51
|
Mosaddad SA, Rasoolzade B, Namanloo RA, Azarpira N, Dortaj H. Stem cells and common biomaterials in dentistry: a review study. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:55. [PMID: 35716227 PMCID: PMC9206624 DOI: 10.1007/s10856-022-06676-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/16/2022] [Indexed: 05/16/2023]
Abstract
Stem cells exist as normal cells in embryonic and adult tissues. In recent years, scientists have spared efforts to determine the role of stem cells in treating many diseases. Stem cells can self-regenerate and transform into some somatic cells. They would also have a special position in the future in various clinical fields, drug discovery, and other scientific research. Accordingly, the detection of safe and low-cost methods to obtain such cells is one of the main objectives of research. Jaw, face, and mouth tissues are the rich sources of stem cells, which more accessible than other stem cells, so stem cell and tissue engineering treatments in dentistry have received much clinical attention in recent years. This review study examines three essential elements of tissue engineering in dentistry and clinical practice, including stem cells derived from the intra- and extra-oral sources, growth factors, and scaffolds.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Boshra Rasoolzade
- Student Research Committee, Department of Pediatric Dentistry, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hengameh Dortaj
- Department of Tissue Engineering, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
52
|
Yuan Y, Zhang X, Zhan Y, Tang S, Deng P, Wang Z, Li J. Adipose-derived stromal/stem cells are verified to be potential seed candidates for bio-root regeneration in three-dimensional culture. Stem Cell Res Ther 2022; 13:234. [PMID: 35659736 PMCID: PMC9166419 DOI: 10.1186/s13287-022-02907-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/29/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Bio-root regeneration is a promising treatment for tooth loss. It has been reported that dental-derived stem cells are effective seed cells for bio-root construction, but further applications are limited by their few sources. Human adipose tissues have a wide range of sources and numerous studies have confirmed the ability of adipose-derived stromal/stem cells (ASCs) in regenerative medicine. In the current study, the odontogenic capacities of ASCs were compared with dental-derived stem cells including dental follicle cells (DFCs), and stem cells from human exfoliated deciduous teeth (SHEDs). METHODS The biological characteristics of ASCs, DFCs, and SHEDs were explored in vitro. Two-dimensional (2D) and three-dimensional (3D) cultures were compared in vitro. Odontogenic characteristics of porcine-treated dentin matrix (pTDM) induced cells under a 3D microenvironment in vitro were compared. The complexes (cell/pTDM) were transplanted subcutaneously into nude mice to verify regenerative potential. RNA sequencing (RNA-seq) was used to explore molecular mechanisms of different seed cells in bio-root regeneration. RESULTS 3D culture was more efficient in constructing bio-root complexes. ASCs exhibited good biological characteristics similar to dental-derived stem cells in vitro. Besides, pTDM induced ASCs presented odontogenic ability similar to dental-derived stem cells. Furthermore, 3D cultured ASCs/pTDM complex promoted regeneration of dentin-like, pulp-like, and periodontal fiber-like tissues in vivo. Analysis indicated that PI3K-Akt, VEGF signaling pathways may play key roles in the process of inducing ASCs odontogenic differentiation by pTDM. CONCLUSIONS ASCs are potential seed cells for pTDM-induced bio-root regeneration, providing a basis for further research and application.
Collapse
Affiliation(s)
- Yu Yuan
- College of Stomatology, Chongqing Medical University, 426# Songshibei Road, Yubei District, Chongqing, 401147, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Xiaonan Zhang
- College of Stomatology, Chongqing Medical University, 426# Songshibei Road, Yubei District, Chongqing, 401147, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Yuzhen Zhan
- College of Stomatology, Chongqing Medical University, 426# Songshibei Road, Yubei District, Chongqing, 401147, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Song Tang
- College of Stomatology, Chongqing Medical University, 426# Songshibei Road, Yubei District, Chongqing, 401147, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Pingmeng Deng
- College of Stomatology, Chongqing Medical University, 426# Songshibei Road, Yubei District, Chongqing, 401147, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Zhenxiang Wang
- College of Stomatology, Chongqing Medical University, 426# Songshibei Road, Yubei District, Chongqing, 401147, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Jie Li
- College of Stomatology, Chongqing Medical University, 426# Songshibei Road, Yubei District, Chongqing, 401147, People's Republic of China.
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China.
| |
Collapse
|
53
|
Chen Y, Zhang Z, Yang X, Liu A, Liu S, Feng J, Xuan K. Odontogenic MSC Heterogeneity: Challenges and Opportunities for Regenerative Medicine. Front Physiol 2022; 13:827470. [PMID: 35514352 PMCID: PMC9061943 DOI: 10.3389/fphys.2022.827470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/30/2022] [Indexed: 01/09/2023] Open
Abstract
Cellular heterogeneity refers to the genetic and phenotypic differences among cells, which reflect their various fate choices, including viability, proliferation, self-renewal probability, and differentiation into different lineages. In recent years, research on the heterogeneity of mesenchymal stem cells has made some progress. Odontogenic mesenchymal stem cells share the characteristics of mesenchymal stem cells, namely, good accessibility, low immunogenicity and high stemness. In addition, they also exhibit the characteristics of vasculogenesis and neurogenesis, making them attractive for tissue engineering and regenerative medicine. However, the usage of mesenchymal stem cell subgroups differs in different diseases. Furthermore, because of the heterogeneity of odontogenic mesenchymal stem cells, their application in tissue regeneration and disease management is restricted. Findings related to the heterogeneity of odontogenic mesenchymal stem cells urgently need to be summarized, thus, we reviewed studies on odontogenic mesenchymal stem cells and their specific subpopulations, in order to provide indications for further research on the stem cell regenerative therapy.
Collapse
Affiliation(s)
- Yuan Chen
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Zhaoyichun Zhang
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoxue Yang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Anqi Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Jianying Feng
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
54
|
Su J, Ge X, Jiang N, Zhang Z, Wu X. Efficacy of Mesenchymal Stem Cells from Human Exfoliated DeciduousTeeth and their Derivatives in Inflammatory Diseases Therapy. Curr Stem Cell Res Ther 2022; 17:302-316. [PMID: 35440314 DOI: 10.2174/1574888x17666220417153309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/01/2022] [Accepted: 02/28/2022] [Indexed: 11/22/2022]
Abstract
Mesenchymal stem cells derived from postnatal orofacial tissues can be readily isolated and possess diverse origins, for example, from surgically removed teeth or gingiva. These cells exhibit stem cell properties, strong potential for self-renewal, and show multi-lineage differentiation, and they have therefore been widely employed in stem cell therapy, tissue regeneration, and inflammatory diseases. Among them, stem cells from human exfoliated deciduous teeth [SHED] and their derivatives have manifested wide application in the treatment of diseases because of their outstanding advantages- including convenient access, easy storage, and less immune rejection. Numerous studies have shown that most diseases are closely associated with inflammation and that inflammatory diseases are extremely destructive, can lead to necrosis of organ parenchymal cells, and can deposit excessive extracellular ma- trix in the tissues. Inflammatory diseases are thus the principal causes of disability and death from many diseases worldwide. SHED and their derivatives not only exhibit the basic characteristics of stem cells but also exhibit some special properties of their own, particularly with regard to their great potential in inhib- iting inflammation and tissue regeneration. SHED therapy may provide a new direction for the treatment of inflammation and corresponding tissue defects. In this review, we critically analyze and summarize the latest findings on the behaviors and functions of SHED, serum‑free conditioned medium from SHED [SHED-CM], and extracellular vesicles, especially exosomes, from SHED [SHED-Exos], and discuss their roles and underlying mechanisms in the control of inflammatory diseases, thus further highlighting additional functions for SHED and their derivatives in future therapies.
Collapse
Affiliation(s)
| | - Xuejun Ge
- Shanxi Medical University School and Hospital of Stomatology & Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | | | - Ziqian Zhang
- Shanxi Medical University School and Hospital of Stomatology & Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Xiaowen Wu
- Shanxi Medical University School and Hospital of Stomatology & Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| |
Collapse
|
55
|
Bousnaki M, Beketova A, Kontonasaki E. A Review of In Vivo and Clinical Studies Applying Scaffolds and Cell Sheet Technology for Periodontal Ligament Regeneration. Biomolecules 2022; 12:435. [PMID: 35327627 PMCID: PMC8945901 DOI: 10.3390/biom12030435] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 12/14/2022] Open
Abstract
Different approaches to develop engineered scaffolds for periodontal tissues regeneration have been proposed. In this review, innovations in stem cell technology and scaffolds engineering focused primarily on Periodontal Ligament (PDL) regeneration are discussed and analyzed based on results from pre-clinical in vivo studies and clinical trials. Most of those developments include the use of polymeric materials with different patterning and surface nanotopography and printing of complex and sophisticated multiphasic composite scaffolds with different compartments to accomodate for the different periodontal tissues' architecture. Despite the increased effort in producing these scaffolds and their undoubtable efficiency to guide and support tissue regeneration, appropriate source of cells is also needed to provide new tissue formation and various biological and mechanochemical cues from the Extraccellular Matrix (ECM) to provide biophysical stimuli for cell growth and differentiation. Cell sheet engineering is a novel promising technique that allows obtaining cells in a sheet format while preserving ECM components. The right combination of those factors has not been discovered yet and efforts are still needed to ameliorate regenerative outcomes towards the functional organisation of the developed tissues.
Collapse
Affiliation(s)
| | | | - Eleana Kontonasaki
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (M.B.); (A.B.)
| |
Collapse
|
56
|
Chen Y, Huang H, Li G, Yu J, Fang F, Qiu W. Dental-derived mesenchymal stem cell sheets: a prospective tissue engineering for regenerative medicine. Stem Cell Res Ther 2022; 13:38. [PMID: 35093155 PMCID: PMC8800229 DOI: 10.1186/s13287-022-02716-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022] Open
Abstract
Stem cells transplantation is the main method of tissue engineering regeneration treatment, the viability and therapeutic efficiency are limited. Scaffold materials also play an important role in tissue engineering, whereas there are still many limitations, such as rejection and toxic side effects caused by scaffold materials. Cell sheet engineering is a scaffold-free tissue technology, which avoids the side effects of traditional scaffolds and maximizes the function of stem cells. It is increasingly being used in the field of tissue regenerative medicine. Dental-derived mesenchymal stem cells (DMSCs) are multipotent cells that exist in various dental tissues and can be used in stem cell-based therapy, which is impactful in regenerative medicine. Emerging evidences show that cell sheets derived from DMSCs have better effects in the field of regenerative medicine applications. Extracellular matrix (ECM) is the main component of cell sheets, which is a dynamic repository of signalling biological molecules and has a variety of biological functions and may play an important role in the application of cell sheets. In this review, we summarized the application status, mechanisms that sheets and ECM may play and future prospect of DMSC sheets on regeneration medicine.
Collapse
Affiliation(s)
- Yuanting Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Huacong Huang
- School of Stomatology, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Gaoxing Li
- School of Stomatology, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Jianyu Yu
- School of Stomatology, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China.
| | - Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
57
|
Yi G, Zhang S, Ma Y, Yang X, Huo F, Chen Y, Yang B, Tian W. Matrix vesicles from dental follicle cells improve alveolar bone regeneration via activation of the PLC/PKC/MAPK pathway. Stem Cell Res Ther 2022; 13:41. [PMID: 35093186 PMCID: PMC8800263 DOI: 10.1186/s13287-022-02721-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/13/2022] [Indexed: 02/08/2023] Open
Abstract
Background The regeneration of bone loss that occurs after periodontal diseases is a significant challenge in clinical dentistry. Extracellular vesicles (EVs)-based cell-free regenerative therapies represent a promising alternative for traditional treatments. Developmental biology suggests matrix vesicles (MVs), a subtype of EVs, contain mineralizing-related biomolecules and play an important role in osteogenesis. Thus, we explore the therapeutic benefits and expect to find an optimized strategy for MV application. Methods Healthy human dental follicle cells (DFCs) were cultured with the osteogenic medium to generate MVs. Media MVs (MMVs) were isolated from culture supernatant, and collagenase-released MVs (CRMVs) were acquired from collagenase-digested cell suspension. We compared the biological features of the two MVs and investigated their induction of cell proliferation, migration, mineralization, and the modulation of osteogenic genes expression. Furthermore, we investigated the long-term regenerative capacity of MMVs and CRMVs in an alveolar bone defect rat model. Results We found that both DFC-derived MMVs and CRMVs effectively improved the proliferation, migration, and osteogenic differentiation of DFCs. Notably, CRMVs showed better bone regeneration capabilities. Compared to MMVs, CRMVs-induced DFCs exhibited increased synthesis of osteogenic marker proteins including ALP, OCN, OPN, and MMP-2. In the treatment of murine alveolar bone defects, CRMV-loaded collagen scaffold brought more significant therapeutic outcomes with less unhealing areas and more mature bone tissues in comparison with MMVs and acquired the effects resembling DFCs-based treatment. Furthermore, the western blotting results demonstrated the activation of the PLC/PKC/MAPK pathway in CRMVs-induced DFCs, while this cascade was inhibited by MMVs. Conclusions In summary, our findings revealed a novel cell-free regenerative therapy for repairing alveolar bone defects by specific MV subtypes and suggest that PLC/PKC/MAPK pathways contribute to MVs-mediated alveolar bone regeneration. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02721-6.
Collapse
Affiliation(s)
- Genzheng Yi
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Siyuan Zhang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yue Ma
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xueting Yang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Fangjun Huo
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yan Chen
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Bo Yang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Weidong Tian
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
58
|
Zhang Z, Deng M, Hao M, Tang J. Stem Cell Therapy in Chronic Periodontitis: Host Limitations and Strategies. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2021.833033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The treatment of chronic periodontitis is undergoing a transition from simple plaque removal and replacement with substitute materials to regenerative therapy, in which stem cells play an important role. Although stem cell-based periodontal reconstruction has been widely explored, few clinical regeneration studies have been reported. The inflammatory lesions under the impact of host factors such as local microbial–host responses, may impede the regenerative properties of stem cells and destroy their living microenvironment. Furthermore, systemic diseases, in particular diabetes mellitus, synergistically shape the disordered host-bacterial responses and exacerbate the dysfunction of resident periodontal ligament stem cells (PDLSCs), which ultimately restrain the capacity of mesenchymal stromal cells (MSCs) to repair the damaged periodontal tissue. Accordingly, precise regulation of an instructive niche has become a promising approach to facilitate stem cell-based therapeutics for ameliorating periodontitis and for periodontal tissue regeneration. This review describes host limitations and coping strategies that influence resident or transplanted stem cell-mediated periodontal regeneration, such as the management of local microbial–host responses and rejuvenation of endogenous PDLSCs. More importantly, we recommend that active treatments for systemic diseases would also assist in recovering the limited stem cell function on the basis of amelioration of the inflammatory periodontal microenvironment.
Collapse
|
59
|
Lyu P, Li B, Li P, Bi R, Cui C, Zhao Z, Zhou X, Fan Y. Parathyroid Hormone 1 Receptor Signaling in Dental Mesenchymal Stem Cells: Basic and Clinical Implications. Front Cell Dev Biol 2021; 9:654715. [PMID: 34760881 PMCID: PMC8573197 DOI: 10.3389/fcell.2021.654715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 09/28/2021] [Indexed: 02/05/2023] Open
Abstract
Parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP) are two peptides that regulate mineral ion homeostasis, skeletal development, and bone turnover by activating parathyroid hormone 1 receptor (PTH1R). PTH1R signaling is of profound clinical interest for its potential to stimulate bone formation and regeneration. Recent pre-clinical animal studies and clinical trials have investigated the effects of PTH and PTHrP analogs in the orofacial region. Dental mesenchymal stem cells (MSCs) are targets of PTH1R signaling and have long been known as major factors in tissue repair and regeneration. Previous studies have begun to reveal important roles for PTH1R signaling in modulating the proliferation and differentiation of MSCs in the orofacial region. A better understanding of the molecular networks and underlying mechanisms for modulating MSCs in dental diseases will pave the way for the therapeutic applications of PTH and PTHrP in the future. Here we review recent studies involving dental MSCs, focusing on relationships with PTH1R. We also summarize recent basic and clinical observations of PTH and PTHrP treatment to help understand their use in MSCs-based dental and bone regeneration.
Collapse
Affiliation(s)
- Ping Lyu
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Bo Li
- State Key Laboratory of Oral Diseases, Department of Orthodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peiran Li
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruiye Bi
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chen Cui
- Guangdong Province Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| |
Collapse
|
60
|
Guo H, Li B, Wu M, Zhao W, He X, Sui B, Dong Z, Wang L, Shi S, Huang X, Liu X, Li Z, Guo X, Xuan K, Jin Y. Odontogenesis-related developmental microenvironment facilitates deciduous dental pulp stem cell aggregates to revitalize an avulsed tooth. Biomaterials 2021; 279:121223. [PMID: 34736149 DOI: 10.1016/j.biomaterials.2021.121223] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022]
Abstract
Harnessing developmental processes for tissue engineering represents a promising yet challenging approach to regenerative medicine. Tooth avulsion is among the most serious traumatic dental injuries, whereas functional tooth regeneration remains uncertain. Here, we established a strategy using decellularized tooth matrix (DTM) combined with human dental pulp stem cell (hDPSC) aggregates to simulate an odontogenesis-related developmental microenvironment. The bioengineered teeth reconstructed by this strategy regenerated three-dimensional pulp and periodontal tissues equipped with vasculature and innervation in a preclinical pig model after implantation into the alveolar bone. These results prompted us to enroll 15 patients with avulsed teeth after traumatic dental injuries in a pilot clinical trial. At 12 months after implantation, bioengineered teeth led to the regeneration of functional teeth, which supported continued root development, in humans. Mechanistically, exosomes derived from hDPSC aggregates mediated the tooth regeneration process by upregulating the odontogenic and angiogenic ability of hDPSCs. Our findings suggest that odontogenic microenvironment engineering by DTM and stem cell aggregates initiates functional tooth regeneration and serves as an effective treatment for tooth avulsion.
Collapse
Affiliation(s)
- Hao Guo
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Bei Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Meiling Wu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Wanmin Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xiaoning He
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Bingdong Sui
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Zhiwei Dong
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ling Wang
- Department of Health Statistics, School of Preventive Medicine, Fourth Military Medical University, Xi'an, China
| | - Songtao Shi
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong, China
| | - Xiaoyao Huang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xuemei Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Zihan Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xiaohe Guo
- Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
61
|
Xing Y, Yang B, He Y, Xie B, Zhao T, Chen J. Effects of mechanosensitive ion channel Piezo1 on proliferation and osteogenic differentiation of human dental follicle cells. Ann Anat 2021; 239:151847. [PMID: 34687906 DOI: 10.1016/j.aanat.2021.151847] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/12/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND To explore the role of the mechanosensitive ion channel Piezo1 in the proliferation and osteogenic differentiation of human dental follicle cells (hDFCs), and its mechanism, so as to provide the basis for the use of hDFCs to achieve bone regeneration. METHODS hDFCs were obtained from fresh dental follicle tissues by enzymatic digestion, and cell phenotype and multipotential differentiation were identified. Identification of the expression of mechanosensitive ion channel Piezo1 was performed by immunofluorescence and immunohistochemistry. CCK-8 was used to determine the optimal concentration of the Piezo1 agonist, Yoda1. Then, according to the obtained results, Alizarin red staining, RT-PCR quantitative analysis and Western blot were used to further observe the osteogenic differentiation of hDFCs and its probable mechanism via Wnt/β-catenin signalling. The data were analysed by SPSS 22.0 software. RESULTS The results of the concentration gradient experiments indicated that 0.5 µM Piezo1 agonist (Yoda1) enhanced the proliferation of hDFCs. Compared with the control group, a considerable number of calcium nodules showed that activating Piezo1 could promote the osteogenic differentiation of hDFCs. The relative mRNA and protein expression of Piezo1, ALP, RUNX2, OCN and BMP2 in the Piezo1 agonist group were higher than that of the control group. Furthermore, the expression of Wnt3a and β-catenin related to the classical osteogenic pathway were significantly up-regulated in the Piezo1 agonist group. CONCLUSION Activating mechanosensitive ion channel Piezo1 with an appropriate concentration of Yoda1 has a positive effect on the proliferation and osteogenic differentiation of hDFCs. This mechanism of promoting osteogenic differentiation may be mediated by the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yanyan Xing
- Oral and Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou 646000, China
| | - Binbin Yang
- Oral and Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou 646000, China
| | - Yun He
- Oral and Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou 646000, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou 646000, China; Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Bingqing Xie
- Oral and Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou 646000, China
| | - Tianqi Zhao
- Oral and Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou 646000, China
| | - Junliang Chen
- Oral and Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou 646000, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou 646000, China; Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
62
|
Elements of 3D Bioprinting in Periodontal Regeneration: Frontiers and Prospects. Processes (Basel) 2021. [DOI: 10.3390/pr9101724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Periodontitis is a chronic infectious disease worldwide, caused by the accumulation of bacterial plaque, which can lead to the destruction of periodontal supporting tissue and eventually tooth loss. The goal of periodontal treatment is to remove pathogenic factors and control the periodontal inflammation. However, the complete regeneration of periodontal supporting tissue is still a major challenge according to current technology. Tissue engineering recovers the injured tissue through seed cells, bio-capable scaffold and bioactive factors. Three-D-bioprinting is an emerging technology in regeneration medicine/tissue engineering, because of its high accuracy and high efficiency, providing a new strategy for periodontal regeneration. This article represents the materials of 3D bioprinting in periodontal regeneration from three aspects: oral seed cell, bio-scaffold and bio-active factors.
Collapse
|
63
|
Liu M, Li W, Xia X, Wang F, MacDougall M, Chen S. Dentine sialophosphoprotein signal in dentineogenesis and dentine regeneration. Eur Cell Mater 2021; 42:43-62. [PMID: 34275129 PMCID: PMC9019922 DOI: 10.22203/ecm.v042a04] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Dentineogenesis starts on odontoblasts, which synthesise and secrete non-collagenous proteins (NCPs) and collagen. When dentine is injured, dental pulp progenitors/mesenchymal stem cells (MSCs) can migrate to the injured area, differentiate into odontoblasts and facilitate formation of reactionary dentine. Dental pulp progenitor cell/MSC differentiation is controlled at given niches. Among dental NCPs, dentine sialophosphoprotein (DSPP) is a member of the small integrin-binding ligand N-linked glycoprotein (SIBLING) family, whose members share common biochemical characteristics such as an Arg-Gly-Asp (RGD) motif. DSPP expression is cell- and tissue-specific and highly seen in odontoblasts and dentine. DSPP mutations cause hereditary dentine diseases. DSPP is catalysed into dentine glycoprotein (DGP)/sialoprotein (DSP) and phosphoprotein (DPP) by proteolysis. DSP is further processed towards active molecules. DPP contains an RGD motif and abundant Ser-Asp/Asp-Ser repeat regions. DPP-RGD motif binds to integrin αVβ3 and activates intracellular signalling via mitogen-activated protein kinase (MAPK) and focal adhesion kinase (FAK)-ERK pathways. Unlike other SIBLING proteins, DPP lacks the RGD motif in some species. However, DPP Ser-Asp/Asp-Ser repeat regions bind to calcium-phosphate deposits and promote hydroxyapatite crystal growth and mineralisation via calmodulin-dependent protein kinase II (CaMKII) cascades. DSP lacks the RGD site but contains signal peptides. The tripeptides of the signal domains interact with cargo receptors within the endoplasmic reticulum that facilitate transport of DSPP from the endoplasmic reticulum to the extracellular matrix. Furthermore, the middle- and COOH-terminal regions of DSP bind to cellular membrane receptors, integrin β6 and occludin, inducing cell differentiation. The present review may shed light on DSPP roles during odontogenesis.
Collapse
Affiliation(s)
- M.M. Liu
- Department of Developmental Dentistry, School of Dentistry, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA,Department of Endodontics, School of Stomatology, Tongji University, Shanghai, 200072, China
| | - W.T. Li
- Department of Developmental Dentistry, School of Dentistry, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA,Department of Pathology, Weifang Medical University, Weifang, 261053, China
| | - X.M. Xia
- Department of Developmental Dentistry, School of Dentistry, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA,Department of Obstetrics and Gynaecology, Second Xiangya Hospital, Central South University Changsha, 410011, China
| | - F. Wang
- Department of Anatomy, Fujian Medical University, Fuzhou, 350122, China
| | - M. MacDougall
- UBC Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - S. Chen
- Department of Developmental Dentistry, School of Dentistry, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
64
|
Li M, Fu T, Yang S, Pan L, Tang J, Chen M, Liang P, Gao Z, Guo L. Agarose-based spheroid culture enhanced stemness and promoted odontogenic differentiation potential of human dental follicle cells in vitro. In Vitro Cell Dev Biol Anim 2021; 57:620-630. [PMID: 34212339 PMCID: PMC8247612 DOI: 10.1007/s11626-021-00591-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/09/2021] [Indexed: 01/01/2023]
Abstract
Human dental follicle cells (HDFCs) are an ideal cell source of stem cells for dental tissue repair and regeneration and they have great potential for regenerative medicine applications. However, the conventional monolayer culture usually reduces cell proliferation and differentiation potential due to the continuous passage during in vitro expansion. In this study, primary HDFC spheroids were generated on 1% agarose, and the HDFCs spontaneously formed cell spheroids in the agarose-coated dishes. Compared with monolayer culture, the spheroid-derived HDFCs exhibited increased proliferative ability for later passage HDFCs as analysed by Cell Counting Kit-8 (CCK-8). The transcription-quantitative polymerase chain reaction (qRT-PCR), western blot and immunofluorescence assay showed that the expression of stemness marker genes Sox2, Oct4 and Nanog was increased significantly in the HDFC spheroids. Furthermore, we found that the odontogenic differentiation capability of HDFCs was significantly improved by spheroid culture in the agarose-coated dishes. On the other hand, the osteogenic differentiation capability was weakened compared with monolayer culture. Our results suggest that spheroid formation of HDFCs in agarose-coated dishes partially restores the proliferative ability of HDFCs at later passages, enhances their stemness and improves odontogenic differentiation capability in vitro. Therefore, spheroid formation of HDFCs has great therapeutic potential for stem cell clinical therapy.
Collapse
Affiliation(s)
- Min Li
- Department of Stomatology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Tiwei Fu
- Chongqing Medical University Stomatology College, Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People's Republic of China
| | - Sen Yang
- Stomatology Centre, Suining Central Hospital, Suining, 629000, People's Republic of China
| | - Lanlan Pan
- Department of Periodontics, Stomatology Hospital of Chongqing Medical University, Chongqing, 401147, People's Republic of China
| | - Jing Tang
- Department of Stomatology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Meng Chen
- Department of Endodontics, Stomatology Hospital of Chongqing Medical University, Chongqing, 401147, People's Republic of China
| | - Panpan Liang
- Chongqing Medical University Stomatology College, Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People's Republic of China
| | - Zhi Gao
- Department of Stomatology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China.
| | - Lijuan Guo
- Department of Stomatology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China.
- Department of Medical Cosmetology, Suining Central Hospital, Suining, 629000, People's Republic of China.
| |
Collapse
|
65
|
Barbălată CI, Tomuță I, Achim M, Boșca AB, Cherecheș G, Sorițău O, Porfire AS. Application of the QbD Approach in the Development of a Liposomal Formulation with EGCG. J Pharm Innov 2021. [DOI: 10.1007/s12247-021-09541-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
66
|
Li B, Ouchi T, Cao Y, Zhao Z, Men Y. Dental-Derived Mesenchymal Stem Cells: State of the Art. Front Cell Dev Biol 2021; 9:654559. [PMID: 34239870 PMCID: PMC8258348 DOI: 10.3389/fcell.2021.654559] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) could be identified in mammalian teeth. Currently, dental-derived MSCs (DMSCs) has become a collective term for all the MSCs isolated from dental pulp, periodontal ligament, dental follicle, apical papilla, and even gingiva. These DMSCs possess similar multipotent potential as bone marrow-derived MSCs, including differentiation into cells that have the characteristics of odontoblasts, cementoblasts, osteoblasts, chondrocytes, myocytes, epithelial cells, neural cells, hepatocytes, and adipocytes. Besides, DMSCs also have powerful immunomodulatory functions, which enable them to orchestrate the surrounding immune microenvironment. These properties enable DMSCs to have a promising approach in injury repair, tissue regeneration, and treatment of various diseases. This review outlines the most recent advances in DMSCs' functions and applications and enlightens how these advances are paving the path for DMSC-based therapies.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Takehito Ouchi
- Department of Dentistry and Oral Surgery, School of Medicine, Keio University, Tokyo, Japan
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Yubin Cao
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yi Men
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
67
|
Bhandi S, Alkahtani A, Mashyakhy M, Abumelha AS, Albar NHM, Renugalakshmi A, Alkahtany MF, Robaian A, Almeslet AS, Patil VR, Varadarajan S, Balaji TM, Reda R, Testarelli L, Patil S. Effect of Ascorbic Acid on Differentiation, Secretome and Stemness of Stem Cells from Human Exfoliated Deciduous Tooth (SHEDs). J Pers Med 2021; 11:jpm11070589. [PMID: 34206203 PMCID: PMC8304986 DOI: 10.3390/jpm11070589] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 12/23/2022] Open
Abstract
Stem cells from human exfoliated deciduous teeth (SHEDs) are considered a type of mesenchymal stem cells (MSCs) because of their unique origin from the neural crest. SHEDs can self-renewal and multi-lineage differentiation with the ability to differentiate into odontoblasts, osteoblast, chondrocytes, neuronal cells, hepatocytes, adipocytes, etc. They are emerging as an ideal source of MSCs because of their easy availability and extraordinary cell number. Ascorbic acid, or vitamin C, has many cell-based applications, such as bone regeneration, osteoblastic differentiation, or extracellular matrix production. It also impacts stem cell plasticity and the ability to sustain pluripotent activity. In this study, we evaluate the effects of ascorbic acid on stemness, paracrine secretion, and differentiation into osteoblast, chondrocytes, and adipocytes. SHEDs displayed enhanced multifaceted activity, which may have applications in regenerative therapy.
Collapse
Affiliation(s)
- Shilpa Bhandi
- Department of Restorative Dental Sciences, College of Dentistry, Jazan University, Jazan 45412, Saudi Arabia; (S.B.); (M.M.); (N.H.M.A.)
| | - Ahmed Alkahtani
- Department of Restorative Dental Sciences, Division of Endodontics, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (M.F.A.)
| | - Mohammed Mashyakhy
- Department of Restorative Dental Sciences, College of Dentistry, Jazan University, Jazan 45412, Saudi Arabia; (S.B.); (M.M.); (N.H.M.A.)
| | - Abdulaziz S. Abumelha
- Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia;
| | - Nassreen Hassan Mohammad Albar
- Department of Restorative Dental Sciences, College of Dentistry, Jazan University, Jazan 45412, Saudi Arabia; (S.B.); (M.M.); (N.H.M.A.)
| | - Apathsakayan Renugalakshmi
- Department of Preventive Dental Sciences, Pedodontics Division, College of Dentistry, Jazan University, Jazan 45412, Saudi Arabia;
| | - Mazen F. Alkahtany
- Department of Restorative Dental Sciences, Division of Endodontics, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (M.F.A.)
| | - Ali Robaian
- Department of Conservative Dental Sciences, College of Dentistry, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
| | - Asma Saleh Almeslet
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Riyadh Elm University, Riyadh 12611, Saudi Arabia;
| | | | - Saranya Varadarajan
- Department of Oral Pathology and Microbiology, Sri Venkateswara Dental College and Hospital, Chennai 600130, India;
| | - Thodur Madapusi Balaji
- Department of Periodontology, Tagore Dental College and Hospital, Chennai 600127, India;
| | - Rodolfo Reda
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy; (R.R.); (L.T.)
| | - Luca Testarelli
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy; (R.R.); (L.T.)
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan 45412, Saudi Arabia
- Correspondence:
| |
Collapse
|
68
|
Shoushrah SH, Transfeld JL, Tonk CH, Büchner D, Witzleben S, Sieber MA, Schulze M, Tobiasch E. Sinking Our Teeth in Getting Dental Stem Cells to Clinics for Bone Regeneration. Int J Mol Sci 2021; 22:6387. [PMID: 34203719 PMCID: PMC8232184 DOI: 10.3390/ijms22126387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Dental stem cells have been isolated from the medical waste of various dental tissues. They have been characterized by numerous markers, which are evaluated herein and differentiated into multiple cell types. They can also be used to generate cell lines and iPSCs for long-term in vitro research. Methods for utilizing these stem cells including cellular systems such as organoids or cell sheets, cell-free systems such as exosomes, and scaffold-based approaches with and without drug release concepts are reported in this review and presented with new pictures for clarification. These in vitro applications can be deployed in disease modeling and subsequent pharmaceutical research and also pave the way for tissue regeneration. The main focus herein is on the potential of dental stem cells for hard tissue regeneration, especially bone, by evaluating their potential for osteogenesis and angiogenesis, and the regulation of these two processes by growth factors and environmental stimulators. Current in vitro and in vivo publications show numerous benefits of using dental stem cells for research purposes and hard tissue regeneration. However, only a few clinical trials currently exist. The goal of this review is to pinpoint this imbalance and encourage scientists to pick up this research and proceed one step further to translation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig- Strasse. 20, 53359 Rheinbach, Germany; (S.H.S.); (J.L.T.); (C.H.T.); (D.B.); (S.W.); (M.A.S.); (M.S.)
| |
Collapse
|
69
|
Magalhães FD, Sarra G, Carvalho GL, Pedroni ACF, Marques MM, Chambrone L, Gimenez T, Moreira MS. Dental tissue-derived stem cell sheet biotechnology for periodontal tissue regeneration: A systematic review. Arch Oral Biol 2021; 129:105182. [PMID: 34098416 DOI: 10.1016/j.archoralbio.2021.105182] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE This study aimed to conduct a systematic review of the use of a cell sheet formed by mesenchymal stem cells derived from dental tissues (ddMSCs) for periodontal tissue regeneration in animal models in comparison with any other type of regenerative treatment. DESIGN PubMed and Scopus databases were searched for relevant studies up to December 2020. The review was conducted based on the Preferred Reporting Items for Systematic Reviews and Meta-analysis guidelines. RESULTS Of the 1542 potentially relevant articles initially identified, 33 fulfilled the eligibility criteria and were considered for this review. Even with a wide variety of selected study methods, the periodontal tissue was always regenerated; this indicates the potential for the use of these cell sheets in the future of periodontics. However, this regeneration process is not always complete. CONCLUSION Despite the implantation, ddMSCs sheets have a great potential to be used in the regeneration of periodontal tissue. More in vivo studies should be conducted using standardized techniques for cell sheet implantation to obtain more robust evidence of the relevance of using this modality of cell therapy for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Fabiana Divina Magalhães
- Graduation Dentistry Program, Ibirapuera University, Av. Interlagos 1329 - 4º, Chácara Flora, São Paulo, SP, ZIP code: 04661-100, Brazil
| | - Giovanna Sarra
- Department of Restorative Dentistry, School of Dentistry, Universidade de São Paulo, Av. Prof. Lineu Prestes 2227, São Paulo, SP, ZIP code: 05508-000, Brazil
| | - Giovanna Lopes Carvalho
- A.C. Camargo Cancer Center, Stomatology Department, Rua Tamandaré 753, Liberdade, São Paulo, SP, Zip code: 01525-001, Brazil
| | - Ana Clara Fagundes Pedroni
- Graduation Dentistry Program, Ibirapuera University, Av. Interlagos 1329 - 4º, Chácara Flora, São Paulo, SP, ZIP code: 04661-100, Brazil
| | - Márcia Martins Marques
- Graduation Dentistry Program, Ibirapuera University, Av. Interlagos 1329 - 4º, Chácara Flora, São Paulo, SP, ZIP code: 04661-100, Brazil
| | - Leandro Chambrone
- Graduation Dentistry Program, Ibirapuera University, Av. Interlagos 1329 - 4º, Chácara Flora, São Paulo, SP, ZIP code: 04661-100, Brazil
| | - Thaís Gimenez
- Graduation Dentistry Program, Ibirapuera University, Av. Interlagos 1329 - 4º, Chácara Flora, São Paulo, SP, ZIP code: 04661-100, Brazil
| | - Maria Stella Moreira
- Graduation Dentistry Program, Ibirapuera University, Av. Interlagos 1329 - 4º, Chácara Flora, São Paulo, SP, ZIP code: 04661-100, Brazil; A.C. Camargo Cancer Center, Stomatology Department, Rua Tamandaré 753, Liberdade, São Paulo, SP, Zip code: 01525-001, Brazil.
| |
Collapse
|
70
|
Multipotent stem cells from apical pulp of human deciduous teeth with immature apex. Tissue Cell 2021; 71:101556. [PMID: 34082260 DOI: 10.1016/j.tice.2021.101556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 01/09/2023]
Abstract
Isolation of high-quality human postnatal stem cells from accessible sources is an important goal for dental tissue engineering. Stem cells from developing organs are a better cell source but are hard to obtain. With extensive caries that are difficult to restore, the extracted deciduous tooth with an immature apex is a developing organ for investigation. In the present study, a cell population from the tip of apical pulp of human deciduous teeth with an immature apex was isolated and termed apical pulp-derived cells of deciduous teeth (De-APDCs). De-APDCs expressed STRO-1, CD44, CD90 and CD105 but not CD34 or CD45. Furthermore, De-APDCs demonstrated a significantly higher clonogenic and proliferative ability and osteo/dentinogenic differentiation capacity than dental pulp cells from exfoliated deciduous teeth (De-DPCs) (P < 0.05). Differentiation potential toward adipogenic, neurogenic and chondrogenic lineages was also observed in induced De-APDCs. In addition, after De-APDCs were seeded into hydroxyapatite/tricalcium phosphate (HA/TCP) scaffolds and transplanted into nude mice, they were able to regenerate dentin/pulp-like structures aligned with human odontoblast-like cells. In conclusion, De-APDCs, which are derived from a developing tissue, represent an accessible and prospective cell source for tooth regeneration.
Collapse
|
71
|
Huang X, Li Z, Liu A, Liu X, Guo H, Wu M, Yang X, Han B, Xuan K. Microenvironment Influences Odontogenic Mesenchymal Stem Cells Mediated Dental Pulp Regeneration. Front Physiol 2021; 12:656588. [PMID: 33967826 PMCID: PMC8100342 DOI: 10.3389/fphys.2021.656588] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/23/2021] [Indexed: 12/21/2022] Open
Abstract
Dental pulp as a source of nutrition for the whole tooth is vulnerable to trauma and bacterial invasion, which causes irreversible pulpitis and pulp necrosis. Dental pulp regeneration is a valuable method of restoring the viability of the dental pulp and even the whole tooth. Odontogenic mesenchymal stem cells (MSCs) residing in the dental pulp environment have been widely used in dental pulp regeneration because of their immense potential to regenerate pulp-like tissue. Furthermore, the regenerative abilities of odontogenic MSCs are easily affected by the microenvironment in which they reside. The natural environment of the dental pulp has been proven to be capable of regulating odontogenic MSC homeostasis, proliferation, and differentiation. Therefore, various approaches have been applied to mimic the natural dental pulp environment to optimize the efficacy of pulp regeneration. In addition, odontogenic MSC aggregates/spheroids similar to the natural dental pulp environment have been shown to regenerate well-organized dental pulp both in preclinical and clinical trials. In this review, we summarize recent progress in odontogenic MSC-mediated pulp regeneration and focus on the effect of the microenvironment surrounding odontogenic MSCs in the achievement of dental pulp regeneration.
Collapse
Affiliation(s)
- Xiaoyao Huang
- State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, China.,National Clinical Research Center for Oral Diseases, Fourth Military Medical University, Xi'an, China.,Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Zihan Li
- State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, China.,National Clinical Research Center for Oral Diseases, Fourth Military Medical University, Xi'an, China.,Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Anqi Liu
- State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, China.,National Clinical Research Center for Oral Diseases, Fourth Military Medical University, Xi'an, China.,Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Xuemei Liu
- State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, China.,National Clinical Research Center for Oral Diseases, Fourth Military Medical University, Xi'an, China.,Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Hao Guo
- State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, China.,National Clinical Research Center for Oral Diseases, Fourth Military Medical University, Xi'an, China.,Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Meiling Wu
- State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, China.,National Clinical Research Center for Oral Diseases, Fourth Military Medical University, Xi'an, China.,Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Xiaoxue Yang
- State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, China.,National Clinical Research Center for Oral Diseases, Fourth Military Medical University, Xi'an, China.,Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Bing Han
- State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, China.,National Clinical Research Center for Oral Diseases, Fourth Military Medical University, Xi'an, China.,Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, China.,National Clinical Research Center for Oral Diseases, Fourth Military Medical University, Xi'an, China.,Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
72
|
Angiogenesis in Regenerative Dentistry: Are We Far Enough for Therapy? Int J Mol Sci 2021; 22:ijms22020929. [PMID: 33477745 PMCID: PMC7832295 DOI: 10.3390/ijms22020929] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Angiogenesis is a broad spread term of high interest in regenerative medicine and tissue engineering including the dental field. In the last two decades, researchers worldwide struggled to find the best ways to accelerate healing, stimulate soft, and hard tissue remodeling. Stem cells, growth factors, pathways, signals, receptors, genetics are just a few words that describe this area in medicine. Dental implants, bone and soft tissue regeneration using autologous grafts, or xenografts, allografts, their integration and acceptance rely on their material properties. However, the host response, through its vascularization, plays a significant role. The present paper aims to analyze and organize the latest information about the available dental stem cells, the types of growth factors with pro-angiogenic effect and the possible therapeutic effect of enhanced angiogenesis in regenerative dentistry.
Collapse
|
73
|
Chang HH, Chen IL, Wang YL, Chang MC, Tsai YL, Lan WC, Wang TM, Yeung SY, Jeng JH. Regulation of the regenerative activity of dental pulp stem cells from exfoliated deciduous teeth (SHED) of children by TGF-β1 is associated with ALK5/Smad2, TAK1, p38 and MEK/ERK signaling. Aging (Albany NY) 2020; 12:21253-21272. [PMID: 33148869 PMCID: PMC7695363 DOI: 10.18632/aging.103848] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022]
Abstract
Transforming growth factor-β1 (TGF-β1) regulates wound healing/regeneration and aging processes. Dental pulp stem cells from human exfoliated deciduous teeth (SHED) are cell sources for treatment of age-related disorders. We studied the effect of TGF-β1 on SHED and related signaling. SHED were treated with TGF-β1 with/without pretreatment/co-incubation by SB431542, U0126, 5Z-7-oxozeaenol or SB203580. Sircol collagen assay, 3-(4,5-Dimethylthiazol-2-yl)-2,5- diphenyl tetrazolium bromide (MTT) assay, alkaline phosphatase (ALP) assay, RT-PCR, western blotting and PathScan phospho-ELISA were used to measure the effects. We found that SHED expressed ALK1, ALK3, ALK5, TGF-RII, betaglycan and endoglin mRNA. TGF-β1 stimulated p-Smad2, p-TAK1, p-ERK, p-p38 and cyclooxygenase-2 (COX-2) protein expression. It enhanced proliferation and collagen content of SHED that were attenuated by SB431542, 5Z-7-oxozeaenol and SB203580, but not U0126. TGF-β1 (0.5-1 ng/ml) stimulated ALP of SHED, whereas 5-10 ng/ml TGF-β1 suppressed ALP. SB431542 reversed the effects of TGF-β1. However, 5Z-7-oxozeaenol, SB203580 and U0126 only reversed the stimulatory effect of TGF-β1 on ALP. Four inhibitors attenuated TGF-β1-induced COX-2 expression. TGF-β1-stimulated TIMP-1 and N-cadherin was inhibited by SB431542 and 5Z-7-oxozeaenol. These results indicate that TGF-β1 affects SHED by differential regulation of ALK5/Smad2/3, TAK1, p38 and MEK/ERK. TGF-β1 and SHED could potentially be used for tissue engineering/regeneration and treatment of age-related diseases.
Collapse
Affiliation(s)
- Hsiao-Hua Chang
- Department of Dentistry, National Taiwan University Hospital, and School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan
| | - Il-Ly Chen
- Department of Dentistry, National Taiwan University Hospital, and School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan
| | - Yin-Lin Wang
- Department of Dentistry, National Taiwan University Hospital, and School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan
| | - Mei-Chi Chang
- Chang Gung University of Science and Technology, Kwei-Shan, Taoyuan, Taiwan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Yi-Ling Tsai
- Department of Dentistry, National Taiwan University Hospital, and School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan
| | - Wen-Chien Lan
- Department of Oral Hygiene Care, Ching Kuo Institute of Management and Health, Keelung, Taiwan
| | - Tong-Mei Wang
- Department of Dentistry, National Taiwan University Hospital, and School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan
| | - Sin-Yuet Yeung
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Jiiang-Huei Jeng
- Department of Dentistry, National Taiwan University Hospital, and School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
74
|
CHD7 Regulates Osteogenic Differentiation of Human Dental Follicle Cells via PTH1R Signaling. Stem Cells Int 2020; 2020:8882857. [PMID: 33014071 PMCID: PMC7525296 DOI: 10.1155/2020/8882857] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/16/2020] [Accepted: 08/28/2020] [Indexed: 02/05/2023] Open
Abstract
Chromodomain helicase DNA-binding protein 7 (CHD7) is an ATP-dependent chromatin remodeling enzyme, functioning as chromatin reader to conduct epigenetic modification. Its effect on osteogenic differentiation of human dental follicle cells (hDFCs) remains unclear. Here, we show the CHD7 expression increases with osteogenic differentiation. The knockdown of CHD7 impairs the osteogenic ability of hDFCs, characterized by reduced alkaline phosphatase activity and mineralization, and the decreased expression of osteogenesis-related genes. Conversely, the CHD7 overexpression enhances the osteogenic differentiation of hDFCs. Mechanically, RNA-seq analyses revealed the downregulated enrichment of PTH (parathyroid hormone)/PTH1R (parathyroid hormone receptor-1) signaling pathway after CHD7 knockdown. We found the expression of PTH1R positively correlates with CHD7. Importantly, the overexpression of PTH1R in CHD7-knockdown hDFCs partially rescued the impaired osteogenic differentiation. Our research demonstrates that CHD7 regulates the osteogenic differentiation of hDFCs by regulating the transcription of PTH1R.
Collapse
|
75
|
Yang Y, Wang T, Zhang S, Jia S, Chen H, Duan Y, Wang S, Chen G, Tian W. Vitamin C alleviates the senescence of periodontal ligament stem cells through inhibition of Notch3 during long-term culture. J Cell Physiol 2020; 236:1237-1251. [PMID: 32662081 DOI: 10.1002/jcp.29930] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/06/2020] [Accepted: 07/01/2020] [Indexed: 02/05/2023]
Abstract
Periodontal ligament stem cells (PDLSCs), as potential "seed cells" for periodontal tissue repair and regeneration, require to be expanded in vitro for a large scale. Senescence of PDLSCs occurred during long-term culture may compromise the therapeutic effects of PDLSCs. Medium supplements may be useful in antisenescence. However, the effects and mechanisms of vitamin C (Vc) treatment on PDLSCs during long-term culture are still unclear. In this study, we identified that Vc-treated PDLSCs cells maintained a slender morphology, higher growth rate and migration capacity, stemness, and osteogenic differentiation capability during a long-term culture. Moreover, we also identified that Notch3 was significantly upregulated during the cell senescence, and Vc treatment alleviated the senescence of PDLSCs through inhibition of Notch3 during long-term culture. In summary, Vc treatment suppressed PDLSCs senescence by reducing the expression of Notch3 and might be a simple and useful strategy to inhibit cellular senescence during the cell long-term culture.
Collapse
Affiliation(s)
- Yan Yang
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Wang
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sicheng Zhang
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sixun Jia
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hong Chen
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yufeng Duan
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shikai Wang
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guoqing Chen
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Weidong Tian
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
76
|
Therapeutic Functions of Stem Cells from Oral Cavity: An Update. Int J Mol Sci 2020; 21:ijms21124389. [PMID: 32575639 PMCID: PMC7352407 DOI: 10.3390/ijms21124389] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Adult stem cells have been developed as therapeutics for tissue regeneration and immune regulation due to their self-renewing, differentiating, and paracrine functions. Recently, a variety of adult stem cells from the oral cavity have been discovered, and these dental stem cells mostly exhibit the characteristics of mesenchymal stem cells (MSCs). Dental MSCs can be applied for the replacement of dental and oral tissues against various tissue-damaging conditions including dental caries, periodontitis, and oral cancers, as well as for systemic regulation of excessive inflammation in immune disorders, such as autoimmune diseases and hypersensitivity. Therefore, in this review, we summarized and updated the types of dental stem cells and their functions to exert therapeutic efficacy against diseases.
Collapse
|
77
|
Chen Z, Zheng J, Hong H, Chen D, Deng L, Zhang X, Ling J, Wu L. lncRNA HOTAIRM1 promotes osteogenesis of hDFSCs by epigenetically regulating HOXA2 via DNMT1 in vitro. J Cell Physiol 2020; 235:8507-8519. [PMID: 32324272 DOI: 10.1002/jcp.29695] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/18/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Zhengyuan Chen
- Department of Orthodontics, Guanghua School of Stomatology Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‐sen University Guangzhou Guangdong China
| | - Jinxuan Zheng
- Department of Orthodontics, Guanghua School of Stomatology Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‐sen University Guangzhou Guangdong China
| | - Hong Hong
- Department of Orthodontics, Guanghua School of Stomatology Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‐sen University Guangzhou Guangdong China
| | - Dongru Chen
- Department of Orthodontics, Guanghua School of Stomatology Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‐sen University Guangzhou Guangdong China
| | - Lidi Deng
- Department of Orthodontics, Guanghua School of Stomatology Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‐sen University Guangzhou Guangdong China
| | - Xueqin Zhang
- Department of Orthodontics, Guanghua School of Stomatology Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‐sen University Guangzhou Guangdong China
| | - Junqi Ling
- Department of Orthodontics, Guanghua School of Stomatology Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‐sen University Guangzhou Guangdong China
| | - Liping Wu
- Department of Orthodontics, Guanghua School of Stomatology Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‐sen University Guangzhou Guangdong China
| |
Collapse
|
78
|
Dental Follicle Cells: Roles in Development and Beyond. Stem Cells Int 2019; 2019:9159605. [PMID: 31636679 PMCID: PMC6766151 DOI: 10.1155/2019/9159605] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/16/2019] [Indexed: 02/05/2023] Open
Abstract
Dental follicle cells (DFCs) are a group of mesenchymal progenitor cells surrounding the tooth germ, responsible for cementum, periodontal ligament, and alveolar bone formation in tooth development. Cascades of signaling pathways and transcriptional factors in DFCs are involved in directing tooth eruption and tooth root morphogenesis. Substantial researches have been made to decipher multiple aspects of DFCs, including multilineage differentiation, senescence, and immunomodulatory ability. DFCs were proved to be multipotent progenitors with decent amplification, immunosuppressed and acquisition ability. They are able to differentiate into osteoblasts/cementoblasts, adipocytes, neuron-like cells, and so forth. The excellent properties of DFCs facilitated clinical application, as exemplified by bone tissue engineering, tooth root regeneration, and periodontium regeneration. Except for the oral and maxillofacial regeneration, DFCs were also expected to be applied in other tissues such as spinal cord defects (SCD), cardiomyocyte destruction. This article reviewed roles of DFCs in tooth development, their properties, and clinical application potentials, thus providing a novel guidance for tissue engineering.
Collapse
|