51
|
Disi ZA, Attia E, Ahmad MI, Zouari N. Immobilization of heavy metals by microbially induced carbonate precipitation using hydrocarbon-degrading ureolytic bacteria. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 35:e00747. [PMID: 35755319 PMCID: PMC9218142 DOI: 10.1016/j.btre.2022.e00747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 11/22/2022]
Abstract
Crude oil contamination introduces multiple threats to human health and the environment, most of which are from toxic heavy metals. Heavy metals cause significant threats because of their persistence, toxicity, and bio-accumulation. Biomineralization, performed through many microbial processes, can lead to the immobilization of heavy metals in formed minerals. The potential of the microbially carbonate-induced precipitation (MICP) in removal by biomineralization of several heavy metals was investigated. A collection of diverse 11 bacterial strains exhibited ureolytic activity and tolerance to heavy metals when growing in Luria-Bertani (LB) and urea medium. Determination of the minimum inhibitory concentrations (MIC) revealed that heavy metal toxicity was arranged as Cd > Ni > Cr > Cu > Zn. Three hydrocarbon-degrading bacterial strains (two of Pseudomonas aeruginosa and one of Providencia rettgeri) exhibited the highest tolerance (MIC > 5 mM) to Cu, Cr, Zn, and Ni, whereas Cd exerted significantly higher toxicity with MIC <1 mM. At all MICP conditions, different proportions of calcium carbonate (calcite) and calcium phosphate (brushite) were formed. Pseudomonas aeruginosa strains (QZ5 and QZ9) exhibited the highest removal efficiency of Cr (100%), whereas Providencia rettgeri strain (QZ2) showed 100% removal of Zn. Heavy metal complexes were found as well. Cd removal was evidenced by the formation of cadmium phosphate induced by Providencia rettgeri bacterial activity. Our study confirmed that hydrocarbon-degrading ureolytic bacteria not only can tolerate heavy metal toxicity but also have the capability to co-precipitate heavy metals. These findings indicate an effective and novel biological approach to bioremediate petroleum hydrocarbons and immobilize multiple heavy metals with mineral formation. This is of high importance for ecological restoration via stabilization of soil and alleviation of heavy metal toxicity.
Collapse
Affiliation(s)
- Zulfa Al Disi
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, PO. Box 2713, Doha, Qatar
| | - Essam Attia
- Central Laboratory Unit, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Mohammad I. Ahmad
- Central Laboratory Unit, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Nabil Zouari
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, PO. Box 2713, Doha, Qatar
| |
Collapse
|
52
|
Naseer A, Andleeb S, Basit A, Abbasi WA, Ejaz S, Ali S, Ali NM. Phylogenetic Illustration of Eisenia fetida Associated Vermi-bacteria Involved in Heavy Metals Remediation and Retaining Plant Growth Promoting Traits. J Oleo Sci 2022; 71:1241-1252. [PMID: 35793970 DOI: 10.5650/jos.ess21366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Heavy metals contamination in the soil is a major threat to wildlife, the environment, and human health. Microbial remediation is an emerging and promising technology to reduce heavy metals toxicity. Therefore, the present research aimed to isolate and to identify the heavy metals tolerated bacteria from the Eisenia fetida for the first time, and to screen the bacto-remediation capabilities and plant growth promoting traits of vermi-bacterial isolates. Vermi-bacteria was isolated from the gut of E. fetida, identified through staining, culturing, biochemical tests, and ribotyping. Plant growth-promoting traits were also evaluated. Phylogenetic results revealed that isolated Vermi-bacterial strains showed resemblance with Bacillus thuringiensis, Bacillus aryabhattai, Staphylococcus hominis, Bacillus toyonensis, Bacillus cabrialesii, Bacillus tequilensis, Bacillus mojavensis, Bacillus amyloliquefaciens, Bacillus toyonensis, Bacillus anthracis, and Bacillus paranthracis. All identified Vermi-bacterial species are Gram-positive (rod and cocci) in nature, not only indicated the efficient biosorption of lead, cadmium, and chromium but also produce all plant growth stimulating traits such as indole acetic acid (IAA), amylase, protease, lipase, hydrogen cyanide, ammonia, and siderophore production, and also act as a phosphate solubilizers. Bacillus anthracis showed significant production of siderophore (33.0±0.0 mm), phosphate solubilizing (33.0±0.0 mm), proteolytic (15.0±0.0 mm), and lipolytic activities (20.0±0.0 mm) compared to other vermi-bacterial isolates. Bioaccumulation factor results revealed that Bacillus anthracis showed more accumulation of Cd (12.00±0.01 ppm), Cr (5.38±0.01 ppm), and Pb (4.38±0.01 ppm). Therefore, the current findings showed that all identified vermi-bacteria could be used as potential bactoremediation agents in heavy metals polluted environments and could be used as microbial biofertilizers to enhance crop production in a polluted area.
Collapse
Affiliation(s)
- Anum Naseer
- Microbial Bioremediation and Vermi-technology Laboratory, Department of Zoology, University of Azad Jammu & Kashmir, King Abdullah Campus, Chattar Kalass
| | - Saiqa Andleeb
- Microbial Bioremediation and Vermi-technology Laboratory, Department of Zoology, University of Azad Jammu & Kashmir, King Abdullah Campus, Chattar Kalass
| | - Abdul Basit
- Microbial Bioremediation and Vermi-technology Laboratory, Department of Zoology, University of Azad Jammu & Kashmir, King Abdullah Campus, Chattar Kalass
| | - Wajid Arshad Abbasi
- Computational Biology and Data Analysis Laboratory, Department of CS&IT, University of Azad Jammu & Kashmir, King Abdullah Campus, Chattar Kalass
| | - Samina Ejaz
- Department of Biochemistry and Biotechnology, Bahawalpur Islamia University
| | | | | |
Collapse
|
53
|
Kookhaee F, Bafroee AST, Jabalameli L. Isolation and characterization of chromium (VI) tolerant bacteria from tannery effluents. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:443-458. [PMID: 35669830 PMCID: PMC9163263 DOI: 10.1007/s40201-022-00791-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 01/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The tannery industry is a potent environment polluting agent worldwide. Chromium (VI) is a major heavy metal in tannery effluents and their accumulation in soil and water is a serious environmental problem. This study investigates the capacity of indigenous bacteria isolated from tannery effluents for tolerance to chromium (VI). METHODS The chromium tolerance of isolates assessed through both agar dilution and broth microdilution methods. Isolates were identified by morphological and biochemical analysis. The tolerance of isolates to cadmium, nickel, lead, and vanadium and also their multidrug-resistant (MDR) profile were determined. Then the top isolate was characterized via 16S rRNA sequencing and its growth temperature and pH were optimized. Finally, the kinetic of chromium biosorption and chromium removal efficiency was determined using a Nutrient broth medium and wastewater containing 20 mg/L chromium, respectively. RESULTS Of 32 screened chromium tolerant isolates, 14 isolates with higher chromium tolerance were selected for further study. 78.57% of isolates represented simultaneous MDR and Multi Heavy Metal tolerance (MHMT) phenotypes and MDR indices of 0.2-1 indicating their source from niches with high antibiotic contamination. However, there was no significant correlation between MDR and MHMT phenotypes among isolates. The top isolate was identified as Lactococcus lactis and showed optimal growth at pH 6 and 25 °C. The maximum chromium biosorption occurred at the end of the exponential phase upon optimized conditions and the approximate chromium removal efficiency of 52.5% was obtained. CONCLUSION The isolated bacteria specifically L. lactis after more evaluations, may show the potential for bioremediation of chromium from tannery effluents.
Collapse
Affiliation(s)
- Fahimeh Kookhaee
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | | | - Leila Jabalameli
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| |
Collapse
|
54
|
Raklami A, Meddich A, Oufdou K, Baslam M. Plants-Microorganisms-Based Bioremediation for Heavy Metal Cleanup: Recent Developments, Phytoremediation Techniques, Regulation Mechanisms, and Molecular Responses. Int J Mol Sci 2022; 23:5031. [PMID: 35563429 PMCID: PMC9105715 DOI: 10.3390/ijms23095031] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
Rapid industrialization, mine tailings runoff, and agricultural activities are often detrimental to soil health and can distribute hazardous metal(loid)s into the soil environment, with harmful effects on human and ecosystem health. Plants and their associated microbes can be deployed to clean up and prevent environmental pollution. This green technology has emerged as one of the most attractive and acceptable practices for using natural processes to break down organic contaminants or accumulate and stabilize metal pollutants by acting as filters or traps. This review explores the interactions between plants, their associated microbiomes, and the environment, and discusses how they shape the assembly of plant-associated microbial communities and modulate metal(loid)s remediation. Here, we also overview microbe-heavy-metal(loid)s interactions and discuss microbial bioremediation and plants with advanced phytoremediation properties approaches that have been successfully used, as well as their associated biological processes. We conclude by providing insights into the underlying remediation strategies' mechanisms, key challenges, and future directions for the remediation of metal(loid)s-polluted agricultural soils with environmentally friendly techniques.
Collapse
Affiliation(s)
- Anas Raklami
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco; (A.R.); (K.O.)
| | - Abdelilah Meddich
- Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre Agro-Biotech URL-CNRST-05), “Physiology of Abiotic Stresses” Team, Cadi Ayyad University, Marrakesh 40000, Morocco;
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Khalid Oufdou
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco; (A.R.); (K.O.)
| | - Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| |
Collapse
|
55
|
Saeed MU, Hussain N, Sumrin A, Shahbaz A, Noor S, Bilal M, Aleya L, Iqbal HMN. Microbial bioremediation strategies with wastewater treatment potentialities - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151754. [PMID: 34800451 DOI: 10.1016/j.scitotenv.2021.151754] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/05/2021] [Accepted: 11/13/2021] [Indexed: 02/08/2023]
Abstract
The demand for innovative waste treatment techniques has arisen because of the establishment and operation of rigorous waste discharge guidelines into the environment. Due to the rapid increase in the human population, wastewater treatment is a procedure of increasing significance. As a result, wastewater treatment systems are intended to sustain high activities and densities of such microorganisms which meet the different purification requirements. The waste produced by the pharmaceutical industry, if not adequately treated, has harmful repercussions for the environment as well as public health. Bioremediation is an innovative and optimistic technology that can be used to remove and reduce heavy metals from polluted water and contaminated soil. Because of cost-effectiveness and environmental compatibility, bioremediation using microorganisms has an excellent potential for future development. A diverse range of microorganisms, including algae, fungi, yeasts, and bacteria, can function as biologically active methylators, capable of modifying toxic species. Microorganisms play a crucial role in heavy metal bioremediation. Nanotechnology may minimize industry expenses by producing environmentally friendly nanomaterials to alleviate these contaminants. The use of microorganisms in nanoparticle synthesis gives green biotechnology a positive impetus to cost reduction and sustainable production as a developing nanotechnology sector.
Collapse
Affiliation(s)
- Muhammad Usama Saeed
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Aleena Sumrin
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Areej Shahbaz
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Saman Noor
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, France
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
56
|
Kurniawan SB, Ramli NN, Said NSM, Alias J, Imron MF, Abdullah SRS, Othman AR, Purwanti IF, Hasan HA. Practical limitations of bioaugmentation in treating heavy metal contaminated soil and role of plant growth promoting bacteria in phytoremediation as a promising alternative approach. Heliyon 2022; 8:e08995. [PMID: 35399376 PMCID: PMC8983376 DOI: 10.1016/j.heliyon.2022.e08995] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/12/2022] [Accepted: 02/17/2022] [Indexed: 12/30/2022] Open
Abstract
Bioaugmentation, the addition of cultured microorganisms to enhance the currently existing microbial community, is an option to remediate contaminated areas. Several studies reported the success of the bioaugmentation method in treating heavy metal contaminated soil, but concerns related to the applicability of this method in real-scale application were raised. A comprehensive analysis of the mechanisms of heavy metal treatment by microbes (especially bacteria) and the concerns related to the possible application in the real scale were juxtaposed to show the weakness of the claim. This review proposes the use of bioaugmentation-assisted phytoremediation in treating heavy metal contaminated soil. The performance of bioaugmentation-assisted phytoremediation in treating heavy metal contaminated soil as well as the mechanisms of removal and interactions between plants and microbes are also discussed in detail. Bioaugmentation-assisted phytoremediation shows greater efficiencies and performs complete metal removal from soil compared with only bioaugmentation. Research related to selection of hyperaccumulator species, potential microbial species, analysis of interaction mechanisms, and potential usage of treating plant biomass after treatment are suggested as future research directions to enhance this currently proposed topic.
Collapse
Affiliation(s)
- Setyo Budi Kurniawan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Nur Nadhirah Ramli
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Nor Sakinah Mohd Said
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Jahira Alias
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Muhammad Fauzul Imron
- Study Program of Environmental Engineering, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya, 60115, Indonesia
- Corresponding author.
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
- Corresponding author.
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Ipung Fitri Purwanti
- Department of Environmental Engineering, Faculty of Civil, Planning, and Geo Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| |
Collapse
|
57
|
Chakdar H, Thapa S, Srivastava A, Shukla P. Genomic and proteomic insights into the heavy metal bioremediation by cyanobacteria. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127609. [PMID: 34772552 DOI: 10.1016/j.jhazmat.2021.127609] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/16/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Heavy metals (HMs) pose a global ecological threat due to their toxic effects on aquatic and terrestrial life. Effective remediation of HMs from the environment can help to restore soil's fertility and ecological vigor, one of the key Sustainable Development Goals (SDG) set by the United Nations. The cyanobacteria have emerged as a potential option for bioremediation of HMs due to their unique adaptations and robust metabolic machineries. Generally, cyanobacteria deploy multifarious mechanisms such as biosorption, bioaccumulation, activation of metal transporters, biotransformation and induction of detoxifying enzymes to sequester and minimize the toxic effects of heavy metals. Therefore, understanding the physiological responses and regulation of adaptation mechanisms at molecular level is necessary to unravel the candidate genes and proteins which can be manipulated to improve the bioremediation efficiency of cyanobacteria. Chaperons, cellular metabolites (extracellular polymers, biosurfactants), transcriptional regulators, metal transporters, phytochelatins and metallothioneins are some of the potential targets for strain engineering. In the present review, we have discussed the potential of cyanobacteria for HM bioremediation and provided a deeper insight into their genomic and proteomic regulation of various tolerance mechanisms. These approaches might pave new possibilities of implementing genetic engineering strategies for improving bioremediation efficiency with a future perspective.
Collapse
Affiliation(s)
- Hillol Chakdar
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau 275103, Uttar Pradesh, India
| | - Shobit Thapa
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau 275103, Uttar Pradesh, India
| | - Amit Srivastava
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, ID 47907-2048, United States
| | - Pratyoosh Shukla
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India; Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| |
Collapse
|
58
|
Hnatush SO, Maslovska OD, Komplikevych SY, Kovbasa IV. Influence of cobalt chloride and ferric citrate on purple non-sulfur bacteria Rhodopseudomonas yavorovii. BIOSYSTEMS DIVERSITY 2022. [DOI: 10.15421/012204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Heavy metals that enter the environment due to natural processes or industrial activities, when accumulated, have a negative impact on organisms, including microorganisms. Microorganisms have developed various adaptations to heavy metal compounds. The aim of our work was to investigate the influence of ferric citrate and cobalt (II) chloride on biomass accumulation, indicators of free radical damage and activity of enzymes of the antioxidant defense system of bacteria Rhodopseudomonas yavorovii IMV B-7620, that were isolated from the water of Yavorivske Lake (Ukraine, Lviv region), which was formed as a result of flooding of a sulfur quarry. We used cultural, photometric methods, and statistical processing of the results was performed using two-way ANOVA and factor analysis. It was found that ferric citrate at a concentration of 1–12 mM causes inhibition of the accumulation of biomass of bacteria Rh. yavorovii IMV B-7620 up to 44.7%, and cobalt (II) chloride at a concentration of 1–15 mM – up to 70.4%, compared with the control. The studied concentrations of ferric citrate and cobalt (II) chloride cause free radical damage to lipids and proteins of Rh. yavorovii IMV B-7620. As a result of two-way ANOVA we found that under the influence of ferric citrate statistically significant changes in biomass accumulation, lipid hydroperoxides and thiobarbiturate reactive species content, superoxide dismutase activity were predetermined by increasing the concentration of metal salts as well as increasing the duration of cultivation of bacteria, while the content of diene conjugates and catalase activity changed with increasing duration of cultivation. Under the influence of cobalt (II) chloride, statistically significant changes in all studied indicators were found both due to the increase in the concentration of metal salts and with increasing duration of bacterial cultivation. The studied parameters of Rh. yavorovii IMV B-7620 cells under the influence of ferric citrate and cobalt (II) chloride are combined into two factors, that explain 95.4% and 99.2% of the total data variance, respectively. Under the influence of ferric citrate, the first latent factor included diene conjugates, thiobarbiturate reactive species, carbonyl groups in proteins, which are closely linked by a direct bond and inversely related to the content of lipid hydroperoxides and catalase activity. The second latent factor included duration of cultivation of bacteria, biomass accumulation, and superoxide dismutase activity, which are inversely related to lipid hydroperoxide content and catalase activity. Under the influence of cobalt (II) chloride, the first latent factor included the content of lipid hydroperoxides, carbonyl groups in proteins, as well as catalase and superoxide dismutase activities, which are inversely related to bacterial biomass.
Collapse
|
59
|
Bio- and phytoremediation: plants and microbes to the rescue of heavy metal polluted soils. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-021-04911-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
AbstractBio- and phytoremediation, being encouraging terms implying the use of biological systems for cleansing purposes, have risen a worthy venture toward environmental restoration in discouraging scenarios, such as the augmentation of indestructible heavy metals. Hyperaccumulating plants and heavy metal resistant microbes own mechanisms embedded in their metabolism, proteins, and genes that confer them with “super characteristics” allowing them to assimilate heavy metals in order to amend polluted soils, and when combined in a symbiotic system, these super features could complement each other and be enhanced to overpower the exposure to toxic environments. Though xenobiotic pollution has been an object of concern for decades and physicochemical procedures are commonly carried out to offset this purpose, a “live” remediation is rather chosen and looked upon for promising results. A variety of benefits have been registered from symbiotic relationships, including plants teaming up with microbes to cope down with non-biodegradable elements such as heavy metals; but a carefully maneuvered interaction might signify a greater insight toward the application of bioremediation systems. These manipulations could consist of genetic engineering and/or additional supplementation of molecules and microbes. In the present study, a contemporary connection between plants and microbes involving their controlled management is summarized in a visionary display.
Collapse
|
60
|
Singh A, Pal DB, Mohammad A, Alhazmi A, Haque S, Yoon T, Srivastava N, Gupta VK. Biological remediation technologies for dyes and heavy metals in wastewater treatment: New insight. BIORESOURCE TECHNOLOGY 2022; 343:126154. [PMID: 34673196 DOI: 10.1016/j.biortech.2021.126154] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
The pollution of the environment caused by dyes and heavy metals emitted by industries has become a worldwide problem. The development of efficient, environmentally acceptable, and cost-effective methods of wastewater treatment containing dyes and heavy metals is critical. Biologically based techniques for treating effluents are fascinating since they provide several benefits over standard treatment methods. This review assesses the most recent developments in the use of biological based techniques to remove dyes and heavy metals from wastewater. The remediation of dyes and heavy metals by diverse microorganisms such as algae, bacteria, fungi and enzymes are depicted in detail. Ongoing biological method's advances, scientific prospects, problems, and the future prognosis are all highlighted. This review is useful for gaining a better integrated view of biological based wastewater treatment and for speeding future research on the function of biological methods in water purification applications.
Collapse
Affiliation(s)
- Arvind Singh
- Department of Chemical Engineering, Birsa Institute of Technology Sindri, Dhanbad 828123, India
| | - Dan Bahadur Pal
- Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi 835215, India
| | - Akbar Mohammad
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk 38541, South Korea
| | - Alaa Alhazmi
- Medical Laboratory Technology Department Jazan University, Jazan, Saudi Arabia; SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Bursa Uludağ University Faculty of Medicine, Görükle Campus, 16059, Nilüfer, Bursa, Turkey
| | - Taeho Yoon
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk 38541, South Korea
| | - Neha Srivastava
- Department of Chemical Engineering & Technology, IIT (BHU), Varanasi 221005, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|
61
|
Boudjemaa S. Evaluation of Natural Montmorillonite Clay for Removal of Cd2+ from Aqueous Solution in a Batch Adsorption System. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421130045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
62
|
Puthusseri RM, Nair HP, Johny TK, Bhat SG. Insights into the response of mangrove sediment microbiomes to heavy metal pollution: Ecological risk assessment and metagenomics perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113492. [PMID: 34385112 DOI: 10.1016/j.jenvman.2021.113492] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Rapid urbanisation and ensuing anthropogenic pollution lead to an escalated occurrence of heavy metals and metal-resistant bacteria in the soil ecosystem. Mangrove ecosystems are particularly vulnerable to heavy metal bioaccumulation and often act as metal sinks of the coastal areas. As a consequence, the microbial population in mangrove sediments develop multifarious metal tolerance mechanisms to combat metal toxicity. In this context, metagenomic investigation of two mangroves, viz. Mangalavanam and Puthuvypin from the heavily populated metropolitan city, Cochin (Central Kerala, India) was undertaken to discern the metal resistance functions and taxonomic diversity of the microbial consortia. Estimation of heavy metal content using Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-MS) identified the abundance of zinc, chromium, nickel copper, lead, arsenic, and cadmium in the mangrove sediments. Ecological risk index values indicated high cadmium contamination of the two estuarine samples. Whole metagenome shotgun sequencing of the Central Kerala mangroves and comparative analysis with mangrove metal resistomes from other geographical regions revealed the prevalence of cobalt-zinc-cadmium resistance and preponderance of Proteobacteria in all the datasets. Cation efflux system protein CusA constituted the majority of the reads at the function level. Comparative analysis of taxonomy identified the dominance of Anaeromyxobacter, Geobacter, Pseudomonas, Candidatus Solibacter, and Pelobacter in the mangrove datasets. Non-metric multidimensional scaling analysis of the metal resistance genes depicted strong geographical clustering of the function and composition of metal resistant bacteria, suggesting a strong innate resilience of microbiome towards anthropogenic perturbations. More robust studies with intensive sampling will enhance our understanding of the occurrence, interactions, and functions of microbial heavy metal resistome in mangrove ecosystems.
Collapse
Affiliation(s)
- Rinu Madhu Puthusseri
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682022, India.
| | - Harisree Paramel Nair
- School of Life Science, Faculty of Science and Engineering, Anglia Ruskin University, East Road, Cambridge Campus, East Rd, Cambridge, CB1 1PT, UK.
| | - Tina Kollannoor Johny
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682022, India.
| | - Sarita Ganapathy Bhat
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682022, India.
| |
Collapse
|
63
|
Sayqal A, Ahmed OB. Advances in Heavy Metal Bioremediation: An Overview. Appl Bionics Biomech 2021; 2021:1609149. [PMID: 34804199 PMCID: PMC8601850 DOI: 10.1155/2021/1609149] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
The pollution of toxic heavy metals is considered one of the most important environmental issues which has accelerated dramatically due to changing industrial activities. This review focuses on the most common methods, strategies, and biological approaches of heavy metal bioremediation. Also, it provides a general overview of the role of microorganisms in the bioremediation of heavy metals in polluted environments. Advanced methods of heavy metal remediation include physicochemical and biological methods; the latter can be further classified into in situ and ex situ bioremediation. The in situ process includes bioventing, biosparging, biostimulation, bioaugmentation, and phytoremediation. Ex situ bioremediation includes land farming, composting, biopiles, and bioreactors. Bioremediation uses naturally occurring microorganisms such as Pseudomonas, Sphingomonas, Rhodococcus, Alcaligenes, and Mycobacterium. Generally, bioremediation is of very less effort, less labor intensive, cheap, ecofriendly, sustainable, and relatively easy to implement. Most of the disadvantages of bioremediation relate to the slowness and time-consumption; furthermore, the products of biodegradation sometimes become more toxic than the original compound. The performance evaluation of bioremediation might be difficult as it has no acceptable endpoint. There is a need for further studies to develop bioremediation technologies in order to find more biological solutions for bioremediation of heavy metal contamination from different environmental systems.
Collapse
Affiliation(s)
- Ali Sayqal
- Chemistry Department, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Omar B. Ahmed
- Department of Environmental and Health Research, The Custodian of the Two Holy Mosques Institute of Hajj and Umrah Research, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
64
|
Sharma P, Kumar S. Bioremediation of heavy metals from industrial effluents by endophytes and their metabolic activity: Recent advances. BIORESOURCE TECHNOLOGY 2021; 339:125589. [PMID: 34304098 DOI: 10.1016/j.biortech.2021.125589] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 05/22/2023]
Abstract
Worldwide, heavy metals pollution is mostly caused by rapid population growth and industrial development which is accumulated in food webs causing a serious public health risk. Endophytic microorganisms have a variety of mechanisms for metal sequestration having metal biosorption capacities.Endophytic organisms like bacteria and fungi provide beneficial qualities that help plants to improve their health, reduce stress, and detoxify metals. Endophytes have a higher proclivity for improving metal and mineral solubility by cells that secrete low-molecular-weight organic acids and metal-specific ligands like siderophores, which change the pH of the soil and improve binding activity. Protein-related approaches like chromatin immunoprecipitation sequencing (ChIP-Seq) and modified enzyme-linked immunosorbent assay (ELISA test) can represent endophytic bacterial community and DNA-protein interactions during metal reduction. This review explored the role of endophytes in bioremediation approaches that can help in analyzing the potential and prospects in response to industrial effluents' detoxification.
Collapse
Affiliation(s)
- Pooja Sharma
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, India
| | - Sunil Kumar
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, India.
| |
Collapse
|
65
|
Homero U, Tortella G, Sandoval E, Cuozzo SA. Extracellular Polymeric Substances (EPS) produced by Streptomyces sp. biofilms: Chemical composition and anticancer properties. Microbiol Res 2021; 253:126877. [PMID: 34644673 DOI: 10.1016/j.micres.2021.126877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/07/2021] [Accepted: 09/21/2021] [Indexed: 11/29/2022]
Abstract
The extracellular polymeric substances (EPS) have shown free radical scavenging and antitumor activity against both breast and colon cell lines. In this regard, actinobacteria have become an increasingly popular sources of EPS. Therefore, in this study four Streptomyces strains isolated from contaminated soil (M7, A5, A14 and MC1) were evaluated for determining its biofilm-forming capacity including under pesticide stress. In addition, chemical composition of EPS and its cytotoxic effects over 4T1 breast cancer cell and Caco-2 human tumor colon cells were evaluated. The results demonstrated that Streptomyces sp. A5 had the highest capability to develop biofilm more than other strains tested, even under pesticide stress. Moreover, this strain produced EPS with a total protein/total polysaccharide rate of 1.59 ± 0.05. On the other hand, cytotoxicity assays of EPS showed that Streptomyces sp. A5 display a higher toxic effect against 4T1 Breast cancer cells (96.2 ± 13.5 %), Caco-2 (73.9 ± 6.4 %) and low toxicity (29.9 % ± 9.1 %) against non-transformed intestinal cells (IEC-18). Data do not show cytotoxic effect relationship with biofilm-forming capabilities of strains, nor the chemical composition of EPS matrix. The gene that codes for polysaccharide deacetylase, parB-like and transRDD proteins, were identified. These results contribute to the knowledge about the variability of chemical composition and potential cytotoxic properties of EPS produced by Streptomyces biofilms. It proposes interesting future challenges for linking Streptomyces-based pesticide remediation technology with the development of new antitumor drugs.
Collapse
Affiliation(s)
- Urrutia Homero
- Facultad de Ciencas Biológicas Centro de Biotecnología, Universidad de Concepción, Víctor Lamas 1290, Casilla 160-C, Concepción, Chile
| | - Gonzalo Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA-BIOREN), Universidad de La Frontera, Casilla 54-D, Temuco, Chile.
| | - E Sandoval
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, T40001MVB, Tucumán, Argentina
| | - Sergio A Cuozzo
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, T40001MVB, Tucumán, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, T4000, Tucumán, Argentina.
| |
Collapse
|
66
|
Various Natural and Anthropogenic Factors Responsible for Water Quality Degradation: A Review. WATER 2021. [DOI: 10.3390/w13192660] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recognition of sustainability issues around water resource consumption is gaining traction under global warming and land utilization complexities. These concerns increase the challenge of gaining an appropriate comprehension of the anthropogenic activities and natural processes, as well as how they influence the quality of surface water and groundwater systems. The characteristics of water resources cause difficulties in the comprehensive assessment regarding the source types, pathways, and pollutants behaviors. As the behavior and prediction of widely known contaminants in the water resources remain challenging, some new issues have developed regarding heavy metal pollutants. The main aim of this review is to focus on certain essential pollutants’ discharge from anthropogenic activities categorized based on land-use sectors such as industrial applications (solid/liquid wastes, chemical compounds, mining activities, spills, and leaks), urban development (municipal wastes, land use practices, and others), and agricultural practices (pesticides and fertilizers). Further, important pollutants released from natural processes classified based on climate change, natural disasters, geological factors, soil/matrix, and hyporheic exchange in the aquatic environment, are also discussed. Moreover, this study addresses the major inorganic substances (nitrogen, fluoride, and heavy metals concentrations). This study also emphasizes the necessity of transdisciplinary research and cross-border communication to achieve sustainable water quality using sound science, adaptable legislation, and management systems.
Collapse
|
67
|
Sustainable Application of Biosorption and Bioaccumulation of Persistent Pollutants in Wastewater Treatment: Current Practice. Processes (Basel) 2021. [DOI: 10.3390/pr9101696] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Persistent toxic substances including persistent organic pollutants and heavy metals have been released in high quantities in surface waters by industrial activities. Their presence in environmental compartments is causing harmful effects both on the environment and human health. It was shown that their removal from wastewaters using conventional methods and adsorbents is not always a sustainable process. In this circumstance, the use of microorganisms for pollutants uptake can be seen as being an environmentally-friendly and cost-effective strategy for the treatment of industrial effluents. However, in spite of their confirmed potential in the remediation of persistent pollutants, microorganisms are not yet applied at industrial scale. Thus, the current paper aims to synthesize and analyze the available data from literature to support the upscaling of microbial-based biosorption and bioaccumulation processes. The industrial sources of persistent pollutants, the microbial mechanisms for pollutant uptake and the significant results revealed so far in the scientific literature are identified and covered in this review. Moreover, the influence of different parameters affecting the performance of the discussed systems and also very important in designing of treatment processes are highly considered. The analysis performed in the paper offers an important perspective in making decisions for scaling-up and efficient operation, from the life cycle assessment point of view of wastewater microbial bioremediation. This is significant since the sustainability of the microbial-based remediation processes through standardized methodologies such as life cycle analysis (LCA), hasn’t been analyzed yet in the scientific literature.
Collapse
|
68
|
Pal A, Bhattacharjee S, Saha J, Sarkar M, Mandal P. Bacterial survival strategies and responses under heavy metal stress: a comprehensive overview. Crit Rev Microbiol 2021; 48:327-355. [PMID: 34473592 DOI: 10.1080/1040841x.2021.1970512] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Heavy metals bring long-term hazardous consequences and pose a serious threat to all life forms. Being non-biodegradable, they can remain in the food webs for a long period of time. Metal ions are essential for life and indispensable for almost all aspects of metabolism but can be toxic beyond threshold level to all living beings including microbes. Heavy metals are generally present in the environment, but many geogenic and anthropogenic activities has led to excess metal ion accumulation in the environment. To survive in harsh metal contaminated environments, bacteria have certain resistance mechanisms to metabolize and transform heavy metals into less hazardous forms. This also gives rise to different species of heavy metal resistant bacteria. Herein, we have tried to incorporate the different aspects of heavy metal toxicity in bacteria and provide an up-to-date and across-the-board review. The various aspects of heavy metal biology of bacteria encompassed in this review includes the biological notion of heavy metals, toxic effect of heavy metals on bacteria, the factors regulating bacterial heavy metal resistance, the diverse mechanisms governing bacterial heavy metal resistance, bacterial responses to heavy metal stress, and a brief overview of gene regulation under heavy metal stress.
Collapse
Affiliation(s)
- Ayon Pal
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Sukanya Bhattacharjee
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Jayanti Saha
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Monalisha Sarkar
- Mycology and Plant Pathology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Parimal Mandal
- Mycology and Plant Pathology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| |
Collapse
|
69
|
Alotaibi BS, Khan M, Shamim S. Unraveling the Underlying Heavy Metal Detoxification Mechanisms of Bacillus Species. Microorganisms 2021; 9:1628. [PMID: 34442707 PMCID: PMC8402239 DOI: 10.3390/microorganisms9081628] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/26/2022] Open
Abstract
The rise of anthropogenic activities has resulted in the increasing release of various contaminants into the environment, jeopardizing fragile ecosystems in the process. Heavy metals are one of the major pollutants that contribute to the escalating problem of environmental pollution, being primarily introduced in sensitive ecological habitats through industrial effluents, wastewater, as well as sewage of various industries. Where heavy metals like zinc, copper, manganese, and nickel serve key roles in regulating different biological processes in living systems, many heavy metals can be toxic even at low concentrations, such as mercury, arsenic, cadmium, chromium, and lead, and can accumulate in intricate food chains resulting in health concerns. Over the years, many physical and chemical methods of heavy metal removal have essentially been investigated, but their disadvantages like the generation of chemical waste, complex downstream processing, and the uneconomical cost of both methods, have rendered them inefficient,. Since then, microbial bioremediation, particularly the use of bacteria, has gained attention due to the feasibility and efficiency of using them in removing heavy metals from contaminated environments. Bacteria have several methods of processing heavy metals through general resistance mechanisms, biosorption, adsorption, and efflux mechanisms. Bacillus spp. are model Gram-positive bacteria that have been studied extensively for their biosorption abilities and molecular mechanisms that enable their survival as well as their ability to remove and detoxify heavy metals. This review aims to highlight the molecular methods of Bacillus spp. in removing various heavy metals ions from contaminated environments.
Collapse
Affiliation(s)
- Badriyah Shadid Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Maryam Khan
- Institute of Molecular Biology and Biotechnology (IMBB), Defence Road Campus, The University of Lahore, Lahore 55150, Pakistan;
| | - Saba Shamim
- Institute of Molecular Biology and Biotechnology (IMBB), Defence Road Campus, The University of Lahore, Lahore 55150, Pakistan;
| |
Collapse
|
70
|
Emri T, Gila B, Antal K, Fekete F, Moon H, Yu JH, Pócsi I. AtfA-Independent Adaptation to the Toxic Heavy Metal Cadmium in Aspergillus nidulans. Microorganisms 2021; 9:microorganisms9071433. [PMID: 34361869 PMCID: PMC8307709 DOI: 10.3390/microorganisms9071433] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/13/2022] Open
Abstract
Cadmium is an exceptionally toxic industrial and environmental pollutant classified as a human carcinogen. In order to provide insight into how we can keep our environment safe from cadmium contamination and prevent the accumulation of it in the food chain, we aim to elucidate how Aspergillus nidulans, one of the most abundant fungi in soil, survives and handles cadmium stress. As AtfA is the main transcription factor governing stress responses in A. nidulans, we examined genome-wide expression responses of wild-type and the atfA null mutant exposed to CdCl2. Both strains showed up-regulation of the crpA Cu2+/Cd2+ pump gene and AN7729 predicted to encode a putative bis(glutathionato)-cadmium transporter, and transcriptional changes associated with elevated intracellular Cys availability leading to the efficient adaptation to Cd2+. Although the deletion of atfA did not alter the cadmium tolerance of the fungus, the cadmium stress response of the mutant differed from that of a reference strain. Promoter and transcriptional analyses of the “Phospho-relay response regulator” genes suggest that the AtfA-dependent regulation of these genes can be relevant in this phenomenon. We concluded that the regulatory network of A. nidulans has a high flexibility allowing the fungus to adapt efficiently to stress both in the presence and absence of this important transcription factor.
Collapse
Affiliation(s)
- Tamás Emri
- Department of Molecular Biotechnology and Microbiology, Faculty of Sciences and Technology, University of Debrecen, 4032 Debrecen, Hungary; (B.G.); (F.F.); (I.P.)
- Correspondence:
| | - Barnabás Gila
- Department of Molecular Biotechnology and Microbiology, Faculty of Sciences and Technology, University of Debrecen, 4032 Debrecen, Hungary; (B.G.); (F.F.); (I.P.)
- Doctoral School of Nutrition and Food Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Károly Antal
- Department of Zoology, Eszterházy Károly University, 3300 Eger, Hungary;
| | - Fanni Fekete
- Department of Molecular Biotechnology and Microbiology, Faculty of Sciences and Technology, University of Debrecen, 4032 Debrecen, Hungary; (B.G.); (F.F.); (I.P.)
| | - Heungyun Moon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA; (H.M.); (J.-H.Y.)
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA; (H.M.); (J.-H.Y.)
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Sciences and Technology, University of Debrecen, 4032 Debrecen, Hungary; (B.G.); (F.F.); (I.P.)
| |
Collapse
|
71
|
Removal of Cobalt (II) from Waters Contaminated by the Biomass of Eichhornia crassipes. WATER 2021. [DOI: 10.3390/w13131725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Due to the increase in contamination of aquatic niches by different heavy metals, different technologies have been studied to eliminate these pollutants from contaminated aquatic sources. So the objective of this work was to determine the removal of cobalt (II) in aqueous solution by the biomass of the aquatic lily or water hyacinth (Eichhornia crassipes) which, is one of the main weeds present in fresh water, due to its rapid reproduction, growth, and high competitiveness, by the colorimetric method of the methyl isobutyl ketone. The removal was evaluated at different pHs (4.0–8.0) for 28 h. The effect of temperature in the range from 20 °C to 50 °C and the removal at different initial concentrations of cobalt (II) of 100 to 500 mg/L was also studied. The highest bioadsorption (100 mg/L) was at 28 h, at pH 5.0 and 28 °C, with a removal capacity of 73.1%, which is like some reports in the literature. Regarding the temperature, the highest removal was at 50 °C, at 28 h, with a removal of 89%. At the metal and biomass concentrations analyzed, its removal was 82% with 400–500 mg/L, and 100% with 5 g of natural biomass at 20 h. In addition, this completely removes the metal in situ (100 mg/L in contaminated water, at 7 days of incubation, with 10 g of natural biomass in 100 mL). So, the natural biomass can be used to remove it from industrial wastewater, even if in vivo, only eliminate 17.3% in 4 weeks.
Collapse
|
72
|
Recent Advances in Enzymes for the Bioremediation of Pollutants. Biochem Res Int 2021; 2021:5599204. [PMID: 34401207 PMCID: PMC8364428 DOI: 10.1155/2021/5599204] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/05/2021] [Accepted: 06/09/2021] [Indexed: 11/18/2022] Open
Abstract
Nowadays, pollution of the environment is a huge problem for humans and other organisms' health. Conventional methods of pollutant removal like membrane filtration or ion exchange are not efficient enough to lower the number of pollutants to standard levels. Biological methods, because of their higher efficiency and biocompatibility, are preferred for the remediation of pollutants. These cost-effective and environment-friendly methods of reducing pollutants are called bioremediation. In bioremediation methods, enzymes play the most crucial role. Enzymes can remedy different types of organic and inorganic pollutants, including PAHs, azo dyes, polymers, organocyanides, lead, chromium, and mercury. Different enzymes isolated from various species have been used for the bioremediation of pollutants. Discovering new enzymes and new subtypes with specific physicochemical characteristics would be a promising way to find more efficient and cost-effective tools for the remediation of pollutants.
Collapse
|
73
|
Abstract
During the last century, industrialization has grown very fast and as a result heavy metals have contaminated many water sources. Due to their high toxicity, these pollutants are hazardous for humans, fish, and aquatic flora. Traditional techniques for their removal are adsorption, electro-dialysis, precipitation, and ion exchange, but they all present various drawbacks. Membrane technology represents an exciting alternative to the traditional ones characterized by high efficiency, low energy consumption and waste production, mild operating conditions, and easy scale-up. In this review, the attention has been focused on applying driven-pressure membrane processes for heavy metal removal, highlighting each of the positive and negative aspects. Advantages and disadvantages, and recent progress on the production of nanocomposite membranes and electrospun nanofiber membranes for the adsorption of heavy metal ions have also been reported and critically discussed. Finally, future prospective research activities and the key steps required to make their use effective on an industrial scale have been presented
Collapse
|
74
|
Sun Y, Tayagui A, Sale S, Sarkar D, Nock V, Garrill A. Platforms for High-Throughput Screening and Force Measurements on Fungi and Oomycetes. MICROMACHINES 2021; 12:mi12060639. [PMID: 34070887 PMCID: PMC8227076 DOI: 10.3390/mi12060639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/19/2023]
Abstract
Pathogenic fungi and oomycetes give rise to a significant number of animal and plant diseases. While the spread of these pathogenic microorganisms is increasing globally, emerging resistance to antifungal drugs is making associated diseases more difficult to treat. High-throughput screening (HTS) and new developments in lab-on-a-chip (LOC) platforms promise to aid the discovery of urgently required new control strategies and anti-fungal/oomycete drugs. In this review, we summarize existing HTS and emergent LOC approaches in the context of infection strategies and invasive growth exhibited by these microorganisms. To aid this, we introduce key biological aspects and review existing HTS platforms based on both conventional and LOC techniques. We then provide an in-depth discussion of more specialized LOC platforms for force measurements on hyphae and to study electro- and chemotaxis in spores, approaches which have the potential to aid the discovery of alternative drug targets on future HTS platforms. Finally, we conclude with a brief discussion of the technical developments required to improve the uptake of these platforms into the general laboratory environment.
Collapse
Affiliation(s)
- Yiling Sun
- Biomolecular Interaction Centre, Department of Electrical and Computer Engineering, University of Canterbury, Christchurch 8041, New Zealand; (Y.S.); (A.T.); (S.S.); (D.S.)
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Ayelen Tayagui
- Biomolecular Interaction Centre, Department of Electrical and Computer Engineering, University of Canterbury, Christchurch 8041, New Zealand; (Y.S.); (A.T.); (S.S.); (D.S.)
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
| | - Sarah Sale
- Biomolecular Interaction Centre, Department of Electrical and Computer Engineering, University of Canterbury, Christchurch 8041, New Zealand; (Y.S.); (A.T.); (S.S.); (D.S.)
- School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
| | - Debolina Sarkar
- Biomolecular Interaction Centre, Department of Electrical and Computer Engineering, University of Canterbury, Christchurch 8041, New Zealand; (Y.S.); (A.T.); (S.S.); (D.S.)
- School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
| | - Volker Nock
- Biomolecular Interaction Centre, Department of Electrical and Computer Engineering, University of Canterbury, Christchurch 8041, New Zealand; (Y.S.); (A.T.); (S.S.); (D.S.)
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- Correspondence: (V.N.); (A.G.)
| | - Ashley Garrill
- Biomolecular Interaction Centre, Department of Electrical and Computer Engineering, University of Canterbury, Christchurch 8041, New Zealand; (Y.S.); (A.T.); (S.S.); (D.S.)
- School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
- Correspondence: (V.N.); (A.G.)
| |
Collapse
|
75
|
Sengupta D, Datta S, Biswas D, Banerjee S, Das S. Prospective bioremediation of toxic heavy metals in water by surfactant exopolysaccharide of Ochrobactrum pseudintermedium using cost-effective substrate. Int Microbiol 2021; 24:441-453. [PMID: 33987705 DOI: 10.1007/s10123-021-00182-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/17/2021] [Accepted: 04/30/2021] [Indexed: 11/26/2022]
Abstract
Globally, the underlying peril of cumulative toxicity of heavy metals in water bodies contaminated by industrial effluents is a matter of great concern to the environmentalists. Heavy metals like lead, cadmium, and nickel are particularly liable for this. Such toxic water is not only hazardous to human health but also harmful to aquatic animals. Remedial measures are being taken by physico-chemical techniques, but most of them are neither eco-friendly nor cost-effective. Biological means like bioaccumulation of heavy metals by viable bacteria are often tedious. In the present study, biosorption of heavy metals is successfully expedited by surfactant exopolysaccharide (SEPS) of Ochrobactrum pseudintermedium C1 as a simple, safe, and economically sustainable option utilizing an easily available and cost-effective substrate like molasses extract. Its efficacy in bioremediation of toxic heavy metals like cadmium, nickel, and lead have been studied by UV-Vis spectrophotometry and verified by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). FTIR and zeta potential studies have also been carried out to explore this novel biosorption potential. Results are conclusive and promising. Moreover, this particular SEPS alone can remediate all these three toxic heavy metals in water. For futuristic applications, it might be a prospective and cost-effective resource for bioremediation of toxic heavy metals in aqueous environment.
Collapse
Affiliation(s)
- Dipanjan Sengupta
- Department of Chemical Technology, Rajabazar Science College, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, India
| | - Sriparna Datta
- Department of Chemical Technology, Rajabazar Science College, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, India.
| | - Dipa Biswas
- Department of Chemical Technology, Rajabazar Science College, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, India
| | - Shrayasi Banerjee
- Department of Chemical Technology, Rajabazar Science College, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, India
| | - Souvik Das
- Department of Chemical Technology, Rajabazar Science College, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, India
| |
Collapse
|
76
|
Anae J, Ahmad N, Kumar V, Thakur VK, Gutierrez T, Yang XJ, Cai C, Yang Z, Coulon F. Recent advances in biochar engineering for soil contaminated with complex chemical mixtures: Remediation strategies and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144351. [PMID: 33453509 DOI: 10.1016/j.scitotenv.2020.144351] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Heavy metal/metalloids (HMs) and polycyclic aromatic hydrocarbons (PAHs) in soil have caused serious environmental problems, compromised agriculture quality, and have detrimental effects on all forms of life including humans. There is a need to develop appropriate and effective remediation methods to resolve combined contaminated problems. Although conventional technologies exist to tackle contaminated soils, application of biochar as an effective renewable adsorbent for enhanced bioremediation is considered by many scientific researchers as a promising strategy to mitigate HM/PAH co-contaminated soils. This review aims to: (i) provide an overview of biochar preparation and its application, and (ii) critically discuss and examine the prospects of (bio)engineered biochar for enhancing HMs/PAHs co-remediation efficacy by reducing their mobility and bioavailability. The adsorption effectiveness of a biochar largely depends on the type of biomass material, carbonisation method and pyrolysis conditions. Biochar induced soil immobilise and remove metal ions via various mechanisms including electrostatic attractions, ion exchange, complexation and precipitation. PAHs remediation mechanisms are achieved via pore filling, hydrophobic effect, electrostatic attraction, hydrogen bond and partitioning. During last decade, biochar engineering (modification) via biological and chemical approaches to enhance contaminant removal efficiency has garnered greater interests. Hence, the development and application of (bio)engineered biochars in risk management, contaminant management associated with HM/PAH co-contaminated soil. In terms of (bio)engineered biochar, we review the prospects of amalgamating biochar with hydrogel, digestate and bioaugmentation to produce biochar composites.
Collapse
Affiliation(s)
- Jerry Anae
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Nafees Ahmad
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK; Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Scotland's Rural College, Edinburgh, EH9 3JG, UK
| | - Tony Gutierrez
- Institute of Mechanical, Process and Energy Engineering (IMPEE), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Xiao Jin Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Cai
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK.
| |
Collapse
|
77
|
Fathollahi A, Khasteganan N, Coupe SJ, Newman AP. A meta-analysis of metal biosorption by suspended bacteria from three phyla. CHEMOSPHERE 2021; 268:129290. [PMID: 33383280 DOI: 10.1016/j.chemosphere.2020.129290] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Biosorption of heavy metals by bacterial biomass has been the subject of significant research interest in last decades due to its efficiency, relatively low cost and minimal negative effects for the surrounding environment. In this meta-analysis, the biosorption efficiencies of different bacterial strains for Cu(II), Cd(II), Zn(II), Cr(III), Mn(II), Pb(II) and Ni(II) were evaluated. Optimum conditions for the biosorption process such as initial metal concentration, temperature, pH, contact time, metal type, biomass dosage and bacterial phyla, were evaluated for each heavy metal. According to the results, the efficiencies of bacterial biomass for removal of heavy metal were as follows: Cd(II) > Cr(III) > Pb(II) > Zn(II) > Cu(II) > Ni(II) > Mn(II). Firmicute phyla showed the highest overall (living and dead) biosorption efficiency for heavy metals. Living biomass of Proteobacteria had the best biosorption performance. Living bacterial biomass was significantly more efficient in biosorption of Cu(II), Zn(II) and Pb(II) than dead biomass. The maximum biosorption efficiency of bacterial strains for Cd(II), Pb(II) and Zn(II) was achieved at pH values between 6 and 7.5. High temperatures (>35 °C) reduced the removal efficiencies for Cu(II) and Zn(II) and increased the efficiencies for Cd(II) and Cr(III) ions. The maximum biosorption efficiency of non-essential heavy metals occurred with short contact times (<2 h). Essential metals such as Zn and Cu were more efficiently removed with long biosorption durations (>24 h). The mean biosorption capacity of bacterial biomass was between 71.26 and 125.88 mg g-1. No publication bias existed according to Egger's and Begg's test results.
Collapse
Affiliation(s)
- Alireza Fathollahi
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK.
| | | | - Stephen J Coupe
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK
| | - Alan P Newman
- Faculty of Engineering and Computing, Coventry University, Coventry, UK
| |
Collapse
|
78
|
Liu Y, Chen Y, Yang Y, Zhang Q, Fu B, Cai J, Guo W, Shi L, Wu J, Chen Y. A thorough screening based on QTLs controlling zinc and copper accumulation in the grain of different wheat genotypes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15043-15054. [PMID: 33230790 DOI: 10.1007/s11356-020-11690-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
Excess trace metals may cause damage to human health due to the consumption of food grain grown in contaminated soils. This study was designed to understand the genetic mechanisms of copper (Cu) and zinc (Zn) accumulation in wheat grain under stressed environments. The differences of Cu/Zn contents in the grain among 246 wheat varieties were analyzed, and the wheat varieties with low or high accumulation of Cu and Zn in the safe range were also screened out. The accumulation of Cu and Zn in grains of "Chushanbao" was lowest, which could be used as a novel germplasm for wheat breeding under heavy metal stress. We found that Cu contents of wheat grain were significantly and positively correlated with Zn. The quantitative trait loci (QTLs) for grain Cu content (GCuC) and grain Zn content (GZnC) were detected by genome-wide association study (GWAS). Twenty-three loci affecting GCuC were identified on chromosomes 1A, 1D, 2A, 2B, 2D, 3A, 3B, 3D, 4A, 4B 4D, 5A, 6D, 7A, and 7B, explaining 2.6-5.8% of the phenotypic variation. Sixteen loci associated with the GZnC on 11 different chromosomes 1B, 2B, 2D, 3A, 3D, 4A, 4B, 5A, 5D, 6B, and 7D were detected, which could explain 2.7~6.6% of phenotypic variance. We also determined five associated loci on chromosomes 2B, 2D, 3A, 4B, and 5A were in pleiotropic regions affecting both GCuC and GZnC. This study would help in better understanding the molecular basis of Cu/Zn accumulation in wheat grain, and the associated markers may be useful for marker-assisted selection (MAS) breeding program.
Collapse
Affiliation(s)
- Ying Liu
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | | | - Yang Yang
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qiaofeng Zhang
- Provincial Key Laboratory of Agrobiology, The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Bisheng Fu
- Provincial Key Laboratory of Agrobiology, The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Jin Cai
- Provincial Key Laboratory of Agrobiology, The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Wei Guo
- Provincial Key Laboratory of Agrobiology, The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Liang Shi
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Jizhong Wu
- Provincial Key Laboratory of Agrobiology, The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China.
| | - Yahua Chen
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| |
Collapse
|
79
|
Costa-Gutierrez SB, Aparicio JD, Delgado OD, Benimeli CS, Polti MA. Use of glycerol for the production of actinobacteria with well-known bioremediation abilities. 3 Biotech 2021; 11:57. [PMID: 33489676 DOI: 10.1007/s13205-020-02588-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/03/2020] [Indexed: 10/24/2022] Open
Abstract
In recent years, there has been an increasing interest in the remediation of contaminated environments, and a suitable solution is in situ bioremediation. To achieve this, large-scale bacterial biomass production should be sustainable, using economic culture media. The main aim of this study was to optimize the physicochemical conditions for the biomass production of an actinobacterium with well-known bioremediation ability using inexpensive substrates and to scale-up its production in a bioreactor. For this, the growth of four strains of actinobacteria were evaluated in minimal medium with glucose and glycerol as carbon and energy sources. In addition, l-asparagine and ammonium sulfate were assayed as alternative nitrogen sources. The strain Streptomyces sp. A5 showed the highest biomass production in shake-flasks culture using glycerol and ammonium sulfate as carbon and nitrogen sources, respectively. Factorial designs with five factors (glycerol concentration, inoculum size, pH, temperature, and agitation) were employed to optimize the biomass production of Streptomyces sp. A5. The maximum biomass production was obtained using 5 g L-1 of glycerol, 0.25 µL of inoculum, pH 7, 30 °C and 200 rpm. Finally, the production was successfully scaled to a 2 L stirred tank bioreactor. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-020-02588-5.
Collapse
|
80
|
Abstract
Toxic metal contamination has serious effects on human health. Crude oil that may contain toxic metals and oil spills can further contaminate the environment and lead to increased exposure. This being the case, we chose to study the bio-production of inexpensive, environmentally safe materials for remediation. Streptomyces sp. MOE6 is a Gram-positive, filamentous bacterium from soil that produces an extracellular polysaccharide (MOE6-EPS). A one-factor-at-a-time experiments showed that the maximum production of MOE6-EPS was achieved at 35 °C, pH 6, after nine days of incubation with soluble starch and yeast extract as carbon sources and the latter as the nitrogen source. We demonstrated that MOE6-EPS has the capacity to remove toxic metals such as Co(II), Cr(VI), Cu(II) and U(VI) and from solution either by chelation and/or reduction. Additionally, the bacterium was found to produce siderophores, which contribute to the removal of metals, specifically Fe(III). Additionally, purified MOE6-EPS showed emulsifying activities against various hydrophobic substances, including olive oil, corn oil, benzene, toluene and engine oil. These results indicate that EPS from Streptomyces sp. MOE6 may be useful to sequester toxic metals and oil in contaminated environments.
Collapse
|
81
|
Dusengemungu L, Kasali G, Gwanama C, Ouma KO. Recent Advances in Biosorption of Copper and Cobalt by Filamentous Fungi. Front Microbiol 2020; 11:582016. [PMID: 33408701 PMCID: PMC7779407 DOI: 10.3389/fmicb.2020.582016] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/30/2020] [Indexed: 01/31/2023] Open
Abstract
Copper (Cu) and Cobalt (Co) are among the most toxic heavy metals from mining and other industrial activities. Both are known to pose serious environmental concerns, particularly to water resources, if not properly treated. In recent years several filamentous fungal strains have been isolated, identified and assessed for their heavy metal biosorption capacity for potential application in bioremediation of Cu and Co wastes. Despite the growing interest in heavy metal removal by filamentous fungi, their exploitation faces numerous challenges such as finding suitable candidates for biosorption. Based on current findings, various strains of filamentous fungi have high metal uptake capacity, particularly for Cu and Co. Several works indicate that Trichoderma, Penicillium, and Aspergillus species have higher Cu and Co biosorption capacity compared to other fungal species such as Geotrichum, Monilia, and Fusarium. It is believed that far more fungal species with even higher biosorption capability are yet to be isolated. Furthermore, the application of filamentous fungi for bioremediation is considered environmentally friendly, highly effective, reliable, and affordable, due to their low technology pre-requisites. In this review, we highlight the capacity of various identified filamentous fungal isolates for biosorption of copper and cobalt from various environments, as well as their future prospects.
Collapse
Affiliation(s)
- Leonce Dusengemungu
- School of Mathematics and Natural Sciences, The Copperbelt University, Kitwe, Zambia
| | - George Kasali
- School of Mathematics and Natural Sciences, The Copperbelt University, Kitwe, Zambia
| | - Cousins Gwanama
- School of Natural Resources, The Copperbelt University, Kitwe, Zambia
| | | |
Collapse
|
82
|
Khatiwada B, Sunna A, Nevalainen H. Molecular tools and applications of Euglena gracilis: From biorefineries to bioremediation. Biotechnol Bioeng 2020; 117:3952-3967. [PMID: 32710635 DOI: 10.1002/bit.27516] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/17/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022]
Abstract
Euglena gracilis is a promising source of commercially important metabolites such as vitamins, wax esters, paramylon, and amino acids. However, the molecular tools available to create improved Euglena strains are limited compared to other microorganisms that are currently exploited in the biotechnology industry. The complex poly-endosymbiotic nature of the Euglena genome is a major bottleneck for obtaining a complete genome sequence and thus represents a notable shortcoming in gaining molecular information of this organism. Therefore, the studies and applications have been more focused on using the wild-type strain or its variants and optimizing the nutrient composition and cultivation conditions to enhance the production of biomass and valuable metabolites. In addition to producing metabolites, the E. gracilis biorefinery concept also provides means for the production of biofuels and biogas as well as residual biomass for the remediation of industrial and municipal wastewater. Using Euglena for bioremediation of environments contaminated with heavy metals is of special interest due to the strong ability of the organism to accumulate and sequester these compounds. The published draft genome and transcriptome will serve as a basis for further molecular studies of Euglena and provide a guide for the engineering of metabolic pathways of relevance for the already established as well as novel applications.
Collapse
Affiliation(s)
- Bishal Khatiwada
- Department Molecular Sciences, Macquarie University, Sydney, Australia.,Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, Australia
| | - Anwar Sunna
- Department Molecular Sciences, Macquarie University, Sydney, Australia.,Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, Australia
| | - Helena Nevalainen
- Department Molecular Sciences, Macquarie University, Sydney, Australia.,Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, Australia
| |
Collapse
|