted on animal and human models clearly explain the benefits of probiotics in improving cognition and memory in experimental subjects. Based on these studies, novel therapeutic approaches can be designed for the treatment of patients with AD.
Collapse
Affiliation(s)
- Vibhuti Mishra
- School of Studies in Biochemistry, Jiwaji University, Gwalior 474003, India;
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Kavita Singh Solanki
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA;
| | - Bhupendra Koul
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India;
| | - Minseok Song
- Department of Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
56
|
Jayachandran M, Qu S. Non-alcoholic fatty liver disease and gut microbial dysbiosis- underlying mechanisms and gut microbiota mediated treatment strategies. Rev Endocr Metab Disord 2023; 24:1189-1204. [PMID: 37840104 DOI: 10.1007/s11154-023-09843-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is by far the most prevalent form of liver disease worldwide. It's also the leading cause of liver-related hospitalizations and deaths. Furthermore, there is a link between obesity and NAFLD risk. A projected 25% of the world's population grieves from NAFLD, making it the most common chronic liver disorder. Several factors, such as obesity, oxidative stress, and insulin resistance, typically accompany NAFLD. Weight loss, lipid-lowering agents, thiazolidinediones, and metformin help prominently control NAFLD. Interestingly, pre-clinical studies demonstrate gut microbiota's potential causal role in NAFLD. Increased intestinal permeability and unhindered transport of microbial metabolites into the liver are the major disruptions due to gut microbiome dysbiosis, contributing to the development of NAFLD by dysregulating the gut-liver axis. Hence, altering the pathogenic bacterial population using probiotics, prebiotics, synbiotics, and fecal microbiota transplantation (FMT) could benefit patients with NAFLD. Therefore, it is crucial to acknowledge the importance of microbiota-mediated therapeutic approaches for NAFLD and comprehend the underlying mechanisms that establish a connection between NAFLD and gut microbiota. This review provides a comprehensive overview of the affiliation between dysbiosis of gut microbiota and the progress of NAFLD, as well as the potential benefits of prebiotic, probiotic, synbiotic supplementation, and FMT in obese individuals with NAFLD.
Collapse
Affiliation(s)
- Muthukumaran Jayachandran
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai center of Thyroid diseases, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
57
|
Abdollahiyan S, Nabavi-Rad A, Keshavarz Azizi Raftar S, Monnoye M, Salarieh N, Farahanie A, Asadzadeh Aghdaei H, Zali MR, Hatami B, Gérard P, Yadegar A. Characterization of gut microbiome composition in Iranian patients with nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Sci Rep 2023; 13:20584. [PMID: 37996480 PMCID: PMC10667333 DOI: 10.1038/s41598-023-47905-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023] Open
Abstract
Gut microbiota dysbiosis is intimately associated with development of non-alcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Nevertheless, the gut microbial community during the course of NAFLD and NASH is yet to be comprehensively profiled. This study evaluated alterations in fecal microbiota composition in Iranian patients with NAFLD and NASH compared with healthy individuals. This cross-sectional study enrolled 15 NAFLD, 15 NASH patients, and 20 healthy controls, and their clinical parameters were examined. The taxonomic composition of the fecal microbiota was determined by sequencing the V3-V4 region of 16S rRNA genes of stool samples. Compared to the healthy controls, NAFLD and NASH patients presented reduced bacterial diversity and richness. We noticed a reduction in the relative abundance of Bacteroidota and a promotion in the relative abundance of Proteobacteria in NAFLD and NASH patients. L-histidine degradation I pathway, pyridoxal 5'-phosphate biosynthesis I pathway, and superpathway of pyridoxal 5'-phosphate biosynthesis and salvage were more abundant in NAFLD patients than in healthy individuals. This study examined fecal microbiota dysbiosis in NAFLD and NASH patients and presented consistent results to European countries. These condition- and ethnicity-specific data could provide different diagnostic signatures and therapeutic targets.
Collapse
Affiliation(s)
- Sara Abdollahiyan
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahrbanoo Keshavarz Azizi Raftar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Magali Monnoye
- Micalis Institute, INRAE, AgroParisTech, Paris-Saclay University, Jouy-en-Josas, France
| | - Naghmeh Salarieh
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Farahanie
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Philippe Gérard
- Micalis Institute, INRAE, AgroParisTech, Paris-Saclay University, Jouy-en-Josas, France.
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
58
|
Meschiari M, Kaleci S, Monte MD, Dessilani A, Santoro A, Scialpi F, Franceschini E, Orlando G, Cervo A, Monica M, Forghieri F, Venturelli C, Ricchizzi E, Chester J, Sarti M, Guaraldi G, Luppi M, Mussini C. Vancomycin resistant enterococcus risk factors for hospital colonization in hematological patients: a matched case-control study. Antimicrob Resist Infect Control 2023; 12:126. [PMID: 37957773 PMCID: PMC10644555 DOI: 10.1186/s13756-023-01332-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Vancomycin-resistant enterococcus (VRE) was the fastest growing pathogen in Europe in 2022 (+ 21%) but its clinical relevance is still unclear. We aim to identify risk factors for acquired VRE rectal colonization in hematological patients and evaluate the clinical impact of VRE colonization on subsequent infection, and 30- and 90-day overall mortality rates, compared to a matched control group. METHODS A retrospective, single center, case-control matched study (ratio 1:1) was conducted in a hematological department from January 2017 to December 2020. Case patients with nosocomial isolation of VRE from rectal swab screening (≥ 48 h) were matched to controls by age, sex, ethnicity, and hematologic disease. Univariate and multivariate logistic regression compared risk factors for colonization. RESULTS A total of 83 cases were matched with 83 controls. Risk factors for VRE colonization were febrile neutropenia, bone marrow transplant, central venous catheter, bedsores, reduced mobility, altered bowel habits, cachexia, previous hospitalization and antibiotic treatments before and during hospitalization. VRE bacteraemia and Clostridioides difficile infection (CDI) occurred more frequently among cases without any impact on 30 and 90-days overall mortality. Vancomycin administration and altered bowel habits were the only independent risk factors for VRE colonization at multivariate analysis (OR: 3.53 and 3.1; respectively). CONCLUSIONS Antimicrobial stewardship strategies to reduce inappropriate Gram-positive coverage in hematological patients is urgently required, as independent risk factors for VRE nosocomial colonization identified in this study include any use of vancomycin and altered bowel habits. VRE colonization and infection did not influence 30- and 90-day mortality. There was a strong correlation between CDI and VRE, which deserves further investigation to target new therapeutic approaches.
Collapse
Affiliation(s)
- Marianna Meschiari
- Department of Infectious Diseases, Azienda Ospedaliero-Universitaria, University of Modena and Reggio Emilia, Via del Pozzo 71, Modena, 41122, Italy.
| | - Shaniko Kaleci
- Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Via del Pozzo 71, Modena, 41122, Italy
| | - Martina Del Monte
- Department of Infectious Diseases, Azienda Ospedaliero-Universitaria, University of Modena and Reggio Emilia, Via del Pozzo 71, Modena, 41122, Italy
| | - Andrea Dessilani
- Department of Infectious Diseases, Azienda Ospedaliero-Universitaria, University of Modena and Reggio Emilia, Via del Pozzo 71, Modena, 41122, Italy
| | - Antonella Santoro
- Department of Infectious Diseases, Azienda Ospedaliero-Universitaria, University of Modena and Reggio Emilia, Via del Pozzo 71, Modena, 41122, Italy
| | - Francesco Scialpi
- Department of Infectious Diseases, Azienda Ospedaliero-Universitaria, University of Modena and Reggio Emilia, Via del Pozzo 71, Modena, 41122, Italy
| | - Erica Franceschini
- Department of Infectious Diseases, Azienda Ospedaliero-Universitaria, University of Modena and Reggio Emilia, Via del Pozzo 71, Modena, 41122, Italy
| | - Gabriella Orlando
- Department of Infectious Diseases, Azienda Ospedaliero-Universitaria, University of Modena and Reggio Emilia, Via del Pozzo 71, Modena, 41122, Italy
| | - Adriana Cervo
- Department of Infectious Diseases, Azienda Ospedaliero-Universitaria, University of Modena and Reggio Emilia, Via del Pozzo 71, Modena, 41122, Italy
| | - Morselli Monica
- Section of Hematology, Department of Surgical and Medical Sciences, AOU Policlinico, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Forghieri
- Section of Hematology, Department of Surgical and Medical Sciences, AOU Policlinico, University of Modena and Reggio Emilia, Modena, Italy
| | - Claudia Venturelli
- Clinical Microbiology Laboratory, University of Modena and Reggio Emilia, Via del Pozzo 71, Modena, 41122, Italy
| | - Enrico Ricchizzi
- Agenzia Sanitaria e Sociale Regionale Emilia-Romagna, Viale Aldo Moro 21, Bologna, 40127, Italy
| | - Johanna Chester
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, 41121, Italy
| | - Mario Sarti
- Clinical Microbiology Laboratory, University of Modena and Reggio Emilia, Via del Pozzo 71, Modena, 41122, Italy
| | - Giovanni Guaraldi
- Department of Infectious Diseases, Azienda Ospedaliero-Universitaria, University of Modena and Reggio Emilia, Via del Pozzo 71, Modena, 41122, Italy
| | - Mario Luppi
- Section of Hematology, Department of Surgical and Medical Sciences, AOU Policlinico, University of Modena and Reggio Emilia, Modena, Italy
| | - Cristina Mussini
- Department of Infectious Diseases, Azienda Ospedaliero-Universitaria, University of Modena and Reggio Emilia, Via del Pozzo 71, Modena, 41122, Italy
| |
Collapse
|
59
|
Krishnamurthy HK, Pereira M, Bosco J, George J, Jayaraman V, Krishna K, Wang T, Bei K, Rajasekaran JJ. Gut commensals and their metabolites in health and disease. Front Microbiol 2023; 14:1244293. [PMID: 38029089 PMCID: PMC10666787 DOI: 10.3389/fmicb.2023.1244293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose of review This review comprehensively discusses the role of the gut microbiome and its metabolites in health and disease and sheds light on the importance of a holistic approach in assessing the gut. Recent findings The gut microbiome consisting of the bacteriome, mycobiome, archaeome, and virome has a profound effect on human health. Gut dysbiosis which is characterized by perturbations in the microbial population not only results in gastrointestinal (GI) symptoms or conditions but can also give rise to extra-GI manifestations. Gut microorganisms also produce metabolites (short-chain fatty acids, trimethylamine, hydrogen sulfide, methane, and so on) that are important for several interkingdom microbial interactions and functions. They also participate in various host metabolic processes. An alteration in the microbial species can affect their respective metabolite concentrations which can have serious health implications. Effective assessment of the gut microbiome and its metabolites is crucial as it can provide insights into one's overall health. Summary Emerging evidence highlights the role of the gut microbiome and its metabolites in health and disease. As it is implicated in GI as well as extra-GI symptoms, the gut microbiome plays a crucial role in the overall well-being of the host. Effective assessment of the gut microbiome may provide insights into one's health status leading to more holistic care.
Collapse
Affiliation(s)
| | | | - Jophi Bosco
- Vibrant America LLC., San Carlos, CA, United States
| | | | | | | | - Tianhao Wang
- Vibrant Sciences LLC., San Carlos, CA, United States
| | - Kang Bei
- Vibrant Sciences LLC., San Carlos, CA, United States
| | | |
Collapse
|
60
|
Livzan MA, Gaus OV. Modulation of microbiota as a target in the management of patients with irritable bowel syndrome. MEDITSINSKIY SOVET = MEDICAL COUNCIL 2023:18-26. [DOI: 10.21518/ms2023-366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Irritable bowel syndrome (IBS) is one of the most common diseases of the digestive tract. IBS negatively affects the quality of life and work ability of patients. It is generally accepted that IBS is an important medical and social problem associated with high financial costs both on the part of the patient and the public health system. The pathophysiology of the disease involves the participation of many factors (genetic, dietary, psychosocial, infectious) and the mechanisms of their implementation, including disruption of interaction along the functional “gut-brain axis”, visceral hypersensitivity, changes in motility, low-grade inflammation, increased permeability of the epithelial intestinal barrier, modulation of microbiota, changes in neurohumoral regulation and processes of central processing of peripheral stimuli. Research shows an important role for gut microbiota in the development of IBS. Modulation of the intestinal microbiota through diet, the use of pre- and probiotics or fecal microbiota transplantation is considered as a promising target for disease therapy. A reduction in the number of bacteria of the genus Bifidobacterium is described as a universal change in the microbiota in IBS, regardless of the clinical course and severity of the disease and the possibility of using different strains of Bifidobacterium in treatment regimens for the disease is of particular interest. This article provides a review of the literature on modern approaches to prescribing probiotics for IBS. Using our own clinical observations as an example, we demonstrated the effectiveness and safety of prolonged administration of the probiotic strain Bifidobacterium longum 35624® for up to 12 weeks.
Collapse
|
61
|
Chowdhury F, Hill L, Shah N, Popov J, Cheveldayoff P, Pai N. Intestinal microbiome in short bowel syndrome: diagnostic and therapeutic opportunities. Curr Opin Gastroenterol 2023; 39:463-471. [PMID: 37751391 DOI: 10.1097/mog.0000000000000970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
PURPOSE OF REVIEW The intestinal microbiome plays a strong, complementary role in the development and integrity of the intestinal epithelium. This biology is crucial for intestinal adaptation, particularly after the mucosal insults that lead to short bowel syndrome (SBS). The purpose of this review is to discuss relationships between the intestinal microbiota and the physiology of intestinal adaptation. RECENT FINDINGS We will address interactions between the intestinal microbiome and nutritional metabolism, factors leading to dysbiosis in SBS, and common compositional differences of the gut microbiome in SBS patients as compared to healthy controls. We will also discuss novel opportunities to expand diagnostic and therapeutic interventions in this population, by using our knowledge of the microbiome to manipulate luminal bacteria and study their resultant metabolites. As microbial therapeutics advance across so many fields of medicine, this review is timely in its advocacy for ongoing research that focuses on the SBS population.Our review will discuss 4 key areas: 1) physiology of the intestinal microbiome in SBS, 2) clinical and therapeutic insults that lead to a state of dysbiosis, 3) currently available evidence on microbiome-based approaches to SBS management, and 4) opportunities and innovations to inspire future research. SUMMARY The clinical implications of this review are both current, and potential. Understanding how the microbiome impacts intestinal adaptation and host physiology may enhance our understanding of why we experience such clinical variability in SBS patients' outcomes. This review may also expand clinicians' understanding of what 'personalized medicine' can mean for this patient population, and how we may someday consider our nutritional, therapeutic, and prognostic recommendations based on our patients' host, and microbial physiology.
Collapse
Affiliation(s)
- Fariha Chowdhury
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, Ontario
| | - Lee Hill
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, Ontario
- Department of Pediatrics, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Nyah Shah
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, Ontario
| | - Jelena Popov
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Paige Cheveldayoff
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, Ontario
- Centre for Metabolism, Obesity and Diabetes Research
| | - Nikhil Pai
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, Ontario
- Centre for Metabolism, Obesity and Diabetes Research
- Farncombe Family Digestive Health Research Institute, McMaster University
- Division of Pediatric Gastroenterology & Nutrition, McMaster Children's Hospital, Hamilton, Ontario, Canada
| |
Collapse
|
62
|
Shi Z, Wang Y, Yan X, Ma X, Duan A, Hassan FU, Wang W, Deng T. Metagenomic and metabolomic analyses reveal the role of gut microbiome-associated metabolites in diarrhea calves. mSystems 2023; 8:e0058223. [PMID: 37615434 PMCID: PMC10654109 DOI: 10.1128/msystems.00582-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/17/2023] [Indexed: 08/25/2023] Open
Abstract
IMPORTANCE Calf diarrhea is of great concern to the global dairy industry as it results in significant economic losses due to lower conception rates, reduced milk production, and early culling. Although there is evidence of an association between altered gut microbiota and diarrhea, remarkably little is known about the microbial and metabolic mechanisms underlying the link between gut microbiota dysbiosis and the occurrence of calf diarrhea. Here, we used fecal metagenomic and metabolomic analyses to demonstrate that gut microbiota-driven metabolic disorders of purine or arachidonic acid were associated with calf diarrhea. These altered gut microbiotas play vital roles in diarrhea pathogenesis and indicate that gut microbiota-targeted therapies could be useful for both prevention and treatment of diarrhea.
Collapse
Affiliation(s)
- Zhihai Shi
- Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Yazhou Wang
- Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Xiangzhou Yan
- Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Xiaoya Ma
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Anqin Duan
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Faiz-ul Hassan
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Wenjia Wang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Tingxian Deng
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, China
| |
Collapse
|
63
|
Song A, Mao Y, Wei H. GLUT5: structure, functions, diseases and potential applications. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1519-1538. [PMID: 37674366 PMCID: PMC10582729 DOI: 10.3724/abbs.2023158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/19/2023] [Indexed: 09/08/2023] Open
Abstract
Glucose transporter 5 (GLUT5) is a membrane transporter that specifically transports fructose and plays a key role in dietary fructose uptake and metabolism. In recent years, a high fructose diet has occupied an important position in the daily intake of human beings, resulting in a significant increase in the incidence of obesity and metabolic diseases worldwide. Over the past few decades, GLUT5 has been well understood to play a significant role in the pathogenesis of human digestive diseases. Recently, the role of GLUT5 in human cancer has received widespread attention, and a large number of studies have focused on exploring the effects of changes in GLUT5 expression levels on cancer cell survival, metabolism and metastasis. However, due to various difficulties and shortcomings, the molecular structure and mechanism of GLUT5 have not been fully elucidated, which to some extent prevents us from revealing the relationship between GLUT5 expression and cell carcinogenesis at the protein molecular level. In this review, we summarize the current understanding of the structure and function of mammalian GLUT5 and its relationship to intestinal diseases and cancer and suggest that GLUT5 may be an important target for cancer therapy.
Collapse
Affiliation(s)
- Aqian Song
- Department of GastroenterologyBeijing Ditan HospitalCapital Medical UniversityBeijing100015China
| | - Yuanpeng Mao
- Department of GastroenterologyPeking University Ditan Teaching HospitalBeijing100015China
| | - Hongshan Wei
- Department of GastroenterologyBeijing Ditan HospitalCapital Medical UniversityBeijing100015China
- Department of GastroenterologyPeking University Ditan Teaching HospitalBeijing100015China
| |
Collapse
|
64
|
Craig CF, Finkelstein DI, McQuade RM, Diwakarla S. Understanding the potential causes of gastrointestinal dysfunctions in multiple system atrophy. Neurobiol Dis 2023; 187:106296. [PMID: 37714308 DOI: 10.1016/j.nbd.2023.106296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023] Open
Abstract
Multiple system atrophy (MSA) is a rare, progressive neurodegenerative disorder characterised by autonomic, pyramidal, parkinsonian and/or cerebellar dysfunction. Autonomic symptoms of MSA include deficits associated with the gastrointestinal (GI) system, such as difficulty swallowing, abdominal pain and bloating, nausea, delayed gastric emptying, and constipation. To date, studies assessing GI dysfunctions in MSA have primarily focused on alterations of the gut microbiome, however growing evidence indicates other structural components of the GI tract, such as the enteric nervous system, the intestinal barrier, GI hormones, and the GI-driven immune response may contribute to MSA-related GI symptoms. Here, we provide an in-depth exploration of the physiological, structural, and immunological changes theorised to underpin GI dysfunction in MSA patients and highlight areas for future research in order to identify more suitable pharmaceutical treatments for GI symptoms in patients with MSA.
Collapse
Affiliation(s)
- Colin F Craig
- Gut Barrier and Disease Laboratory, Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - David I Finkelstein
- Parkinson's Disease Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Rachel M McQuade
- Gut Barrier and Disease Laboratory, Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC 3010, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Western Centre for Health Research and Education (WCHRE), Sunshine Hospital, St Albans, VIC 3021, Australia
| | - Shanti Diwakarla
- Gut Barrier and Disease Laboratory, Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC 3010, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Western Centre for Health Research and Education (WCHRE), Sunshine Hospital, St Albans, VIC 3021, Australia.
| |
Collapse
|
65
|
Zogg H, Singh R, Ha SE, Wang Z, Jin B, Ha M, Dafinone M, Batalon T, Hoberg N, Poudrier S, Nguyen L, Yan W, Layden BT, Dugas LR, Sanders KM, Ro S. miR-10b-5p rescues leaky gut linked with gastrointestinal dysmotility and diabetes. United European Gastroenterol J 2023; 11:750-766. [PMID: 37723933 PMCID: PMC10576606 DOI: 10.1002/ueg2.12463] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/31/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND/AIM Diabetes has substantive co-occurrence with disorders of gut-brain interactions (DGBIs). The pathophysiological and molecular mechanisms linking diabetes and DGBIs are unclear. MicroRNAs (miRNAs) are key regulators of diabetes and gut dysmotility. We investigated whether impaired gut barrier function is regulated by a key miRNA, miR-10b-5p, linking diabetes and gut dysmotility. METHODS We created a new mouse line using the Mb3Cas12a/Mb3Cpf1 endonuclease to delete mir-10b globally. Loss of function studies in the mir-10b knockout (KO) mice were conducted to characterize diabetes, gut dysmotility, and gut barrier dysfunction phenotypes in these mice. Gain of function studies were conducted by injecting these mir-10b KO mice with a miR-10b-5p mimic. Further, we performed miRNA-sequencing analysis from colonic mucosa from mir-10b KO, wild type, and miR-10b-5p mimic injected mice to confirm (1) deficiency of miR-10b-5p in KO mice, and (2) restoration of miR-10b-5p after the mimic injection. RESULTS Congenital loss of mir-10b in mice led to the development of hyperglycemia, gut dysmotility, and gut barrier dysfunction. Gut permeability was increased, but expression of the tight junction protein Zonula occludens-1 was reduced in the colon of mir-10b KO mice. Patients with diabetes or constipation- predominant irritable bowel syndrome, a known DGBI that is linked to leaky gut, had significantly reduced miR-10b-5p expression. Injection of a miR-10b-5p mimic in mir-10b KO mice rescued these molecular alterations and phenotypes. CONCLUSIONS Our study uncovered a potential pathophysiologic mechanism of gut barrier dysfunction that links both the diabetes and gut dysmotility phenotypes in mice lacking miR-10b-5p. Treatment with a miR-10b-5p mimic reversed the leaky gut, diabetic, and gut dysmotility phenotypes, highlighting the translational potential of the miR-10b-5p mimic.
Collapse
Affiliation(s)
- Hannah Zogg
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Rajan Singh
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Se Eun Ha
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Zhuqing Wang
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Byungchang Jin
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Mariah Ha
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Mirabel Dafinone
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Tylar Batalon
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Nicholas Hoberg
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Sandra Poudrier
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Linda Nguyen
- Division of Gastroenterology & HepatologyStanford University School of MedicineStanfordCaliforniaUSA
| | - Wei Yan
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Brian T. Layden
- Division of Endocrinology, Diabetes, and MetabolismDepartment of MedicineThe University of Illinois at ChicagoChicagoIllinoisUSA
- Jesse Brown Veterans Affairs Medical CenterChicagoIllinoisUSA
| | - Lara R. Dugas
- Loyola University ChicagoPublic Health SciencesMaywoodIllinoisUSA
- Division of Epidemiology & BiostatisticsSchool of Public HealthFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Kenton M. Sanders
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Seungil Ro
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
- RosVivo TherapeuticsApplied Research FacilityRenoNevadaUSA
| |
Collapse
|
66
|
Kovaleva A, Poluektova E, Maslennikov R, Karchevskaya A, Shifrin O, Kiryukhin A, Tertychnyy A, Kovalev L, Kovaleva M, Lobanova O, Kudryavtseva A, Krasnov G, Fedorova M, Ivashkin V. Effect of Rebamipide on the Intestinal Barrier, Gut Microbiota Structure and Function, and Symptom Severity Associated with Irritable Bowel Syndrome and Functional Dyspepsia Overlap: A Randomized Controlled Trial. J Clin Med 2023; 12:6064. [PMID: 37763004 PMCID: PMC10531936 DOI: 10.3390/jcm12186064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/30/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Treatment of functional digestive disorders is not always effective. Therefore, a search for new application points for potential drugs is perspective. Our aim is to evaluate the effect of rebamipide on symptom severity, intestinal barrier status, and intestinal microbiota composition and function in patients with diarrheal variant of irritable bowel syndrome overlapping with functional dyspepsia (D-IBSoFD). Sixty patients were randomized to receive trimebutine (TRI group), trimebutine + rebamipide (T + R group), or rebamipide (REB group) for 2 months. At the beginning and end of the study, patients were assessed for general health (SF-36), severity of digestive symptoms (Gastrointestinal Symptom Rating and 7 × 7 scales), state of the intestinal barrier, and composition (16S rRNA gene sequencing) and function (short-chain fatty acid fecal content) of the gut microbiota. The severity of most digestive symptoms was reduced in the REB and T + R groups to levels similar to that observed in the TRI group. The duodenal and sigmoidal lymphocytic and sigmoidal eosinophilic infiltration was decreased only in the REB and T + R groups, not in the TRI group. Serum zonulin levels were significantly decreased only in the REB group. A decrease in intraepithelial lymphocytic infiltration in the duodenum correlated with a decrease in the severity of rumbling and flatulence, while a decrease in infiltration within the sigmoid colon correlated with improved stool consistency and decreased severity of the sensation of incomplete bowel emptying. In conclusion, rebamipide improves the intestinal barrier condition and symptoms in D-IBSoFD. The rebamipide effects are not inferior to those of trimebutine.
Collapse
Affiliation(s)
- Aleksandra Kovaleva
- Department of Introduction to Internal Diseases, Gastroenterology and Hepatology, Sechenov University, Pogodinskaya Str., 1, Bld. 1, 119435 Moscow, Russia; (A.K.); (E.P.)
| | - Elena Poluektova
- Department of Introduction to Internal Diseases, Gastroenterology and Hepatology, Sechenov University, Pogodinskaya Str., 1, Bld. 1, 119435 Moscow, Russia; (A.K.); (E.P.)
- The Scientific Community for Human Microbiome Research, Pogodinskaya Str., 1, Bld. 1, 119435 Moscow, Russia
| | - Roman Maslennikov
- Department of Introduction to Internal Diseases, Gastroenterology and Hepatology, Sechenov University, Pogodinskaya Str., 1, Bld. 1, 119435 Moscow, Russia; (A.K.); (E.P.)
- The Scientific Community for Human Microbiome Research, Pogodinskaya Str., 1, Bld. 1, 119435 Moscow, Russia
| | - Anna Karchevskaya
- Department of Introduction to Internal Diseases, Gastroenterology and Hepatology, Sechenov University, Pogodinskaya Str., 1, Bld. 1, 119435 Moscow, Russia; (A.K.); (E.P.)
- Laboratory of General and Clinical Neurophysiology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerova Str., 117485 Moscow, Russia
- N.N. Burdenko National Medical Research Center of Neurosurgery, 16, 4th Tverskaya-Yamskaya St., 125047 Moscow, Russia
| | - Oleg Shifrin
- Department of Introduction to Internal Diseases, Gastroenterology and Hepatology, Sechenov University, Pogodinskaya Str., 1, Bld. 1, 119435 Moscow, Russia; (A.K.); (E.P.)
| | - Andrey Kiryukhin
- Endoscopy Unit, The Second University Clinic, Sechenov University, Pogodinskaya Str., 1, Bld. 1, 119435 Moscow, Russia
| | - Aleksandr Tertychnyy
- Institute of Clinical Morphology and Digital Pathology, Sechenov University, Trubetskaya Str., 8, Bld. 2, 119048 Moscow, Russia; (A.T.)
| | - Leonid Kovalev
- Laboratory of Structural Biochemistry of Protein, A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Prospekt, 33, Bld. 2, 119071 Moscow, Russia
| | - Marina Kovaleva
- Laboratory of Structural Biochemistry of Protein, A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Prospekt, 33, Bld. 2, 119071 Moscow, Russia
| | - Olga Lobanova
- Institute of Clinical Morphology and Digital Pathology, Sechenov University, Trubetskaya Str., 8, Bld. 2, 119048 Moscow, Russia; (A.T.)
| | - Anna Kudryavtseva
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str., 32, Bld. 1, 119991 Moscow, Russia
| | - George Krasnov
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str., 32, Bld. 1, 119991 Moscow, Russia
| | - Maria Fedorova
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str., 32, Bld. 1, 119991 Moscow, Russia
| | - Vladimir Ivashkin
- Department of Introduction to Internal Diseases, Gastroenterology and Hepatology, Sechenov University, Pogodinskaya Str., 1, Bld. 1, 119435 Moscow, Russia; (A.K.); (E.P.)
- The Scientific Community for Human Microbiome Research, Pogodinskaya Str., 1, Bld. 1, 119435 Moscow, Russia
| |
Collapse
|
67
|
Wielgosz-Grochowska JP, Domanski N, Drywień ME. Influence of Body Composition and Specific Anthropometric Parameters on SIBO Type. Nutrients 2023; 15:4035. [PMID: 37764818 PMCID: PMC10535553 DOI: 10.3390/nu15184035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/04/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Recent observations have shown that Small Intestinal Bacterial Overgrowth (SIBO)affects the host through various mechanisms. While both weight loss and obesity have been reported in the SIBO population due to alterations in the gut microbiome, very little is known about the influence of SIBO type on body composition. This study aimed to evaluate whether there is a link between the three types of SIBO: methane dominant (M+), hydrogen dominant (H+), and methane-hydrogen dominant (H+/M+) and specific anthropometric parameters. This observational study included 67 participants (W = 53, M = 14) with gastrointestinal symptoms and SIBO confirmed by lactulose hydrogen-methane breath tests (LHMBTs) using the QuinTron device. Participants underwent a body composition assessment by Bioelectrical Impedance Analysis (BIA) using the InBody Analyzer. In the H+/M+ group, body weight (p = 0.010), BMI (p = 0.001), body fat in kg (p = 0.009), body fat in % (p = 0.040), visceral fat (p = 0.002), and mineral bone content (p = 0.049) showed an inverse correlation with hydrogen (H2) gas production. These findings suggest that body weight, BMI, body fat, and mineral bone content may be inversely linked to the production of hydrogen and the risk of hydrogen-methane SIBO.
Collapse
Affiliation(s)
| | - Nicole Domanski
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| | - Małgorzata Ewa Drywień
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| |
Collapse
|
68
|
Liang B, Wang Y, Xu J, Shao Y, Xing D. Unlocking the potential of targeting histone-modifying enzymes for treating IBD and CRC. Clin Epigenetics 2023; 15:146. [PMID: 37697409 PMCID: PMC10496233 DOI: 10.1186/s13148-023-01562-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023] Open
Abstract
Dysregulation of histone modifications has been implicated in the pathogenesis of both inflammatory bowel disease (IBD) and colorectal cancer (CRC). These diseases are characterized by chronic inflammation, and alterations in histone modifications have been linked to their development and progression. Furthermore, the gut microbiota plays a crucial role in regulating immune responses and maintaining gut homeostasis, and it has been shown to exert effects on histone modifications and gene expression in host cells. Recent advances in our understanding of the roles of histone-modifying enzymes and their associated chromatin modifications in IBD and CRC have provided new insights into potential therapeutic interventions. In particular, inhibitors of histone-modifying enzymes have been explored in clinical trials as a possible therapeutic approach for these diseases. This review aims to explore these potential therapeutic interventions and analyze previous and ongoing clinical trials that examined the use of histone-modifying enzyme inhibitors for the treatment of IBD and CRC. This paper will contribute to the current body of knowledge by exploring the latest advances in the field and discussing the limitations of existing approaches. By providing a comprehensive analysis of the potential benefits of targeting histone-modifying enzymes for the treatment of IBD and CRC, this review will help to inform future research in this area and highlight the significance of understanding the functions of histone-modifying enzymes and their associated chromatin modifications in gastrointestinal disorders for the development of potential therapeutic interventions.
Collapse
Affiliation(s)
- Bing Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China.
- Qingdao Cancer Institute, Qingdao University, Qingdao, China.
| | - Yanhong Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Jiazhen Xu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Yingchun Shao
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
69
|
Jalil AT, Thabit SN, Hanan ZK, Alasheqi MQ, Al-Azzawi AKJ, Zabibah RS, Fadhil AA. Modulating gut microbiota using nanotechnology to increase anticancer efficacy of the treatments. Macromol Res 2023; 31:739-752. [DOI: 10.1007/s13233-023-00168-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/01/2023] [Accepted: 04/11/2023] [Indexed: 01/03/2025]
|
70
|
Summer M, Ali S, Fiaz U, Tahir HM, Ijaz M, Mumtaz S, Mushtaq R, Khan R, Shahzad H, Fiaz H. Therapeutic and immunomodulatory role of probiotics in breast cancer: A mechanistic review. Arch Microbiol 2023; 205:296. [PMID: 37486419 DOI: 10.1007/s00203-023-03632-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
Breast cancer has become the most prevalent and noxious type of malignancy around the globe (Giaquinto et al., 2022). Multiple clinical strategies including chemotherapy, radiotherapy, and immunotherapy have been in practice to manage breast cancer. Besides the protective roles of conventional remedial approaches, and non-reversible and deteriorative impacts like healthy cell damage, organ failure, etc., the world scientific community is in a continuous struggle to find some alternative biocompatible and comparatively safe solutions. Among novel breast cancer management/treatment options, the role of probiotics has become immensely important. The current review encompasses the prevalence statistics of breast cancer across the globe concerning developed and undeveloped counties, intestinal microbiota linkage with breast cancer, and association of breast microbiome with breast carcinoma. Furthermore, this review also narrates the role of probiotics against breast cancer and their mode of action. In Vivo and In Vitro studies under breast cancer research regarding probiotics are mechanistically explained. The current review systematically explains the immunomodulatory role of probiotics to prevent breast cancer. Last, but not the least, current review concludes the use of probiotics in the treatment of breast cancer through various mechanisms and future recommendations for molecular basis studies.
Collapse
Affiliation(s)
- Muhammad Summer
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan.
| | - Umaima Fiaz
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Hafiz Muhammad Tahir
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Muhammad Ijaz
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences Lahore, Lahore, Pakistan
| | - Shumaila Mumtaz
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Rabia Mushtaq
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Rida Khan
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Hafsa Shahzad
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Hashim Fiaz
- Department of Medicine and Surgery, Ammer-ul-din Medical College Lahore, Lahore, Pakistan
| |
Collapse
|
71
|
Enichen E, Adams RB, Demmig-Adams B. Physical Activity as an Adjunct Treatment for People Living with HIV? Am J Lifestyle Med 2023; 17:502-517. [PMID: 37426740 PMCID: PMC10328202 DOI: 10.1177/15598276221078222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
This review evaluates physical activity as a candidate for an adjunct treatment, in conjunction with antiretroviral therapy (ART), for people living with HIV (PLWH). Evidence is summarized that chronic, non-resolving inflammation (a principal feature of immune system dysfunction) and a dysfunctional state of the gut environment are key factors in HIV infection that persist despite treatment with ART. In addition, evidence is summarized that regular physical activity may restore normal function of both the immune system and the gut environment and may thereby ameliorate symptoms and non-resolving inflammation-associated comorbidities that burden PLWH. Physicians who care for PLWH could thus consider incorporating physical activity into treatment plans to complement ART. It is also discussed that different types of physical activity can have different effects on the gut environment and immune function, and that future research should establish more specific criteria for the design of exercise regimens tailored to PLWH.
Collapse
Affiliation(s)
- Elizabeth Enichen
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA, (EE, BDA); Physical Therapy of Boulder, Boulder, CO, USA, (RBA)
| | - Robert B. Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA, (EE, BDA); Physical Therapy of Boulder, Boulder, CO, USA, (RBA)
| | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA, (EE, BDA); Physical Therapy of Boulder, Boulder, CO, USA, (RBA)
| |
Collapse
|
72
|
Townsend JR, Kirby TO, Marshall TM, Church DD, Jajtner AR, Esposito R. Foundational Nutrition: Implications for Human Health. Nutrients 2023; 15:2837. [PMID: 37447166 DOI: 10.3390/nu15132837] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Human nutrition, and what can be considered "ideal" nutrition, is a complex, multi-faceted topic which many researchers and practitioners deliberate. While some attest that basic human nutrition is relatively understood, it is undeniable that a global nutritional problem persists. Many countries struggle with malnutrition or caloric deficits, while others encounter difficulties with caloric overconsumption and micronutrient deficiencies. A multitude of factors contribute to this global problem. Limitations to the current scope of the recommended daily allowances (RDAs) and dietary reference intakes (DRIs), changes in soil quality, and reductions in nutrient density are just a few of these factors. In this article, we propose a new, working approach towards human nutrition designated "Foundational Nutrition". This nutritional lens combines a whole food approach in conjunction with micronutrients and other nutrients critical for optimal human health with special consideration given to the human gut microbiome and overall gut health. Together, this a synergistic approach which addresses vital components in nutrition that enhances the bioavailability of nutrients and to potentiate a bioactive effect.
Collapse
Affiliation(s)
- Jeremy R Townsend
- Research, Nutrition, and Innovation, Athletic Greens International, Carson City, NV 89701, USA
- Department of Kinesiology, Lipscomb University, Nashville, TN 37204, USA
| | - Trevor O Kirby
- Research, Nutrition, and Innovation, Athletic Greens International, Carson City, NV 89701, USA
| | - Tess M Marshall
- Research, Nutrition, and Innovation, Athletic Greens International, Carson City, NV 89701, USA
| | - David D Church
- Department of Geriatrics, Center for Translational Research in Aging & Longevity, Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Adam R Jajtner
- Exercise Science and Exercise Physiology, Kent State University, Kent, OH 44240, USA
| | - Ralph Esposito
- Research, Nutrition, and Innovation, Athletic Greens International, Carson City, NV 89701, USA
- Department of Nutrition, Food Studies, and Public Health, New York University-Steinhardt, New York, NY 10003, USA
| |
Collapse
|
73
|
Del Chierico F, Marzano V, Scanu M, Reddel S, Dentici ML, Capolino R, Di Donato M, Spasari I, Fiscarelli EV, Digilio MC, Abreu MT, Dallapiccola B, Putignani L. Analysis of gut microbiota in patients with Williams-Beuren Syndrome reveals dysbiosis linked to clinical manifestations. Sci Rep 2023; 13:9797. [PMID: 37328513 PMCID: PMC10275996 DOI: 10.1038/s41598-023-36704-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023] Open
Abstract
Williams-Beuren syndrome (WBS) is a multisystem genetic disease caused by the deletion of a region of 1.5-1.8 Mb on chromosome 7q11.23. The elastin gene seems to account for several comorbidities and distinct clinical features such including cardiovascular disease, connective tissue abnormalities, growth retardation, and gastrointestinal (GI) symptoms. Increasing evidence points to alterations in gut microbiota composition as a primary or secondary cause of some GI or extra-intestinal characteristics. In this study, we performed the first exploratory analysis of gut microbiota in WBS patients compared to healthy subjects (CTRLs) using 16S rRNA amplicon sequencing, by investigating the gut dysbiosis in relation to diseases and comorbidities. We found that patients with WBS have significant dysbiosis compared to age-matched CTRLs, characterized by an increase in proinflammatory bacteria such as Pseudomonas, Gluconacetobacter and Eggerthella, and a reduction of anti-inflammatory bacteria including Akkermansia and Bifidobacterium. Microbial biomarkers associated with weight gain, GI symptoms and hypertension were identified. Gut microbiota profiling could represent a new tool that characterise intestinal dysbiosis to complement the clinical management of these patients. In particular, the administration of microbial-based treatments, alongside traditional therapies, could help in reducing or preventing the burden of these symptoms and improve the quality of life of these patients.
Collapse
Affiliation(s)
- Federica Del Chierico
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Valeria Marzano
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Matteo Scanu
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sofia Reddel
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Lisa Dentici
- Genetics and Rare Diseases Research Division and Medical Genetics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rossella Capolino
- Genetics and Rare Diseases Research Division and Medical Genetics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maddalena Di Donato
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Iolanda Spasari
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ersilia Vita Fiscarelli
- Research Unit of Diagnostical and Management Innovations, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Cristina Digilio
- Genetics and Rare Diseases Research Division and Medical Genetics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Teresa Abreu
- Crohn's and Colitis Center, Division of Digestive Health and Liver Diseases, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Bruno Dallapiccola
- Scientific Directorate, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
74
|
Ren J, Li H, Zeng G, Pang B, Wang Q, Wei J. Gut microbiome-mediated mechanisms in aging-related diseases: are probiotics ready for prime time? Front Pharmacol 2023; 14:1178596. [PMID: 37324466 PMCID: PMC10267478 DOI: 10.3389/fphar.2023.1178596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023] Open
Abstract
Chronic low-grade inflammation affects health and is associated with aging and age-related diseases. Dysregulation of the gut flora is an important trigger for chronic low-grade inflammation. Changes in the composition of the gut flora and exposure to related metabolites have an effect on the inflammatory system of the host. This results in the development of crosstalk between the gut barrier and immune system, contributing to chronic low-grade inflammation and impairment of health. Probiotics can increase the diversity of gut microbiota, protect the gut barrier, and regulate gut immunity, thereby reducing inflammation. Therefore, the use of probiotics is a promising strategy for the beneficial immunomodulation and protection of the gut barrier through gut microbiota. These processes might positively influence inflammatory diseases, which are common in the elderly.
Collapse
Affiliation(s)
- Jing Ren
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Huimin Li
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guixing Zeng
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Boxian Pang
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Qiuhong Wang
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junping Wei
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
75
|
Kim MJ, Park S, Park JW, Choi J, Kim HJ, Lim HK, Ryoo SB, Park KJ, Ji Y, Jeong SY. Gut microbiome associated with low anterior resection syndrome after rectal cancer surgery. Sci Rep 2023; 13:8578. [PMID: 37237024 DOI: 10.1038/s41598-023-34557-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
This study aimed to assess the likely association of gut microbiome with low anterior resection syndrome (LARS) symptoms. Postoperative stool samples from patients with minor or major LARS after sphincter-preserving surgery (SPS) for rectal cancer were collected and analyzed using 16S ribosomal RNA sequencing method. The symptom patterns of LARS were classified into two groups (PC1LARS, PC2LARS) using principal component analysis. The dichotomized sum of questionnaire items (sub1LARS, sub2LARS) was used to group patients according to the main symptoms. According to microbial diversity, enterotype, and taxa, PC1LARS and sub1LARS were associated with frequency-dominant LARS symptoms and patients, while PC2LARS and sub2LARS were grouped as incontinence-dominant LARS symptoms and patients. Butyricicoccus levels decreased while overall LARS scores increased. The α-diversity richness index Chao1 showed a significantly negative correlation in sub1LARS and a positive correlation in sub2LARS. In sub1LARS, the severe group showed a lower Prevotellaceae enterotype and higher Bacteroidaceae enterotype than the mild group. Subdoligranulum and Flavonifractor showed a negative and a positive correlation with PC1LARS, respectively, while showing a negative relationship with PC2LARS. Lactobacillus and Bifidobacterium were negatively correlated to PC1LARS. Frequency-dominant LARS had decreased diversity of gut microbiome and showed lower levels of lactic acid-producing bacteria.
Collapse
Affiliation(s)
- Min Jung Kim
- Department of Surgery, Seoul National College of Medicine, Seoul, Republic of Korea
- Colorectal Cancer Center, Seoul National University Cancer Hospital, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Soyoung Park
- Bioinformatics Center, HEMpharma, Suwon-si, Gyeonggi-do, Republic of Korea.
| | - Ji Won Park
- Department of Surgery, Seoul National College of Medicine, Seoul, Republic of Korea
- Colorectal Cancer Center, Seoul National University Cancer Hospital, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jinsun Choi
- Department of Surgery, Seoul National College of Medicine, Seoul, Republic of Korea
| | - Hyo Jun Kim
- Department of Surgery, Seoul National College of Medicine, Seoul, Republic of Korea
| | - Han-Ki Lim
- Department of Surgery, Seoul National College of Medicine, Seoul, Republic of Korea
- Colorectal Cancer Center, Seoul National University Cancer Hospital, Seoul, Republic of Korea
| | - Seung-Bum Ryoo
- Department of Surgery, Seoul National College of Medicine, Seoul, Republic of Korea
- Colorectal Cancer Center, Seoul National University Cancer Hospital, Seoul, Republic of Korea
| | - Kyu Joo Park
- Department of Surgery, Seoul National College of Medicine, Seoul, Republic of Korea
- Colorectal Cancer Center, Seoul National University Cancer Hospital, Seoul, Republic of Korea
| | - Yosep Ji
- Bioinformatics Center, HEMpharma, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Seung-Yong Jeong
- Department of Surgery, Seoul National College of Medicine, Seoul, Republic of Korea
- Colorectal Cancer Center, Seoul National University Cancer Hospital, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
76
|
Chen Y, Wang Y, Fu Y, Yin Y, Xu K. Modulating AHR function offers exciting therapeutic potential in gut immunity and inflammation. Cell Biosci 2023; 13:85. [PMID: 37179416 PMCID: PMC10182712 DOI: 10.1186/s13578-023-01046-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a classical exogenous synthetic ligand of AHR that has significant immunotoxic effects. Activation of AHR has beneficial effects on intestinal immune responses, but inactivation or overactivation of AHR can lead to intestinal immune dysregulation and even intestinal diseases. Sustained potent activation of AHR by TCDD results in impairment of the intestinal epithelial barrier. However, currently, AHR research has been more focused on elucidating physiologic AHR function than on dioxin toxicity. The appropriate level of AHR activation plays a role in maintaining gut health and protecting against intestinal inflammation. Therefore, AHR offers a crucial target to modulate intestinal immunity and inflammation. Herein, we summarize our current understanding of the relationship between AHR and intestinal immunity, the ways in which AHR affects intestinal immunity and inflammation, the effects of AHR activity on intestinal immunity and inflammation, and the effect of dietary habits on intestinal health through AHR. Finally, we discuss the therapeutic role of AHR in maintaining gut homeostasis and relieving inflammation.
Collapse
Affiliation(s)
- Yue Chen
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450000, China
| | - Yadong Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Yawei Fu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450000, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450000, China
| | - Kang Xu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| |
Collapse
|
77
|
Corsello A, Scatigno L, Govoni A, Zuccotti G, Gottrand F, Romano C, Verduci E. Gut dysmotility in children with neurological impairment: the nutritional management. Front Neurol 2023; 14:1200101. [PMID: 37213895 PMCID: PMC10196023 DOI: 10.3389/fneur.2023.1200101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/20/2023] [Indexed: 05/23/2023] Open
Abstract
Intestinal motility disorders represent a frequent problem in children with neurological impairment. These conditions are characterized by abnormal movements of the gut, which can result in symptoms such as constipation, diarrhea, reflux, and vomiting. The underlying mechanisms leading to dysmotility are various, and the clinical manifestations are often nonspecific. Nutritional management is an important aspect of care for children with gut dysmotility, as it can help to improve their quality of life. Oral feeding, when safe and in the absence of risk of ingestion or severe dysphagia, should always be encouraged. When oral nutrition is insufficient or potentially harmful, it is necessary to switch to an enteral by tube or parenteral nutrition before the onset of malnutrition. In most cases, children with severe gut dysmotility may require feeding via a permanent gastrostomy tube to ensure adequate nutrition and hydration. Drugs may be necessary to help manage gut dysmotility, such as laxatives, anticholinergics and prokinetic agents. Nutritional management of patients with neurological impairment often requires an individualized care plan to optimize growth and nutrition and to improve overall health outcomes. This review tries to sum up most significant neurogenetic and neurometabolic disorders associated with gut dysmotility that may require a specific multidisciplinary care, identifying a proposal of nutritional and medical management.
Collapse
Affiliation(s)
- Antonio Corsello
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, Milan, Italy
| | - Lorenzo Scatigno
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, Milan, Italy
| | - Annalisa Govoni
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, Milan, Italy
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, Milan, Italy
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Frédéric Gottrand
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, CHU Lille, University of Lille, Lille, France
| | - Claudio Romano
- Pediatric Gastroenterology and Cystic Fibrosis Unit, Department of Human Pathology in Adulthood and Childhood "G. Barresi", University of Messina, Messina, Italy
| | - Elvira Verduci
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, Milan, Italy
- Department of Health Science, University of Milan, Milan, Italy
| |
Collapse
|
78
|
Houston KV, Patel A, Saadeh M, Vargas A, Vilela Sangay AR, D’Souza SM, Yoo BS, Johnson DA. Gastrointestinal microbiome and coronavirus disease: evidence of a bidirectional association. EXPLORATION OF MEDICINE 2023:157-165. [DOI: 10.37349/emed.2023.00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/02/2023] [Indexed: 01/16/2025] Open
Abstract
The gastrointestinal (GI) microbiome remains an emerging topic of study and the characterization and impact on human health and disease continue to be an area of great interest. Similarly, the coronavirus disease 2019 (COVID-19) pandemic has significantly impacted the healthcare system with active disease, lasting effects, and complications with the full impact yet to be determined. The most current evidence of the interaction between COVID-19 and the GI microbiome is reviewed, with a focus on key mediators and the microbiome changes associated with acute disease and post-acute COVID-19 syndrome (PACS).
Collapse
Affiliation(s)
- Kevin V. Houston
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ankit Patel
- Department of Internal Medicine, George Washington University, Washington, D.C. 20052, USA
| | - Michael Saadeh
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Alejandra Vargas
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Ana Rosa Vilela Sangay
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Steve M. D’Souza
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Byung Soo Yoo
- Department of Gastroenterology, Carolinas Medical Center, Charlotte, NC 28203, USA
| | - David A. Johnson
- Department of Gastroenterology, Eastern VA Medical School, Norfolk, VA 23507, USA
| |
Collapse
|
79
|
Mandarino FV, Sinagra E, Barchi A, Verga MC, Brinch D, Raimondo D, Danese S. Gastroparesis: The Complex Interplay with Microbiota and the Role of Exogenous Infections in the Pathogenesis of the Disease. Microorganisms 2023; 11:1122. [PMID: 37317096 PMCID: PMC10221816 DOI: 10.3390/microorganisms11051122] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 06/16/2023] Open
Abstract
Gastroparesis (GP) is a disorder of gastric functions that is defined by objective delayed gastric emptying in the absence of mechanical obstruction. This disease is characterized by symptoms such as nausea, post-prandial fullness, and early satiety. GP significantly impacts patients' quality of life and contributes to substantial healthcare expenses for families and society. However, the epidemiological burden of GP is difficult to evaluate, mainly due its significant overlap with functional dyspepsia (FD). GP and FD represent two similar diseases. The pathophysiology of both disorders involves abnormal gastric motility, visceral hypersensitivity, and mucosal inflammation. Moreover, both conditions share similar symptoms, such as epigastric pain, bloating, and early satiety. The latest evidence reveals that dysbiosis is directly or indirectly connected to gut-brain axis alterations, which are the basis of pathogenesis in both FD and GP. Furthermore, the role of microbiota in the development of gastroparesis was demonstrated by some clinical studies, which found that the use of probiotics is correlated with improvements in the gastric emptying time (GET). Infections (with viruses, bacteria, and protozoa) represent a proven etiology for GP but have not been sufficiently considered in current clinical practice. Previous viral infections can be found in about 20% of idiopathic GP cases. Moreover, delayed gastric emptying during systemic protozoal infections represents a huge concern for compromised patients, and few data exist on the topic. This comprehensive narrative review analyzes the relationship between microorganisms and GP. We explore, on the one hand, the correlation between gut microbiota dysbiosis and GP pathogenesis, including treatment implications, and, on the other hand, the association between exogenous infections and the etiology of the disease.
Collapse
Affiliation(s)
- Francesco Vito Mandarino
- Division of Gastroenterology and Gastrointestinal Endoscopy, San Raffaele Hospital, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Emanuele Sinagra
- Gastroenterology & Endoscopy Unit, Fondazione Istituto G. Giglio, Contrada Pietra Pollastra Pisciotto, 90015 Cefalù, Italy
| | - Alberto Barchi
- Division of Gastroenterology and Gastrointestinal Endoscopy, San Raffaele Hospital, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Maria Chiara Verga
- Gastroenterology and Digestive Endoscopy Unit, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
| | - Daniele Brinch
- Gastroenterology & Endoscopy Unit, Fondazione Istituto G. Giglio, Contrada Pietra Pollastra Pisciotto, 90015 Cefalù, Italy
- Gastroenterology & Hepatology Section, PROMISE, University of Palermo, 90127 Palermo, Italy
| | - Dario Raimondo
- Gastroenterology & Endoscopy Unit, Fondazione Istituto G. Giglio, Contrada Pietra Pollastra Pisciotto, 90015 Cefalù, Italy
| | - Silvio Danese
- Division of Gastroenterology and Gastrointestinal Endoscopy, San Raffaele Hospital, Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
80
|
Fan X, Zang T, Liu J, Wu N, Dai J, Bai J, Liu Y. Changes in the gut microbiome in the first two years of life predicted the temperament in toddlers. J Affect Disord 2023; 333:342-352. [PMID: 37086808 DOI: 10.1016/j.jad.2023.04.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/26/2023] [Accepted: 04/16/2023] [Indexed: 04/24/2023]
Abstract
BACKGROUND Temperament has been shown to be associated with the change of gut microbiome. There were no longitudinal studies to explore the role of gut microbiome changes in the development of temperament in toddlers. METHODS This study used longitudinal cohort to investigate the associations between changes in gut microbiome and temperament in toddlers in the first two years of life. Linear regression analysis and microbiome multivariate association with linear models were used to investigate the associations between the gut microbiome and toddlers' temperament. RESULTS In total, 41 toddlers were analyzed. This study found both Shannon and Chao-1 indices at birth were negatively correlated with the sadness dimension; the higher the Shannon and Chao-1 indices at 6 months, the lower the surgency/extraversion dimension scores; the higher the Shannon and Chao-1 indices at 2 years of ages, the lower the cuddliness dimension scores. After adjusting for covariates, beta diversity at birth was strongly associated with the negative affectivity dimension; beta diversity at 1 year of age was strongly associated with the activity level dimension; and beta diversity at 2 years of age was strongly associated with the discomfort and soothability dimension. Compared to Bifidobacterium cluster, this study also found Bacteroides cluster was associated with lower negative affectivity and its sub-dimensions frustration and sadness scores in toddlers. LIMITATIONS Generalizability of the results remains to be determined. CONCLUSION Results of this study confirmed the associations between changes in the gut microbiome diversity and composition in the first two years of life and toddlers' temperament.
Collapse
Affiliation(s)
- Xiaoxiao Fan
- Center for Women and Children Health and Metabolism Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Tianzi Zang
- Center for Women and Children Health and Metabolism Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Jun Liu
- Center for Women and Children Health and Metabolism Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Ni Wu
- Center for Women and Children Health and Metabolism Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Jiamiao Dai
- Center for Women and Children Health and Metabolism Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Jinbing Bai
- Emory University Nell Hodgson Woodruff School of Nursing, 1520 Clifton Road, Atlanta, GA 30322, USA
| | - Yanqun Liu
- Center for Women and Children Health and Metabolism Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China.
| |
Collapse
|
81
|
Zhou C, Wang Y, Li C, Xie Z, Dai L. Amelioration of Colitis by a Gut Bacterial Consortium Producing Anti-Inflammatory Secondary Bile Acids. Microbiol Spectr 2023:e0333022. [PMID: 36943054 PMCID: PMC10101101 DOI: 10.1128/spectrum.03330-22] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
The Integrative Human Microbiome Project and other cohort studies have indicated that inflammatory bowel disease is accompanied by dysbiosis of gut microbiota, decreased production of secondary bile acids, and increased levels of primary bile acids. Secondary bile acids, such as ursodeoxycholic acid (UDCA) and lithocholic acid (LCA), have been reported to be anti-inflammatory, yet it remains to be studied whether introducing selected bacteria strains to restore bile acid metabolism of the gut microbiome can alleviate intestinal inflammation. In this study, we screened human gut bacterial strains for bile acid metabolism and designed a consortium of three species, including Clostridium AP sp000509125, Bacteroides ovatus, and Eubacterium limosum, and named it BAC (bile acid consortium). We showed that the three-strain gut bacterial consortium BAC is capable of converting conjugated primary bile acids taurochenodeoxycholic acid and glycochenodeoxycholic acid to secondary bile acids UDCA and LCA in vitro. Oral gavage treatment with BAC in mice resulted in protective effects against dextran sulfate sodium (DSS)-induced colitis, including reduced weight loss and increased colon length. Furthermore, BAC treatment increased the fecal level of bile acids, including UDCA and LCA. BAC treatment enhanced intestinal barrier function, which may be attributed to the increased activation of the bile acid receptor TGR5 by secondary bile acids. Finally, we examined the remodeling of gut microbiota by BAC treatment. Taken together, the three-strain gut bacterial consortium BAC restored the dysregulated bile acid metabolism and alleviated DSS-induced colitis. Our study provides a proof-of-concept demonstration that a rationally designed bacterial consortium can reshape the metabolism of the gut microbiome to treat diseases. IMPORTANCE Secondary bile acids have been reported to be anti-inflammatory, yet it remains to be studied whether introducing selected bacteria strains to restore bile acid metabolism of the gut microbiome can alleviate intestinal inflammation. To address this gap, we designed a consortium of human gut bacterial strains based on their metabolic capacity to produce secondary bile acids UDCA and LCA, and we evaluated the efficacy of single bacterial strains and the bacterial consortium in treating the murine colitis model. We found that oral gavage of the bacterial consortium to mice restored secondary bile acid metabolism to increase levels of UDCA and LCA, which induced the activation of TGR5 to improve gut-barrier integrity and reduced the inflammation in murine colitis. Overall, our study demonstrates that rationally designed bacterial consortia can reshape the metabolism of the gut microbiome and provides novel insights into the application of live biotherapeutics for treating IBD.
Collapse
Affiliation(s)
- Chunhua Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus, Sun Yat-sen University, Shenzhen, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China
| | - Ying Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China
| | - Cun Li
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus, Sun Yat-sen University, Shenzhen, China
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China
| |
Collapse
|
82
|
Duda-Chodak A, Tarko T. Possible Side Effects of Polyphenols and Their Interactions with Medicines. Molecules 2023; 28:molecules28062536. [PMID: 36985507 PMCID: PMC10058246 DOI: 10.3390/molecules28062536] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Polyphenols are an important component of plant-derived food with a wide spectrum of beneficial effects on human health. For many years, they have aroused great interest, especially due to their antioxidant properties, which are used in the prevention and treatment of many diseases. Unfortunately, as with any chemical substance, depending on the conditions, dose, and interactions with the environment, it is possible for polyphenols to also exert harmful effects. This review presents a comprehensive current state of the knowledge on the negative impact of polyphenols on human health, describing the possible side effects of polyphenol intake, especially in the form of supplements. The review begins with a brief overview of the physiological role of polyphenols and their potential use in disease prevention, followed by the harmful effects of polyphenols which are exerted in particular situations. The individual chapters discuss the consequences of polyphenols’ ability to block iron uptake, which in some subpopulations can be harmful, as well as the possible inhibition of digestive enzymes, inhibition of intestinal microbiota, interactions of polyphenolic compounds with drugs, and impact on hormonal balance. Finally, the prooxidative activity of polyphenols as well as their mutagenic, carcinogenic, and genotoxic effects are presented. According to the authors, there is a need to raise public awareness about the possible side effects of polyphenols supplementation, especially in the case of vulnerable subpopulations.
Collapse
|
83
|
Garnås E. Fermented Vegetables as a Potential Treatment for Irritable Bowel Syndrome. Curr Dev Nutr 2023; 7:100039. [PMID: 37181929 PMCID: PMC10111609 DOI: 10.1016/j.cdnut.2023.100039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/22/2023] Open
Abstract
Foods and supplements containing microorganisms with expected beneficial effects are increasingly investigated and utilized in the treatment of human illness, including irritable bowel syndrome (IBS). Research points to a prominent role of gut dysbiosis in the multiple aberrations in gastrointestinal function, immune balance, and mental health seen in IBS. The proposition of the current Perspective is that fermented vegetable foods, in combination with a healthy and stable diet, may be particularly useful for addressing these disturbances. This is based on the recognition that plants and their associated microorganisms have contributed to shaping human microbiota and adaptation over evolutionary time. In particular, lactic acid bacteria with immunomodulatory, antipathogenic, and digestive properties are prevalent in products such as sauerkraut and kimchi. Additionally, by adjusting the salt content and fermentation time, products with a microbial and therapeutic potential beyond that of regular ferments could potentially be produced. Although more clinical data are required to make firm assertions, the low-risk profile, combined with biological considerations and reasoning and considerable circumstantial and anecdotal evidence, indicate that fermented vegetables are worthy of consideration by health professionals and patients dealing with IBS-related issues. To maximize microbial diversity and limit the risk of adverse effects, small doses of multiple products, containing different combinations of traditionally fermented vegetables and/or fruits, is suggested for experimental research and care.
Collapse
|
84
|
Gastrointestinal and Hepatobiliary Symptoms and Disorders with Long (Chronic) COVID Infection. Gastroenterol Clin North Am 2023; 52:139-156. [PMID: 36813422 PMCID: PMC9940919 DOI: 10.1016/j.gtc.2022.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Long COVID is a novel syndrome characterizing new or persistent symptoms weeks after COVID-19 infection and involving multiple organ systems. This review summarizes the gastrointestinal and hepatobiliary sequelae of long COVID syndrome. It describes potential biomolecular mechanisms, prevalence, preventative measures, potential therapies, and health care and economic impact of long COVID syndrome, particularly of its gastrointestinal (GI) and hepatobiliary manifestations.
Collapse
|
85
|
Carroll-Portillo A, Rumsey KN, Braun CA, Lin DM, Coffman CN, Alcock JA, Singh SB, Lin HC. Mucin and Agitation Shape Predation of Escherichia coli by Lytic Coliphage. Microorganisms 2023; 11:microorganisms11020508. [PMID: 36838472 PMCID: PMC9966288 DOI: 10.3390/microorganisms11020508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
The ability of bacteriophage (phage), abundant within the gastrointestinal microbiome, to regulate bacterial populations within the same micro-environment offers prophylactic and therapeutic opportunities. Bacteria and phage have both been shown to interact intimately with mucin, and these interactions invariably effect the outcomes of phage predation within the intestine. To better understand the influence of the gastrointestinal micro-environment on phage predation, we employed enclosed, in vitro systems to investigate the roles of mucin concentration and agitation as a function of phage type and number on bacterial killing. Using two lytic coliphage, T4 and PhiX174, bacterial viability was quantified following exposure to phages at different multiplicities of infection (MOI) within increasing, physiological levels of mucin (0-4%) with and without agitation. Comparison of bacterial viability outcomes demonstrated that at low MOI, agitation in combination with higher mucin concentration (>2%) inhibited phage predation by both phages. However, when MOI was increased, PhiX predation was recovered regardless of mucin concentration or agitation. In contrast, only constant agitation of samples containing a high MOI of T4 demonstrated phage predation; briefly agitated samples remained hindered. Our results demonstrate that each phage-bacteria pairing is uniquely influenced by environmental factors, and these should be considered when determining the potential efficacy of phage predation under homeostatic or therapeutic circumstances.
Collapse
Affiliation(s)
- Amanda Carroll-Portillo
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
- Correspondence:
| | - Kellin N. Rumsey
- Statistical Sciences, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Cody A. Braun
- Biomedical Research Institute of New Mexico, Albuquerque, NM 87108, USA
| | - Derek M. Lin
- Biomedical Research Institute of New Mexico, Albuquerque, NM 87108, USA
| | | | - Joe A. Alcock
- Department of Emergency Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Sudha B. Singh
- Biomedical Research Institute of New Mexico, Albuquerque, NM 87108, USA
| | - Henry C. Lin
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
- Medicine Service, New Mexico VA Health Care System, Albuquerque, NM 87108, USA
| |
Collapse
|
86
|
MacIntosh A, Heenan PE, Wright-McNaughton M, Frampton C, Skidmore P, Wall CL, Muir J, Talley NJ, Roy NC, Gearry RB. The relationship between fermentable carbohydrates and post-prandial bowel symptoms in patients with functional bowel disorders. Front Nutr 2023; 10:1060928. [PMID: 36819701 PMCID: PMC9932028 DOI: 10.3389/fnut.2023.1060928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
Background and aims A low fermentable oligosaccharide, disaccharide, monosaccharide, and polyols (FODMAP) diet alleviates symptoms of irritable bowel syndrome (IBS). We aimed to investigate the relationship between habitual FODMAP intake and post-prandial bowel symptoms in adults with IBS, functional diarrhoea (FD), or constipation (FD) (functional bowel disorders), and in healthy adults (controls). Methods 292 participants (173 with functional bowel disorders and 119 controls) completed a food and symptom times diary. Estimated meal portion sizes were entered into the Monash FODMAP Calculator to analyse FODMAP content. Wilcoxon and ANOVA tests were used to investigate the relationship between FODMAP intake and post-prandial bowel symptoms. Results IBS participants experienced more post-prandial bowel symptoms compared to participants with other functional bowel disorders or controls. Meals associated with abdominal pain contained on average increased excess fructose (0.31 g vs. 0.18 g, p < 0.05), sorbitol (0.27 g vs. 0.10 g, p < 0.01), and total FODMAP (3.46 g vs. 2.96 g, p < 0.05) compared to meals not associated with pain. Abdominal swelling was associated with increased sorbitol (0.33 g vs. 0.11 g, p < 0.01), and total FODMAP (3.26 g vs. 3.02 g, p < 0.05) consumption. Abdominal bloating was associated with increased galacto oligosaccharide consumption (0.18 g vs. 0.14 g, p < 0.05). Conclusion These findings support the role of FODMAP in post-prandial bowel symptom onset, however, the amount and type of FODMAP triggering symptoms vary between individuals. Future research should investigate the relationship between the effect of individual FODMAP consumption on post-prandial bowel symptoms for each subtype, the interaction of FODMAP with differing functional bowel disorders and whether longitudinally symptoms and dietary intake are stable.
Collapse
Affiliation(s)
- Alice MacIntosh
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Phoebe E. Heenan
- Department of Medicine, University of Otago, Christchurch, New Zealand
- High-Value Nutrition National Science Challenge, Liggins Institute at the University of Auckland, Auckland, New Zealand
| | | | - Chris Frampton
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Paula Skidmore
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Catherine L. Wall
- Department of Medicine, University of Otago, Christchurch, New Zealand
- High-Value Nutrition National Science Challenge, Liggins Institute at the University of Auckland, Auckland, New Zealand
| | - Jane Muir
- Department of Gastroenterology, Monash University, Melbourne, VIC, Australia
| | - Nicholas Joseph Talley
- School of Medicine, University of Newcastle, Newcastle, NSW, Australia
- NHMRC Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
| | - Nicole Clemence Roy
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
- High-Value Nutrition National Science Challenge, Liggins Institute at the University of Auckland, Auckland, New Zealand
- Riddet Institute, Palmerston North, New Zealand
| | - Richard B. Gearry
- Department of Medicine, University of Otago, Christchurch, New Zealand
- High-Value Nutrition National Science Challenge, Liggins Institute at the University of Auckland, Auckland, New Zealand
| |
Collapse
|
87
|
Wu S, Yang Z, Liu S, Zhang Q, Zhang S, Zhu S. Frailty status and risk of irritable bowel syndrome in middle-aged and older adults: A large-scale prospective cohort study. EClinicalMedicine 2023; 56:101807. [PMID: 36593792 PMCID: PMC9803645 DOI: 10.1016/j.eclinm.2022.101807] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Frailty is a public health problem for ageing society, however, evidence is lacking regarding its impact on intestinal functions. We aimed to examine prospective relationships of frailty and pre-frailty in middle-aged and older adults with incident irritable bowel syndrome (IBS) in a large-scale population-based cohort. METHODS Participants (aged 37-73 years) free of IBS, coeliac disease, inflammatory bowel disease and any cancer at baseline were included, using data from the UK Biobank (collected 2006-2010, 22 assessment centres). Participants without available primary care data were excluded. Frailty status was assessed using Fried phenotype including five criteria (weight loss, exhaustion, low grip strength, low physical activity, slow walking pace). Participants who met at least three criteria were defined as frail, and those who fulfilled one or two criteria were defined as pre-frail. Primary outcome was incident IBS. Cox proportional hazard model was conducted to examine the associated risk of incident IBS. FINDINGS Among 176,423 participants (mean age 56.19 years), 7994 (4.5%) and 78,957 (44.8%) were frail and pre-frail at baseline. During a median of 13.2-year follow-up, 4155 cases of incident IBS were identified. Compared with non-frail individuals, those with frail (HR = 1.80, 95% CI: 1.59-2.04) and pre-frail (HR = 1.21, 1.14-1.30) showed significantly higher risk of developing IBS after multivariable adjustment (Ptrend < 0.001). Specifically, the positive association was not only observed in older adults (HR = 1.69, 1.37-2.08 for frail; 1.24, 1.12-1.39 for pre-frail), but also in middle-aged adults (HR = 1.90, 1.62-2.22 for frail; 1.19, 1.10-1.30 for pre-frail), both with Ptrend < 0.001. Further sensitivity analysis and subgroup analysis indicated similar results. INTERPRETATION Frailty and pre-frailty in middle-aged and older adults are associated with increased risk of incident clinical diagnosis of IBS. FUNDING National Natural Science Foundation of China (No. 82070550) & National Key Research and Development Program of China (2022YFC2504002, 2022YFC2504003).
Collapse
Affiliation(s)
- Shanshan Wu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, China
| | - Zhirong Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Primary Care Unit, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge CB18RN, UK
| | - Si Liu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, China
| | - Qian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, China
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, China
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, China
- Corresponding author.
| |
Collapse
|
88
|
Elsasser TH, Ma B, Ravel J, Kahl S, Gajer P, Cross A. Short-term feeding of defatted bovine colostrum mitigates inflammation in the gut via changes in metabolites and microbiota in a chicken animal model. Anim Microbiome 2023; 5:6. [PMID: 36703224 PMCID: PMC9878500 DOI: 10.1186/s42523-023-00225-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Nondrug supplement strategies to improve gut health have largely focused on the effects of individual compounds to improve one aspect of gut homeostasis. However, there is no comprehensive assessment of the reproducible effects of oral, short-term, low-level colostrum supplementation on gut inflammation status that are specific to the ileum. Herein, a chicken animal model highly responsive to even mild gut inflammatory stimuli was employed to compare the outcomes of feeding a standard diet (CON) to those of CON supplemented with a centrifuge-defatted bovine colostrum (BC) or a nonfat dried milk (NFDM) control on the efficiency of nutrient use, ileal morphology, gut nitro-oxidative inflammation status, metabolites, and the composition of the microbiota. RESULTS A repeated design, iterative multiple regression model was developed to analyze how BC affected ileal digesta-associated anti-inflammatory metabolite abundance coincident with observed changes in the ileal microbiome, mitigation of epithelial inflammation, and ileal surface morphology. An improved whole body nutrient use efficiency in the BC group (v CON and NFDM) coincided with the observed increased ileum absorptive surface and reduced epithelial cell content of tyrosine-nitrated protein (NT, biomarker of nitro-oxidative inflammatory stress). Metabolome analysis revealed that anti-inflammatory metabolites were significantly greater in abundance in BC-fed animals. BC also had a beneficial BC impact on microbiota, particularly in promoting the presence of the bacterial types associated with eubiosis and the segmented filamentous bacteria, Candidatus Arthromitus. CONCLUSION The data suggest that an anti-inflammatory environment in the ileum was more evident in BC than in the other feeding groups and associated with an increased content of statistically definable groups of anti-inflammatory metabolites that appear to functionally link the observed interactions between the host's improved gut health with an observed increase in whole body nutrient use efficiency, beneficial changes in the microbiome and immunometabolism.
Collapse
Affiliation(s)
- Ted H. Elsasser
- grid.463419.d0000 0001 0946 3608Animal Biosciences and Biotechnology Laboratory, USA Department of Agriculture (USDA), Agricultural Research Service (ARS), Beltsville, MD 20705 USA
| | - Bing Ma
- grid.411024.20000 0001 2175 4264Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Jacques Ravel
- grid.411024.20000 0001 2175 4264Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Stanislaw Kahl
- grid.463419.d0000 0001 0946 3608Animal Biosciences and Biotechnology Laboratory, USA Department of Agriculture (USDA), Agricultural Research Service (ARS), Beltsville, MD 20705 USA
| | - Pawel Gajer
- grid.411024.20000 0001 2175 4264Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Alan Cross
- grid.411024.20000 0001 2175 4264Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| |
Collapse
|
89
|
Vitamin D, Gut Microbiota, and Cardiometabolic Diseases-A Possible Three-Way Axis. Int J Mol Sci 2023; 24:ijms24020940. [PMID: 36674452 PMCID: PMC9866669 DOI: 10.3390/ijms24020940] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 01/06/2023] Open
Abstract
Metabolic syndrome (MetSyn) is a precursor for several cardiometabolic diseases such as obesity, type-2 diabetes mellitus (T2DM), and cardiovascular diseases. Emerging evidence suggests that vitamin D deficiency links to cardiometabolic diseases through microbiota. A combination of poor vitamin D status and dysbiosis may contribute to the progression of cardiometabolic diseases. Therefore, in this review, we present the relationship among vitamin D, microbiota, and cardiometabolic diseases with a focus on MetSyn. We searched major databases for reports on vitamin D, microbiota, and MetSyn until June 2022. We reviewed 13 reports on the relation between vitamin D and MetSyn (6 randomized controlled and 7 cross-sectional studies) and 6 reports on the effect of vitamin D on the gut microbiome. Adequate vitamin D status has a beneficial effect on gut microbiota, therefore preventing the progression of MetSyn. Further, well-controlled studies are needed for a better understanding of the mechanisms of action involving vitamin D and microbiota in the pathogenesis of cardiometabolic diseases.
Collapse
|
90
|
Hassan D, Hossain A. Gut microbiome and COVID-19. VIRAL, PARASITIC, BACTERIAL, AND FUNGAL INFECTIONS 2023:263-277. [DOI: 10.1016/b978-0-323-85730-7.00033-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
91
|
Thekkekkara D, Manjula SN, Mishra N, Bhatt S, Shilpi S. Synbiotics in the Management of Breast Cancer. SYNBIOTICS FOR THE MANAGEMENT OF CANCER 2023:289-304. [DOI: 10.1007/978-981-19-7550-9_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
92
|
Zhou Y, Zhang F, Mao L, Feng T, Wang K, Xu M, Lv B, Wang X. Bifico relieves irritable bowel syndrome by regulating gut microbiota dysbiosis and inflammatory cytokines. Eur J Nutr 2023; 62:139-155. [PMID: 35918555 PMCID: PMC9899748 DOI: 10.1007/s00394-022-02958-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/08/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE Gut microbiota dysbiosis, a core pathophysiology of irritable bowel syndrome (IBS), is closely related to immunological and metabolic functions. Gut microbiota-based therapeutics have been recently explored in several studies. Bifico is a probiotic cocktail widely used in gastrointestinal disorders which relate to the imbalance of gut microbiota. However, the efficacy and potential mechanisms of Bifico treatment in IBS remains incompletely understood. METHODS Adopting a wrap restraint stress (WRS) -induced IBS mice model. Protective effect of Bifico in IBS mice was examined through abdominal withdrawal reflex (AWR) scores. 16S rDNA, 1H nuclear magnetic resonance (1H-NMR) and western blot assays were performed to analyze alterations of gut microbiota, microbiome metabolites and inflammatory cytokines, respectively. RESULTS Bifico could decrease intestinal visceral hypersensitivity. Although gut microbiota diversity did not increase, composition of gut microbiota was changed after treatment of Bifico, which were characterized by an increase of Proteobacteria phylum and Actinobacteria phylum, Muribaculum genus, Bifidobacterium genus and a decrease of Parabacteroides genus, Sutterella genus and Lactobacillus genus. Moreover, Bifico elevated the concentration of short-chain fatty acids (SCFAs) and reduced protein levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). From further Spearman's correlation analysis, Bifidobacterium genus were positively correlated with SCFAs including propionate, butyrate, valerate and negatively correlated with IL-6 and TNF-α. CONCLUSION Bifico could alleviate symptoms of IBS mice through regulation of the gut microbiota, elevating production of SCFAs and reducing the colonic inflammatory response.
Collapse
Affiliation(s)
- Yanlin Zhou
- grid.417400.60000 0004 1799 0055Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310003 Zhejiang China ,grid.268505.c0000 0000 8744 8924The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang China ,Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hubin Campus, Hangzhou, 310006 China
| | - Fan Zhang
- grid.268505.c0000 0000 8744 8924The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang China ,Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hubin Campus, Hangzhou, 310006 China ,grid.417400.60000 0004 1799 0055Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310003 Zhejiang China
| | - Liqi Mao
- grid.411440.40000 0001 0238 8414Department of Gastroenterology, The First People’s Hospital of Huzhou, The First Affiliated Hospital of Huzhou Teachers College, Huzhou, 313000 Zhejiang China
| | - Tongfei Feng
- grid.417400.60000 0004 1799 0055Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310003 Zhejiang China ,Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hubin Campus, Hangzhou, 310006 China
| | - Kaijie Wang
- grid.417400.60000 0004 1799 0055Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310003 Zhejiang China ,Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hubin Campus, Hangzhou, 310006 China
| | - Maosheng Xu
- grid.417400.60000 0004 1799 0055Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310003 Zhejiang China
| | - Bin Lv
- grid.417400.60000 0004 1799 0055Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310003 Zhejiang China ,Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hubin Campus, Hangzhou, 310006 China
| | - Xi Wang
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hubin Campus, Hangzhou, 310006 China
| |
Collapse
|
93
|
Wang D, Zhang X, Du H. Inflammatory bowel disease: A potential pathogenic factor of Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110610. [PMID: 35908596 DOI: 10.1016/j.pnpbp.2022.110610] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) is a central nervous system disease characterised by degenerative cognitive dysfunction and memory loss. In a society where the global population is gradually ageing, the health threats and financial burdens caused by AD are becoming increasingly severe since AD often occurs in old age. With the in-depth study of AD, many new pathogenic mechanisms have been proposed, among which bidirectional communication between intestinal microbes and the brain has attracted widespread attention. The aetiology of inflammatory bowel disease (IBD) is related to the imbalance of the gut microbiota. Epidemiological investigations have shown that patients with IBD are more likely to suffer from AD. Targeting IBD as a potential AD treatment target has attracted considerable interest. Here, we reviewed the link between chronic intestinal inflammation and central nervous system inflammation and found that IBD patients had a higher risk of AD than non-IBD patients. Preclinical models based on AD also showed that IBD aggravated the condition of AD. We discussed possible biological links between AD and IBD, including the gut-brain axis, autoimmunity, and the gut microbiota. In addition, IBD-induced changes in intestinal microbial metabolites, such as short-chain fatty acids, bile acids, and tryptophan, which aggravate the development of AD, were also discussed.
Collapse
Affiliation(s)
- Donghui Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xiaoshuang Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Hongwu Du
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China.
| |
Collapse
|
94
|
Tang J, Ouyang Q, Li Y, Zhang P, Jin W, Qu S, Yang F, He Z, Qin M. Nanomaterials for Delivering Antibiotics in the Therapy of Pneumonia. Int J Mol Sci 2022; 23:ijms232415738. [PMID: 36555379 PMCID: PMC9779065 DOI: 10.3390/ijms232415738] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 12/14/2022] Open
Abstract
Bacterial pneumonia is one of the leading causes of death worldwide and exerts a significant burden on health-care resources. Antibiotics have long been used as first-line drugs for the treatment of bacterial pneumonia. However, antibiotic therapy and traditional antibiotic delivery are associated with important challenges, including drug resistance, low bioavailability, and adverse side effects; the existence of physiological barriers further hampers treatment. Fortunately, these limitations may be overcome by the application of nanotechnology, which can facilitate drug delivery while improving drug stability and bioavailability. This review summarizes the challenges facing the treatment of bacterial pneumonia and also highlights the types of nanoparticles that can be used for antibiotic delivery. This review places a special focus on the state-of-the-art in nanomaterial-based approaches to the delivery of antibiotics for the treatment of pneumonia.
Collapse
Affiliation(s)
- Jie Tang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Qiuhong Ouyang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanyan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Peisen Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weihua Jin
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Shuang Qu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fengmei Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
- Correspondence: (Z.H.); (M.Q.)
| | - Meng Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (Z.H.); (M.Q.)
| |
Collapse
|
95
|
Talapko J, Včev A, Meštrović T, Pustijanac E, Jukić M, Škrlec I. Homeostasis and Dysbiosis of the Intestinal Microbiota: Comparing Hallmarks of a Healthy State with Changes in Inflammatory Bowel Disease. Microorganisms 2022; 10:2405. [PMID: 36557658 PMCID: PMC9781915 DOI: 10.3390/microorganisms10122405] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota, which represent a community of different microorganisms in the human intestinal tract, are crucial to preserving human health by participating in various physiological functions and acting as a metabolic organ. In physiological conditions, microbiota-host partnership exerts homeostatic stability; however, changes in intestinal microbiota composition (dysbiosis) are an important factor in the pathogenesis of inflammatory bowel disease and its two main disease entities: ulcerative colitis and Crohn's disease. The incidence and prevalence of these inflammatory conditions have increased rapidly in the last decade, becoming a significant problem for the healthcare system and a true challenge in finding novel therapeutic solutions. The issue is that, despite numerous studies, the etiopathogenesis of inflammatory bowel disease is not completely clear. Based on current knowledge, chronic intestinal inflammation occurs due to altered intestinal microbiota and environmental factors, as well as a complex interplay between the genetic predisposition of the host and an inappropriate innate and acquired immune response. It is important to note that the development of biological and immunomodulatory therapy has led to significant progress in treating inflammatory bowel disease. Certain lifestyle changes and novel approaches-including fecal microbiota transplantation and nutritional supplementation with probiotics, prebiotics, and synbiotics-have offered solutions for dysbiosis management and paved the way towards restoring a healthy microbiome, with only minimal long-term unfavorable effects.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Aleksandar Včev
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Tomislav Meštrović
- University Centre Varaždin, University North, 42000 Varaždin, Croatia
- Institute for Health Metrics and Evaluation and the Department of Health Metrics Sciences, University of Washington, Seattle, WA 98195, USA
| | - Emina Pustijanac
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, 52100 Pula, Croatia
| | - Melita Jukić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
- General Hospital Vukovar, Županijska 35, 32000 Vukovar, Croatia
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| |
Collapse
|
96
|
Loke SS, Li WC. Peptic Ulcer Disease Associated with Central Obesity. J Pers Med 2022; 12:jpm12121968. [PMID: 36556189 PMCID: PMC9786886 DOI: 10.3390/jpm12121968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
This retrospective cross-sectional study aimed to evaluate associations between peptic ulcer disease (PUD), bone mineral density, and metabolic syndrome (MetS) and its components in healthy populations. Data were collected from the health examination database of a tertiary medical center in southern Taiwan from January 2015 to December 2016. Subjects who had undergone metabolic factors assessment, upper gastrointestinal endoscopy, and dual energy X-ray absorptiometry scans were enrolled. In total, 5102 subjects were included, with mean age 52.4 ± 12.0 years. Among them, 1332 (26.1%) had PUD. Multivariate logistic regression analysis showed that age (OR 1.03, p < 0.001), male (OR 1.89, p < 0.001), diabetes (OR 1.23, p = 0.004), BMI (OR 1.03, p = 0.001), and GOT (OR 1, p = 0.003) are risk factors for PUD. Regarding MetS parameters, larger waist circumference (OR 1.26, p = 0.001) is associated with PUD, and high triglycerides (OR 1.20, 95% CI 1.01−1.43) is associated with gastric ulcer, while low HDL (OR 1.31, 95% CI 1.07−1.59) and osteoporosis (OR 1.44, 95% CI 1.08−1.91) are associated with duodenal ulcer. In conclusion, central obesity is associated with PUD in a middle-aged healthy population. Subjects with high triglycerides are prone to gastric ulcers, and those with osteoporosis and low HDL are prone to duodenal ulcers.
Collapse
Affiliation(s)
- Song-Seng Loke
- Division of Geriatric Medicine, Department of Family Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123, Dapi Road, Niaosong District, Kaohsiung 80708, Taiwan
- Correspondence:
| | - Wen-Cheng Li
- Department of Family Medicine, Chang Gung Memorial Hospital, Linkou Branch, College of Medicine, Chang-Gung University, Taoyuan 32023, Taiwan
| |
Collapse
|
97
|
Development of Non-Dairy Synbiotic Fruit Beverage Using Adansonia digatata (baobab) Fruit Pulp as Prebiotic. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Probiotics improve gut health; however, their intake through diet is mainly in the form of dairy products, which represents a challenge to lactose-intolerant individuals and vegetarians. This study aimed to determine the prebiotic potential of baobab and to evaluate the potential of using fermented baobab-based beverages as functional foods. The prebiotic content of baobab fruit pulp was determined. Lactic acid bacteria (LAB) were isolated from raw milk samples, identified through phenotypic and molecular methods, and evaluated for their probiotic potential. Three potential non-dairy synbiotic functional beverages using baobab fruit pulp fermented with potential probiotic Limosilactobacillus fermentum and mixed with milk, water, and apple juice separately were produced. The growth and survival of probiotic L. fermentum in the beverages at room (25 °C) and refrigeration (4 °C) temperatures for 3 weeks were determined. Baobab fruit pulp contained phytochemicals, vitamins, fatty acids, inulin, and fructooligosaccharides. Sequence alignment of the LAB isolates identified homologous sequences of Lacticaseibacillus casei, Limosilactobacillus fermentum, Lactiplantibacillus plantarum, Lentilactobacillus buchneri, and Lactiplantibacillus pentosus with 97.2–98.5% similarity. All the lactic acid bacteria did not produce DNAse and gelatinase enzymes, exhibited antagonistic activity against test pathogenic organisms, and demonstrated tolerance to bile salt, simulated gastric juice, and acid. The viability of L. fermentum increased from an initial inoculum size of 106–108 CFU/mL in the baobab-based beverages and remained constant at 108 CFU/mL both at room and refrigeration temperatures. However, after three weeks, the viability of L. fermentum in the synbiotic beverages reduced to 107 CFU/mL. Refrigerated synbiotic beverages had more viable L. fermentum cells (8.04–8log10 CFU/mL) than those stored at room temperatures (7.95–7.7log10 CFU/mL) after three weeks of storage. This study has shown that baobab fruit pulp has prebiotic potential and can be used in the production of a non-dairy functional beverage.
Collapse
|
98
|
Alka Ahuja, Saraswathy Mp, Nandakumar S, Prakash F A, Kn G, Um D. Role of the Gut Microbiome in Diabetes and Cardiovascular Diseases Including Restoration and Targeting Approaches- A Review. DRUG METABOLISM AND BIOANALYSIS LETTERS 2022; 15:133-149. [PMID: 36508273 DOI: 10.2174/2949681015666220615120300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022]
Abstract
Metabolic diseases, including cardiovascular diseases (CVD) and diabetes, have become the leading cause of morbidity and mortality worldwide. Gut microbiota appears to play a vital role in human disease and health, according to recent scientific reports. The gut microbiota plays an important role in sustaining host physiology and homeostasis by creating a cross-talk between the host and microbiome via metabolites obtained from the host's diet. Drug developers and clinicians rely heavily on therapies that target the microbiota in the management of metabolic diseases, and the gut microbiota is considered the biggest immune organ in the human body. They are highly associated with intestinal immunity and systemic metabolic disorders like CVD and diabetes and are reflected as potential therapeutic targets for the management of metabolic diseases. This review discusses the mechanism and interrelation between the gut microbiome and metabolic disorders. It also highlights the role of the gut microbiome and microbially derived metabolites in the pathophysiological effects related to CVD and diabetes. It also spotlights the reasons that lead to alterations of microbiota composition and the prominence of gut microbiota restoration and targeting approaches as effective treatment strategies in diabetes and CVD. Future research should focus onunderstanding the functional level of some specific microbial pathways that help maintain physiological homeostasis, multi-omics, and develop novel therapeutic strategies that intervene with the gut microbiome for the prevention of CVD and diabetes that contribute to a patient's well-being.
Collapse
Affiliation(s)
- Alka Ahuja
- College of Pharmacy, National University of Science and Technology, PC130, Muscat, Sultanate of Oman
| | - Saraswathy Mp
- Department of Microbiology, ESIC Medical College and PGIMSR, Chennai-600078, India
| | - Nandakumar S
- Department of Biotechnology, Pondicherry University, Kalapet, Puducherry-605014, India
| | - Arul Prakash F
- Centre of Molecular Medicine and Diagnostics (COMMAND), Saveetha Dental College and Hospital, Saveetha Institute of Medical & Technical Sciences, Chennai- 600077, India
| | - Gurpreet Kn
- College of Pharmacy, National University of Science and Technology, PC130, Muscat, Sultanate of Oman
| | - Dhanalekshmi Um
- College of Pharmacy, National University of Science and Technology, PC130, Muscat, Sultanate of Oman
| |
Collapse
|
99
|
Almeida C, Oliveira R, Baylina P, Fernandes R, Teixeira FG, Barata P. Current Trends and Challenges of Fecal Microbiota Transplantation-An Easy Method That Works for All? Biomedicines 2022; 10:2742. [PMID: 36359265 PMCID: PMC9687574 DOI: 10.3390/biomedicines10112742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 09/10/2023] Open
Abstract
The gut microbiota refers to bacteria lodges in the gastrointestinal tract (GIT) that interact through various complex mechanisms. The disturbance of this ecosystem has been correlated with several diseases, such as neurologic, respiratory, cardiovascular, and metabolic diseases and cancer. Therefore, the modulation of the gut microbiota has emerged as a potential therapeutic tool; of the various forms of gut microbiota modulation, fecal microbiota transplantation (FMT) is the most approached. This recent technique involves introducing fecal material from a healthy donor into the patient's gastrointestinal tract, aiming to restore the gut microbiota and lead to the resolution of symptoms. This procedure implies a careful donor choice, fine collection and handling of fecal material, and a balanced preparation of the recipient and consequent administration of the prepared content. Although FMT is considered a biological therapy with promising effects, side effects such as diarrhea and abdominal pain have also been claimed, making this a significant challenge in the application of FMT. Bearing this in mind, the present review aims to summarize the recent advances in understanding FMT mechanisms, their impact across different pathological conditions, and the associated side effects, emphasizing the most recent published data.
Collapse
Affiliation(s)
- Cátia Almeida
- LaBMI—Laboratory of Medical & Industrial Biotechnology, Porto Polytechnic Institute, 4200-375 Porto, Portugal
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine of Porto University, 4200-319 Porto, Portugal
- FP-i3ID, HEFP, FCS-UFP—Fernando Pessoa Hospital, Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
| | - Rita Oliveira
- FP-i3ID, HEFP, FCS-UFP—Fernando Pessoa Hospital, Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
| | - Pilar Baylina
- LaBMI—Laboratory of Medical & Industrial Biotechnology, Porto Polytechnic Institute, 4200-375 Porto, Portugal
- ESS-IPP—Health School, Porto Polytechnic Institute, 4200-072 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Rúben Fernandes
- LaBMI—Laboratory of Medical & Industrial Biotechnology, Porto Polytechnic Institute, 4200-375 Porto, Portugal
- FP-i3ID, HEFP, FCS-UFP—Fernando Pessoa Hospital, Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Fábio G. Teixeira
- LaBMI—Laboratory of Medical & Industrial Biotechnology, Porto Polytechnic Institute, 4200-375 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- ICVS/3B’s-PT Government Associated Lab, 4710-057/4805-107 Braga/Guimarães, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
| | - Pedro Barata
- LaBMI—Laboratory of Medical & Industrial Biotechnology, Porto Polytechnic Institute, 4200-375 Porto, Portugal
- FP-i3ID, HEFP, FCS-UFP—Fernando Pessoa Hospital, Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
100
|
Khan MZ, Lyu R, McMichael J, Gabbard S. Chronic Intestinal Pseudo-Obstruction Is Associated with Intestinal Methanogen Overgrowth. Dig Dis Sci 2022; 67:4834-4840. [PMID: 35001241 DOI: 10.1007/s10620-021-07343-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Chronic intestinal pseudo-obstruction (CIP) is a rare motility disorder characterized by dilated small bowel in the absence of mechanical obstruction. CIP has a known association with small intestinal bacterial overgrowth (SIBO); however, data regarding association with specific subtypes such as methane-positive (M+) and hydrogen-positive (H+) SIBO are limited. Therefore, we conducted this study to characterize subtypes of SIBO in CIP and compare them with non-CIP patients. AIMS The aim is to explore the association and prevalence of hydrogen and methane subtypes of SIBO in patients with CIP. METHODS A retrospective chart review was conducted for 494 patients who underwent glucose breath tests (GBT) in 2019. CIP was diagnosed based on clinical suspicion and after ruling out mechanical obstruction. We also reviewed demographic data, including age, gender, body mass index, tobacco and alcohol history, medical comorbidities, use of proton pump inhibitors, and history of colectomy. RESULTS Among 494 patients, 7.7% (38) had CIP. The prevalence of M+ GBT in CIP patients was higher compared with non-CIP patients, and it was significant [52.6% (20/38) versus 11.8% (54/456), p < 0.001]. The prevalence of H+ GBT in our cohort of CIP patients was similar to that of non-CIP patients [23.7% (9/38) versus 25.7% (117/456), p = 0.941]. CONCLUSION The prevalence of methane-positive GBT was higher in CIP patients than in patients without CIP. This finding further strengthens the hypothesis that the relationship between motility disorders and methanogen overgrowth is facilitative.
Collapse
Affiliation(s)
| | - Ruishen Lyu
- Department of Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - John McMichael
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Scott Gabbard
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|