51
|
Fan D, Yang Y, Zhang W. A novel circ_MACF1/miR-942-5p/TGFBR2 axis regulates the functional behaviors and drug sensitivity in gefitinib-resistant non-small cell lung cancer cells. BMC Pulm Med 2022; 22:27. [PMID: 34996416 PMCID: PMC8742390 DOI: 10.1186/s12890-021-01731-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/30/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Resistance to gefitinib remains a major obstacle for the successful treatment of non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations. In this paper, we studied the precise actions of circular RNA (circRNA) microtubule actin crosslinking factor 1 (circ_MACF1) in gefitinib resistance. METHODS We established gefitinib-resistant NSCLC cells (PC9/GR and A549/GR). The levels of circ_MACF1, microRNA (miR)-942-5p, and transforming growth factor beta receptor 2 (TGFBR2) were gauged by quantitative real-time PCR (qRT-PCR) or western blot. Subcellular fractionation and Ribonuclease R (RNase R) assays were done to characterize circ_MACF1. Cell survival, proliferation, colony formation, apoptosis, migration, and invasion were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 5-Ethynyl-2'-Deoxyuridine (EdU), colony formation, flow cytometry, and transwell assays, respectively. Dual-luciferase reporter assays were used to verify the direct relationship between miR-942-5p and circ_MACF1 or TGFBR2. The xenograft assays were used to assess the role of circ_MACF1 in vivo. RESULTS Circ_MACF1 was down-regulated in A549/GR and PC9/GR cells. Overexpression of circ_MACF1 repressed proliferation, migration, invasion, and promoted apoptosis and gefitinib sensitivity of A549/GR and PC9/GR cells in vitro, as well as inhibited tumor growth under gefitinib in vivo. Circ_MACF1 directly targeted miR-942-5p, and miR-942-5p mediated the regulatory effects of circ_MACF1. TGFBR2 was identified as a direct and functional target of miR-942-5p. Circ_MACF1 modulated TGFBR2 expression through miR-942-5p. CONCLUSION Our findings demonstrated that circ_MACF1 regulated cell functional behaviors and gefitinib sensitivity of A549/GR and PC9/GR cells at least partially by targeting miR-942-5p to induce TGFBR2 expression.
Collapse
Affiliation(s)
- Daping Fan
- Department of Respiratory Care, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin City, 150001, Heilongjiang Province, China
| | - Yue Yang
- Department of Respiratory Care, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin City, 150001, Heilongjiang Province, China
| | - Wei Zhang
- Department of Respiratory Care, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin City, 150001, Heilongjiang Province, China.
| |
Collapse
|
52
|
Luo S, Deng F, Yao N, Zheng F. Circ_0005875 sponges miR-502-5p to promote renal cell carcinoma progression through upregulating E26 transformation specific-1. Anticancer Drugs 2022; 33:e286-e298. [PMID: 34407050 DOI: 10.1097/cad.0000000000001205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Increasing evidence has shown that circular RNAs (circRNAs) play critical roles in various cancers, including renal cell carcinoma (RCC). We aimed to explore the role and underlying mechanism of circ_0005875 in RCC. The expression levels of circ_0005875, microRNA-502-5p (miR-502-5p) and E26 transformation specific-1 (ETS1) mRNA were determined by quantitative real-time PCR. Cell proliferation was assessed by Cell Counting Kit-8, colony formation, and 5-Ethynyl-2'-deoxyuridine (EdU) assays. Cell migration and invasion were monitored by wound healing assay and transwell assay, respectively. Flow cytometry analysis was applied to determine cell apoptosis and cell cycle distribution. Western blot assay was performed to measure the protein expression of CyclinD1 and ETS1. The interaction between miR-502-5p and circ_0005875 or ETS1 was confirmed by dual-luciferase reporter and RNA immunoprecipitation assays. A xenograft tumor model was established to confirm the role of circ_0005875 in vivo. Circ_0005875 and ETS1 were upregulated and miR-502-5p was downregulated in RCC tissues and cells. Knockdown of circ_0005875 suppressed RCC cell proliferation, migration and invasion, and induced apoptosis and cell cycle arrest. MiR-502-5p was a target of circ_0005875, and miR-502-5p inhibition reversed the inhibitory effects of circ_0005875 knockdown on the malignant behaviors of RCC cells. ETS1 was a direct target of miR-502-5p, and miR-502-5p exerted its anti-tumor role in RCC cells by targeting ETS1. Moreover, circ_0005875 knockdown decreased ETS1 expression by sponging miR-502-5p. Additionally, circ_0005875 depletion suppressed tumor growth in vivo. Circ_0005875 knockdown suppressed RCC progression by regulating miR-502-5p/ETS1 axis, which might provide a promising therapeutic target for RCC.
Collapse
Affiliation(s)
- Sheng Luo
- Department of Urology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang
| | - Fang Deng
- Department of Anesthesiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture
| | - Nana Yao
- Department of Anesthesiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture
| | - Fu Zheng
- Department of Urology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| |
Collapse
|
53
|
Liu J, Deng Z, Yu Z, Zhou W, Yuan Q. The circRNA circ-Nbea participates in regulating diabetic encephalopathy. Brain Res 2022; 1774:147702. [PMID: 34695392 DOI: 10.1016/j.brainres.2021.147702] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 11/02/2022]
Abstract
Circular RNAs (circRNAs) play key roles in various pathogenic and biological processes in human disease. However, the effect of circRNAs on the development of diabetic encephalopathy (DE) remains largely unknown. Therefore, the aim of this study was to investigate changes in the expression of circRNAs and their potential mechanism in DE formation. Compared with db/m mice, spatial learning/memory, dendritic spines, and synaptic plasticity were all impaired in the hippocampus of the db/db mice. In addition, the dendritic spine density of neurons was significantly decreased after treatment with advanced glycation end-products (AGEs). We used high-throughput RNA sequencing (RNA-Seq) to detect circRNA expression in DE, and the results revealed that 183 circRNAs were significantly altered in primary hippocampal neurons treated with AGEs. Three circRNAs were chosen for detection using quantitative real-time polymerase chain reaction (qRT-PCR), including circ-Smox (chr2: 131511984-131516443), circ-Nbea (mmu-chr3: 56079859-56091120), and circ-Setbp1 (chr18: 79086551-79087180), and circ-Nbea expression was significantly decreased. According to the bioinformatics prediction and detection using qRT-PCR and double luciferase assays, circ-Nbea sponges miR-128-3p. Based on these results, we speculated that a newly identified circRNA, circ-Nbea, may play an important role in the development of DE, and the mechanism is mediated by sponging miR-128-3p. This study provides new insight into the treatment of DE.
Collapse
Affiliation(s)
- Jue Liu
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science&Technology, Wuhan, Hubei, China.
| | - Zhifang Deng
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science&Technology, Wuhan, Hubei, China
| | - Zhijun Yu
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Huangjiahu Road 2(#), Wuhan, Hubei, China
| | - Weipin Zhou
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Huangjiahu Road 2(#), Wuhan, Hubei, China
| | - Qiong Yuan
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Huangjiahu Road 2(#), Wuhan, Hubei, China.
| |
Collapse
|
54
|
CircMTO1 suppresses hepatocellular carcinoma progression via the miR-541-5p/ZIC1 axis by regulating Wnt/β-catenin signaling pathway and epithelial-to-mesenchymal transition. Cell Death Dis 2021; 13:12. [PMID: 34930906 PMCID: PMC8688446 DOI: 10.1038/s41419-021-04464-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/25/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022]
Abstract
CircRNA mitochondrial tRNA translation optimization 1 (circMTO1) functions as a tumor suppressor usually and is related to the progression of many tumors, including hepatocellular carcinoma (HCC). CircMTO1 is downregulated in HCC as compared to adjacent nontumor tissue, which may suppress the HCC progression by certain signal pathways. However, the underlying signal pathway remains largely unknown. The interactions between circMTO1 and miR-541-5p were predicted through bioinformatics analysis and verified using pull-down and dual-luciferase reporter assays. CCK-8, transwell, and apoptosis assays were performed to determine the effect of miR-541-5p on HCC progression. Using bioinformatic analysis, dual-luciferase reporter assay, RT-qPCR, and western blot, ZIC1 was found to be the downstream target gene of miR-541-5p. The regulatory mechanisms of circMTO1, miR-541-5p, and ZIC1 were investigated using in vitro and in vivo rescue experiments. The results depicted that silencing circMTO1 or upregulating miR-541-5p expression facilitated HCC cell proliferation, migration, and invasion and inhibited apoptosis. CircMTO1 silencing upregulated the expression of downstream ZIC1 regulators of the Wnt/β-catenin pathway markers, β-catenin, cyclin D1, c-myc, and the mesenchymal markers N-cadherin, Vimentin, and MMP2, while the epithelial marker E-cadherin was downregulated. MiR-541-5p knockdown had the opposite effect and reversed the effect of circMTO1 silencing on the regulation of downstream ZIC1 regulators. Intratumoral injection of miR-541-5p inhibitor suppressed tumor growth and reversed the effect of circMTO1 silencing on the promotion of tumor growth in HCC. These findings indicated that circMTO1 suppressed HCC progression via the circMTO1/ miR-541-5p/ZIC1 axis by regulating Wnt/β-catenin signaling and epithelial-to-mesenchymal transition, making it a novel therapeutic target. ![]()
Collapse
|
55
|
Gui CP, Liao B, Luo CG, Chen YH, Tan L, Tang YM, Li JY, Hou Y, Song HD, Lin HS, Xu QH, Yao GS, Yao HH, Xi-Liu, Luo JH, Cao JZ, Wei JH. circCHST15 is a novel prognostic biomarker that promotes clear cell renal cell carcinoma cell proliferation and metastasis through the miR-125a-5p/EIF4EBP1 axis. Mol Cancer 2021; 20:169. [PMID: 34922539 PMCID: PMC8684108 DOI: 10.1186/s12943-021-01449-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 09/14/2021] [Indexed: 12/22/2022] Open
Abstract
Background Circular RNAs (circRNAs) have been indicated as potentially critical mediators in various types of tumor progression, generally acting as microRNA (miRNA) sponges to regulate downstream gene expression. However, the aberrant expression profile and dysfunction of circRNAs in human clear cell renal cell carcinoma (ccRCC) need to be further investigated. This study mined key prognostic circRNAs and elucidates the potential role and molecular mechanism of circRNAs in regulating the proliferation and metastasis of ccRCC. Methods circCHST15 (hsa_circ_0020303) was identified by mining two circRNA microarrays from the Gene Expression Omnibus database and comparing matched tumor versus adjacent normal epithelial tissue pairs or matched primary versus metastatic tumor tissue pairs. These results were validated by quantitative real-time polymerase chain reaction and agarose gel electrophoresis. We demonstrated the biological effect of circCHST15 in ccRCC both in vitro and in vivo. To test the interaction between circCHST15 and miRNAs, we conducted a number of experiments, including RNA pull down assay, dual-luciferase reporter assay and fluorescence in situ hybridization. Results The expression of circCHST15 was higher in ccRCC tissues compared to healthy adjacent kidney tissue and higher in RCC cell lines compared to normal kidney cell lines. The level of circCHST15 was positively correlated with aggressive clinicopathological characteristics, and circCHST15 served as an independent prognostic indicator for overall survival and progression-free survival in patients with ccRCC after surgical resection. Our in vivo and in vitro data indicate that circCHST15 promotes the proliferation, migration, and invasion of ccRCC cells. Mechanistically, we found that circCHST15 directly interacts with miR-125a-5p and acts as a microRNA sponge to regulate EIF4EBP1 expression. Conclusions We found that sponging of miR-125a-5p to promote EIF4EBP1 expression is the underlying mechanism of hsa_circ_0020303-induced ccRCC progression. This prompts further investigation of circCHST15 as a potential prognostic biomarker and therapeutic target for ccRCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-021-01449-w.
Collapse
|
56
|
Wang S, Ying Y, Ma X, Wang W, Wang X, Xie L. Diverse Roles and Therapeutic Potentials of Circular RNAs in Urological Cancers. Front Mol Biosci 2021; 8:761698. [PMID: 34869591 PMCID: PMC8640215 DOI: 10.3389/fmolb.2021.761698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) are a novel class of noncoding RNAs, which are mainly formed as a loop structure at the exons caused by noncanonical splicing; they are much more stable than linear transcripts; recent reports have suggested that the dysregulation of circRNAs is associated with the occurrence and development of diseases, especially various human malignancies. Emerging evidence demonstrated that a large number of circRNAs play a vital role in a series of biological processes such as tumor cell proliferation, migration, drug resistance, and immune escape. Additionally, circRNAs were also reported to be potential prognostic and diagnostic biomarkers in cancers. In this work, we systematically summarize the biogenesis and characteristics of circRNAs, paying special attention to potential mechanisms and clinical applications of circRNAs in urological cancers, which may help develop potential therapy targets for urological cancers in the future.
Collapse
Affiliation(s)
- Song Wang
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yufan Ying
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xueyou Ma
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiyu Wang
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao Wang
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liping Xie
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
57
|
Gong LJ, Wang XY, Yao XD, Wu X, Gu WY. CircESRP1 inhibits clear cell renal cell carcinoma progression through the CTCF-mediated positive feedback loop. Cell Death Dis 2021; 12:1081. [PMID: 34775467 PMCID: PMC8590696 DOI: 10.1038/s41419-021-04366-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 10/14/2021] [Accepted: 10/29/2021] [Indexed: 02/08/2023]
Abstract
Circular RNA (circRNA), a closed continuous loop formed by back-splicing, has been confirmed to be implicated in a variety of human diseases including cancers. However, the underlying molecular mechanism of circRNA regulating the progression of renal cell carcinoma (RCC) remains largely unclear. In the present study, we identified a novel circular RNA, circESRP1, that derived from the ESRP1 gene locus at 8q22.1 exons. Lower expression of circESRP1 was found in clear cell RCC (ccRCC) tissues and cell lines. Besides, circESRP1 expression level showed inversely correlated with the advanced tumor size, TNM stage and distant metastasis of ccRCC. The expression level of circESRP1 exhibited a positive correlation with CTCF protein but negatively correlated with miR-3942 in 79 ccRCC tissues. In vivo experiments, we found that overexpression of circESRP1 effectively repressed xenograft tumor growth and inhibited c-Myc-mediated EMT progression. CircESRP1 acted as a sponge to competitively bind with miR-3942 as confirmed through RNA pull-down, RIP and dual-luciferase reporter assays. Moreover, CTCF, a downstream target of miR-3942, was validated to specifically promote the circESRP1 transcript expression and regulated by circESRP1/miR-3942 pathway to form a positive feedback loop. We also revealed that the circESRP1/miR-3942/CTCF feedback loop regulated the ccRCC cell functions via c-Myc mediated EMT process. This study provides a novel regulatory model of circRNA via forming a positive-feedback loop that perpetuates the circESRP1/miR-3942/CTCF axis, suggesting that this signaling may serve as a novel target for the treatment of ccRCC.
Collapse
Affiliation(s)
- Lin-Jing Gong
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No 37 Guoxue Alley, 610041, Chengdu, Sichuan, China.,Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Feng Lin Rd, Shanghai, 200032, China
| | - Xin-Yuan Wang
- Department of Orthopaedics, West China Hospital, Sichuan University, No 37 Guoxue Alley, 610041, Chengdu, Sichuan, China
| | - Xu-Dong Yao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchang Rd., Shanghai, 200072, China
| | - Xu Wu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Feng Lin Rd, Shanghai, 200032, China.
| | - Wen-Yu Gu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchang Rd., Shanghai, 200072, China.
| |
Collapse
|
58
|
Zhang Y, Zhang Y, Feng Y, Zhang N, Chen S, Gu C, Hu L, Sheng J, Xu B, Feng N. Construction of circRNA-based ceRNA network and its prognosis-associated subnet of clear cell renal cell carcinoma. Cancer Med 2021; 10:8210-8221. [PMID: 34569727 PMCID: PMC8607260 DOI: 10.1002/cam4.4311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 12/11/2022] Open
Abstract
Circular RNAs (circRNAs) are novel biomarkers of various cancers. CircRNAs can sponge miRNAs and regulate target mRNAs, which was called competing endogenous RNAs (ceRNA). This study was designed to identify circRNAs related to patients with clear cell renal cell carcinoma (ccRCC) and the first to select three independent Gene Expression Omnibus microarrays covering circRNAs, miRNAs, and mRNAs for multiple analyses. The data of clinical cases applied in our study were obtained from The Cancer Genome Atlas. We successfully conducted a circRNA/miRNA/mRNA ceRNA network related to ccRCC patients via R software and Cytoscape including 8 circRNAs, 6 miRNAs, and 49 mRNAs. The prognosis-associated subnet covered 8 circRNAs, 6 miRNAs, and 22 mRNAs. Quantitative real-time PCR was applied to measure our prediction in three renal cell lines and 23 pairs of tissues. Small interfering RNA targeting the back-splice region of hsa_circ_0001167 was further implied to confirm the regulation. Ultimately, hsa_circ_0001167/hsa-miR-595/CCDC8 regulatory axis was identified in this study, which may serve as prognostic indicators. Lower levels of hsa_circ_0001167 and CCDC8 were potentially correlated with worse patient survival.
Collapse
Affiliation(s)
- Yuwei Zhang
- Department of UrologyAffiliated Wuxi No. 2 Hospital of Nanjing Medical UniversityWuxiChina
| | - Yuchen Zhang
- Department of OncologyFirst Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yangkun Feng
- Medical College of Nantong UniversityNantongChina
| | - Nan Zhang
- Department of UrologyAffiliated Wuxi No. 2 Hospital of Nanjing Medical UniversityWuxiChina
| | - Saisai Chen
- Department of UrologyAffiliated Zhongda Hospital of Southeast UniversityNanjingChina
| | - Chaoqun Gu
- Medical College of Nantong UniversityNantongChina
| | - Lei Hu
- Department of UrologyAffiliated Wuxi No. 2 Hospital of Nanjing Medical UniversityWuxiChina
| | - Jiayi Sheng
- Department of UrologyAffiliated Wuxi No. 2 Hospital of Nanjing Medical UniversityWuxiChina
| | - Bin Xu
- Department of UrologyAffiliated Zhongda Hospital of Southeast UniversityNanjingChina
- Southeast UniversityNanjingChina
| | - Ninghan Feng
- Department of UrologyAffiliated Wuxi No. 2 Hospital of Nanjing Medical UniversityWuxiChina
- Medical College of Nantong UniversityNantongChina
| |
Collapse
|
59
|
Meng K, Li Z, Cui X. Three LHPP gene-targeting co-expressed microRNAs (microRNA-765, microRNA-21, and microRNA-144) promote proliferation, epithelial-mesenchymal transition, invasion, and are independent prognostic biomarkers in renal cell carcinomas patients. J Clin Lab Anal 2021; 35:e24077. [PMID: 34699621 PMCID: PMC8649365 DOI: 10.1002/jcla.24077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/04/2022] Open
Abstract
Background Renal cell carcinoma (RCC) is one of the highly malignant tumors in the world. Global Cancer Statistics 2020 estimated that there were 179,368 deaths from kidney tumors. Therefore, exploring the prognostic biomarkers of RCC is of great significance for RCC patients. This study aims to explore the potential mechanism and prognostic value of phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) gene‐targeting co‐expression microRNAs in RCC patients. Methods A total of 60 RCC patients were included. Quantitative real‐time PCR (qRT‐PCR), western blotting, and immunohistochemistry were used for LHPP, microRNA‐765, microRNA‐21, and microRNA‐144 levels evaluation. Cell Counting Kit‐8 assay, dual‐luciferase reporter gene assay, invasion assay, and RNA fluorescence in situ hybridization were used for functional analyses. Results Compared with adjacent tissues, LHPP levels in cancer tissues were significantly increased (p < .001). Herein, we confirmed that microRNA‐765, microRNA‐21, and microRNA‐144 were direct biological targets of LHPP. MicroRNA‐765 (r = −0.570, p < 0.001), microRNA‐21 (r = −0.495, p < .001), and microRNA‐144 (r = −0.463, p < .001) expression levels were negatively correlated with LHPP expression levels. The high expression levels of microRNA‐765, microRNA‐21, and microRNA‐144 in RCC tissues were associated with poor differentiation, recurrence, and poor prognosis (p < .05). In vitro, microRNA‐765, microRNA‐21, and microRNA‐144 act as oncogenes to promote proliferation, invasion, and epithelial‐mesenchymal transition (EMT) through targeting LHPP. Conclusions MicroRNA‐765, microRNA‐21, and microRNA‐144 are independent risk biomarkers for RCC patients. Inhibiting the expression levels of microRNA‐765, microRNA‐21, and microRNA‐144 can reduce the proliferation, EMT, and invasion of RCC cells. Therefore, the above three microRNAs are expected to become molecular biomarkers for RCC therapy.
Collapse
Affiliation(s)
- Kexin Meng
- Department of Nephrology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zongda Li
- Department of Nephrology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiaoying Cui
- Department of Nephrology, Beidahuang Industry Group General Hospital, Harbin, China
| |
Collapse
|
60
|
The emerging roles of circular RNAs in vessel co-option and vasculogenic mimicry: clinical insights for anti-angiogenic therapy in cancers. Cancer Metastasis Rev 2021; 41:173-191. [PMID: 34664157 DOI: 10.1007/s10555-021-10000-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022]
Abstract
Unexpected resistance to anti-angiogenic treatment prompted the investigation of non-angiogenic tumor processes. Vessel co-option (VC) and vasculogenic mimicry (VM) are recognized as primary non-angiogenic mechanisms. In VC, cancer cells utilize pre-existing blood vessels for support, whereas in VM, cancer cells channel and provide blood flow to rapidly growing tumors. Both processes have been implicated in the development of tumor and resistance to anti-angiogenic drugs in many tumor types. The morphology, but rare molecular alterations have been investigated in VC and VM. There is a pressing need to better understand the underlying cellular and molecular mechanisms. Here, we review the emerging circular RNA (circRNA)-mediated regulation of non-angiogenic processes, VC and VM.
Collapse
|
61
|
Shen Z, Sun S. CircPTCH1 Promotes Migration in Lung Cancer by Regulating MYCN Expression Through miR-34c-5p. Onco Targets Ther 2021; 14:4779-4789. [PMID: 34531664 PMCID: PMC8439975 DOI: 10.2147/ott.s324015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/17/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The incidence rate and mortality rate of lung cancer are the highest in the world. Therefore, further studies are needed to reveal the molecular mechanism of lung cancer progression and development. Previous study demonstrated that the deregulation of circRNAs can regulate cell biological functions in tumorigenesis and development. However, the roles of circPTCH1 in lung cancer have not yet been revealed. MATERIALS AND METHODS The expression levels of circPTCH1, miR-34c-5p, and MYCN were measured by RT-PCR in lung cancer tissues and cells; dual-luciferase reporter and RIP assay showed that circRNA served as a sponge for miRNA, and miRNA could target mRNA. In vitro, effects of si-circPTCH1 can regulate lung cancer cells' migration, invasion were detected by CCK-8 assay, wound healing assay, and transwell assay. RESULTS Our research demonstrated that the expression of circPTCH1 was upregulated in lung cancer tissues and cell lines and increased in metastatic tissues compared to that of non-metastatic tissues. circPTCH1 sponging miR-34c-5p to target MYCN was revealed by dual-luciferase reporter and a RIP assay. In addition, the expression level of miR-34c-5p was reduced in lung cancer tumor tissues, and MYCN was significantly increased in lung cancer tumor tissues. Pearson correlation analysis showed that miR-34c-5p with circPTCH1 and MYCN had a moderately negative correlation, and there was a moderately positive correlation between circPTCH1 and MYCN. Further, cytological studies found that circPTCH1 reduced lung cancer cells' migration and invasion by targeting MYCN via miR-34c-5p. CONCLUSION circPTCH1 plays a tumor enhancement role in lung cancer and that can effectively promote migration, invasion and EMT by targeting the miR-34c-5p/MYCN axis. circPTCH1 may be a novel potential treatment and diagnosis biomarker for lung cancer.
Collapse
Affiliation(s)
- ZhenYu Shen
- Pulmonology and Critical Care Medicine Department, The Third Xiangya Hospital of Central South University, Changsha, 410013, People’s Republic of China
| | - ShengHua Sun
- Pulmonology and Critical Care Medicine Department, The Third Xiangya Hospital of Central South University, Changsha, 410013, People’s Republic of China
| |
Collapse
|
62
|
Dai G, Chen X, He Y. The Gut Microbiota Activates AhR Through the Tryptophan Metabolite Kyn to Mediate Renal Cell Carcinoma Metastasis. Front Nutr 2021; 8:712327. [PMID: 34458309 PMCID: PMC8384964 DOI: 10.3389/fnut.2021.712327] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/20/2021] [Indexed: 12/20/2022] Open
Abstract
Background: The incidence of renal cell carcinoma (RCC) is increasing year by year. It is difficult to have complete treatment so far. Studies have shown that tryptophan metabolite Kynurenine (Kyn) affects cell proliferation, migration, apoptosis, adhesion, and differentiation. Our aim is to explore whether Kyn activates aromatic hydrocarbon receptor (AhR) to mediate RCC metastasis. Methods: We collected RCC tissues and feces from RCC patients. 16S rRNA technology was performed to analyze the gut microbial composition of RCC patients. LC-MS/MS was used to analyze the gut microbial metabolites. The AhR was inhibited and treated with Kyn. Immunofluorescence was used to measure the degree of AhR activation. The migration and invasion ability of 786-O cells was tested by Transwell assay. Flow cytometry and cell cycle assay were utilized to observe the apoptosis and cycle of 786-O cells. CCK-8 assay was used to detect 786-O cells proliferation. qRT-PCR and Western blot were used to detect AhR and EMT-related genes expression level. Results: AhR expression was up-regulated in RCC tissues. RCC gut microbiota was disordered. The proportion of Kyn was increased in RCC. After being treated with Kyn, the migration, invasion, and proliferation ability of 786-O cells were decreased. Furthermore, the expression of EMT-related protein E-cadherin decreased, and the expression of N-cadherin and Vimentin increased. The proportion of 786-O cells in the S phase increased. The apoptosis rate of 786-O cells was inhibited. Conclusion: The tryptophan metabolite Kyn could activate AhR. Kyn could promote 786-O cells migration and invasion. Gut microbiota could activate AhR through its tryptophan metabolite Kyn to mediate RCC metastasis.
Collapse
Affiliation(s)
- Guoyu Dai
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Yao He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
63
|
Fu B, Liu W, Zhu C, Li P, Wang L, Pan L, Li K, Cai P, Meng M, Wang Y, Zhang A, Tang W, An M. Circular RNA circBCBM1 promotes breast cancer brain metastasis by modulating miR-125a/BRD4 axis. Int J Biol Sci 2021; 17:3104-3117. [PMID: 34421353 PMCID: PMC8375234 DOI: 10.7150/ijbs.58916] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs) play critical roles in tumorigenesis and the progression of various cancers. We previously identified a novel upregulated circRNA, circBCBM1 (hsa_circ_0001944), in the context of breast cancer brain metastasis. However, the potential biological function and molecular mechanism of circBCBM1 in breast cancer brain metastasis remain largely unknown. In this study, we confirmed that circBCBM1 was a stable and cytoplasmic circRNA. Functionally, circBCBM1 promoted the proliferation and migration of 231-BR cells in vitro and growth and brain metastasis in vivo. Mechanistically, circBCBM1 acted as an endogenous miR-125a sponge to inhibit miR-125a activity, resulting in the upregulation of BRD4 (bromodomain containing 4) and subsequent upregulation of MMP9 (matrix metallopeptidase 9) through Sonic hedgehog (SHH) signaling pathway. Importantly, circBCBM1 was markedly upregulated in the breast cancer brain metastasis cells and clinical tissue and plasma samples; besides, circBCBM1 overexpression in primary cancerous tissues was associated with shorter brain metastasis-free survival (BMFS) of breast cancer patients. These findings indicate that circBCBM1 is involved in breast cancer brain metastasis via circBCBM1/miR-125a/BRD4 axis. CircBCBM1 may serve as a novel diagnostic and prognostic biomarker and potential therapeutic target for breast cancer brain metastasis.
Collapse
Affiliation(s)
- Bo Fu
- Department of Central Laboratory, Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng, P.R. China
| | - Wei Liu
- Department of Central Laboratory, Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng, P.R. China
| | - Cui Zhu
- Department of Neurology, Dongchang Fu People's Hospital, Liaocheng, P.R. China
| | - Peng Li
- Department of Clinical Laboratory, Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng, P.R. China
| | - Li Wang
- Medical College of Liaocheng University, Liaocheng, P.R. China
| | - Li Pan
- Department of Central Laboratory, Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng, P.R. China
| | - Ke Li
- Department of Central Laboratory, Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng, P.R. China
| | - Peiying Cai
- Department of Central Laboratory, Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng, P.R. China
| | - Min Meng
- Department of Central Laboratory, Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng, P.R. China
| | - Yiting Wang
- Department of Central Laboratory, Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng, P.R. China
| | - Anqi Zhang
- Department of Central Laboratory, Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng, P.R. China
| | - Wenqiang Tang
- Department of Central Laboratory, Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng, P.R. China
| | - Meng An
- Department of Clinical Laboratory, Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng, P.R. China
| |
Collapse
|
64
|
Zhou PL, Wu Z, Zhang W, Xu M, Ren J, Zhang Q, Sun Z, Han X. Circular RNA hsa_circ_0000277 sequesters miR-4766-5p to upregulate LAMA1 and promote esophageal carcinoma progression. Cell Death Dis 2021; 12:676. [PMID: 34226522 PMCID: PMC8257720 DOI: 10.1038/s41419-021-03911-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 12/27/2022]
Abstract
Growing evidence has indicated that circular RNAs (circRNAs) play a pivotal role as functional RNAs in diverse cancers. However, most circRNAs involved in esophageal squamous cell carcinoma (ESCC) remain undefined, and the underlying molecular mechanisms mediated by circRNAs are largely unclear. Here, we screened human circRNA expression profiles in ESCC tissues and found significantly increased expression of hsa_circ_0000277 (termed circPDE3B) in ESCC tissues and cell lines compared to the normal controls. Moreover, higher circPDE3B expression in patients with ESCC was correlated with advanced tumor-node-metastasis (TNM) stage and dismal prognosis. Functional experiments demonstrated that circPDE3B promoted the tumorigenesis and metastasis of ESCC cells in vitro and in vivo. Mechanistically, bioinformatics analysis, a dual-luciferase reporter assay, and anti-AGO2 RNA immunoprecipitation showed that circPDE3B could act as a competing endogenous RNA (ceRNA) by harboring miR-4766-5p to eliminate the inhibitory effect on the target gene laminin α1 (LAMA1). In addition, LAMA1 was significantly upregulated in ESCC tissues and was positively associated with the aggressive oncogenic phenotype. More importantly, rescue experiments revealed that the oncogenic role of circPDE3B in ESCC is partly dependent on the miR-4766-5p/LAMA1 axis. Furthermore, bioinformatics analysis combined with validation experiments showed that epithelial-mesenchymal transition (EMT) activation was involved in the oncogenic functions of the circPDE3B-miR-4766-5p/LAMA1 axis in ESCC. Taken together, we demonstrate for the first time that the circPDE3B/miR-4766-5p/LAMA1 axis functions as an oncogenic factor in promoting ESCC cell proliferation, migration, and invasion by inducing EMT, implying its potential prognostic and therapeutic significance in ESCC.
Collapse
Affiliation(s)
- Peng Li Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhengyang Wu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenguang Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Miao Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jianzhuang Ren
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qinhui Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhanguo Sun
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
65
|
Wang L, Yi J, Lu LY, Zhang YY, Wang L, Hu GS, Liu YC, Ding JC, Shen HF, Zhao FQ, Huang HH, Liu W. Estrogen-induced circRNA, circPGR, functions as a ceRNA to promote estrogen receptor-positive breast cancer cell growth by regulating cell cycle-related genes. Theranostics 2021; 11:1732-1752. [PMID: 33408778 PMCID: PMC7778588 DOI: 10.7150/thno.45302] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/22/2020] [Indexed: 02/05/2023] Open
Abstract
Estrogen and estrogen receptor (ER)-regulated gene transcriptional events have been well known to be involved in ER-positive breast carcinogenesis. Meanwhile, circular RNAs (circRNAs) are emerging as a new family of functional non-coding RNAs (ncRNAs) with implications in a variety of pathological processes, such as cancer. However, the estrogen-regulated circRNA program and the function of such program remain uncharacterized. Methods: CircRNA sequencing (circRNA-seq) was performed to identify circRNAs induced by estrogen, and cell proliferation, colony formation, wound healing, transwell and tumor xenograft experiments were applied to examine the function of estrogen-induced circRNA, circPGR. RNA sequencing (RNA-seq) and ceRNA network analysis wereperformed to identify circPGR's target genes and the microRNA (miRNA) bound to circPGR. Anti-sense oligonucleotide (ASO) was used to assess circPGR's effects on ER-positive breast cancer cell growth. Results: Genome-wide circRNA profiling by circRNA sequencing (circRNA-seq) revealed that a large number of circRNAs were induced by estrogen, and further functional screening for the several circRNAs originated from PGR revealed that one of them, which we named as circPGR, was required for ER-positive breast cancer cell growth and tumorigenesis. CircPGR was found to be localized in the cytosol of cells and functioned as a competing endogenous RNA (ceRNA) to sponge miR-301a-5p to regulate the expression of multiple cell cycle genes. The clinical relevance of circPGR was underscored by its high and specific expression in ER-positive breast cancer cell lines and clinical breast cancer tissue samples. Accordingly, anti-sense oligonucleotide (ASO) targeting circPGR was proven to be effective in suppressing ER-positive breast cancer cell growth. Conclusions: These findings reveled that, besides the well-known messenger RNA (mRNA), microRNA (miRNA), long non-coding RNA (lncRNA) and enhancer RNA (eRNA) programs, estrogen also induced a circRNA program, and exemplified by circPGR, these estrogen-induced circRNAs were required for ER-positive breast cancer cell growth, providing a new class of therapeutic targets for ER-positive breast cancer.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Cycle
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Proliferation
- Estrogens/pharmacology
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- Prognosis
- RNA, Circular/genetics
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/genetics
- Survival Rate
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Lei Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Jia Yi
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Ling-yun Lu
- Department of Orthopedics, The Fifth Hospital of Xiamen, Xiamen, Fujian 361101, China
| | - Yue-ying Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Lan Wang
- Department of Pathology, The Second Affiliated Hospital, Shantou University Medical College, Dongxia North Road, Shantou, Guangdong 515041, China
| | - Guo-sheng Hu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Yi-chen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Jian-cheng Ding
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Hai-feng Shen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Fang-qing Zhao
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Hai-hua Huang
- Department of Pathology, The Second Affiliated Hospital, Shantou University Medical College, Dongxia North Road, Shantou, Guangdong 515041, China
| | - Wen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| |
Collapse
|