51
|
Zhuo R, Xu M, Wang X, Zhou B, Wu X, Leone V, Chang EB, Zhong X. The regulatory role of N 6 -methyladenosine modification in the interaction between host and microbes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1725. [PMID: 35301791 DOI: 10.1002/wrna.1725] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/21/2022] [Accepted: 02/21/2022] [Indexed: 01/02/2023]
Abstract
N6 -methyladenosine (m6 A) is the most prevalent posttranscriptional modification in eukaryotic mRNAs. Dynamic and reversible m6 A modification regulates gene expression to control cellular processes and diverse biological functions. Growing evidence indicated that m6 A modification is involved in the homeostasis of host and microbes (mostly viruses and bacteria). Disturbance of m6 A modification affects the life cycles of viruses and bacteria, however, these microbes could in turn change host m6 A modification leading to human disease including autoimmune diseases and cancer. Thus, we raise the concept that m6 A could be a "messenger" molecule to participate in the interactions between host and microbes. In this review, we summarize the regulatory mechanisms of m6 A modification on viruses and commensal microbiota, highlight the roles of m6 A methylation in the interaction of host and microbes, and finally discuss drugs development targeting m6 A modification. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Ruhao Zhuo
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Menghui Xu
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaoyun Wang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Bin Zhou
- Joint International Research Laboratory of Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xin Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Vanessa Leone
- Department of Animal Biologics and Metabolism, University of Wisconsin, Madison, Wisconsin, USA.,Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Eugene B Chang
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Xiang Zhong
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
52
|
D’Aquila P, De Rango F, Paparazzo E, Mandalà M, Bellizzi D, Passarino G. Impact of Nutrition on Age-Related Epigenetic RNA Modifications in Rats. Nutrients 2022; 14:nu14061232. [PMID: 35334889 PMCID: PMC8955587 DOI: 10.3390/nu14061232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Nutrition plastically modulates the epigenetic landscape in various tissues of an organism during life via epigenetic changes. In the present study, to clarify whether this modulation involves RNA methylation, we evaluated global RNA methylation profiles and the expression of writer, reader, and eraser genes, encoding for enzymes involved in the RNA methylation. The study was carried out in the heart, liver, and kidney samples from rats of different ages in response to a low-calorie diet. We found that, although each tissue showed peculiar RNA methylation levels, a general increase in these levels was observed throughout the lifespan as well as in response to the six-month diet. Similarly, a prominent remodeling of the expression of writer, reader, and eraser genes emerged. Our data provide a comprehensive overview of the role exerted by diet on the tissue-specific epigenetic plasticity of RNA according to aging in rats, providing the first evidence that methylation of RNA, similarly to DNA methylation, can represent an effective biomarker of aging. What is more, the fact that it is regulated by nutrition provides the basis for the development of targeted approaches capable of guaranteeing the maintenance of a state of good health.
Collapse
|
53
|
Wu H, Ding X, Hu X, Zhao Q, Chen Q, Sun T, Li Y, Guo H, Li M, Gao Z, Yao W, Zhao L, Li K, Wei M. LINC01021 maintains tumorigenicity by enhancing N6-methyladenosine reader IMP2 dependent stabilization of MSX1 and JARID2: implication in colorectal cancer. Oncogene 2022; 41:1959-1973. [PMID: 35173309 DOI: 10.1038/s41388-022-02189-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 12/24/2021] [Accepted: 01/11/2022] [Indexed: 01/16/2023]
Abstract
Insulin-like growth factor-2 mRNA-binding protein 2 (IGF2BP2, also known as IMP2), a novel class III N6-methyladenosine (m6A) reader, has recently gained attention due to its critical functions in recognizing and stabilizing m6A modified oncogenic transcripts. However, whether and how long non-coding RNAs (lncRNAs) facilitate IMP2's role as m6A "reader" remains elusive, particularly in colorectal cancer (CRC). Here, we demonstrated that oncogenic LINC021 specifically bound with the m6A "reader" IMP2 protein and enhanced the mRNA stability of MSX1 and JARID2 in an m6A regulatory manner during CRC tumorigenesis and pathogenesis. Specifically, a remarkable upregulation of LINC021 was confirmed in CRC cell lines and clinical tissues (n = 130). High level of LINC021acted as an independent prognostic predictor for CRC clinical outcomes. Functional assays demonstrated that LINC021 exerted its functions as an oncogene to aggravate CRC malignant phenotypes including enhanced cell proliferation, colony formation, migration capabilities, and reduced cell apoptosis. Mechanistically, LINC021 directly recognized IMP2 protein, the latter enhanced the mRNA stability of transcripts such as MSX1 and JARID2 by recognizing their m6A-modified element RGGAC. Thus, these findings uncovered an essential LINC021/IMP2/MSX1 and JARID2 signaling axis in CRC tumorigenesis, which provided profound insights into our understanding of m6A modification regulated by lncRNA in CRC initiation and progression and shed light on the targeting of this axis for CRC treatment.
Collapse
Affiliation(s)
- Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, PR China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, 110122, PR China
| | - Xiangyu Ding
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, PR China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, 110122, PR China
| | - Xiaoyun Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, PR China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, 110122, PR China
| | - Qing Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, PR China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, 110122, PR China
| | - Qiuchen Chen
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, PR China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, 110122, PR China
| | - Tong Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, PR China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, 110122, PR China
| | - Yalun Li
- Department of Anorectal Surgery, First Affiliated Hospital of China Medical University, Shenyang, 110001, PR China
| | - Hao Guo
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, PR China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, 110122, PR China
| | - Meng Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, PR China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, 110122, PR China
| | - Ziming Gao
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, First Affiliated Hospital of China Medical University, Shenyang, 110001, PR China
| | - Weifan Yao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, PR China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, 110122, PR China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, PR China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, 110122, PR China
| | - Kai Li
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, First Affiliated Hospital of China Medical University, Shenyang, 110001, PR China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, PR China.
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, 110122, PR China.
- Liaoning Medical Diagnosis and Treatment Center, Shenyang, PR China.
| |
Collapse
|
54
|
Selmi T, Lanzuolo C. Driving Chromatin Organisation through N6-methyladenosine Modification of RNA: What Do We Know and What Lies Ahead? Genes (Basel) 2022; 13:340. [PMID: 35205384 PMCID: PMC8871937 DOI: 10.3390/genes13020340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
In recent years, there has been an increase in research efforts surrounding RNA modification thanks to key breakthroughs in NGS-based whole transcriptome mapping methods. More than 100 modifications have been reported in RNAs, and some have been mapped at single-nucleotide resolution in the mammalian transcriptome. This has opened new research avenues in fields such as neurobiology, developmental biology, and oncology, among others. To date, we know that the RNA modification machinery finely tunes many diverse mechanisms involved in RNA processing and translation to regulate gene expression. However, it appears obvious to the research community that we have only just begun the process of understanding the several functions of the dynamic web of RNA modification, or the "epitranscriptome". To expand the data generated so far, recently published studies revealed a dual role for N6-methyladenosine (m6A), the most abundant mRNA modification, in driving both chromatin dynamics and transcriptional output. These studies showed that the m6A-modified, chromatin-associated RNAs could act as molecular docks, recruiting histone modification proteins and thus contributing to the regulation of local chromatin structure. Here, we review these latest exciting findings and outline outstanding research questions whose answers will help to elucidate the biological relevance of the m6A modification of chromatin-associated RNAs in mammalian cells.
Collapse
Affiliation(s)
- Tommaso Selmi
- Consiglio Nazionale delle Ricerche, Istituto di Tecnologie Biomediche, Via Fratelli Cervi 93, 20054 Milano, Italy;
| | - Chiara Lanzuolo
- Consiglio Nazionale delle Ricerche, Istituto di Tecnologie Biomediche, Via Fratelli Cervi 93, 20054 Milano, Italy;
- Istituto Nazionale di Genetica Molecolare, Via Francesco Sforza 35, 20122 Milano, Italy
| |
Collapse
|
55
|
Zhong F, Yao F, Cheng Y, Liu J, Zhang N, Li S, Li M, Huang B, Wang X. m6A-related lncRNAs predict prognosis and indicate immune microenvironment in acute myeloid leukemia. Sci Rep 2022; 12:1759. [PMID: 35110624 PMCID: PMC8810799 DOI: 10.1038/s41598-022-05797-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 01/12/2022] [Indexed: 12/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is a complex hematologic malignancy. Survival rate of AML patients is low. N6-methyladenosine (m6A) and long non-coding RNAs (lncRNAs) play important roles in AML tumorigenesis and progression. However, the relationship between lncRNAs and biological characteristics of AML, as well as how lncRNAs influence the prognosis of AML patients, remain unclear. In this study. In this study, Pearson correlation analysis was used to identify lncRNAs related to m6A regulatory genes, namely m6A-related lncRNAs. And we analyzed their roles and prognostic values in AML. m6A-related lncRNAs associated with patient prognosis were screened using univariate Cox regression analysis, followed by systematic analysis of the relationship between these genes and AML clinicopathologic and biologic characteristics. Furthermore, we examined the characteristics of tumor immune microenvironment (TIME) using different IncRNA clustering models. Using LASSO regression, we identified the risk signals related to prognosis of AML patients. We then constructed and verified a risk model based on m6A-related lncRNAs for independent prediction of overall survival in AML patients. Our results indicate that risk scores, calculated based on risk-related signaling, were related to the clinicopathologic characteristics of AML and level of immune infiltration. Finally, we examined the expression level of TRAF3IP2-AS1 in patient samples through real-time polymerase chain reaction analysis and in GEO datasets, and we identified a interaction relationship between SRSF10 and TRAF3IP2-AS1 through in vitro assays. Our study shows that m6A-related lncRNAs, evaluated using the risk prediction model, can potentially be used to predict prognosis and design immunotherapy in AML patients.
Collapse
Affiliation(s)
- Fangmin Zhong
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China.,School of Public Health, Nanchang University, No. 461 BaYi Boulevard, Nanchang, 330006, Jiangxi, China
| | - Fangyi Yao
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Ying Cheng
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Jing Liu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Nan Zhang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Shuqi Li
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Meiyong Li
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Bo Huang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China. .,School of Public Health, Nanchang University, No. 461 BaYi Boulevard, Nanchang, 330006, Jiangxi, China.
| | - Xiaozhong Wang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China. .,School of Public Health, Nanchang University, No. 461 BaYi Boulevard, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
56
|
Liu Q. Current Advances in N6-Methyladenosine Methylation Modification During Bladder Cancer. Front Genet 2022; 12:825109. [PMID: 35087575 PMCID: PMC8787278 DOI: 10.3389/fgene.2021.825109] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022] Open
Abstract
N6-methyladenosine (m6A) is a dynamic, reversible post-transcriptional modification, and the most common internal modification of eukaryotic messenger RNA (mRNA). Considerable evidence now shows that m6A alters gene expression, thereby regulating cell self-renewal, differentiation, invasion, and apoptotic processes. M6A methylation disorders are directly related to abnormal RNA metabolism, which may lead to tumor formation. M6A methyltransferase is the dominant catalyst during m6A modification; it removes m6A demethylase, promotes recognition by m6A binding proteins, and regulates mRNA metabolic processes. Bladder cancer (BC) is a urinary system malignant tumor, with complex etiology and high incidence rates. A well-differentiated or moderately differentiated pathological type at initial diagnosis accounts for most patients with BC. For differentiated superficial bladder urothelial carcinoma, the prognosis is normally good after surgery. However, due to poor epithelial cell differentiation, BC urothelial cell proliferation and infiltration may lead to invasive or metastatic BC, which lowers the 5-years survival rate and significantly affects clinical treatments in elderly patients. Here, we review the latest progress in m6A RNA methylation research and investigate its regulation on BC occurrence and development.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
57
|
Promoter-Bound Full-Length Intronic Circular RNAs-RNA Polymerase II Complexes Regulate Gene Expression in the Human Parasite Entamoeba histolytica. Noncoding RNA 2022; 8:ncrna8010012. [PMID: 35202086 PMCID: PMC8876499 DOI: 10.3390/ncrna8010012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/12/2022] Open
Abstract
Ubiquitous eukaryotic non-coding circular RNAs are involved in numerous co- and post-transcriptional regulatory mechanisms. Recently, we reported full-length intronic circular RNAs (flicRNAs) in Entamoeba histolytica, with 3′ss–5′ss ligation points and 5′ss GU-rich elements essential for their biogenesis and their suggested role in transcription regulation. Here, we explored how flicRNAs impact gene expression regulation. Using CLIP assays, followed by qRT-PCR, we identified that the RabX13 control flicRNA and virulence-associated flicRNAs were bound to the HA-tagged RNA Pol II C-terminus domain in E. histolytica transformants. The U2 snRNA was also present in such complexes, indicating that they belonged to transcription initiation/elongation complexes. Correspondingly, inhibition of the second step of splicing using boric acid reduced flicRNA formation and modified the expression of their parental genes and non-related genes. flicRNAs were also recovered from chromatin immunoprecipitation eluates, indicating that the flicRNA-Pol II complex was formed in the promoter of their cognate genes. Finally, two flicRNAs were found to be cytosolic, whose functions remain to be uncovered. Here, we provide novel evidence of the role of flicRNAs in gene expression regulation in cis, apparently in a widespread fashion, as an element bound to the RNA polymerase II transcription initiation complex, in E. histolytica.
Collapse
|
58
|
New advances of DNA/RNA methylation modification in liver fibrosis. Cell Signal 2021; 92:110224. [PMID: 34954394 DOI: 10.1016/j.cellsig.2021.110224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 11/23/2022]
Abstract
Liver fibrosis is a complex pathological process caused by multiple pathogenic factors,such as ethanol, viruses, toxins, drugs or cholestasis, and it can eventually develop into liver cirrhosis without effective treatment. Activation of hepatic stellate cells (HSCs) is a pivotal cellular event in the pathogenesis of liver fibrosis. However, the pathogenesis of liver fibrosis has not been fully elucidated. DNA/RNA methylation can regulate gene expression without alteration in its sequence, and numerous studies have shown the involvement of DNA methylation in the activation of HSCs and then promote the progression of liver fibrosis. In addition, RNA methylation has recently been reported to play a regulatory role in this process. In this review, we focus on the aberrant DNA/RNA methylation of selected genes and explore their functional mechanism in regulating HSCs activation and liver fibrogenesis. All of these findings will enhance our understanding of DNA/RNA methylation and their roles in liver fibrosis and provide the basis to identify effective therapeutic targets.
Collapse
|
59
|
Quan C, Belaydi O, Hu J, Li H, Yu A, Liu P, Yi Z, Qiu D, Ren W, Ma H, Gong G, Ou Z, Chen M, Sun Y, Chen J, Zu X. N 6-Methyladenosine in Cancer Immunotherapy: An Undervalued Therapeutic Target. Front Immunol 2021; 12:697026. [PMID: 34526985 PMCID: PMC8436617 DOI: 10.3389/fimmu.2021.697026] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/09/2021] [Indexed: 12/19/2022] Open
Abstract
N6-methylation of adenosine (m6A), a post-transcriptional regulatory mechanism, is the most abundant nucleotide modification in almost all types of RNAs. The biological function of m6A in regulating the expression of oncogenes or tumor suppressor genes has been widely investigated in various cancers. However, recent studies have addressed a new role of m6A modification in the anti-tumor immune response. By modulating the fate of targeted RNA, m6A affects tumor-associated immune cell activation and infiltration in the tumor microenvironment (TME). In addition, m6A-targeting is found to affect the efficacy of classical immunotherapy, which makes m6A a potential target for immunotherapy. Although m6A modification together with its regulators may play the exact opposite role in different tumor types, targeting m6A regulators has been shown to have wide implications in several cancers. In this review, we discussed the link between m6A modification and tumor with an emphasis on the importance of m6A in anti-tumor immune response and immunotherapy.
Collapse
Affiliation(s)
- Chao Quan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Othmane Belaydi
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Jiao Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Huihuang Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Anze Yu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, United States
| | - Peihua Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenglin Yi
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Dongxu Qiu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenbiao Ren
- George Whipple Lab for Cancer Research, University of Rochester Medical Center, Rochester, NY, United States
| | - Hongzhi Ma
- Department of Radiation Oncology, Hunan Cancer Hospital, Central South University, Changsha, China
| | - Guanghui Gong
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenyu Ou
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Minfeng Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Yin Sun
- George Whipple Lab for Cancer Research, University of Rochester Medical Center, Rochester, NY, United States
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
60
|
Metabolic enzymes function as epigenetic modulators: A Trojan Horse for chromatin regulation and gene expression. Pharmacol Res 2021; 173:105834. [PMID: 34450321 DOI: 10.1016/j.phrs.2021.105834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 02/08/2023]
Abstract
Epigenetic modification is a fundamental biological process in living organisms, which has significant impact on health and behavior. Metabolism refers to a set of life-sustaining chemical reactions, including the uptake of nutrients, the subsequent conversion of nutrients into energy or building blocks for organism growth, and finally the clearance of redundant or toxic substances. It is well established that epigenetic modifications govern the metabolic profile of a cell by modulating the expression of metabolic enzymes. Strikingly, almost all the epigenetic modifications require substrates produced by cellular metabolism, and a large proportion of metabolic enzymes can transfer into nucleus to locally produce substrates for epigenetic modification, thereby providing an alternative link between metabolism, epigenetic modification and gene expression. Here, we summarize the recent literature pertinent to metabolic enzymes functioning as epigenetic modulators in the regulation of chromatin architecture and gene expression.
Collapse
|
61
|
YTHDF2 alleviates cardiac hypertrophy via regulating Myh7 mRNA decoy. Cell Biosci 2021; 11:132. [PMID: 34266473 PMCID: PMC8281596 DOI: 10.1186/s13578-021-00649-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Background Pathological cardiac hypertrophy is a major contributor of heart failure (HF), which seriously threatens human’s health world widely. Deregulation of m6A RNA methylation, and m6A methyltransferases and de-methyltransferases have been demonstrated to act essential roles in cardiac hypertrophy and HF. Here, we studied the potential roles and its underlying mechanisms of m6A Reader YTHDF proteins in HF. In this study, we constructed HF mouse model by transverse aortic constriction surgery. Primary cardiomyocytes were isolated and stimulated with isoproterenol (ISO) or phenylephrine (PHE) to induce myocardial hypertrophy. Results Through single-cell RNA-seq analysis, immunofluorescent staining, HE staining, Western blotting, and real time-PCR detections, we found that YTHDF2 mRNA and protein level, but not YTHDF1 or YTHDF3, was significantly increased during HF development. YTHDF2 overexpression could efficiently alleviate cardiac hypertrophy. Furthermore, through immunoprecipitation accompanied with mass spectrometry analysis, Gene Ontology (GO) analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, we found that ISO stimulation did not evidently affect YTHDF2-interacting proteins. However, ISO or PHE stimulation significantly increased YTHDF2 protein interacting with Myh7 (beta-myosin heavy chain) mRNA, an important cardiac hypertrophy marker, in an m6A-dependent manner. Knockdown of Myh7 or deletion of the YTH domain of YTHDF2 reversed the protective effects of YTHDF2 on cardiac hypertrophy. Finally, we found that ISO or PHE stimulation promoted YTHDF2 protein expression through enhancing Ythdf2 mRNA stability in an m6A-dependent manner in cardiomyocytes. Conclusions Overall, our results indicate that the m6A Reader YTHDF2 suppresses cardiac hypertrophy via Myh7 mRNA decoy in an m6A-dependent manner. This study highlights the functional importance of YTHDF2-dependent cardiac m6A mRNA regulation during cardiac hypertrophy, and provides a novel mechanistic insight into the therapeutic mechanisms of YTHDF2. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00649-7.
Collapse
|