51
|
Gambarotto D, Pennetier C, Ryniawec JM, Buster DW, Gogendeau D, Goupil A, Nano M, Simon A, Blanc D, Racine V, Kimata Y, Rogers GC, Basto R. Plk4 Regulates Centriole Asymmetry and Spindle Orientation in Neural Stem Cells. Dev Cell 2019; 50:11-24.e10. [PMID: 31130353 PMCID: PMC6614718 DOI: 10.1016/j.devcel.2019.04.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/08/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023]
Abstract
Defects in mitotic spindle orientation (MSO) disrupt the organization of stem cell niches impacting tissue morphogenesis and homeostasis. Mutations in centrosome genes reduce MSO fidelity, leading to tissue dysplasia and causing several diseases such as microcephaly, dwarfism, and cancer. Whether these mutations perturb spindle orientation solely by affecting astral microtubule nucleation or whether centrosome proteins have more direct functions in regulating MSO is unknown. To investigate this question, we analyzed the consequences of deregulating Plk4 (the master centriole duplication kinase) activity in Drosophila asymmetrically dividing neural stem cells. We found that Plk4 functions upstream of MSO control, orchestrating centriole symmetry breaking and consequently centrosome positioning. Mechanistically, we show that Plk4 acts through Spd2 phosphorylation, which induces centriole release from the apical cortex. Overall, this work not only reveals a role for Plk4 in regulating centrosome function but also links the centrosome biogenesis machinery with the MSO apparatus. Drosophila Plk4 mutant NSCs show defects in centriole asymmetry and spindle positioning Apical centriole anchoring requires the PCM protein Spd-2 and the APC/C activator Fzr Movement of the centriole toward the basal side of the cell requires Plk4 activity At the mother centriole, Plk4 phosphorylates Spd2 to trigger PCM shedding and Fzr loss
Collapse
Affiliation(s)
- Davide Gambarotto
- Institut Curie, PSL Research University, CNRS, UMR144, Biology of centrosomes and Genetic instability lab, Paris 75005, France
| | - Carole Pennetier
- Institut Curie, PSL Research University, CNRS, UMR144, Biology of centrosomes and Genetic instability lab, Paris 75005, France
| | - John M Ryniawec
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | - Daniel W Buster
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | - Delphine Gogendeau
- Institut Curie, PSL Research University, CNRS, UMR144, Biology of centrosomes and Genetic instability lab, Paris 75005, France
| | - Alix Goupil
- Institut Curie, PSL Research University, CNRS, UMR144, Biology of centrosomes and Genetic instability lab, Paris 75005, France
| | - Maddalena Nano
- Institut Curie, PSL Research University, CNRS, UMR144, Biology of centrosomes and Genetic instability lab, Paris 75005, France
| | - Anthony Simon
- Institut Curie, PSL Research University, CNRS, UMR144, Biology of centrosomes and Genetic instability lab, Paris 75005, France
| | - Damien Blanc
- QuantaCell, 2 Allée du Doyen Georges Brus, Pessac 33600, France
| | - Victor Racine
- QuantaCell, 2 Allée du Doyen Georges Brus, Pessac 33600, France
| | - Yuu Kimata
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Gregory C Rogers
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA.
| | - Renata Basto
- Institut Curie, PSL Research University, CNRS, UMR144, Biology of centrosomes and Genetic instability lab, Paris 75005, France.
| |
Collapse
|
52
|
Fang CT, Kuo HH, Hsu SC, Yih LH. HSP70 is required for the proper assembly of pericentriolar material and function of mitotic centrosomes. Cell Div 2019; 14:4. [PMID: 31110557 PMCID: PMC6511203 DOI: 10.1186/s13008-019-0047-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/30/2019] [Indexed: 12/03/2022] Open
Abstract
Background At the onset of mitosis, the centrosome expands and matures, acquiring enhanced activities for microtubule nucleation and assembly of a functional bipolar mitotic spindle. However, the mechanisms that regulate centrosome expansion and maturation are largely unknown. Previously, we demonstrated in an immortalized human cell line CGL2 and cancer cell line HeLa that the inducible form of heat shock protein 70 (HSP70) accumulates at the mitotic centrosome and is required for centrosome maturation and bipolar spindle assembly. Results In this study, we further show that HSP70 accumulated at the spindle pole in a PLK1-dependent manner. HSP70 colocalized with pericentrin (PCNT), CEP215 and γ-tubulin at the spindle pole and was required for the 3D assembly of these three proteins, which supports mitotic centrosome function. Loss of HSP70 disrupted mitotic centrosome structure, reduced pericentriolar material recruitment and induced fragmentation of spindle poles. In addition, HSP70 was necessary for the interaction between PCNT and CEP215 and also facilitated PLK1 accumulation and function at the spindle pole. Furthermore, we found that HSP70 chaperone activity is required for PCNT accumulation at the mitotic centrosome and assembly of mitotic spindles. Conclusion Our current results demonstrate that HSP70 is required for the accurate assembly of the pericentriolar material and proper functioning of mitotic centrosomes.
Collapse
Affiliation(s)
- Chieh-Ting Fang
- 1Department of Life Science, National Taiwan University, Taipei, Taiwan.,2Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115 Taiwan
| | - Hsiao-Hui Kuo
- 2Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115 Taiwan
| | - Shao-Chun Hsu
- 2Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115 Taiwan
| | - Ling-Huei Yih
- 2Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115 Taiwan
| |
Collapse
|
53
|
Raff JW. Phase Separation and the Centrosome: A Fait Accompli? Trends Cell Biol 2019; 29:612-622. [PMID: 31076235 DOI: 10.1016/j.tcb.2019.04.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 12/28/2022]
Abstract
There is currently intense interest in the idea that many membraneless organelles might assemble through phase separation of their constituent molecules into biomolecular 'condensates' that have liquid-like properties. This idea is intuitively appealing, especially for complex organelles such as centrosomes, where a liquid-like structure would allow the many constituent molecules to diffuse and interact with one another efficiently. I discuss here recent studies that either support the concept of a liquid-like centrosome or suggest that centrosomes are assembled upon a more solid, stable scaffold. I suggest that it may be difficult to distinguish between these possibilities. I argue that the concept of biomolecular condensates is an important advance in cell biology, with potentially wide-ranging implications, but it seems premature to conclude that centrosomes, and perhaps other membraneless organelles, are necessarily best described as liquid-like phase-separated condensates.
Collapse
Affiliation(s)
- Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
54
|
PCMD-1 Organizes Centrosome Matrix Assembly in C. elegans. Curr Biol 2019; 29:1324-1336.e6. [DOI: 10.1016/j.cub.2019.03.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 01/25/2019] [Accepted: 03/14/2019] [Indexed: 11/22/2022]
|
55
|
Abstract
The centriole is an ancient microtubule-based organelle with a conserved nine-fold symmetry. Centrioles form the core of centrosomes, which organize the interphase microtubule cytoskeleton of most animal cells and form the poles of the mitotic spindle. Centrioles can also be modified to form basal bodies, which template the formation of cilia and play central roles in cellular signaling, fluid movement, and locomotion. In this review, we discuss developments in our understanding of the biogenesis of centrioles and cilia and the regulatory controls that govern their structure and number. We also discuss how defects in these processes contribute to a spectrum of human diseases and how new technologies have expanded our understanding of centriole and cilium biology, revealing exciting avenues for future exploration.
Collapse
Affiliation(s)
- David K Breslow
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA;
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
| |
Collapse
|
56
|
Schermelleh L, Ferrand A, Huser T, Eggeling C, Sauer M, Biehlmaier O, Drummen GPC. Super-resolution microscopy demystified. Nat Cell Biol 2019; 21:72-84. [PMID: 30602772 DOI: 10.1038/s41556-018-0251-8] [Citation(s) in RCA: 622] [Impact Index Per Article: 103.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 11/12/2018] [Indexed: 02/08/2023]
Abstract
Super-resolution microscopy (SRM) bypasses the diffraction limit, a physical barrier that restricts the optical resolution to roughly 250 nm and was previously thought to be impenetrable. SRM techniques allow the visualization of subcellular organization with unprecedented detail, but also confront biologists with the challenge of selecting the best-suited approach for their particular research question. Here, we provide guidance on how to use SRM techniques advantageously for investigating cellular structures and dynamics to promote new discoveries.
Collapse
Affiliation(s)
- Lothar Schermelleh
- Micron Oxford Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Alexia Ferrand
- Imaging Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Thomas Huser
- Biomolecular Photonics, Department of Physics, University of Bielefeld, Bielefeld, Germany
| | - Christian Eggeling
- MRC Human Immunology Unit and Wolfson Imaging Centre Oxford, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Institute for Applied Optics, Friedrich-Schiller-University Jena & Leibniz Institute of Photonic Technology, Jena, Germany
| | - Markus Sauer
- Department of Biotechnology & Biophysics, Biocenter, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Oliver Biehlmaier
- Imaging Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Gregor P C Drummen
- Advanced Bio-Imaging Program, Bio&Nano Solutions‒LAB3BIO, Bielefeld, Germany.
- ICON-Europe.org, Exxilon Scientific Events, Steinhagen, Germany.
| |
Collapse
|
57
|
Microtubule nucleation by γ-tubulin complexes and beyond. Essays Biochem 2018; 62:765-780. [PMID: 30315097 PMCID: PMC6281477 DOI: 10.1042/ebc20180028] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/05/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022]
Abstract
In this short review, we give an overview of microtubule nucleation within cells. It is nearly 30 years since the discovery of γ-tubulin, a member of the tubulin superfamily essential for proper microtubule nucleation in all eukaryotes. γ-tubulin associates with other proteins to form multiprotein γ-tubulin ring complexes (γ-TuRCs) that template and catalyse the otherwise kinetically unfavourable assembly of microtubule filaments. These filaments can be dynamic or stable and they perform diverse functions, such as chromosome separation during mitosis and intracellular transport in neurons. The field has come a long way in understanding γ-TuRC biology but several important and unanswered questions remain, and we are still far from understanding the regulation of microtubule nucleation in a multicellular context. Here, we review the current literature on γ-TuRC assembly, recruitment, and activation and discuss the potential importance of γ-TuRC heterogeneity, the role of non-γ-TuRC proteins in microtubule nucleation, and whether γ-TuRCs could serve as good drug targets for cancer therapy.
Collapse
|
58
|
Assembly of Mitotic Structures through Phase Separation. J Mol Biol 2018; 430:4762-4772. [DOI: 10.1016/j.jmb.2018.04.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/21/2018] [Accepted: 04/30/2018] [Indexed: 01/01/2023]
|
59
|
Tillery MML, Blake-Hedges C, Zheng Y, Buchwalter RA, Megraw TL. Centrosomal and Non-Centrosomal Microtubule-Organizing Centers (MTOCs) in Drosophila melanogaster. Cells 2018; 7:E121. [PMID: 30154378 PMCID: PMC6162459 DOI: 10.3390/cells7090121] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022] Open
Abstract
The centrosome is the best-understood microtubule-organizing center (MTOC) and is essential in particular cell types and at specific stages during Drosophila development. The centrosome is not required zygotically for mitosis or to achieve full animal development. Nevertheless, centrosomes are essential maternally during cleavage cycles in the early embryo, for male meiotic divisions, for efficient division of epithelial cells in the imaginal wing disc, and for cilium/flagellum assembly in sensory neurons and spermatozoa. Importantly, asymmetric and polarized division of stem cells is regulated by centrosomes and by the asymmetric regulation of their microtubule (MT) assembly activity. More recently, the components and functions of a variety of non-centrosomal microtubule-organizing centers (ncMTOCs) have begun to be elucidated. Throughout Drosophila development, a wide variety of unique ncMTOCs form in epithelial and non-epithelial cell types at an assortment of subcellular locations. Some of these cell types also utilize the centrosomal MTOC, while others rely exclusively on ncMTOCs. The impressive variety of ncMTOCs being discovered provides novel insight into the diverse functions of MTOCs in cells and tissues. This review highlights our current knowledge of the composition, assembly, and functional roles of centrosomal and non-centrosomal MTOCs in Drosophila.
Collapse
Affiliation(s)
- Marisa M L Tillery
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| | - Caitlyn Blake-Hedges
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| | - Yiming Zheng
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| | - Rebecca A Buchwalter
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| | - Timothy L Megraw
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| |
Collapse
|
60
|
Malerød L, Le Borgne R, Lie-Jensen A, Eikenes ÅH, Brech A, Liestøl K, Stenmark H, Haglund K. Centrosomal ALIX regulates mitotic spindle orientation by modulating astral microtubule dynamics. EMBO J 2018; 37:embj.201797741. [PMID: 29858227 DOI: 10.15252/embj.201797741] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 04/08/2018] [Accepted: 04/30/2018] [Indexed: 12/18/2022] Open
Abstract
The orientation of the mitotic spindle (MS) is tightly regulated, but the molecular mechanisms are incompletely understood. Here we report a novel role for the multifunctional adaptor protein ALG-2-interacting protein X (ALIX) in regulating MS orientation in addition to its well-established role in cytokinesis. We show that ALIX is recruited to the pericentriolar material (PCM) of the centrosomes and promotes correct orientation of the MS in asymmetrically dividing Drosophila stem cells and epithelial cells, and symmetrically dividing Drosophila and human epithelial cells. ALIX-deprived cells display defective formation of astral microtubules (MTs), which results in abnormal MS orientation. Specifically, ALIX is recruited to the PCM via Drosophila Spindle defective 2 (DSpd-2)/Cep192, where ALIX promotes accumulation of γ-tubulin and thus facilitates efficient nucleation of astral MTs. In addition, ALIX promotes MT stability by recruiting microtubule-associated protein 1S (MAP1S), which stabilizes newly formed MTs. Altogether, our results demonstrate a novel evolutionarily conserved role of ALIX in providing robustness to the orientation of the MS by promoting astral MT formation during asymmetric and symmetric cell division.
Collapse
Affiliation(s)
- Lene Malerød
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Roland Le Borgne
- CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, Univ. Rennes, Rennes, France.,Equipe labélisée Ligue Contre Le Cancer, Rennes, France
| | - Anette Lie-Jensen
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Åsmund Husabø Eikenes
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Andreas Brech
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Knut Liestøl
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Harald Stenmark
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kaisa Haglund
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway .,Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
61
|
Nigg EA, Holland AJ. Once and only once: mechanisms of centriole duplication and their deregulation in disease. Nat Rev Mol Cell Biol 2018; 19:297-312. [PMID: 29363672 PMCID: PMC5969912 DOI: 10.1038/nrm.2017.127] [Citation(s) in RCA: 340] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Centrioles are conserved microtubule-based organelles that form the core of the centrosome and act as templates for the formation of cilia and flagella. Centrioles have important roles in most microtubule-related processes, including motility, cell division and cell signalling. To coordinate these diverse cellular processes, centriole number must be tightly controlled. In cycling cells, one new centriole is formed next to each pre-existing centriole in every cell cycle. Advances in imaging, proteomics, structural biology and genome editing have revealed new insights into centriole biogenesis, how centriole numbers are controlled and how alterations in these processes contribute to diseases such as cancer and neurodevelopmental disorders. Moreover, recent work has uncovered the existence of surveillance pathways that limit the proliferation of cells with numerical centriole aberrations. Owing to this progress, we now have a better understanding of the molecular mechanisms governing centriole biogenesis, opening up new possibilities for targeting these pathways in the context of human disease.
Collapse
Affiliation(s)
- Erich A. Nigg
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Andrew J. Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
62
|
Sepulveda G, Antkowiak M, Brust-Mascher I, Mahe K, Ou T, Castro NM, Christensen LN, Cheung L, Jiang X, Yoon D, Huang B, Jao LE. Co-translational protein targeting facilitates centrosomal recruitment of PCNT during centrosome maturation in vertebrates. eLife 2018; 7:34959. [PMID: 29708497 PMCID: PMC5976437 DOI: 10.7554/elife.34959] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/30/2018] [Indexed: 12/16/2022] Open
Abstract
As microtubule-organizing centers of animal cells, centrosomes guide the formation of the bipolar spindle that segregates chromosomes during mitosis. At mitosis onset, centrosomes maximize microtubule-organizing activity by rapidly expanding the pericentriolar material (PCM). This process is in part driven by the large PCM protein pericentrin (PCNT), as its level increases at the PCM and helps recruit additional PCM components. However, the mechanism underlying the timely centrosomal enrichment of PCNT remains unclear. Here, we show that PCNT is delivered co-translationally to centrosomes during early mitosis by cytoplasmic dynein, as evidenced by centrosomal enrichment of PCNT mRNA, its translation near centrosomes, and requirement of intact polysomes for PCNT mRNA localization. Additionally, the microtubule minus-end regulator, ASPM, is also targeted co-translationally to mitotic spindle poles. Together, these findings suggest that co-translational targeting of cytoplasmic proteins to specific subcellular destinations may be a generalized protein targeting mechanism. Before a cell divides, it creates a copy of its genetic material (DNA) and evenly distributes it between the new ‘daughter’ cells with the help of a complex called the mitotic spindle. This complex is made of long cable-like protein chains called microtubules. To ensure that each daughter cell receives an equal amount of DNA, structures known as centrosomes organize the microtubules during the division process. Centrosomes have two rigid cores, called centrioles, which are surrounded by a matrix of proteins called the pericentriolar material. It is from this material that the microtubules are organized. The pericentriolar material is a dynamic structure and changes its size by assembling and disassembling its protein components. The larger the pericentriolar material, the more microtubules can form. Before a cell divides, it rapidly expands in a process called centrosome maturation. A protein called pericentrin initiates the maturation by helping to recruit other proteins to the centrosome. Pericentrin molecules are large, and it takes the cell between 10 and 20 minutes to make each one. Nevertheless, the cell can produce and deliver large quantities of pericentrin to the centrosome in a matter of minutes. We do not yet know how this happens. To investigate this further, Sepulveda, Antkowiak, Brust-Mascher et al. used advanced microscopy to study zebrafish embryos and human cells grown in the laboratory. The results showed that cells build and transport pericentrin at the same time. Cells use messenger RNA molecules as templates to build proteins. These feed into protein factories called ribosomes, which assemble the building blocks in the correct order. Rather than waiting for the pericentrin production to finish, the cell moves the active factories to the centrosome with the help of a molecular motor called dynein. By the time the pericentrin molecules are completely made by ribosomes, they are already at the centrosome, ready to help with the recruitment of other proteins during centrosome maturation. These findings improve our understanding of centrosome maturation. The next step is to find out how the cell coordinates this process with the recruitment of other proteins to the centrosome. It is also possible that the cell uses similar processes to deliver other proteins to different parts of the cell.
Collapse
Affiliation(s)
- Guadalupe Sepulveda
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Mark Antkowiak
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Ingrid Brust-Mascher
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis School of Veterinary Medicine, Davis, United States
| | - Karan Mahe
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Tingyoung Ou
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Noemi M Castro
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Lana N Christensen
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Lee Cheung
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Xueer Jiang
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Daniel Yoon
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| | - Li-En Jao
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| |
Collapse
|
63
|
Riparbelli MG, Persico V, Gottardo M, Callaini G. The developing Drosophila eye - a new model to study centriole reduction. J Cell Sci 2018; 131:jcs.211441. [PMID: 29361550 DOI: 10.1242/jcs.211441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/15/2018] [Indexed: 01/06/2023] Open
Abstract
In the developing Drosophila eye, the centrioles of the differentiating retinal cells are not surrounded by the microtubule-nucleating γ-tubulin, suggesting that they are unable to organize functional microtubule-organizing centers. Consistent with this idea, Cnn and Spd-2, which are involved in γ-tubulin recruitment, and the scaffold protein Plp, which plays a role in the organization of the pericentriolar material, are lost in the third-instar larval stage. However, the centrioles maintain their structural integrity, and both the parent centrioles accumulate Asl and Ana1. Although the loading of Asl points to the acquisition of the motherhood condition, the daughter centrioles fail to recruit Plk4 and do not duplicate. However, it is surprising that the mother centrioles that accumulate Plk4 also never duplicate. This suggests that the loading of Plk4 is not sufficient, in this system, to allow centriole duplication. By halfway through pupal life, the centriole number decreases and structural defects, ranging from being incomplete or lacking B-tubules, are detected. Asl, Ana1 and Sas-4 are still present, suggesting that the centriole integrity does not depend on these proteins.
Collapse
Affiliation(s)
- Maria G Riparbelli
- Department of Life Sciences, Via A. Moro 2, University of Siena, 53100 Siena, Italy
| | - Veronica Persico
- Department of Life Sciences, Via A. Moro 2, University of Siena, 53100 Siena, Italy
| | - Marco Gottardo
- Department of Life Sciences, Via A. Moro 2, University of Siena, 53100 Siena, Italy
| | - Giuliano Callaini
- Department of Life Sciences, Via A. Moro 2, University of Siena, 53100 Siena, Italy
| |
Collapse
|
64
|
Roque H, Saurya S, Pratt MB, Johnson E, Raff JW. Drosophila PLP assembles pericentriolar clouds that promote centriole stability, cohesion and MT nucleation. PLoS Genet 2018; 14:e1007198. [PMID: 29425198 PMCID: PMC5823460 DOI: 10.1371/journal.pgen.1007198] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 02/22/2018] [Accepted: 01/12/2018] [Indexed: 12/31/2022] Open
Abstract
Pericentrin is a conserved centrosomal protein whose dysfunction has been linked to several human diseases. It has been implicated in many aspects of centrosome and cilia function, but its precise role is unclear. Here, we examine Drosophila Pericentrin-like-protein (PLP) function in vivo in tissues that form both centrosomes and cilia. Plp mutant centrioles exhibit four major defects: (1) They are short and have subtle structural abnormalities; (2) They disengage prematurely, and so overduplicate; (3) They organise fewer cytoplasmic MTs during interphase; (4) When forming cilia, they fail to establish and/or maintain a proper connection to the plasma membrane—although, surprisingly, they can still form an axoneme-like structure that can recruit transition zone (TZ) proteins. We show that PLP helps assemble “pericentriolar clouds” of electron-dense material that emanate from the central cartwheel spokes and spread outward to surround the mother centriole. We propose that the partial loss of these structures may largely explain the complex centriole, centrosome and cilium defects we observe in Plp mutant cells. Centrioles are complex, microtubule (MT) based structures that organise two important cell organelles, the centrosome and the cilium. The centrosome is a major MT organising centre in many cell types, while the cilium functions as a cellular “antenna” responsible for regulating several cellular signalling pathways. Pericentrin is conserved centriole-binding protein that plays an important part in centrosome and cilium function, and mutations in the Pericentrin gene are linked to several human diseases. Here we use the fruit-fly Drosophila melanogaster to investigate how Pericentrin-Like-Protein (the fly homolog of Pericentrin) contributes to centriole, centrosome and cilium function. We find that Plp mutant fly centrioles have subtle structural defects, organize less microtubules, and do not properly migrate to the cell membrane to form cilia. We also observe that PLP helps assemble “pericentriolar clouds”—dense structures that emanate from the centriole, and appear to interact with microtubules, as well as connect existing centrioles to newly formed ones. In mutant flies these structures are significantly reduced in size. We propose that the defects in these PLP structures can explain most, if not all, the complex defects observed in Plp mutants.
Collapse
Affiliation(s)
- Helio Roque
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Saroj Saurya
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Metta B. Pratt
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Errin Johnson
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Jordan W. Raff
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
65
|
Loncarek J, Bettencourt-Dias M. Building the right centriole for each cell type. J Cell Biol 2017; 217:823-835. [PMID: 29284667 PMCID: PMC5839779 DOI: 10.1083/jcb.201704093] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/14/2017] [Accepted: 11/27/2017] [Indexed: 12/22/2022] Open
Abstract
Loncarek and Bettencourt-Dias review molecular mechanisms of centriole biogenesis amongst different organisms and cell types. The centriole is a multifunctional structure that organizes centrosomes and cilia and is important for cell signaling, cell cycle progression, polarity, and motility. Defects in centriole number and structure are associated with human diseases including cancer and ciliopathies. Discovery of the centriole dates back to the 19th century. However, recent advances in genetic and biochemical tools, development of high-resolution microscopy, and identification of centriole components have accelerated our understanding of its assembly, function, evolution, and its role in human disease. The centriole is an evolutionarily conserved structure built from highly conserved proteins and is present in all branches of the eukaryotic tree of life. However, centriole number, size, and organization varies among different organisms and even cell types within a single organism, reflecting its cell type–specialized functions. In this review, we provide an overview of our current understanding of centriole biogenesis and how variations around the same theme generate alternatives for centriole formation and function.
Collapse
Affiliation(s)
- Jadranka Loncarek
- Cell Cycle Regulation Lab, Gulbenkian Institute of Science, Oeiras, Portugal
| | - Mónica Bettencourt-Dias
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health/Center for Cancer Research/National Cancer Institute-Frederick, Frederick, MD
| |
Collapse
|
66
|
Rale MJ, Kadzik RS, Petry S. Phase Transitioning the Centrosome into a Microtubule Nucleator. Biochemistry 2017; 57:30-37. [PMID: 29256606 DOI: 10.1021/acs.biochem.7b01064] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Centrosomes are self-assembling, micron-scale, nonmembrane bound organelles that nucleate microtubules (MTs) and organize the microtubule cytoskeleton of the cell. They orchestrate critical cellular processes such as ciliary-based motility, vesicle trafficking, and cell division. Much is known about the role of the centrosome in these contexts, but we have a less comprehensive understanding of how the centrosome assembles and generates microtubules. Studies over the past 10 years have fundamentally shifted our view of these processes. Subdiffraction imaging has probed the amorphous haze of material surrounding the core of the centrosome revealing a complex, hierarchically organized structure whose composition and size changes profoundly during the transition from interphase to mitosis. New biophysical insights into protein phase transitions, where a diffuse protein spontaneously separates into a locally concentrated, nonmembrane bounded compartment, have provided a fresh perspective into how the centrosome might rapidly condense from diffuse cytoplasmic components. In this Perspective, we focus on recent findings that identify several centrosomal proteins that undergo phase transitions. We discuss how to reconcile these results with the current model of the underlying organization of proteins in the centrosome. Furthermore, we reflect on how these findings impact our understanding of how the centrosome undergoes self-assembly and promotes MT nucleation.
Collapse
Affiliation(s)
- Michael J Rale
- Department of Molecular Biology, Princeton University , Princeton, New Jersey 08544, United States
| | - Rachel S Kadzik
- Department of Molecular Biology, Princeton University , Princeton, New Jersey 08544, United States
| | - Sabine Petry
- Department of Molecular Biology, Princeton University , Princeton, New Jersey 08544, United States
| |
Collapse
|
67
|
|
68
|
Fry AM, Sampson J, Shak C, Shackleton S. Recent advances in pericentriolar material organization: ordered layers and scaffolding gels. F1000Res 2017; 6:1622. [PMID: 29026530 PMCID: PMC5583744 DOI: 10.12688/f1000research.11652.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/01/2017] [Indexed: 12/11/2022] Open
Abstract
The centrosome is an unusual organelle that lacks a surrounding membrane, raising the question of what limits its size and shape. Moreover, while electron microscopy (EM) has provided a detailed view of centriole architecture, there has been limited understanding of how the second major component of centrosomes, the pericentriolar material (PCM), is organized. Here, we summarize exciting recent findings from super-resolution fluorescence imaging, structural biology, and biochemical reconstitution that together reveal the presence of ordered layers and complex gel-like scaffolds in the PCM. Moreover, we discuss how this is leading to a better understanding of the process of microtubule nucleation, how alterations in PCM size are regulated in cycling and differentiated cells, and why mutations in PCM components lead to specific human pathologies.
Collapse
Affiliation(s)
- Andrew M Fry
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Josephina Sampson
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Caroline Shak
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Sue Shackleton
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| |
Collapse
|
69
|
Woodruff JB, Ferreira Gomes B, Widlund PO, Mahamid J, Honigmann A, Hyman AA. The Centrosome Is a Selective Condensate that Nucleates Microtubules by Concentrating Tubulin. Cell 2017; 169:1066-1077.e10. [PMID: 28575670 DOI: 10.1016/j.cell.2017.05.028] [Citation(s) in RCA: 469] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/06/2017] [Accepted: 05/15/2017] [Indexed: 01/08/2023]
Abstract
Centrosomes are non-membrane-bound compartments that nucleate microtubule arrays. They consist of nanometer-scale centrioles surrounded by a micron-scale, dynamic assembly of protein called the pericentriolar material (PCM). To study how PCM forms a spherical compartment that nucleates microtubules, we reconstituted PCM-dependent microtubule nucleation in vitro using recombinant C. elegans proteins. We found that macromolecular crowding drives assembly of the key PCM scaffold protein SPD-5 into spherical condensates that morphologically and dynamically resemble in vivo PCM. These SPD-5 condensates recruited the microtubule polymerase ZYG-9 (XMAP215 homolog) and the microtubule-stabilizing protein TPXL-1 (TPX2 homolog). Together, these three proteins concentrated tubulin ∼4-fold over background, which was sufficient to reconstitute nucleation of microtubule asters in vitro. Our results suggest that in vivo PCM is a selective phase that organizes microtubule arrays through localized concentration of tubulin by microtubule effector proteins.
Collapse
Affiliation(s)
- Jeffrey B Woodruff
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| | - Beatriz Ferreira Gomes
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Per O Widlund
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9 c, 40530 Gothenburg, Sweden
| | - Julia Mahamid
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Alf Honigmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| |
Collapse
|
70
|
Feng Z, Caballe A, Wainman A, Johnson S, Haensele AFM, Cottee MA, Conduit PT, Lea SM, Raff JW. Structural Basis for Mitotic Centrosome Assembly in Flies. Cell 2017; 169:1078-1089.e13. [PMID: 28575671 PMCID: PMC5457487 DOI: 10.1016/j.cell.2017.05.030] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/23/2017] [Accepted: 05/15/2017] [Indexed: 11/16/2022]
Abstract
In flies, Centrosomin (Cnn) forms a phosphorylation-dependent scaffold that recruits proteins to the mitotic centrosome, but how Cnn assembles into a scaffold is unclear. We show that scaffold assembly requires conserved leucine zipper (LZ) and Cnn-motif 2 (CM2) domains that co-assemble into a 2:2 complex in vitro. We solve the crystal structure of the LZ:CM2 complex, revealing that both proteins form helical dimers that assemble into an unusual tetramer. A slightly longer version of the LZ can form micron-scale structures with CM2, whose assembly is stimulated by Plk1 phosphorylation in vitro. Mutating individual residues that perturb LZ:CM2 tetramer assembly perturbs the formation of these micron-scale assemblies in vitro and Cnn-scaffold assembly in vivo. Thus, Cnn molecules have an intrinsic ability to form large, LZ:CM2-interaction-dependent assemblies that are critical for mitotic centrosome assembly. These studies provide the first atomic insight into a molecular interaction required for mitotic centrosome assembly. The conserved PReM and CM2 domains of Cnn co-assemble into micron-scale structures The crystal structure of the PReM-LZ:CM2 complex is solved to 1.82 Å Mutations that block PReM-LZ:CM2 assembly in vitro block centrosome assembly in vivo Phosphorylation of PReM by Polo/Plk1 promotes scaffold assembly in vitro and in vivo
Collapse
Affiliation(s)
- Zhe Feng
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Anna Caballe
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Alan Wainman
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Steven Johnson
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Andreas F M Haensele
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Matthew A Cottee
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Paul T Conduit
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Susan M Lea
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | - Jordan W Raff
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
71
|
Novak ZA, Wainman A, Gartenmann L, Raff JW. Cdk1 Phosphorylates Drosophila Sas-4 to Recruit Polo to Daughter Centrioles and Convert Them to Centrosomes. Dev Cell 2017; 37:545-57. [PMID: 27326932 PMCID: PMC4918730 DOI: 10.1016/j.devcel.2016.05.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/04/2016] [Accepted: 05/23/2016] [Indexed: 02/07/2023]
Abstract
Centrosomes and cilia are organized by a centriole pair comprising an older mother and a younger daughter. Centriole numbers are tightly regulated, and daughter centrioles (which assemble in S phase) cannot themselves duplicate or organize centrosomes until they have passed through mitosis. It is unclear how this mitotic “centriole conversion” is regulated, but it requires Plk1/Polo kinase. Here we show that in flies, Cdk1 phosphorylates the conserved centriole protein Sas-4 during mitosis. This creates a Polo-docking site that helps recruit Polo to daughter centrioles and is required for the subsequent recruitment of Asterless (Asl), a protein essential for centriole duplication and mitotic centrosome assembly. Point mutations in Sas-4 that prevent Cdk1 phosphorylation or Polo docking do not block centriole disengagement during mitosis, but block efficient centriole conversion and lead to embryonic lethality. These observations can explain why daughter centrioles have to pass through mitosis before they can duplicate and organize a centrosome. Cdk1 phosphorylates Sas-4 to initiate Polo/Plk1 recruitment to daughter centrioles Polo recruitment promotes Asterless (Asl) incorporation into daughter centrioles Asl incorporation licenses new centrioles to duplicate and organize centrosomes These observations help explain why centriole conversion is tied to mitosis
Collapse
Affiliation(s)
- Zsofia A Novak
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Lisa Gartenmann
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
72
|
Lattao R, Kovács L, Glover DM. The Centrioles, Centrosomes, Basal Bodies, and Cilia of Drosophila melanogaster. Genetics 2017; 206:33-53. [PMID: 28476861 PMCID: PMC5419478 DOI: 10.1534/genetics.116.198168] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/24/2017] [Indexed: 12/19/2022] Open
Abstract
Centrioles play a key role in the development of the fly. They are needed for the correct formation of centrosomes, the organelles at the poles of the spindle that can persist as microtubule organizing centers (MTOCs) into interphase. The ability to nucleate cytoplasmic microtubules (MTs) is a property of the surrounding pericentriolar material (PCM). The centriole has a dual life, existing not only as the core of the centrosome but also as the basal body, the structure that templates the formation of cilia and flagellae. Thus the structure and functions of the centriole, the centrosome, and the basal body have an impact upon many aspects of development and physiology that can readily be modeled in Drosophila Centrosomes are essential to give organization to the rapidly increasing numbers of nuclei in the syncytial embryo and for the spatially precise execution of cell division in numerous tissues, particularly during male meiosis. Although mitotic cell cycles can take place in the absence of centrosomes, this is an error-prone process that opens up the fly to developmental defects and the potential of tumor formation. Here, we review the structure and functions of the centriole, the centrosome, and the basal body in different tissues and cultured cells of Drosophila melanogaster, highlighting their contributions to different aspects of development and cell division.
Collapse
Affiliation(s)
- Ramona Lattao
- Department of Genetics, University of Cambridge, CB2 3EH, United Kingdom
| | - Levente Kovács
- Department of Genetics, University of Cambridge, CB2 3EH, United Kingdom
| | - David M Glover
- Department of Genetics, University of Cambridge, CB2 3EH, United Kingdom
| |
Collapse
|
73
|
Distinct molecular cues ensure a robust microtubule-dependent nuclear positioning in the Drosophila oocyte. Nat Commun 2017; 8:15168. [PMID: 28447612 PMCID: PMC5414183 DOI: 10.1038/ncomms15168] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/02/2017] [Indexed: 11/08/2022] Open
Abstract
Controlling nucleus localization is crucial for a variety of cellular functions. In the Drosophila oocyte, nuclear asymmetric positioning is essential for the reorganization of the microtubule (MT) network that controls the polarized transport of axis determinants. A combination of quantitative three-dimensional live imaging and laser ablation-mediated force analysis reveal that nuclear positioning is ensured with an unexpected level of robustness. We show that the nucleus is pushed to the oocyte antero-dorsal cortex by MTs and that its migration can proceed through distinct tracks. Centrosome-associated MTs favour one migratory route. In addition, the MT-associated protein Mud/NuMA that is asymmetrically localized in an Asp-dependent manner at the nuclear envelope hemisphere where MT nucleation is higher promotes a separate route. Our results demonstrate that centrosomes do not provide an obligatory driving force for nuclear movement, but together with Mud, contribute to the mechanisms that ensure the robustness of asymmetric nuclear positioning. Asymmetric nuclear positioning in the fruit fly oocyte is essential for the correct localization of axis determinants. Here, the authors show that different microtubule-dependent mechanisms contribute to nuclear transport and ensure the robustness of nuclear positioning.
Collapse
|
74
|
Yamada M, Goshima G. Mitotic Spindle Assembly in Land Plants: Molecules and Mechanisms. BIOLOGY 2017; 6:biology6010006. [PMID: 28125061 PMCID: PMC5371999 DOI: 10.3390/biology6010006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/29/2016] [Accepted: 01/08/2017] [Indexed: 11/16/2022]
Abstract
In textbooks, the mitotic spindles of plants are often described separately from those of animals. How do they differ at the molecular and mechanistic levels? In this chapter, we first outline the process of mitotic spindle assembly in animals and land plants. We next discuss the conservation of spindle assembly factors based on database searches. Searches of >100 animal spindle assembly factors showed that the genes involved in this process are well conserved in plants, with the exception of two major missing elements: centrosomal components and subunits/regulators of the cytoplasmic dynein complex. We then describe the spindle and phragmoplast assembly mechanisms based on the data obtained from robust gene loss-of-function analyses using RNA interference (RNAi) or mutant plants. Finally, we discuss future research prospects of plant spindles.
Collapse
Affiliation(s)
- Moé Yamada
- Graduate School of Science, Division of Biological Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
| | - Gohta Goshima
- Graduate School of Science, Division of Biological Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
| |
Collapse
|
75
|
Nano M, Basto R. Consequences of Centrosome Dysfunction During Brain Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1002:19-45. [PMID: 28600781 DOI: 10.1007/978-3-319-57127-0_2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Development requires cell proliferation, differentiation and spatial organization of daughter cells to occur in a highly controlled manner. The mode of cell division, the extent of proliferation and the spatial distribution of mitosis allow the formation of tissues of the right size and with the correct structural organization. All these aspects depend on cell cycle duration, correct chromosome segregation and spindle orientation. The centrosome, which is the main microtubule-organizing centre (MTOC) of animal cells, contributes to all these processes. As one of the most structurally complex organs in our body, the brain is particularly susceptible to centrosome dysfunction. Autosomal recessive primary microcephaly (MCPH), primordial dwarfism disease Seckel syndrome (SCKS) and microcephalic osteodysplastic primordial dwarfism type II (MOPD-II) are often connected to mutations in centrosomal genes. In this chapter, we discuss the consequences of centrosome dysfunction during development and how they can contribute to the etiology of human diseases.
Collapse
Affiliation(s)
- Maddalena Nano
- Institut Curie, PSL Research University, CNRS UMR144, 12 rue Lhomond, 75005, Paris, France
| | - Renata Basto
- Institut Curie, PSL Research University, CNRS UMR144, 12 rue Lhomond, 75005, Paris, France.
| |
Collapse
|
76
|
Gottardo M, Callaini G, Riparbelli MG. Klp10A modulates the localization of centriole-associated proteins during Drosophila male gametogenesis. Cell Cycle 2016; 15:3432-3441. [PMID: 27764551 DOI: 10.1080/15384101.2016.1248005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mutations in Klp10A, a microtubule-depolymerising Kinesin-13, lead to overly long centrioles in Drosophila male germ cells. We demonstrated that the loss of Klp10A modifies the distribution of typical proteins involved in centriole assembly and function. In the absence of Klp10A the distribution of Drosophila pericentrin-like protein (Dplp), Sas-4 and Sak/Plk4 that are restricted in control testes to the proximal end of the centriole increase along the centriole length. Remarkably, the cartwheel is lacking or it appears abnormal in mutant centrioles, suggesting that this structure may spatially delimit protein localization. Moreover, the parent centrioles that in control cells have the same dimensions grow at different rates in mutant testes with the mother centrioles longer than the daughters. Daughter centrioles have often an ectopic position with respect to the proximal end of the mothers and failed to recruit Dplp.
Collapse
Affiliation(s)
- Marco Gottardo
- a Department of Life Sciences , University of Siena , Siena , Italy
| | | | | |
Collapse
|
77
|
A centrosome interactome provides insight into organelle assembly and reveals a non-duplication role for Plk4. Nat Commun 2016; 7:12476. [PMID: 27558293 PMCID: PMC5007297 DOI: 10.1038/ncomms12476] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/05/2016] [Indexed: 02/06/2023] Open
Abstract
The centrosome is the major microtubule-organizing centre of many cells, best known for its role in mitotic spindle organization. How the proteins of the centrosome are accurately assembled to carry out its many functions remains poorly understood. The non-membrane-bound nature of the centrosome dictates that protein-protein interactions drive its assembly and functions. To investigate this massive macromolecular organelle, we generated a 'domain-level' centrosome interactome using direct protein-protein interaction data from a focused yeast two-hybrid screen. We then used biochemistry, cell biology and the model organism Drosophila to provide insight into the protein organization and kinase regulatory machinery required for centrosome assembly. Finally, we identified a novel role for Plk4, the master regulator of centriole duplication. We show that Plk4 phosphorylates Cep135 to properly position the essential centriole component Asterless. This interaction landscape affords a critical framework for research of normal and aberrant centrosomes.
Collapse
|
78
|
Saurya S, Roque H, Novak ZA, Wainman A, Aydogan MG, Volanakis A, Sieber B, Pinto DMS, Raff JW. Drosophila Ana1 is required for centrosome assembly and centriole elongation. J Cell Sci 2016; 129:2514-25. [PMID: 27206860 PMCID: PMC4958303 DOI: 10.1242/jcs.186460] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/11/2016] [Indexed: 12/11/2022] Open
Abstract
Centrioles organise centrosomes and cilia, and these organelles have an important role in many cell processes. In flies, the centriole protein Ana1 is required for the assembly of functional centrosomes and cilia. It has recently been shown that Cep135 (also known as Bld10) initially recruits Ana1 to newly formed centrioles, and that Ana1 then recruits Asl (known as Cep152 in mammals) to promote the conversion of these centrioles into centrosomes. Here, we show that ana1 mutants lack detectable centrosomes in vivo, that Ana1 is irreversibly incorporated into centrioles during their assembly and appears to play a more important role in maintaining Asl at centrioles than in initially recruiting Asl to centrioles. Unexpectedly, we also find that Ana1 promotes centriole elongation in a dose-dependent manner: centrioles are shorter when Ana1 dosage is reduced and are longer when Ana1 is overexpressed. This latter function of Ana1 appears to be distinct from its role in centrosome and cilium function, as a GFP–Ana1 fusion lacking the N-terminal 639 amino acids of the protein can support centrosome assembly and cilium function but cannot promote centriole over-elongation when overexpressed. Highlighted Article: Ana1 is a conserved centriole protein that we show is required for centrosome and cilium assembly and that also helps to promote centriole elongation in a dose-dependent manner.
Collapse
Affiliation(s)
- Saroj Saurya
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Hélio Roque
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Zsofia A Novak
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Mustafa G Aydogan
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Adam Volanakis
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Boris Sieber
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - David Miguel Susano Pinto
- Micron Oxford Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
79
|
Abstract
As a microtubule-organizing center, the centrosome undergoes a dramatic increase in size - via expansion of the pericentriolar material - during mitosis. Recent work reveals shared assembly properties of a protein scaffold that facilitates and supports this expansion, a process critical to spindle assembly.
Collapse
Affiliation(s)
- Suzanna L Prosser
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, M5G 1X5, Canada
| | - Laurence Pelletier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
80
|
Conduit PT, Raff JW. Different Drosophila cell types exhibit differences in mitotic centrosome assembly dynamics. Curr Biol 2016; 25:R650-1. [PMID: 26241137 PMCID: PMC4533225 DOI: 10.1016/j.cub.2015.05.061] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Paul T Conduit
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.
| | - Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
81
|
Galletta BJ, Jacobs KC, Fagerstrom CJ, Rusan NM. Asterless is required for centriole length control and sperm development. J Cell Biol 2016; 213:435-50. [PMID: 27185836 PMCID: PMC4878089 DOI: 10.1083/jcb.201501120] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/19/2016] [Indexed: 12/18/2022] Open
Abstract
Loss of the centriole protein Asterless (Asl) prevents centriole duplication, which has limited the study of its function at centrioles. Here, Galletta et al. show that Asl controls centriole length and ensures proper basal body functions during spermatogenesis. Centrioles are the foundation of two organelles, centrosomes and cilia. Centriole numbers and functions are tightly controlled, and mutations in centriole proteins are linked to a variety of diseases, including microcephaly. Loss of the centriole protein Asterless (Asl), the Drosophila melanogaster orthologue of Cep152, prevents centriole duplication, which has limited the study of its nonduplication functions. Here, we identify populations of cells with Asl-free centrioles in developing Drosophila tissues, allowing us to assess its duplication-independent function. We show a role for Asl in controlling centriole length in germline and somatic tissue, functioning via the centriole protein Cep97. We also find that Asl is not essential for pericentriolar material recruitment or centrosome function in organizing mitotic spindles. Lastly, we show that Asl is required for proper basal body function and spermatid axoneme formation. Insights into the role of Asl/Cep152 beyond centriole duplication could help shed light on how Cep152 mutations lead to the development of microcephaly.
Collapse
Affiliation(s)
- Brian J Galletta
- Cell Biology and Physiology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Katherine C Jacobs
- Cell Biology and Physiology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Carey J Fagerstrom
- Cell Biology and Physiology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Nasser M Rusan
- Cell Biology and Physiology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
82
|
Li D, Betzig E. Response to Comment on "Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics". Science 2016; 352:527. [PMID: 27126031 DOI: 10.1126/science.aad8396] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/05/2016] [Indexed: 01/12/2023]
Abstract
Sahl et al in their Comment raise criticisms of our work that fall into three classes: image artifacts, resolution criteria, and comparative performance on live cells. We explore each of these in turn.
Collapse
Affiliation(s)
- Dong Li
- National Laboratory of Biological Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China. Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147.
| | - Eric Betzig
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147.
| |
Collapse
|
83
|
Abstract
The microcephaly protein, Cep215, contributes to the engagement of duplicated centrioles in interphase. Now two distinct pools of Cep215 at centrosomes are identified, one bound to Cep68 and the other to pericentrin. Plk1-mediated degradation of Cep68 and separase-mediated cleavage of pericentrin release both pools of Cep215, thereby promoting centriole disengagement.
Collapse
|
84
|
Conduit PT, Wainman A, Novak ZA, Weil TT, Raff JW. Re-examining the role of Drosophila Sas-4 in centrosome assembly using two-colour-3D-SIM FRAP. eLife 2015; 4. [PMID: 26530814 PMCID: PMC4631861 DOI: 10.7554/elife.08483] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 10/01/2015] [Indexed: 01/10/2023] Open
Abstract
Centrosomes have many important functions and comprise a ‘mother’ and ‘daughter’ centriole surrounded by pericentriolar material (PCM). The mother centriole recruits and organises the PCM and templates the formation of the daughter centriole. It has been reported that several important Drosophila PCM-organising proteins are recruited to centrioles from the cytosol as part of large cytoplasmic ‘S-CAP’ complexes that contain the centriole protein Sas-4. In a previous paper (Conduit et al., 2014b) we showed that one of these proteins, Cnn, and another key PCM-organising protein, Spd-2, are recruited around the mother centriole before spreading outwards to form a scaffold that supports mitotic PCM assembly; the recruitment of Cnn and Spd-2 is dependent on another S-CAP protein, Asl. We show here, however, that Cnn, Spd-2 and Asl are not recruited to the mother centriole as part of a complex with Sas-4. Thus, PCM recruitment in fly embryos does not appear to require cytosolic S-CAP complexes. DOI:http://dx.doi.org/10.7554/eLife.08483.001
Collapse
Affiliation(s)
- Paul T Conduit
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom.,Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Zsofia A Novak
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Timothy T Weil
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
85
|
Tamada M, Zallen JA. Square Cell Packing in the Drosophila Embryo through Spatiotemporally Regulated EGF Receptor Signaling. Dev Cell 2015; 35:151-61. [PMID: 26506305 PMCID: PMC4939091 DOI: 10.1016/j.devcel.2015.09.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 08/11/2015] [Accepted: 09/23/2015] [Indexed: 01/05/2023]
Abstract
Cells display dynamic and diverse morphologies during development, but the strategies by which differentiated tissues achieve precise shapes and patterns are not well understood. Here we identify a developmental program that generates a highly ordered square cell grid in the Drosophila embryo through sequential and spatially regulated cell alignment, oriented cell division, and apicobasal cell elongation. The basic leucine zipper transcriptional regulator Cnc is necessary and sufficient to produce a square cell grid in the presence of a midline signal provided by the EGF receptor ligand Spitz. Spitz orients cell divisions through a Pins/LGN-dependent spindle-positioning mechanism and controls cell shape and alignment through a transcriptional pathway that requires the Pointed ETS domain protein. These results identify a strategy for producing ordered square cell packing configurations in epithelia and reveal a molecular mechanism by which organized tissue structure is generated through spatiotemporally regulated responses to EGF receptor activation.
Collapse
Affiliation(s)
- Masako Tamada
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA.
| |
Collapse
|
86
|
Lerit DA, Jordan HA, Poulton JS, Fagerstrom CJ, Galletta BJ, Peifer M, Rusan NM. Interphase centrosome organization by the PLP-Cnn scaffold is required for centrosome function. J Cell Biol 2015; 210:79-97. [PMID: 26150390 PMCID: PMC4494003 DOI: 10.1083/jcb.201503117] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cnn and PLP directly interact at two defined sites to coordinate the cell cycle–dependent rearrangement and scaffolding activity of the centrosome to permit normal centrosome organization, cell division, and embryonic viability. Pericentriolar material (PCM) mediates the microtubule (MT) nucleation and anchoring activity of centrosomes. A scaffold organized by Centrosomin (Cnn) serves to ensure proper PCM architecture and functional changes in centrosome activity with each cell cycle. Here, we investigate the mechanisms that spatially restrict and temporally coordinate centrosome scaffold formation. Focusing on the mitotic-to-interphase transition in Drosophila melanogaster embryos, we show that the elaboration of the interphase Cnn scaffold defines a major structural rearrangement of the centrosome. We identify an unprecedented role for Pericentrin-like protein (PLP), which localizes to the tips of extended Cnn flares, to maintain robust interphase centrosome activity and promote the formation of interphase MT asters required for normal nuclear spacing, centrosome segregation, and compartmentalization of the syncytial embryo. Our data reveal that Cnn and PLP directly interact at two defined sites to coordinate the cell cycle–dependent rearrangement and scaffolding activity of the centrosome to permit normal centrosome organization, cell division, and embryonic viability.
Collapse
Affiliation(s)
- Dorothy A Lerit
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Holly A Jordan
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - John S Poulton
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Carey J Fagerstrom
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Brian J Galletta
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Mark Peifer
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Nasser M Rusan
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
87
|
Abstract
It has become clear that the role of centrosomes extends well beyond that of important microtubule organizers. There is increasing evidence that they also function as coordination centres in eukaryotic cells, at which specific cytoplasmic proteins interact at high concentrations and important cell decisions are made. Accordingly, hundreds of proteins are concentrated at centrosomes, including cell cycle regulators, checkpoint proteins and signalling molecules. Nevertheless, several observations have raised the question of whether centrosomes are essential for many cell processes. Recent findings have shed light on the functions of centrosomes in animal cells and on the molecular mechanisms of centrosome assembly, in particular during mitosis. These advances should ultimately allow the in vitro reconstitution of functional centrosomes from their component proteins to unlock the secrets of these enigmatic organelles.
Collapse
|
88
|
Carvalhal S, Ribeiro SA, Arocena M, Kasciukovic T, Temme A, Koehler K, Huebner A, Griffis ER. The nucleoporin ALADIN regulates Aurora A localization to ensure robust mitotic spindle formation. Mol Biol Cell 2015; 26:3424-38. [PMID: 26246606 PMCID: PMC4591688 DOI: 10.1091/mbc.e15-02-0113] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/24/2015] [Indexed: 12/17/2022] Open
Abstract
The nucleoporin ALADIN, which is mutated in patients with triple A syndrome, is necessary for proper spindle formation. Without ALADIN, active Aurora A moves away from centrosomes. The relocalization of active Aurora A leads to a redistribution of specific spindle assembly factors that make spindles less stable and slows their formation. The formation of the mitotic spindle is a complex process that requires massive cellular reorganization. Regulation by mitotic kinases controls this entire process. One of these mitotic controllers is Aurora A kinase, which is itself highly regulated. In this study, we show that the nuclear pore protein ALADIN is a novel spatial regulator of Aurora A. Without ALADIN, Aurora A spreads from centrosomes onto spindle microtubules, which affects the distribution of a subset of microtubule regulators and slows spindle assembly and chromosome alignment. ALADIN interacts with inactive Aurora A and is recruited to the spindle pole after Aurora A inhibition. Of interest, mutations in ALADIN cause triple A syndrome. We find that some of the mitotic phenotypes that we observe after ALADIN depletion also occur in cells from triple A syndrome patients, which raises the possibility that mitotic errors may underlie part of the etiology of this syndrome.
Collapse
Affiliation(s)
- Sara Carvalhal
- Centre for Gene Regulation and Expression, University of Dundee, College of Life Sciences, Dundee DD1 5EH, United Kingdom
| | - Susana Abreu Ribeiro
- Physiology Course, Marine Biological Laboratory, Woods Hole, MA 02543 Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Miguel Arocena
- Centre for Gene Regulation and Expression, University of Dundee, College of Life Sciences, Dundee DD1 5EH, United Kingdom
| | - Taciana Kasciukovic
- Centre for Gene Regulation and Expression, University of Dundee, College of Life Sciences, Dundee DD1 5EH, United Kingdom
| | - Achim Temme
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Katrin Koehler
- Department of Paediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Angela Huebner
- Department of Paediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Eric R Griffis
- Centre for Gene Regulation and Expression, University of Dundee, College of Life Sciences, Dundee DD1 5EH, United Kingdom Physiology Course, Marine Biological Laboratory, Woods Hole, MA 02543
| |
Collapse
|
89
|
Dong G. Building a ninefold symmetrical barrel: structural dissections of centriole assembly. Open Biol 2015; 5:150082. [PMID: 26269428 PMCID: PMC4554922 DOI: 10.1098/rsob.150082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/21/2015] [Indexed: 01/27/2023] Open
Abstract
Centrioles are short microtubule-based organelles with a conserved ninefold symmetry. They are essential for both centrosome formation and cilium biogenesis in most eukaryotes. A core set of five centriolar proteins has been identified and their sequential recruitment to procentrioles has been established. However, structures at atomic resolution for most of the centriolar components were scarce, and the underlying molecular mechanisms for centriole assembly had been a mystery--until recently. In this review, I briefly summarize recent advancements in high-resolution structural characterization of the core centriolar components and discuss perspectives in the field.
Collapse
Affiliation(s)
- Gang Dong
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna 1030, Austria
| |
Collapse
|
90
|
|
91
|
Richens JH, Barros TP, Lucas EP, Peel N, Pinto DMS, Wainman A, Raff JW. The Drosophila Pericentrin-like-protein (PLP) cooperates with Cnn to maintain the integrity of the outer PCM. Biol Open 2015; 4:1052-61. [PMID: 26157019 PMCID: PMC4542290 DOI: 10.1242/bio.012914] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Centrosomes comprise a pair of centrioles surrounded by a matrix of pericentriolar material (PCM). In vertebrate cells, Pericentrin plays an important part in mitotic PCM assembly, but the Drosophila Pericentrin-like protein (PLP) appears to have a more minor role in mitotic fly cells. Here we investigate the function of PLP during the rapid mitotic cycles of the early Drosophila embryo. Unexpectedly, we find that PLP is specifically enriched in the outer-most regions of the PCM, where it largely co-localizes with the PCM scaffold protein Cnn. In the absence of PLP the outer PCM appears to be structurally weakened, and it rapidly disperses along the centrosomal microtubules (MTs). As a result, centrosomal MTs are subtly disorganized in embryos lacking PLP, although mitosis is largely unperturbed and these embryos develop and hatch at near-normal rates. Y2H analysis reveals that PLP can potentially form multiple interactions with itself and with the PCM recruiting proteins Asl, Spd-2 and Cnn. A deletion analysis suggests that PLP participates in a complex network of interactions that ultimately help to strengthen the PCM.
Collapse
Affiliation(s)
- Jennifer H Richens
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Teresa P Barros
- The Gurdon Institute, University of Cambridge, Tennis Court Rd, Cambridge CB2 1QN, UK
| | - Eliana P Lucas
- The Gurdon Institute, University of Cambridge, Tennis Court Rd, Cambridge CB2 1QN, UK
| | - Nina Peel
- The Gurdon Institute, University of Cambridge, Tennis Court Rd, Cambridge CB2 1QN, UK
| | - David Miguel Susano Pinto
- Micron Oxford Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| |
Collapse
|
92
|
Yang R, Feldman JL. SPD-2/CEP192 and CDK Are Limiting for Microtubule-Organizing Center Function at the Centrosome. Curr Biol 2015; 25:1924-31. [PMID: 26119750 DOI: 10.1016/j.cub.2015.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/18/2015] [Accepted: 06/01/2015] [Indexed: 10/23/2022]
Abstract
The centrosome acts as the microtubule-organizing center (MTOC) during mitosis in animal cells. Microtubules are nucleated and anchored by γ-tubulin ring complexes (γ-TuRCs) embedded within the centrosome's pericentriolar material (PCM). The PCM is required for the localization of γ-TuRCs, and both are steadily recruited to the centrosome, culminating in a peak in MTOC function in metaphase. In differentiated cells, the centrosome is often attenuated as an MTOC and MTOC function is reassigned to non-centrosomal sites such as the apical membrane in epithelial cells, the nuclear envelope in skeletal muscle, and down the lengths of axons and dendrites in neurons. Hyperactive MTOC function at the centrosome is associated with epithelial cancers and with invasive behavior in tumor cells. Little is known about the mechanisms that limit MTOC activation at the centrosome. Here, we find that MTOC function at the centrosome is completely inactivated during cell differentiation in C. elegans embryonic intestinal cells and MTOC function is reassigned to the apical membrane. In cells that divide after differentiation, the cellular MTOC state switches between the membrane and the centrosome. Using cell fusion experiments in live embryos, we find that the centrosome MTOC state is dominant and that the inactive MTOC state of the centrosome is malleable; fusion of a mitotic cell to a differentiated or interphase cell results in rapid reactivation of the centrosome MTOC. We show that conversion of MTOC state involves the conserved centrosome protein SPD-2/CEP192 and CDK activity from the mitotic cell.
Collapse
Affiliation(s)
- Renzhi Yang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jessica L Feldman
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
93
|
Baumbach J, Novak ZA, Raff JW, Wainman A. Dissecting the function and assembly of acentriolar microtubule organizing centers in Drosophila cells in vivo. PLoS Genet 2015; 11:e1005261. [PMID: 26020779 PMCID: PMC4447278 DOI: 10.1371/journal.pgen.1005261] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/04/2015] [Indexed: 11/18/2022] Open
Abstract
Acentriolar microtubule organizing centers (aMTOCs) are formed during meiosis and mitosis in several cell types, but their function and assembly mechanism is unclear. Importantly, aMTOCs can be overactive in cancer cells, enhancing multipolar spindle formation, merotelic kinetochore attachment and aneuploidy. Here we show that aMTOCs can form in acentriolar Drosophila somatic cells in vivo via an assembly pathway that depends on Asl, Cnn and, to a lesser extent, Spd-2--the same proteins that appear to drive mitotic centrosome assembly in flies. This finding enabled us to ablate aMTOC formation in acentriolar cells, and so perform a detailed genetic analysis of the contribution of aMTOCs to acentriolar mitotic spindle formation. Here we show that although aMTOCs can nucleate microtubules, they do not detectably increase the efficiency of acentriolar spindle assembly in somatic fly cells. We find that they are required, however, for robust microtubule array assembly in cells without centrioles that also lack microtubule nucleation from around the chromatin. Importantly, aMTOCs are also essential for dynein-dependent acentriolar spindle pole focusing and for robust cell proliferation in the absence of centrioles and HSET/Ncd (a kinesin essential for acentriolar spindle pole focusing in many systems). We propose an updated model for acentriolar spindle pole coalescence by the molecular motors Ncd/HSET and dynein in conjunction with aMTOCs.
Collapse
Affiliation(s)
- Janina Baumbach
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Zsofia Anna Novak
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Jordan W. Raff
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
94
|
Microinjection techniques for studying centrosome function in Drosophila melanogaster syncytial embryos. Methods Cell Biol 2015; 129:229-249. [PMID: 26175442 DOI: 10.1016/bs.mcb.2015.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Microinjection is a powerful technique that can be used to study protein function. Early Drosophila embryos are particularly amenable to microinjection due to their large size and their single cell status. Here, we report methods to microinject these embryos with various reagents to study the function of proteins at centrosomes and centrosome function more generally. Although precise details vary between laboratories, many aspects of the process are conserved. We describe the process from setting up a fly cage to imaging the injected embryos on a spinning disk confocal microscope and use specific examples to highlight the potency of this technique.
Collapse
|
95
|
Abstract
As a large, nonmembrane bound organelle, the centrosome must rely heavily on protein-protein interactions to assemble itself in the cytoplasm and perform its functions as a microtubule-organizing center. Therefore, to understand how this organelle is built and functions, one must understand the protein-protein interactions made by each centrosome protein. Unfortunately, the highly interconnected nature of the centrosome, combined with its predicted unstructured, coil-rich proteins, has made the use of many standard approaches to studying protein-protein interactions very challenging. The yeast-two hybrid (Y2H) system is well suited for studying the centrosome and is an important complement to other biochemical approaches. In this chapter we describe how to carry out a directed Y2H screen to identify the direct interactions between a given centrosome protein and a library of others. Specifically, we detail using a bioinformatics-based approach (structure prediction programs) to subdivide proteins and screen for interactions using an array-based Y2H approach. We also describe how to use the interaction information garnered from this screen to generate mutations to disrupt specific interactions using mutagenic-PCR and a "reverse" Y2H screen. Finally, we discuss how information from such a screen can be integrated into existing models of centrosome assembly and how it can initiate and guide extensive in vitro and in vivo experimentation to test these models.
Collapse
|
96
|
Woodruff JB, Wueseke O, Viscardi V, Mahamid J, Ochoa SD, Bunkenborg J, Widlund PO, Pozniakovsky A, Zanin E, Bahmanyar S, Zinke A, Hong SH, Decker M, Baumeister W, Andersen JS, Oegema K, Hyman AA. Centrosomes. Regulated assembly of a supramolecular centrosome scaffold in vitro. Science 2015; 348:808-12. [PMID: 25977552 PMCID: PMC5039038 DOI: 10.1126/science.aaa3923] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The centrosome organizes microtubule arrays within animal cells and comprises two centrioles surrounded by an amorphous protein mass called the pericentriolar material (PCM). Despite the importance of centrosomes as microtubule-organizing centers, the mechanism and regulation of PCM assembly are not well understood. In Caenorhabditis elegans, PCM assembly requires the coiled-coil protein SPD-5. We found that recombinant SPD-5 could polymerize to form micrometer-sized porous networks in vitro. Network assembly was accelerated by two conserved regulators that control PCM assembly in vivo, Polo-like kinase-1 and SPD-2/Cep192. Only the assembled SPD-5 networks, and not unassembled SPD-5 protein, functioned as a scaffold for other PCM proteins. Thus, PCM size and binding capacity emerge from the regulated polymerization of one coiled-coil protein to form a porous network.
Collapse
Affiliation(s)
- Jeffrey B Woodruff
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Oliver Wueseke
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Valeria Viscardi
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Julia Mahamid
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Stacy D Ochoa
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jakob Bunkenborg
- Department of Clinical Biochemistry, Copenhagen University Hospital, Hvidovre 2650, Denmark. Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Per O Widlund
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Andrei Pozniakovsky
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Esther Zanin
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shirin Bahmanyar
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andrea Zinke
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Sun Hae Hong
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Marcus Decker
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Jens S Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Karen Oegema
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| |
Collapse
|
97
|
Abstract
The centrosome was discovered in the late 19th century when mitosis was first described. Long recognized as a key organelle of the spindle pole, its core component, the centriole, was realized more than 50 or so years later also to comprise the basal body of the cilium. Here, we chart the more recent acquisition of a molecular understanding of centrosome structure and function. The strategies for gaining such knowledge were quickly developed in the yeasts to decipher the structure and function of their distinctive spindle pole bodies. Only within the past decade have studies with model eukaryotes and cultured cells brought a similar degree of sophistication to our understanding of the centrosome duplication cycle and the multiple roles of this organelle and its component parts in cell division and signaling. Now as we begin to understand these functions in the context of development, the way is being opened up for studies of the roles of centrosomes in human disease.
Collapse
Affiliation(s)
- Jingyan Fu
- Cancer Research UK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Iain M Hagan
- Cancer Research UK Manchester Institute, University of Manchester, Withington, Manchester M20 4BX, United Kingdom
| | - David M Glover
- Cancer Research UK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| |
Collapse
|