51
|
Zhang L, Chen L, Li C, Shi H, Wang Q, Yang W, Fang L, Leng Y, Sun W, Li M, Xue Y, Gao X, Wang H. Oroxylin a Attenuates Limb Ischemia by Promoting Angiogenesis via Modulation of Endothelial Cell Migration. Front Pharmacol 2021; 12:705617. [PMID: 34413777 PMCID: PMC8370028 DOI: 10.3389/fphar.2021.705617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/16/2021] [Indexed: 11/15/2022] Open
Abstract
Oroxylin A (OA) has been shown to simultaneously increase coronary flow and provide a strong anti-inflammatory effect. In this study, we described the angiogenic properties of OA. OA treatment accelerated perfusion recovery, reduced tissue injury, and promoted angiogenesis after hindlimb ischemia (HLI). In addition, OA regulated the secretion of multiple cytokines, including vascular endothelial growth factor A (VEGFA), angiopoietin-2 (ANG-2), fibroblast growth factor-basic (FGF-2), and platelet derived growth factor BB (PDGF-BB). Specifically, those multiple cytokines were involved in cell migration, cell population proliferation, and angiogenesis. These effects were observed at 3, 7, and 14 days after HLI. In skeletal muscle cells, OA promoted the release of VEGFA and ANG-2. After OA treatment, the conditioned medium derived from skeletal muscle cells was found to significantly induce endothelial cell (EC) proliferation. OA also induced EC migration by activating the Ras homolog gene family member A (RhoA)/Rho-associated coiled-coil kinase 2 (ROCK-II) signaling pathway and the T-box20 (TBX20)/prokineticin 2 (PROK2) signaling pathway. In addition, OA was able to downregulate the number of macrophages and neutrophils, along with the secretion of interleukin-1β, at 3 days after HLI. These results expanded current knowledge about the beneficial effects of OA in angiogenesis and blood flow recovery. This research could open new directions for the development of novel therapeutic intervention for patients with peripheral artery disease (PAD).
Collapse
Affiliation(s)
- Lusha Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chunxiao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, China
| | - Hong Shi
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qianyi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenjie Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Leyu Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuze Leng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Sun
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mengyao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuejin Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Hong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China.,School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
52
|
McGifford OJ, Harkin DG, Cuttle L. Effect of Rho-Associated Protein Kinase Inhibitors on Epidermal Keratinocytes: A Proposed Application for Burn Wound Healing. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:555-568. [PMID: 34039046 DOI: 10.1089/ten.teb.2021.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Rho-associated protein kinases (ROCKs) affect a variety of cellular functions, including cell attachment, migration, and proliferation. ROCK inhibitors therefore have potential as tools for optimizing cell behavior in tissue engineering applications, including the manufacturing of cultivated epithelial autografts (CEAs) used in the treatment of burn patients. For example, ROCK inhibitors may facilitate earlier engraftment of CEA sheets by increasing the proliferation of skin keratinocytes ex vivo. Nevertheless, the current understanding of ROCK inhibitor action on epidermal keratinocytes is unclear owing to multiple drug formulations, drug concentrations, and cellular function assays having been used. The aim of this review article therefore is to identify consistent patterns of ROCK inhibitor action on human keratinocytes, as well as revealing key knowledge gaps. In doing so, we propose a clearer course of action for pursuing the potential benefits of ROCK inhibitors for the future treatment of burn patients. Impact statement The properties of Rho-associated protein kinase (ROCK) inhibitors are already used clinically within the fields of cardiology, neurology, and ophthalmology. These results encourage the broadening of ROCK inhibitor uses for other clinical applications. With respect to burn patients, ROCK inhibitors may facilitate improvements in patient survival and healing by reducing the time required for generating cultivated epithelial autograft (CEA) sheets from patient biopsies. Nevertheless, varying approaches to studying the effects of ROCK inhibitors on skin cells in vitro have complicated the development of improved protocols. Our review aims to clarify a diverse and growing body of literature as to the potential benefits for burn patients.
Collapse
Affiliation(s)
- Olivia J McGifford
- Faculty of Health, School of Biomedical Sciences, Centre for Children's Health Research, Queensland University of Technology, South Brisbane, Australia
| | - Damien G Harkin
- Faculty of Health, School of Biomedical Sciences, Centre for Children's Health Research, Queensland University of Technology, South Brisbane, Australia
| | - Leila Cuttle
- Faculty of Health, School of Biomedical Sciences, Centre for Children's Health Research, Queensland University of Technology, South Brisbane, Australia
| |
Collapse
|
53
|
Lu W, Chen Z, Wen J. RhoA/ROCK signaling pathway and astrocytes in ischemic stroke. Metab Brain Dis 2021; 36:1101-1108. [PMID: 33745103 DOI: 10.1007/s11011-021-00709-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 02/25/2021] [Indexed: 10/21/2022]
Abstract
Ischemic stroke is one of the most common and undertreated cerebral diseases with high mortality and disability rate. Various intrinsic and extrinsic factors regulate the onset, severity, and progression of ischemic stroke. As an integral part of the neuronal glia system, astrocytes provide many housekeeping functions in nervous system, and perform multiple functions both beneficial and detrimental for neuronal survival after ischemic stroke. In addition, the small GTPase Rho and its downstream Rho kinase (ROCK) are associated with various neuronal functions such as dendrite development, migration and axonal extension, and numerous central nervous system (CNS) diseases. The aim of this review is to summarize the role of RhoA/ROCK signaling pathway and astrocytes on neurological function after ischemic stroke. We also discuss the interaction of RhoA/ROCK signaling pathway and astrocytes on the tissue repair after brain injury.
Collapse
Affiliation(s)
- Weizhuo Lu
- Medical School, Hefei Technology College, Hefei, China
| | - Zhiwu Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
54
|
Hung SW, Zhang R, Tan Z, Chung JPW, Zhang T, Wang CC. Pharmaceuticals targeting signaling pathways of endometriosis as potential new medical treatment: A review. Med Res Rev 2021; 41:2489-2564. [PMID: 33948974 PMCID: PMC8252000 DOI: 10.1002/med.21802] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/23/2020] [Accepted: 03/19/2021] [Indexed: 12/13/2022]
Abstract
Endometriosis (EM) is defined as endometrial tissues found outside the uterus. Growth and development of endometriotic cells in ectopic sites can be promoted via multiple pathways, including MAPK/MEK/ERK, PI3K/Akt/mTOR, NF-κB, Rho/ROCK, reactive oxidative stress, tumor necrosis factor, transforming growth factor-β, Wnt/β-catenin, vascular endothelial growth factor, estrogen, and cytokines. The underlying pathophysiological mechanisms include proliferation, apoptosis, autophagy, migration, invasion, fibrosis, angiogenesis, oxidative stress, inflammation, and immune escape. Current medical treatments for EM are mainly hormonal and symptomatic, and thus the development of new, effective, and safe pharmaceuticals targeting specific molecular and signaling pathways is needed. Here, we systematically reviewed the literature focused on pharmaceuticals that specifically target the molecular and signaling pathways involved in the pathophysiology of EM. Potential drug targets, their upstream and downstream molecules with key aberrant signaling, and the regulatory mechanisms promoting the growth and development of endometriotic cells and tissues were discussed. Hormonal pharmaceuticals, including melatonin, exerts proapoptotic via regulating matrix metallopeptidase activity while nonhormonal pharmaceutical sorafenib exerts antiproliferative effect via MAPK/ERK pathway and antiangiogenesis activity via VEGF/VEGFR pathway. N-acetyl cysteine, curcumin, and ginsenoside exert antioxidant and anti-inflammatory effects via radical scavenging activity. Natural products have high efficacy with minimal side effects; for example, resveratrol and epigallocatechin gallate have multiple targets and provide synergistic efficacy to resolve the complexity of the pathophysiology of EM, showing promising efficacy in treating EM. Although new medical treatments are currently being developed, more detailed pharmacological studies and large sample size clinical trials are needed to confirm the efficacy and safety of these treatments in the near future.
Collapse
Affiliation(s)
- Sze Wan Hung
- Department of Obstetrics and GynaecologyThe Chinese University of Hong KongHong Kong
| | - Ruizhe Zhang
- Department of Obstetrics and GynaecologyThe Chinese University of Hong KongHong Kong
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and GeneticsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou
| | - Zhouyurong Tan
- Department of Obstetrics and GynaecologyThe Chinese University of Hong KongHong Kong
| | | | - Tao Zhang
- Department of Obstetrics and GynaecologyThe Chinese University of Hong KongHong Kong
| | - Chi Chiu Wang
- Department of Obstetrics and GynaecologyThe Chinese University of Hong KongHong Kong
- Reproduction and Development, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong
- School of Biomedical SciencesThe Chinese University of Hong KongHong Kong
- Chinese University of Hong Kong‐Sichuan University Joint Laboratory in Reproductive MedicineThe Chinese University of Hong KongHong Kong
| |
Collapse
|
55
|
You LN, Tai QW, Xu L, Hao Y, Guo WJ, Zhang Q, Tong Q, Zhang H, Huang WK. Exosomal LINC00161 promotes angiogenesis and metastasis via regulating miR-590-3p/ROCK axis in hepatocellular carcinoma. Cancer Gene Ther 2021; 28:719-736. [PMID: 33414518 DOI: 10.1038/s41417-020-00269-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 11/08/2020] [Accepted: 11/23/2020] [Indexed: 01/29/2023]
Abstract
Hepatocellular carcinoma (HCC) is a lethal malignancy with few effective options for therapeutic treatment in its advanced stages. While exosomal LINC00161 has been identified as a potential biomarker for HCC, its regulatory function and clinical values remain largely unknown. LINC00161 expressions in serum-derived exosomes from HCC patients and HCC cells were determined by qRT-PCR. The ability of proliferation, migration, and angiogenesis in HUVECs was assessed by MTT, Transwell, and tube formation. Luciferase reporter assay and AGO2-RIP assay were conducted to explore the interactions among LINC00161, miR-590-3p, and ROCK2. The level of ROCK signal-related proteins was examined by Western blotting and immunohistochemistry (IHC) assay. Subcutaneous tumor growth was observed in nude mice, in which in vivo metastasis was observed following tail vein injection of HCC cells. High levels of LINC00161 were detected in both serum-derived exosomes from HCC patients and the supernatants of HCC cell lines and were significantly associated with poor survival. Functional study demonstrated that exosomal LINC00161 derived from HCC-cells were significantly associated with enhanced proliferation, migration, and angiogenesis in HUVECs in vitro, all of which were effectively inhibited when LINC00161 was sliced with shRNA in HCC-cells. In vivo experiment showed that LINC00161 loss inhibited tumorigenesis and metastasis of HCC. Mechanistic study revealed that exosome-carried LINC00161 directly targeted miR-590-3p and induced its downstream target ROCK2, finally activating growth/metastasis-related signals in HCC. Exosome-carried LINC00161 promotes HCC tumorigenesis through inhibiting miR-590-3p to activate the ROCK2 signaling pathway, suggesting that LINC00161 may be used as potential targets to improve HCC treatment efficiency.
Collapse
Affiliation(s)
- Li-Na You
- Department of Traditional Chinese Medicine, the Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, PR China.,Traditional Chinese Medicine Gynecology, Maternal and Child Health Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, 830011, PR China
| | - Qin-Wen Tai
- Department of General Surgery, ShenZhen Hospital of Southern Medical University, Shenzhen, 518000, PR China
| | - Lin Xu
- Department of Hepatobiliary& Pancreatic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518000, PR China
| | - Yi Hao
- Department of Ultrasound Medicine, ShenZhen Hospital of Southern Medical University, Shenzhen, 518000, PR China
| | - Wen-Jia Guo
- Cancer Institute, Cancer Hospital Affiliated to Xinjiang Medical University, Urumqi, 830011, PR China
| | - Qiao Zhang
- Department of Pulmonary Medicine, Cancer Hospital Affiliated to Xinjiang Medical University, Urumqi, 830011, PR China
| | - Qing Tong
- Department of Hepatobiliary and Pancreatic Surgery, Cancer Hospital Affiliated to Xinjiang Medical University, Urumqi, 830011, PR China
| | - Heng Zhang
- Department of General Surgery, ShenZhen Hospital of Southern Medical University, Shenzhen, 518000, PR China
| | - Wu-Kui Huang
- Department of General Surgery, ShenZhen Hospital of Southern Medical University, Shenzhen, 518000, PR China. .,InterventionaL Diagnosis and Treatment Department, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, PR China.
| |
Collapse
|
56
|
Kuo CH, Huang YH, Chen PK, Lee GH, Tang MJ, Conway EM, Shi GY, Wu HL. VEGF-Induced Endothelial Podosomes via ROCK2-Dependent Thrombomodulin Expression Initiate Sprouting Angiogenesis. Arterioscler Thromb Vasc Biol 2021; 41:1657-1671. [PMID: 33730876 DOI: 10.1161/atvbaha.121.315931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Cheng-Hsiang Kuo
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan (C.-H.K., P.-K.C., G.-Y.S.,
H.-L.W.)
- College of Medicine and International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan (C.-H.K., G.-H.L., M.-J.T., H.-L.W.)
| | - Yi-Hsun Huang
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan (Y.-H.H.)
- Department of Ophthalmology, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan (Y.-H.H.)
| | - Po-Ku Chen
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan (C.-H.K., P.-K.C., G.-Y.S.,
H.-L.W.)
- Now with Translational Medicine Laboratory, Rheumatology and Immunology Center, China Medical University Hospital, Taichung, Taiwan (P.-K. C.)
| | - Gang-Hui Lee
- College of Medicine and International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan (C.-H.K., G.-H.L., M.-J.T., H.-L.W.)
| | - Ming-Jer Tang
- College of Medicine and International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan (C.-H.K., G.-H.L., M.-J.T., H.-L.W.)
| | - Edward M Conway
- Department of Medicine, Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, Canada (E.M.C.)
| | - Guey-Yueh Shi
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan (C.-H.K., P.-K.C., G.-Y.S.,
H.-L.W.)
| | - Hua-Lin Wu
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan (C.-H.K., P.-K.C., G.-Y.S.,
H.-L.W.)
- College of Medicine and International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan (C.-H.K., G.-H.L., M.-J.T., H.-L.W.)
| |
Collapse
|
57
|
Guo L, Wen X, Hou Y, Sun R, Zhang L, Liu F, Liu J. Dihydroartemisinin inhibits endothelial cell migration via the TGF-β1/ALK5/SMAD2 signaling pathway. Exp Ther Med 2021; 22:709. [PMID: 34007318 PMCID: PMC8120513 DOI: 10.3892/etm.2021.10141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/12/2021] [Indexed: 01/01/2023] Open
Abstract
Anti-angiogenesis therapy is a novel treatment method for malignant tumors. Endothelial cell (EC) migration is an important part of angiogenesis. Dihydroartemisinin (DHA) exhibits strong anti-angiogenic and anti-EC migration effects; however, the underlying molecular mechanisms are yet to be elucidated. The TGF-β1/activin receptor-like kinase 5 (ALK5)/SMAD2 signaling pathway serves an important role in the regulation of migration. The present study aimed to explore the effects of DHA treatment on EC migration and the TGF-β1/ALK5/SMAD2 signaling pathway. The effects of DHA on human umbilical vein EC migration were assessed using wound healing and Transwell assays. The effects of DHA on the TGF-β1/ALK5/SMAD2 signaling pathway were detected using western blotting. DHA exhibited an inhibitory effect on EC migration in the wound healing and Transwell assays. DHA treatment upregulated the expression levels of ALK5 and increased the phosphorylation of SMAD2 in ECs. SB431542 rescued the inhibitory effect of DHA during EC migration. DHA inhibited EC migration via the TGF-β1/ALK5/SMAD2-dependent signaling pathway, and DHA may be a novel drug for the treatment of patients with malignant tumors.
Collapse
Affiliation(s)
- Ling Guo
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Shandong University, Jinan, Shandong 250014, P.R. China.,Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Xiaoqing Wen
- Department of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261042, P.R. China
| | - Yinglong Hou
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Rong Sun
- Advanced Medical Research Institute, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Liang Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Fuhong Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Ju Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
58
|
Liu H, He J, Wu Y, Du Y, Jiang Y, Chen C, Yu Z, Zhong J, Wang Z, Cheng C, Sun X, Huang Z. Endothelial Regulation by Exogenous Annexin A1 in Inflammatory Response and BBB Integrity Following Traumatic Brain Injury. Front Neurosci 2021; 15:627110. [PMID: 33679307 PMCID: PMC7930239 DOI: 10.3389/fnins.2021.627110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/15/2021] [Indexed: 12/19/2022] Open
Abstract
Background and Target Following brain trauma, blood–brain barrier (BBB) disruption and inflammatory response are critical pathological steps contributing to secondary injury, leading to high mortality and morbidity. Both pathologies are closely associated with endothelial remodeling. In the present study, we concentrated on annexin A1 (ANXA1) as a novel regulator of endothelial function after traumatic brain injury. Methods After establishing controlled cortical impact (CCI) model in male mice, human recombinant ANXA1 (rANXA1) was administered intravenously, followed by assessments of BBB integrity, brain edema, inflammatory response, and neurological deficits. Result Animals treated with rANXA1 (1 μg/kg) at 1 h after CCI exhibited optimal BBB protection including alleviated BBB disruption and brain edema, as well as endothelial junction proteins loss. The infiltrated neutrophils and inflammatory cytokines were suppressed by rANXA1, consistent with decreased adhesive and transmigrating molecules from isolated microvessels. Moreover, rANXA1 attenuated the neurological deficits induced by CCI. We further found that the Ras homolog gene family member A (RhoA) inhibition has similar effect as rANXA1 in ameliorating brain injuries after CCI, whereas rANXA1 suppressed CCI-induced RhoA activation. Conclusion Our findings suggest that the endothelial remodeling by exogenous rANXA1 corrects BBB disruption and inflammatory response through RhoA inhibition, hence improving functional outcomes in CCI mice.
Collapse
Affiliation(s)
- Han Liu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurosurgery, Qilu Hospital of Shandong University (Qingdao Campus), Qingdao, China
| | - Junchi He
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Wu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Du
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Yinghua Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Zhanyang Yu
- Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Jianjun Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhigang Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University (Qingdao Campus), Qingdao, China
| | - Chongjie Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhijian Huang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
59
|
Woś I, Tabarkiewicz J. Effect of interleukin-6, -17, -21, -22, and -23 and STAT3 on signal transduction pathways and their inhibition in autoimmune arthritis. Immunol Res 2021; 69:26-42. [PMID: 33515210 PMCID: PMC7921069 DOI: 10.1007/s12026-021-09173-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/10/2021] [Indexed: 02/07/2023]
Abstract
Rheumatic diseases are complex autoimmune diseases which include among others rheumatoid arthritis (RA), juvenile idiopathic arthritis (JIA), and psoriatic arthritis (PsA). These diseases are characterized by prolonged and increased secretion of inflammatory factors, eventually leading to inflammation. This is often accompanied by persistent pain and stiffness in the joint and finally bone destruction and osteoporosis. These diseases can occur at any age, regardless of gender or origin. Autoimmune arthritis is admittedly associated with long-term treatment, and discontinuation of medication is associated with unavoidable relapse. Therefore, it is important to detect the disease at an early stage and apply appropriate preventative measures. During inflammation, pro-inflammatory factors such as interleukins (IL)-6, -17, -21, -22, and -23 are secreted, while anti-inflammatory factors including IL-10 are downregulated. Research conducted over the past several years has focused on inhibiting inflammatory pathways and activating anti-inflammatory factors to improve the quality of life of people with rheumatic diseases. The aim of this paper is to review current knowledge on stimulatory and inhibitory pathways involving the signal transducer and activator of transcription 3 (STAT3). STAT3 has been shown to be one of the crucial factors involved in inflammation and is directly linked with other pro-inflammatory factors and thus is a target of current research on rheumatoid diseases.
Collapse
Affiliation(s)
- Izabela Woś
- Laboratory for Translational Research in Medicine, Centre for Innovative Research in Medical and Natural Sciences, College for Medical Sciences of University of Rzeszow, ul. Warzywna 1a, 35-310 Rzeszow, Poland
- Department of Human Immunology, Institute of Medical Sciences, College for Medical Sciences of University of Rzeszow, ul. Warzywna 1a, 35-310 Rzeszow, Poland
| | - Jacek Tabarkiewicz
- Laboratory for Translational Research in Medicine, Centre for Innovative Research in Medical and Natural Sciences, College for Medical Sciences of University of Rzeszow, ul. Warzywna 1a, 35-310 Rzeszow, Poland
- Department of Human Immunology, Institute of Medical Sciences, College for Medical Sciences of University of Rzeszow, ul. Warzywna 1a, 35-310 Rzeszow, Poland
| |
Collapse
|
60
|
Dos Santos TM, Righetti RF, Rezende BG, Campos EC, Camargo LDN, Saraiva-Romanholo BM, Fukuzaki S, Prado CM, Leick EA, Martins MA, Tibério IFLC. Effect of anti-IL17 and/or Rho-kinase inhibitor treatments on vascular remodeling induced by chronic allergic pulmonary inflammation. Ther Adv Respir Dis 2020; 14:1753466620962665. [PMID: 33357114 PMCID: PMC7768836 DOI: 10.1177/1753466620962665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background and aims: Expansion and morphological dysregulation of the bronchial vascular network occurs in asthmatic airways. Interleukin (IL) -17 and Rho-kinase (ROCK) are known to act in inflammation control and remodeling. Modulation of Rho-kinase proteins and IL-17 may be a promising approach for the treatment of asthma through the control of angiogenesis. Our objective was to analyze the effects of treatment with anti-IL17 and/or Rho-kinase inhibitor on vascular changes in mice with chronic allergic pulmonary inflammation. Methods: Sixty-four BALB/c mice, with pulmonary inflammation induced by ovalbumin were treated with anti-IL17A (7.5/µg per dose, intraperitoneal) and/or Rho-kinase inhibitor (Y-27632-10 mg/kg, intranasal), 1 h before each ovalbumin challenge (22, 24, 26, and 28/days). Control animals were made to inhale saline. At the end of the protocol, lungs were removed, and morphometric analysis was performed to quantify vascular inflammatory, remodeling, and oxidative stress responses. Results: Anti-IL17 or Rho-kinase inhibitor reduced the number of CD4+, CD8+, dendritic cells, IL-4, IL-5, IL-6, IL-10, IL-13, IL-17, Rho-kinase 1 and 2, transforming growth factor (TGF-β), vascular endothelial growth factor (VEGF), nuclear factor (NF)-KappaB, iNOS, metalloproteinase (MMP)-9, MMP-12, metalloproteinase inhibitor-1 (TIMP-1), FOXP-3, signal transducer and activator of transcription 1 (STAT1) and phospho-STAT1-positive cells, and actin, endothelin-1, isoprostane, biglycan, decorin, fibronectin and the collagen fibers volume fraction compared with the ovalbumin group (p < 0.05). The combination treatment, when compared with anti-IL17, resulted in potentiation of decrease in the number of IL1β- and dendritic cells-positive cells. When we compared the OVA-RHO inhibitor-anti-IL17 with OVA-RHO inhibitor we found a reduction in the number of CD8+ and IL-17, TGF-β, and phospho-STAT1-positive cells and endothelin-1 in the vessels (p < 0.05). There was an attenuation in the number of ROCK 2-positive cells in the group with the combined treatment when compared with anti-IL17 or Rho-kinase inhibitor-treated groups (p < 0.05). Conclusion: We observed no difference in angiogenesis after treatment with Rho-kinase inhibitor and anti-IL17. Although the treatments did not show differences in angiogenesis, they showed differences in the markers involved in the angiogenesis process contributing to inflammation control and vascular remodeling. The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- Tabata M Dos Santos
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR; Hospital Sirio-Libanes, São Paulo, Brazil
| | - Renato F Righetti
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR; Hospital Sirio-Libanes, São Paulo, Brazil
| | - Bianca G Rezende
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Elaine C Campos
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Hospital Sirio-Libanes, São Paulo, Brazil
| | - Leandro do N Camargo
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR. Hospital Sirio-Libanes, São Paulo, Brazil
| | - Beatriz M Saraiva-Romanholo
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil.,Department of Medicine, University City of São Paulo (UNICID), São Paulo, Brazil
| | - Silvia Fukuzaki
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Carla M Prado
- Department of Biosciences, Federal University os Sao Paulo, Santos, SP, Brazil
| | - Edna A Leick
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Milton A Martins
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Iolanda F L C Tibério
- Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455- Sala 1210, São Paulo, SP 01246-903, Brazil
| |
Collapse
|
61
|
Pawinwongchai J, Mekchay P, Nilsri N, Israsena N, Rojnuckarin P. Regulation of platelet numbers and sizes by signaling pathways. Platelets 2020; 32:1073-1083. [PMID: 33222582 DOI: 10.1080/09537104.2020.1841893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Either the glycoprotein (GP) Ib deficiency or hyper-function in humans can cause macrothrombocytopenia, the molecular mechanisms of which remain unclear. Herein, the investigations for disease pathogenesis were performed in the human induced pluripotent stem cell (hiPSC) model. The hiPSCs carrying a gain-of-function GP1BA p.M255V mutation which was described in platelet-type von Willebrand disease (PT-VWD) were generated using CRISPR/Cas9. The GP1BA-null hiPSCs were previously derived from a Bernard-Soulier syndrome (BSS) patient. After full megakaryocyte differentiation in culture, both hiPSC mutations showed large proplatelet tips under fluorescence microscopy and yielded fewer but larger platelets compared with those of wild-type cells. The Capillary Western analyses revealed the lower ERK1/2 activation and higher MLC2 (Myosin light chain 2) phosphorylation in megakaryocytes with mutated GPIb. Adding a mitogen-activated protein kinase (MAPK) pathway inhibitor to wild-type hiPSCs recapitulated the phenotypes of GPIb mutations and increased MLC2 phosphorylation. Notably, a ROCK inhibitor which could inhibit MLC2 phosphorylation rescued the macrothrombocytopenia phenotypes of both GPIb alterations and wild-type hiPSCs with a MAPK inhibitor. In conclusion, the genetically modified hiPSCs can be used to model disorders of proplatelet formation. Both loss- and gain-of-function GPIb reduced MAPK/ERK activation but enhanced ROCK/MLC2 phosphorylation resulting in dysregulated platelet generation.
Collapse
Affiliation(s)
- Jaturawat Pawinwongchai
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Ponthip Mekchay
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Nungruthai Nilsri
- Doctor of Philosophy Program in Medical Sciences, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Nipan Israsena
- Stem Cell and Cell Therapy Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ponlapat Rojnuckarin
- Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
62
|
Inomata T, Fujimoto K, Okumura Y, Zhu J, Fujio K, Shokirova H, Miura M, Okano M, Funaki T, Sung J, Negishi N, Murakami A. Novel immunotherapeutic effects of topically administered ripasudil (K-115) on corneal allograft survival. Sci Rep 2020; 10:19817. [PMID: 33188243 PMCID: PMC7666179 DOI: 10.1038/s41598-020-76882-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Corneal allograft survival is mediated by the variety of immunological reactions and wound healing process. Our aim was to explore the effects of topical administration of ripasudil, a selective Rho-associated coiled-coil protein kinase inhibitor, on corneal allograft survival. Ripasudil was administered to mice thrice a day after allogeneic corneal transplantation. Corneal graft survival, opacity, neovascularization, re-epithelization, immune cell infiltration, and mRNA levels of angiogenic and pro-inflammatory factors in the grafted cornea and draining lymph nodes (dLNs) were evaluated with slit-lamp microscopy, immunohistochemistry, flow cytometry, and polymerase chain reaction. Graft survival was significantly prolonged with lower graft opacity and neovascularization scores in 0.4% and 2.0% ripasudil-treated groups, and mRNA levels of angiogenic and pro-inflammatory factors in ripasudil-treated grafted corneas were reduced. Moreover, 0.4% and 2.0% ripasudil reduced CD45+-infiltrated leukocyte frequency, Cd11b and Cd11c mRNA levels, and the frequencies of mature dendritic cells, IFNγ-, and IL-17- producing CD4+T cells in the dLNs of recipients. Re-epithelization rate of the grafted cornea was significantly higher in the 0.4% and 2.0% ripasudil groups than in the control. Topically applied ripasudil prolonged graft survival by downregulating neovascularization and inflammation factors, while promoting corneal re-epithelization, suggesting that ripasudil may be useful for suppressing immunological rejection in corneal transplantation.
Collapse
Affiliation(s)
- Takenori Inomata
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo, Japan. .,Department of Strategic Operating Room Management and Improvement, Juntendo University Graduate School of Medicine, Tokyo, Japan. .,Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan. .,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Keiichi Fujimoto
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuichi Okumura
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo, Japan.,Department of Strategic Operating Room Management and Improvement, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jun Zhu
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kenta Fujio
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hurramhon Shokirova
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Maria Miura
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mikiko Okano
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Toshinari Funaki
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Ophthalmology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Jaemyoung Sung
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Naoko Negishi
- Atopy (Allergic) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Indoor Environment Neurophysiology Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
63
|
Zhang Z, Nong L, Chen M, Gu X, Zhao W, Liu M, Cheng W. Baicalein suppresses vasculogenic mimicry through inhibiting RhoA/ROCK expression in lung cancer A549 cell line. Acta Biochim Biophys Sin (Shanghai) 2020; 52:1007-1015. [PMID: 32672788 DOI: 10.1093/abbs/gmaa075] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022] Open
Abstract
Vasculogenic mimicry (VM) refers to a new tubular network of the blood supply system with abundant extracellular matrix. VM is similar to capillaries but does not involve endothelial cells. As a traditional herbal medicine commonly used in China, baicalein possesses anti-inflammatory and lipoxygenase activities. However, the effects of baicalein on the process of VM formation in non-small cell lung cancer (NSCLC) and the underlying mechanisms have remained poorly understood. In this study, baicalein was found to inhibit the viability and motility of A549 cells and induced the breakage of the cytoskeletal actin filament network. In addition, baicalein significantly decreased the formation of VM and downregulated the expressions of VM-associated factors, such as VE-cadherin, EphA2, MMP14, MMP2, MMP9, PI3K and LAMC2, similar to the effects of ROCK inhibitors. Indeed, baicalein inhibited RhoA/ROCK expression in vitro and in vivo, suggesting the underlying mechanisms of reduced VM formation. Collectively, baicalein suppressed the formation of VM in NSCLC by targeting the RhoA/ROCK signaling pathway, indicating that baicalein might serve as an emerging drug for NSCLC.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China, and
| | - Li Nong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Menglei Chen
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China, and
| | - Xiaoli Gu
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China, and
| | - Weiwei Zhao
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China, and
| | - Minghui Liu
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China, and
| | - Wenwu Cheng
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China, and
| |
Collapse
|
64
|
Zheng Y, Gong J, Zhen Y. Focal adhesion kinase is activated by microtubule-depolymerizing agents and regulates membrane blebbing in human endothelial cells. J Cell Mol Med 2020; 24:7228-7238. [PMID: 32452639 PMCID: PMC7339229 DOI: 10.1111/jcmm.15273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/01/2020] [Accepted: 03/27/2020] [Indexed: 12/17/2022] Open
Abstract
Microtubule-depolymerizing agents can selectively disrupt tumor vessels via inducing endothelial membrane blebbing. However, the mechanism regulating blebbing is largely unknown. IMB5046 is a newly discovered microtubule-depolymerizing agent. Here, the functions of focal adhesion kinase (FAK) during IMB5046-induced blebbing and the relevant mechanism are studied. We found that IMB5046 induced membrane blebbing and reassembly of focal adhesions in human vascular endothelial cells. Both FAK inhibitor and knock-down expression of FAK inhibited IMB5046-induced blebbing. Mechanism study revealed that IMB5046 induced the activation of FAK via GEF-H1/ Rho/ ROCK/ MLC2 pathway. cRGD peptide, a ligand of integrin, also blocked IMB5046-induced blebbing. After activation, FAK further promoted the phosphorylation of MLC2. This positive feedback loop caused more intensive actomyosin contraction and continuous membrane blebbing. FAK inhibitor blocked membrane blebbing via inhibiting actomyosin contraction, and stimulated stress fibre formation via promoting the phosphorylation of HSP27. Conclusively, these results demonstrate that FAK is a molecular switch controlling endothelial blebbing and stress fibre formation. Our study provides a new molecular mechanism for microtubule-depolymerizing agents to be used as vascular disrupting agents.
Collapse
Affiliation(s)
- Yan‐Bo Zheng
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jian‐Hua Gong
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yong‐Su Zhen
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
65
|
Ma X, Uchida Y, Wei T, Liu C, Adams RH, Kubota Y, Gutkind JS, Mukouyama YS, Adelstein RS. Nonmuscle myosin 2 regulates cortical stability during sprouting angiogenesis. Mol Biol Cell 2020; 31:1974-1987. [PMID: 32583739 PMCID: PMC7543065 DOI: 10.1091/mbc.e20-03-0175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Among the three nonmuscle myosin 2 (NM2) paralogs, NM 2A and 2B, but not 2C, are detected in endothelial cells. To study the role of NM2 in vascular formation, we ablate NM2 in endothelial cells in mice. Ablating NM2A, but not NM2B, results in reduced blood vessel coverage and increased vascular branching in the developing mouse skin and coronary vasculature. NM2B becomes essential for vascular formation when NM2A expression is limited. Mice ablated for NM2B and one allele of NM2A develop vascular abnormalities similar to those in NM2A ablated mice. Using the embryoid body angiogenic sprouting assay in collagen gels reveals that NM2A is required for persistent angiogenic sprouting by stabilizing the endothelial cell cortex, and thereby preventing excessive branching and ensuring persistent migration of the endothelial sprouts. Mechanistically, NM2 promotes focal adhesion formation and cortical protrusion retraction during angiogenic sprouting. Further studies demonstrate the critical role of Rho kinase–activated NM2 signaling in the regulation of angiogenic sprouting in vitro and in vivo.
Collapse
Affiliation(s)
- Xuefei Ma
- Laboratory of Molecular Cardiology, National Institutes of Health, Bethesda, MD 20892-1762
| | - Yutaka Uchida
- Laboratory of Stem Cell and Neurovascular Biology, National Institutes of Health, Bethesda, MD 20892-1762
| | - Tingyi Wei
- Laboratory of Molecular Cardiology, National Institutes of Health, Bethesda, MD 20892-1762
| | - Chengyu Liu
- Transgenic Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1762
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and Faculty of Medicine, University of Munster, D-48149 Munster, Germany
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo160-8582, Japan
| | - J Silvio Gutkind
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093
| | - Yoh-Suke Mukouyama
- Laboratory of Stem Cell and Neurovascular Biology, National Institutes of Health, Bethesda, MD 20892-1762
| | - Robert S Adelstein
- Laboratory of Molecular Cardiology, National Institutes of Health, Bethesda, MD 20892-1762
| |
Collapse
|
66
|
Lin Y, Dan H, Lu J. Overexpression of microRNA-136-3p Alleviates Myocardial Injury in Coronary Artery Disease via the Rho A/ROCK Signaling Pathway. Kidney Blood Press Res 2020; 45:477-496. [PMID: 32434208 DOI: 10.1159/000505849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 01/08/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Coronary artery disease (CAD) is a cardiovascular disease that poses a fatal threat to human health, and the identification of potential biomarkers may help to delineate its pathophysiological mechanisms. Accumulating evidence has implicated microRNAs (miRNAs) in the pathogenesis and development of cardiovascular diseases. The present study aims to identify the expression of miRNA-136-3p (miR-136-3p) in CAD and further investigate its functional relevance in myocardial injury both in vitro and in vivo. METHODS Initially, CAD models were induced in rats by high-fat diet and intraperitoneal injection of pituitrin. Next, the effect of overexpressed miR-136-3p on cardiac function and pathological damage in myocardial tissue, cardiomyocyte apoptosis, oxidative stress and inflammatory response were assessed in CAD rats. Rat cardiac microvascular endothelial cells (CMECs) were isolated and cultured by the tissue explant method, and the CMEC injury model was induced by homocysteine (HCY). The function of miR-136-3p in vitro was further evaluated. RESULTS miR-136-3p was poorly expressed in the myocardial tissue of CAD rats and CMEC injury models. In vivo assays indicated that overexpressed miR-136-3p could improve cardiac function and alleviate pathological damage in myocardial tissue, accompanied by reduced oxidative stress and inflammatory response. Moreover,in vitro assays suggested that overexpression of miR-136-3p enhanced proliferation and migration while inhibiting apoptosis of HCY-stressed CMECs. Notably, we revealed that EIF5A2 was a target gene of miR-136-3p, and miR-136-3p inhibited EIF5A2 expression and activation of the Rho A/ROCK signaling pathway. CONCLUSION In conclusion, the overexpression of miR-136-3p could potentially impede myocardial injury in vitro and in vivo in CAD through the blockade of the Rho A/ROCK signaling pathway, highlighting a potential miR-136-3p functional relevance in the treatment of CAD.
Collapse
Affiliation(s)
- Yongbo Lin
- Department of Cardiology, People's Hospital of Dongxihu District, Wuhan, China
| | - Hanliang Dan
- Department of Cardiology, People's Hospital of Dongxihu District, Wuhan, China
| | - Jinguo Lu
- Department of Cardiology, Hospital of Traditional Chinese and Western Medicine in Hubei Province, Wuhan, China,
| |
Collapse
|
67
|
Wang DW, Tang JY, Zhang GQ, Chang XT. ARHGEF10L expression regulates cell proliferation and migration in gastric tumorigenesis. Biosci Biotechnol Biochem 2020; 84:1362-1372. [PMID: 32154766 DOI: 10.1080/09168451.2020.1737503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We recently reported that Rho guanine nucleotide exchange factor 10-like protein (ARHGEF10L) activated Rho GTPases as guanine nucleotide exchange factor to stimulate liver tumorigenesis. The present study continued to explore the effect of ARHGEF10L on the tumorigenic process of gastric cancer. This study detected increased expression of ARHGEF10L in GC tissues compared to peritumoral tissue samples. SGC7901 cells with ARHGEF10L overexpression showed increased cell proliferation, cell migration, and tube-like structure formation abilities, as well as increased expression of GTP-RhoA, ROCK1, and phospho-Ezrin/Radixin/Moesin. ARHGEF10L overexpression downregulated the expression of E-cadherin and upregulated the expression of N-cadherin and Slug, indicating an activation of EMT in the transfected cells. RNA-sequencing assay detected an increased expression of Heat shock 70 kDa protein 6 in the SGC7901 cells overexpressing ARHGEF10L. The above results suggest that ARHGEF10L expression can stimulate gastric tumorigenesis by prompting RhoA-ROCK1-phospho-ERM signaling, inducing EMT and increasing HSPA6 expression.
Collapse
Affiliation(s)
- Da-Wei Wang
- Shandong Provincial Qianfoshan Hospital, Shandong University , Jinan, Shandong, P. R. China
| | - Jun-Yi Tang
- Shandong Provincial Qianfoshan Hospital, Shandong University , Jinan, Shandong, P. R. China
| | - Guo-Qing Zhang
- Medical Research Center, Qingdao University , Qingdao, Shandong, P. R. China
| | - Xiao-Tian Chang
- Shandong Provincial Qianfoshan Hospital, Shandong University , Jinan, Shandong, P. R. China.,Medical Research Center, Qingdao University , Qingdao, Shandong, P. R. China
| |
Collapse
|
68
|
Wang L, Chitano P, Paré PD, Seow CY. Upregulation of smooth muscle Rho-kinase protein expression in human asthma. Eur Respir J 2020; 55:13993003.01785-2019. [PMID: 31727693 DOI: 10.1183/13993003.01785-2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/04/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Lu Wang
- Respiratory Division, Dept of Medicine, University of British Columbia, Vancouver, BC, Canada .,Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Pasquale Chitano
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada.,Dept of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Peter D Paré
- Respiratory Division, Dept of Medicine, University of British Columbia, Vancouver, BC, Canada.,Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Chun Y Seow
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada.,Dept of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
69
|
Zhang Y, Chen X. Nanotechnology and nanomaterial-based no-wash electrochemical biosensors: from design to application. NANOSCALE 2019; 11:19105-19118. [PMID: 31549117 DOI: 10.1039/c9nr05696c] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nanotechnology and nanomaterial based electrochemical biosensors (ECBs) have achieved great development in many fields, such as clinical diagnosis, food analysis, and environmental monitoring. Nowadays, the single-handed pursuit of sensitivity and accuracy cannot meet the demands of detection in many in situ and point-of-care (POC) circumstances. More and more attention has been focused on simplifying the operation procedure and reducing detection time, and thus no-wash assay has become one of the most effective ways for the continuous development of ECBs. However, there are many challenges to realize no-wash detection in the real analysis, such as redox interferences, multiple impurities, non-conducting protein macromolecules, etc. Furthermore, the complex detection circumstance in different application fields makes the realization of no-wash ECBs more complicated and difficult. Thanks to the updated nanotechnology and nanomaterials, in-depth analysis of the obstacles in the detection process and various methods for fabricating no-wash ECBs, most issues have been largely resolved. In this review, we have systematically analyzed the nanomaterial based design strategy of the state-of-the-art no-wash ECBs in the past few years. Following that, we summarized the challenges in the detection process of no-wash ECBs and their applications in different fields. Finally, based on the summary and analysis in this review, we also evaluated and discussed future prospects from the design to the application of ECBs.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China. and Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| |
Collapse
|
70
|
Zhao X, Nedvetsky P, Stanchi F, Vion AC, Popp O, Zühlke K, Dittmar G, Klussmann E, Gerhardt H. Endothelial PKA activity regulates angiogenesis by limiting autophagy through phosphorylation of ATG16L1. eLife 2019; 8:e46380. [PMID: 31580256 PMCID: PMC6797479 DOI: 10.7554/elife.46380] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 10/01/2019] [Indexed: 12/15/2022] Open
Abstract
The cAMP-dependent protein kinase A (PKA) regulates various cellular functions in health and disease. In endothelial cells PKA activity promotes vessel maturation and limits tip cell formation. Here, we used a chemical genetic screen to identify endothelial-specific direct substrates of PKA in human umbilical vein endothelial cells (HUVEC) that may mediate these effects. Amongst several candidates, we identified ATG16L1, a regulator of autophagy, as novel target of PKA. Biochemical validation, mass spectrometry and peptide spot arrays revealed that PKA phosphorylates ATG16L1α at Ser268 and ATG16L1β at Ser269, driving phosphorylation-dependent degradation of ATG16L1 protein. Reducing PKA activity increased ATG16L1 protein levels and endothelial autophagy. Mouse in vivo genetics and pharmacological experiments demonstrated that autophagy inhibition partially rescues vascular hypersprouting caused by PKA deficiency. Together these results indicate that endothelial PKA activity mediates a critical switch from active sprouting to quiescence in part through phosphorylation of ATG16L1, which in turn reduces endothelial autophagy.
Collapse
Affiliation(s)
- Xiaocheng Zhao
- Vascular Patterning Laboratory, Center for Cancer BiologyVIBLeuvenBelgium
- Vascular Patterning Laboratory, Center for Cancer Biology, Department of OncologyVIBLeuvenBelgium
| | - Pavel Nedvetsky
- Vascular Patterning Laboratory, Center for Cancer BiologyVIBLeuvenBelgium
- Vascular Patterning Laboratory, Center for Cancer Biology, Department of OncologyVIBLeuvenBelgium
- Medical Cell Biology, Medical Clinic DUniversity Hospital MünsterMünsterGermany
| | - Fabio Stanchi
- Vascular Patterning Laboratory, Center for Cancer BiologyVIBLeuvenBelgium
- Vascular Patterning Laboratory, Center for Cancer Biology, Department of OncologyVIBLeuvenBelgium
| | - Anne-Clemence Vion
- Integrative Vascular Biology LabMax-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- INSERM UMR-970, Paris Cardiovascular Research CenterParis Descartes UniversityParisFrance
| | - Oliver Popp
- ProteomicsMax-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
| | - Kerstin Zühlke
- Anchored Signaling LabMax-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
| | - Gunnar Dittmar
- ProteomicsMax-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- CRP Santé · Department of OncologyLIH Luxembourg Institute of HealthLuxembourgLuxembourg
| | - Enno Klussmann
- Anchored Signaling LabMax-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- DZHK (German Center for Cardiovascular Research)BerlinGermany
| | - Holger Gerhardt
- Vascular Patterning Laboratory, Center for Cancer BiologyVIBLeuvenBelgium
- Vascular Patterning Laboratory, Center for Cancer Biology, Department of OncologyVIBLeuvenBelgium
- Integrative Vascular Biology LabMax-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- DZHK (German Center for Cardiovascular Research)BerlinGermany
- Berlin Institute of Health (BIH)BerlinGermany
| |
Collapse
|
71
|
Deng Z, Jia Y, Liu H, He M, Yang Y, Xiao W, Li Y. RhoA/ROCK pathway: implication in osteoarthritis and therapeutic targets. Am J Transl Res 2019; 11:5324-5331. [PMID: 31632513 PMCID: PMC6789288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/18/2019] [Indexed: 06/10/2023]
Abstract
Ras homolog gene family, member A (RhoA) and its downstream effector Rho-associated protein kinase (ROCK) play important roles in multiple cellular processes, but abnormal activation of this pathway have been reported to be involved in various types of diseases, including osteoarthritis (OA). This article focused to review the RhoA/ROCK association and its functional role in OA development, and possible therapeutics of OA by targeting this pathway. We have explored the databases like Pubmed, Google Scholar, Web of Science and SCOPUS, and collected the papers on Rho/ROCK and their relationship with OA, and reviewed comprehensively. Studies revealed that the abnormal activation of RhoA/ROCK signaling is involved in early phase response to abnormal mechanical stimuli, which is thought to be a contributory factor to OA progression. RhoA/ROCK interacts with OA pathological factors and induces cartilage degeneration through the degradation of chondrocyte extracellular matrix (ECM). As the RhoA/ROCK activity can affect bone formation by triggering cartilage degradation, it may represent a possible therapeutic target to treat OA. Interestingly, several pharmaceutical companies are investing in the development of RhoA/ROCK inhibitors for the treatment of OA. However, a few in vivo experiments have been successfully conducted to demonstrate the potential value of RhoA/ROCK pathway inhibition in the treatment of OA. This review provides an insight into the functional role of Rho/ROCK pathway, and indicates that targeting this pathway might be promising in future OA treatment.
Collapse
Affiliation(s)
- Zhenhan Deng
- Department of Orthopedics, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong, China
| | - Yiming Jia
- Department of Orthopedics, Chifeng Municipal Hospital, Chifeng Clinical Medical School of Inner Mongolia Medical UniversityChifeng 024000, Inner Mongolia, China
| | - Haifeng Liu
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong, China
| | - Miao He
- Department of Orthopedics, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Yuntao Yang
- Department of Orthopedics, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| |
Collapse
|
72
|
Mohammadalipour A, Hashemnia M, Goudarzi F, Ravan AP. Increasing the effectiveness of tyrosine kinase inhibitor (TKI) in combination with a statin in reducing liver fibrosis. Clin Exp Pharmacol Physiol 2019; 46:1183-1193. [PMID: 31396972 DOI: 10.1111/1440-1681.13157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/29/2019] [Accepted: 08/05/2019] [Indexed: 12/18/2022]
Abstract
It has been shown that both nilotinib as a tyrosine kinase inhibitor, and atorvastatin as a rho-kinase inhibitor, have antifibrotic effects. Therefore, considering the relationship between these two pathways, this study aimed to investigate the effects of their co-treatment against hepatic stellate cells (HSCs) activation and liver fibrosis. For this purpose, the activation of HSCs coincided with these therapies. Also, liver fibrosis by carbon tetrachloride (CCl4 ) was induced in male Wistar rats and treated simultaneously with these compounds. The expression of alpha-smooth muscle actin (α-SMA), connective tissue growth factor (CTGF), Ras homolog gene family, and member A (RhoA)/Rho-associated protein kinase (ROCK) in HSCs were measured. The expression of transforming growth factor beta-1 (TGF-β1), its receptor (TβRII), CTGF, and platelets derived growth factor (PDGF), in the livers, were also investigated, all by real-time PCR and western blot analysis. Also, histopathologic and immunohistochemical evaluations were performed to evaluate changes in liver fibrosis during treatment. The results indicated the down-regulation of RhoA/ROCK, CTGF, and α-SMA, and inhibition of the HSCs activation toward myofibroblasts. The results also showed that the combined use of atorvastatin and nilotinib has significantly higher inhibitory effects. The antifibrotic effects of atorvastatin and nilotinib co-administration were also observed by histopathologic and immunohistochemical observations, and inhibiting the expression of TGF-β1, TβRII, CTGF, and PDGF. Taken together, this study revealed that co-administration of nilotinib-atorvastatin has novel antifibrotic effects, by inhibiting RhoA/ROCK, and CTGF pathway. Therefore, the importance of the common pathway of RhoA/ROCK and CTGF, in reducing fibrosis may almost be concluded.
Collapse
Affiliation(s)
- Adel Mohammadalipour
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hashemnia
- Department of Pathobiology, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Farjam Goudarzi
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Pouyandeh Ravan
- Department of Medical Laboratory Sciences, School of Paramedicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
73
|
Abbasgholizadeh R, Zhang H, Craft JW, Bryan RM, Bark SJ, Briggs JM, Fox RO, Agarkov A, Zimmer WE, Gilbertson SR, Schwartz RJ. Discovery of vascular Rho kinase (ROCK) inhibitory peptides. Exp Biol Med (Maywood) 2019; 244:940-951. [PMID: 31132884 DOI: 10.1177/1535370219849581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Reza Abbasgholizadeh
- 1 Department of Biology and Biochemistry, University of Houston, Houston, TX 77024, USA.,2 Texas Medical Center, Texas Heart Institute, Houston, TX 77024, USA
| | - Hua Zhang
- 1 Department of Biology and Biochemistry, University of Houston, Houston, TX 77024, USA
| | - John W Craft
- 1 Department of Biology and Biochemistry, University of Houston, Houston, TX 77024, USA.,2 Texas Medical Center, Texas Heart Institute, Houston, TX 77024, USA
| | - Robert M Bryan
- 3 Department of Anesthesiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Steven J Bark
- 1 Department of Biology and Biochemistry, University of Houston, Houston, TX 77024, USA
| | - James M Briggs
- 1 Department of Biology and Biochemistry, University of Houston, Houston, TX 77024, USA
| | - Robert O Fox
- 1 Department of Biology and Biochemistry, University of Houston, Houston, TX 77024, USA
| | - Anton Agarkov
- 4 Department of Chemistry, University of Houston, Houston, TX 77024, USA
| | - Warren E Zimmer
- 5 Department of Medical Physiology, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - Scott R Gilbertson
- 4 Department of Chemistry, University of Houston, Houston, TX 77024, USA
| | - Robert J Schwartz
- 1 Department of Biology and Biochemistry, University of Houston, Houston, TX 77024, USA.,2 Texas Medical Center, Texas Heart Institute, Houston, TX 77024, USA
| |
Collapse
|