51
|
Collins L, Francis J, Emanuel B, McCormick DA. Cholinergic and noradrenergic axonal activity contains a behavioral-state signal that is coordinated across the dorsal cortex. eLife 2023; 12:e81826. [PMID: 37102362 PMCID: PMC10238096 DOI: 10.7554/elife.81826] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 04/24/2023] [Indexed: 04/28/2023] Open
Abstract
Fluctuations in brain and behavioral state are supported by broadly projecting neuromodulatory systems. In this study, we use mesoscale two-photon calcium imaging to examine spontaneous activity of cholinergic and noradrenergic axons in awake mice in order to determine the interaction between arousal/movement state transitions and neuromodulatory activity across the dorsal cortex at distances separated by up to 4 mm. We confirm that GCaMP6s activity within axonal projections of both basal forebrain cholinergic and locus coeruleus noradrenergic neurons track arousal, indexed as pupil diameter, and changes in behavioral engagement, as reflected by bouts of whisker movement and/or locomotion. The broad coordination in activity between even distant axonal segments indicates that both of these systems can communicate, in part, through a global signal, especially in relation to changes in behavioral state. In addition to this broadly coordinated activity, we also find evidence that a subpopulation of both cholinergic and noradrenergic axons may exhibit heterogeneity in activity that appears to be independent of our measures of behavioral state. By monitoring the activity of cholinergic interneurons in the cortex, we found that a subpopulation of these cells also exhibit state-dependent (arousal/movement) activity. These results demonstrate that cholinergic and noradrenergic systems provide a prominent and broadly synchronized signal related to behavioral state, and therefore may contribute to state-dependent cortical activity and excitability.
Collapse
Affiliation(s)
- Lindsay Collins
- Institute of Neuroscience, University of OregonEugeneUnited States
| | - John Francis
- Institute of Neuroscience, University of OregonEugeneUnited States
| | - Brett Emanuel
- Institute of Neuroscience, University of OregonEugeneUnited States
| | | |
Collapse
|
52
|
Viglione A, Mazziotti R, Pizzorusso T. From pupil to the brain: New insights for studying cortical plasticity through pupillometry. Front Neural Circuits 2023; 17:1151847. [PMID: 37063384 PMCID: PMC10102476 DOI: 10.3389/fncir.2023.1151847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/08/2023] [Indexed: 04/03/2023] Open
Abstract
Pupil size variations have been associated with changes in brain activity patterns related with specific cognitive factors, such as arousal, attention, and mental effort. The locus coeruleus (LC), a key hub in the noradrenergic system of the brain, is considered to be a key regulator of cognitive control on pupil size, with changes in pupil diameter corresponding to the release of norepinephrine (NE). Advances in eye-tracking technology and open-source software have facilitated accurate pupil size measurement in various experimental settings, leading to increased interest in using pupillometry to track the nervous system activation state and as a potential biomarker for brain disorders. This review explores pupillometry as a non-invasive and fully translational tool for studying cortical plasticity starting from recent literature suggesting that pupillometry could be a promising technique for estimating the degree of residual plasticity in human subjects. Given that NE is known to be a critical mediator of cortical plasticity and arousal, the review includes data revealing the importance of the LC-NE system in modulating brain plasticity and pupil size. Finally, we will review data suggesting that pupillometry could provide a quantitative and complementary measure of cortical plasticity also in pre-clinical studies.
Collapse
Affiliation(s)
| | | | - Tommaso Pizzorusso
- BIO@SNS Lab, Scuola Normale Superiore, Pisa, Italy
- Institute of Neuroscience, National Research Council, Pisa, Italy
| |
Collapse
|
53
|
Bast N, Mason L, Ecker C, Baumeister S, Banaschewski T, Jones EJH, Murphy DGM, Buitelaar JK, Loth E, Pandina G, the EU-AIMS LEAP Group AhmadJumanaAmbrosinoSaraAuyeungBonnieBanaschewskiTobiasBaron-CohenSimonBastNicoBaumeisterSarahBeckmannChristian F.BölteSvenBourgeronThomasBoursCarstenBrammerMichaelBrandeisDanielBrognaClaudiade BruijnYvetteBuitelaarJan K.ChakrabartiBhismadevCharmanTonyCornelissenInekeCrawleyDaisyDell’AcquaFlavioDumasGuillaumeDurstonSarahEckerChristineFaulknerJessicaFrouinVincentGarcésPilarGoyardDavidHamLindsayHaywardHannahHippJoergHoltRosemaryJohnsonMarkJonesEmily J. H.KunduPrantikLaiMeng-ChuanD’ardhuyXavier LiogierLombardoMichael V.LothEvaLythgoeDavid J.MandlRenéMarquandAndreMasonLukeMennesMaartenMeyer-LindenbergAndreasMoessnangCarolinMurphyDeclan G. M.OakleyBethanyO’DwyerLaurenceOldehinkelMarianneOranjeBobPandinaGahanPersicoAntonio M.RuggeriBarbaraRuigrokAmberSabetJessicaSaccoRobertoCáceresAntonia San JoséSimonoffEmilySpoorenWillTillmannJulianToroRobertoTostHeikeWaldmanJackWilliamsSteve C. R.WooldridgeCarolineZwiersMarcel P., Freitag CM, Auyeung B, Banaschewski T, Baron-Cohen S, Bast N, Baumeister S, Beckmann CF, Bölte S, Bourgeron T, Bours C, Brammer M, Brandeis D, Brogna C, de Bruijn Y, Buitelaar JK, Chakrabarti B, Charman T, Cornelissen I, Crawley D, Dell’Acqua F, Dumas G, Durston S, Ecker C, Faulkner J, Frouin V, Garcés P, Goyard D, Ham L, Hayward H, Hipp J, Holt R, Johnson M, Jones EJH, Kundu P, Lai MC, D’ardhuy XL, Lombardo MV, Loth E, Lythgoe DJ, Mandl R, Marquand A, Mason L, Mennes M, Meyer-Lindenberg A, Moessnang C, Murphy DGM, Oakley B, O’Dwyer L, Oldehinkel M, Oranje B, Pandina G, Persico AM, Ruggeri B, Ruigrok A, Sabet J, Sacco R, Cáceres ASJ, Simonoff E, Spooren W, Tillmann J, Toro R, Tost H, Waldman J, Williams SCR, Wooldridge C, Zwiers MP, Freitag CM, the EU-AIMS LEAP Group. Sensory salience processing moderates attenuated gazes on faces in autism spectrum disorder: a case-control study. Mol Autism 2023; 14:5. [PMID: 36759875 PMCID: PMC9912590 DOI: 10.1186/s13229-023-00537-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Attenuated social attention is a key marker of autism spectrum disorder (ASD). Recent neuroimaging findings also emphasize an altered processing of sensory salience in ASD. The locus coeruleus-norepinephrine system (LC-NE) has been established as a modulator of this sensory salience processing (SSP). We tested the hypothesis that altered LC-NE functioning contributes to different SSP and results in diverging social attention in ASD. METHODS We analyzed the baseline eye-tracking data of the EU-AIMS Longitudinal European Autism Project (LEAP) for subgroups of autistic participants (n = 166, age = 6-30 years, IQ = 61-138, gender [female/male] = 41/125) or neurotypical development (TD; n = 166, age = 6-30 years, IQ = 63-138, gender [female/male] = 49/117) that were matched for demographic variables and data quality. Participants watched brief movie scenes (k = 85) depicting humans in social situations (human) or without humans (non-human). SSP was estimated by gazes on physical and motion salience and a corresponding pupillary response that indexes phasic activity of the LC-NE. Social attention is estimated by gazes on faces via manual areas of interest definition. SSP is compared between groups and related to social attention by linear mixed models that consider temporal dynamics within scenes. Models are controlled for comorbid psychopathology, gaze behavior, and luminance. RESULTS We found no group differences in gazes on salience, whereas pupillary responses were associated with altered gazes on physical and motion salience. In ASD compared to TD, we observed pupillary responses that were higher for non-human scenes and lower for human scenes. In ASD, we observed lower gazes on faces across the duration of the scenes. Crucially, this different social attention was influenced by gazes on physical salience and moderated by pupillary responses. LIMITATIONS The naturalistic study design precluded experimental manipulations and stimulus control, while effect sizes were small to moderate. Covariate effects of age and IQ indicate that the findings differ between age and developmental subgroups. CONCLUSIONS Pupillary responses as a proxy of LC-NE phasic activity during visual attention are suggested to modulate sensory salience processing and contribute to attenuated social attention in ASD.
Collapse
Affiliation(s)
- Nico Bast
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe-University, Deutschordenstraße 50, 60528, Frankfurt Am Main, Germany.
| | - Luke Mason
- grid.4464.20000 0001 2161 2573Centre for Brain and Cognitive Development, Birkbeck College, University of London, Malet Street, London, UK
| | - Christine Ecker
- grid.7839.50000 0004 1936 9721Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt Am Main, Germany
| | - Sarah Baumeister
- grid.7700.00000 0001 2190 4373Department of Child and Adolescent Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Tobias Banaschewski
- grid.7700.00000 0001 2190 4373Department of Child and Adolescent Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Emily J. H. Jones
- grid.4464.20000 0001 2161 2573Centre for Brain and Cognitive Development, Birkbeck College, University of London, Malet Street, London, UK
| | - Declan G. M. Murphy
- grid.13097.3c0000 0001 2322 6764Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, London, UK
| | - Jan K. Buitelaar
- grid.10417.330000 0004 0444 9382Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eva Loth
- grid.13097.3c0000 0001 2322 6764Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, London, UK
| | - Gahan Pandina
- grid.497530.c0000 0004 0389 4927Janssen Research & Development, 1125 Trenton Harbourton Road, Titusville, NJ 08560 USA
| | | | - Christine M. Freitag
- grid.7839.50000 0004 1936 9721Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt Am Main, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Turner KL, Gheres KW, Drew PJ. Relating Pupil Diameter and Blinking to Cortical Activity and Hemodynamics across Arousal States. J Neurosci 2023; 43:949-964. [PMID: 36517240 PMCID: PMC9908322 DOI: 10.1523/jneurosci.1244-22.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Arousal state affects neural activity and vascular dynamics in the cortex, with sleep associated with large changes in the local field potential and increases in cortical blood flow. We investigated the relationship between pupil diameter and blink rate with neural activity and blood volume in the somatosensory cortex in male and female unanesthetized, head-fixed mice. We monitored these variables while the mice were awake, during periods of rapid eye movement (REM), and non-rapid eye movement (NREM) sleep. Pupil diameter was smaller during sleep than in the awake state. Changes in pupil diameter were coherent with both gamma-band power and blood volume in the somatosensory cortex, but the strength and sign of this relationship varied with arousal state. We observed a strong negative correlation between pupil diameter and both gamma-band power and blood volume during periods of awake rest and NREM sleep, although the correlations between pupil diameter and these signals became positive during periods of alertness, active whisking, and REM. Blinking was associated with increases in arousal and decreases in blood volume when the mouse was asleep. Bilateral coherence in gamma-band power and in blood volume dropped following awake blinking, indicating a reset of neural and vascular activity. Using only eye metrics (pupil diameter and eye motion), we could determine the arousal state of the mouse ('Awake,' 'NREM,' 'REM') with >90% accuracy with a 5 s resolution. There is a strong relationship between pupil diameter and hemodynamics signals in mice, reflecting the pronounced effects of arousal on cerebrovascular dynamics.SIGNIFICANCE STATEMENT Determining arousal state is a critical component of any neuroscience experiment. Pupil diameter and blinking are influenced by arousal state, as are hemodynamics signals in the cortex. We investigated the relationship between cortical hemodynamics and pupil diameter and found that pupil diameter was strongly related to the blood volume in the cortex. Mice were more likely to be awake after blinking than before, and blinking resets neural activity. Pupil diameter and eye motion can be used as a reliable, noninvasive indicator of arousal state. As mice transition from wake to sleep and back again over a timescale of seconds, monitoring pupil diameter and eye motion permits the noninvasive detection of sleep events during behavioral or resting-state experiments.
Collapse
Affiliation(s)
- Kevin L Turner
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
- Center for Neural Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Kyle W Gheres
- Center for Neural Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
- Departments of Engineering Science and Mechanics
| | - Patrick J Drew
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
- Center for Neural Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
- Departments of Engineering Science and Mechanics
- Biology and Neurosurgery, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
55
|
Kim Y, Kadlaskar G, Keehn RM, Keehn B. Measures of tonic and phasic activity of the locus coeruleus-norepinephrine system in children with autism spectrum disorder: An event-related potential and pupillometry study. Autism Res 2022; 15:2250-2264. [PMID: 36164264 PMCID: PMC9722557 DOI: 10.1002/aur.2820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/07/2022] [Indexed: 12/15/2022]
Abstract
A growing body of research suggests that locus coeruleus-norepinephrine (LC-NE) system may function differently in individuals with autism spectrum disorder (ASD). Understanding the dynamics of both tonic (resting pupil diameter) and phasic (pupil dilation response [PDR] and event-related potential [ERP]) indices may provide meaningful insights about the nature of LC-NE function in ASD. Twenty-four children with ASD and 27 age- and nonverbal-IQ matched typically developing (TD) children completed two experiments: (1) a resting eye-tracking task to measure tonic pupil diameter, and (2) a three-stimulus oddball paradigm to measure phasic responsivity using PDR and ERP. Consistent with prior reports, our results indicate that children with ASD exhibit increased tonic (resting pupil diameter) and reduced phasic (PDR and ERP) activity of the LC-NE system compared to their TD peers. For both groups, decreased phasic responsivity was associated with increased resting pupil diameter. Lastly, tonic and phasic LC-NE indices were primarily related to measures of attention-deficit/hyperactivity disorder (ADHD), and not ASD, symptomatology. These findings expand our understanding of neurophysiological differences present in ASD and demonstrate that aberrant LC-NE activation may be associated with atypical arousal and decreased responsivity to behaviorally-relevant information in ASD.
Collapse
Affiliation(s)
- Yesol Kim
- Department of Speech, Language, and Hearing Sciences,
Purdue University, West Lafayette, IN
| | - Girija Kadlaskar
- Department of Speech, Language, and Hearing Sciences,
Purdue University, West Lafayette, IN
| | | | - Brandon Keehn
- Department of Speech, Language, and Hearing Sciences,
Purdue University, West Lafayette, IN,Department of Psychological Sciences, Purdue University,
West Lafayette, IN
| |
Collapse
|
56
|
de Vries OT, Grasman RPPP, Kindt M, van Ast VA. Threat learning impairs subsequent associative inference. Sci Rep 2022; 12:18878. [PMID: 36344549 PMCID: PMC9640532 DOI: 10.1038/s41598-022-21471-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 09/27/2022] [Indexed: 11/09/2022] Open
Abstract
Despite it being widely acknowledged that the most important function of memory is to facilitate the prediction of significant events in a complex world, no studies to date have investigated how our ability to infer associations across distinct but overlapping experiences is affected by the inclusion of threat memories. To address this question, participants (n = 35) encoded neutral predictive associations (A → B). The following day these memories were reactivated by pairing B with a new aversive or neutral outcome (B → CTHREAT/NEUTRAL) while pupil dilation was measured as an index of emotional arousal. Then, again 1 day later, the accuracy of indirect associations (A → C?) was tested. Associative inferences involving a threat learning memory were impaired whereas the initial memories were retroactively strengthened, but these effects were not moderated by pupil dilation at encoding. These results imply that a healthy memory system may compartmentalize episodic information of threat, and so hinders its recall when cued only indirectly. Malfunctioning of this process may cause maladaptive linkage of negative events to distant and benign memories, and thereby contribute to the development of clinical intrusions and anxiety.
Collapse
Affiliation(s)
- Olivier T de Vries
- Department of Clinical Psychology, University of Amsterdam, Amsterdam, The Netherlands.
| | - Raoul P P P Grasman
- Department of Psychological Methods, University of Amsterdam, Amsterdam, The Netherlands
| | - Merel Kindt
- Department of Clinical Psychology, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Vanessa A van Ast
- Department of Clinical Psychology, University of Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
57
|
Polzer L, Freitag CM, Bast N. Pupillometric measures of altered stimulus-evoked locus coeruleus-norepinephrine activity explain attenuated social attention in preschoolers with autism spectrum disorder. Autism Res 2022; 15:2167-2180. [PMID: 36111843 DOI: 10.1002/aur.2818] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/23/2022] [Indexed: 12/15/2022]
Abstract
Attenuated social attention has been described as a reduced preference for social compared to geometric motion in preschoolers with autism spectrum disorder (ASD). The locus coeruleus-norpinephrine (LC-NE) system modulates sensory reactivity and is a promising underlying mechanism. LC-NE activity is indexed by a stimulus-evoked pupillary response (SEPR) and partially by a luminance-adaptation pupillary response (LAPR), which were both shown to be aberrant in ASD. We examined whether SEPR and LAPR explain an attenuated social motion preference. We applied pupillometry via video-based eye tracking in young children (18-65 months) with ASD (n = 57) and typically developing (TD) children (n = 39) during a preferential looking paradigm of competing social and geometric motion and a changing light condition paradigm. We found an attenuated social motion preference in the ASD compared to the TD group. This was accompanied by atypical pupillometry showing a smaller SEPR to social motion, a larger SEPR to geometric motion and a reduced LAPR to a dark screen. SEPR but not LAPR explained the group difference in social motion preference. An ASD diagnosis was statistically predicted by the social motion preference, while this effect was mediated by the inclusion of SEPR to geometric and social motion. Our findings suggest a decreased sensory reactivity to social and increased reactivity to non-social motion in ASD, which may concurrently contribute to an attenuated social attention. The LC-NE system is supported as a promising underlying mechanism of altered social attention in young children with ASD, while the specificity of findings remains to be addressed.
Collapse
Affiliation(s)
- Leonie Polzer
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Nico Bast
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
58
|
McBurney-Lin J, Vargova G, Garad M, Zagha E, Yang H. The locus coeruleus mediates behavioral flexibility. Cell Rep 2022; 41:111534. [PMID: 36288712 PMCID: PMC9662304 DOI: 10.1016/j.celrep.2022.111534] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/05/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
Behavioral flexibility is the ability to adjust behavioral strategies in response to changing environmental contingencies. A major hypothesis in the field posits that the activity of neurons in the locus coeruleus (LC) plays an important role in mediating behavioral flexibility. To test this hypothesis, we developed a tactile-based rule-shift detection task in which mice responded to left and right whisker deflections in a context-dependent manner and exhibited varying degrees of switching behavior. Recording spiking activity from optogenetically tagged neurons in the LC at millisecond precision during task performance revealed a prominent graded correlation between baseline LC activity and behavioral flexibility, where higher baseline activity following a rule change was associated with faster behavioral switching to the new rule. Increasing baseline LC activity with optogenetic activation accelerated task switching and improved task performance. Overall, our study provides important evidence to reveal the link between LC activity and behavioral flexibility.
Collapse
Affiliation(s)
- Jim McBurney-Lin
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA,Neuroscience Graduate Program, University of California, Riverside, Riverside, CA 92521, USA,These authors contributed equally
| | - Greta Vargova
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA,These authors contributed equally
| | - Machhindra Garad
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Edward Zagha
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA 92521, USA,Department of Psychology, University of California, Riverside, Riverside, CA 92521, USA
| | - Hongdian Yang
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
59
|
Yamashita J, Terashima H, Yoneya M, Maruya K, Oishi H, Kumada T. Pupillary fluctuation amplitude preceding target presentation is linked to the variable foreperiod effect on reaction time in Psychomotor Vigilance Tasks. PLoS One 2022; 17:e0276205. [PMID: 36264952 PMCID: PMC9584384 DOI: 10.1371/journal.pone.0276205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/02/2022] [Indexed: 11/24/2022] Open
Abstract
Understanding temporally attention fluctuations can benefit scientific knowledge and real-life applications. Temporal attention studies have typically used the reaction time (RT), which can be measured only after a target presentation, as an index of attention level. We have proposed the Micro-Pupillary Unrest Index (M-PUI) based on pupillary fluctuation amplitude to estimate RT before the target presentation. However, the kind of temporal attention effects that the M-PUI reflects remains unclear. We examined if the M-PUI shows two types of temporal attention effects initially reported for RTs in the variable foreperiod tasks: the variable foreperiod effect (FP effect) and the sequential effect (SE effect). The FP effect refers to a decrease in the RT due to an increase in the foreperiod of the current trial, whereas the SE effect refers to an increase in the RT in the early part of the foreperiod of the current trial due to an increase in the foreperiod of the previous trial. We used a simple reaction task with the medium-term variable foreperiods (Psychomotor Vigilance Task) and found that the M-PUI primarily reflects the FP effect. Inter-individual analyses showed that the FP effect on the M-PUI, unlike other eye movement indices, is correlated with the FP effect on RT. These results suggest that the M-PUI is a potentially powerful tool for investigating temporal attention fluctuations for a partly unpredictable target.
Collapse
Affiliation(s)
- Jumpei Yamashita
- Access Operations Project, NTT Access Network Service Systems Laboratories, Nippon Telegraph and Telephone Corporation, Kanagawa, Japan
- Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Kyoto, Japan
- * E-mail:
| | - Hiroki Terashima
- Human Information Science Laboratory, NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Kanagawa, Japan
| | - Makoto Yoneya
- Human Information Science Laboratory, NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Kanagawa, Japan
| | - Kazushi Maruya
- Human Information Science Laboratory, NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Kanagawa, Japan
| | - Haruo Oishi
- Access Operations Project, NTT Access Network Service Systems Laboratories, Nippon Telegraph and Telephone Corporation, Kanagawa, Japan
| | - Takatsune Kumada
- Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Kyoto, Japan
| |
Collapse
|
60
|
Strauch C, Wang CA, Einhäuser W, Van der Stigchel S, Naber M. Pupillometry as an integrated readout of distinct attentional networks. Trends Neurosci 2022; 45:635-647. [PMID: 35662511 DOI: 10.1016/j.tins.2022.05.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/15/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
Abstract
The course of pupillary constriction and dilation provides an easy-to-access, inexpensive, and noninvasive readout of brain activity. We propose a new taxonomy of factors affecting the pupil and link these to associated neural underpinnings in an ascending hierarchy. In addition to two well-established low-level factors (light level and focal distance), we suggest two further intermediate-level factors, alerting and orienting, and a higher-level factor, executive functioning. Alerting, orienting, and executive functioning - including their respective underlying neural circuitries - overlap with the three principal attentional networks, making pupil size an integrated readout of distinct states of attention. As a now widespread technique, pupillometry is ready to provide meaningful applications and constitutes a viable part of the psychophysiological toolbox.
Collapse
Affiliation(s)
- Christoph Strauch
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands.
| | - Chin-An Wang
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City, Taiwan; Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan City, Taiwan
| | - Wolfgang Einhäuser
- Physics of Cognition Group, Chemnitz University of Technology, Chemnitz, Germany
| | | | - Marnix Naber
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
61
|
Ribeiro M, Castelo-Branco M. Slow fluctuations in ongoing brain activity decrease in amplitude with ageing yet their impact on task-related evoked responses is dissociable from behavior. eLife 2022; 11:e75722. [PMID: 35608164 PMCID: PMC9129875 DOI: 10.7554/elife.75722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 05/12/2022] [Indexed: 11/21/2022] Open
Abstract
In humans, ageing is characterized by decreased brain signal variability and increased behavioral variability. To understand how reduced brain variability segregates with increased behavioral variability, we investigated the association between reaction time variability, evoked brain responses and ongoing brain signal dynamics, in young (N=36) and older adults (N=39). We studied the electroencephalogram (EEG) and pupil size fluctuations to characterize the cortical and arousal responses elicited by a cued go/no-go task. Evoked responses were strongly modulated by slow (<2 Hz) fluctuations of the ongoing signals, which presented reduced power in the older participants. Although variability of the evoked responses was lower in the older participants, once we adjusted for the effect of the ongoing signal fluctuations, evoked responses were equally variable in both groups. Moreover, the modulation of the evoked responses caused by the ongoing signal fluctuations had no impact on reaction time, thereby explaining why although ongoing brain signal variability is decreased in older individuals, behavioral variability is not. Finally, we showed that adjusting for the effect of the ongoing signal was critical to unmask the link between neural responses and behavior as well as the link between task-related evoked EEG and pupil responses.
Collapse
Affiliation(s)
- Maria Ribeiro
- CIBIT-ICNAS, University of CoimbraCoimbraPortugal
- Faculty of Medicine, University of CoimbraCoimbraPortugal
| | - Miguel Castelo-Branco
- CIBIT-ICNAS, University of CoimbraCoimbraPortugal
- Faculty of Medicine, University of CoimbraCoimbraPortugal
| |
Collapse
|
62
|
Burlingham CS, Mirbagheri S, Heeger DJ. A unified model of the task-evoked pupil response. SCIENCE ADVANCES 2022; 8:eabi9979. [PMID: 35442730 PMCID: PMC9020670 DOI: 10.1126/sciadv.abi9979] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The pupil dilates and reconstricts following task events. It is popular to model this task-evoked pupil response as a linear transformation of event-locked impulses, whose amplitudes are used as estimates of arousal. We show that this model is incorrect and propose an alternative model based on the physiological finding that a common neural input drives saccades and pupil size. The estimates of arousal from our model agreed with key predictions: Arousal scaled with task difficulty and behavioral performance but was invariant to small differences in trial duration. Moreover, the model offers a unified explanation for a wide range of phenomena: entrainment of pupil size and saccades to task timing, modulation of pupil response amplitude and noise with task difficulty, reaction time-dependent modulation of pupil response timing and amplitude, a constrictory pupil response time-locked to saccades, and task-dependent distortion of this saccade-locked pupil response.
Collapse
Affiliation(s)
| | - Saghar Mirbagheri
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
| | - David J. Heeger
- Department of Psychology, New York University, New York, NY 10003, USA
- Center for Neural Science, New York University, New York, NY 10003, USA
| |
Collapse
|
63
|
David M, Malhotra PA. New approaches for the quantification and targeting of noradrenergic dysfunction in Alzheimer's disease. Ann Clin Transl Neurol 2022; 9:582-596. [PMID: 35293158 PMCID: PMC8994981 DOI: 10.1002/acn3.51539] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
There is clear, early noradrenergic dysfunction in Alzheimer's disease. This is likely secondary to pathological tau deposition in the locus coeruleus, the pontine nucleus that produces and releases noradrenaline, prior to involvement of cortical brain regions. Disruption of noradrenergic pathways affects cognition, especially attention, impacting memory and broader functioning. Additionally, it leads to autonomic and neuropsychiatric symptoms. Despite the strong evidence of noradrenergic involvement in Alzheimer's, there are no clear trial data supporting the clinical use of any noradrenergic treatments. Several approaches have been tried, including proof-of-principle studies and (mostly small scale) randomised controlled trials. Treatments have included pharmacotherapies as well as stimulation. The lack of clear positive findings is likely secondary to limitations in gauging locus coeruleus integrity and dysfunction at an individual level. However, the recent development of several novel biomarkers holds potential and should allow quantification of dysfunction. This may then inform inclusion criteria and stratification for future trials. Imaging approaches have improved greatly following the development of neuromelanin-sensitive sequences, enabling the use of structural MRI to estimate locus coeruleus integrity. Additionally, functional MRI scanning has the potential to quantify network dysfunction. As well as neuroimaging, EEG, fluid biomarkers and pupillometry techniques may prove useful in assessing noradrenergic tone. Here, we review the development of these biomarkers and how they might augment clinical studies, particularly randomised trials, through identification of patients most likely to benefit from treatment. We outline the biomarkers with most potential, and how they may transform symptomatic therapy for people living with Alzheimer's disease.
Collapse
Affiliation(s)
- Michael David
- Imperial College London and the University of SurreyUK Dementia Research Institute Care Research and Technology CentreSir Michael Uren Hub, 86 Wood LaneLondonW12 0BZUK
- Imperial College London, Brain SciencesSouth KensingtonLondonSW7 2AZUK
- Imperial College Healthcare NHS Trust, Clinical NeurosciencesCharing Cross HospitalLondonW2 1NYUK
| | - Paresh A. Malhotra
- Imperial College London and the University of SurreyUK Dementia Research Institute Care Research and Technology CentreSir Michael Uren Hub, 86 Wood LaneLondonW12 0BZUK
- Imperial College London, Brain SciencesSouth KensingtonLondonSW7 2AZUK
- Imperial College Healthcare NHS Trust, Clinical NeurosciencesCharing Cross HospitalLondonW2 1NYUK
| |
Collapse
|
64
|
Steinhauer SR, Bradley MM, Siegle GJ, Roecklein KA, Dix A. Publication guidelines and recommendations for pupillary measurement in psychophysiological studies. Psychophysiology 2022; 59:e14035. [PMID: 35318693 PMCID: PMC9272460 DOI: 10.1111/psyp.14035] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 11/27/2022]
Abstract
A variety of psychological and physical phenomena elicit variations in the diameter of pupil of the eye. Changes in pupil size are mediated by the relative activation of the sphincter pupillae muscle (decrease pupil diameter) and the dilator pupillae muscle (increase pupil diameter), innervated by the parasympathetic and sympathetic branches, respectively, of the autonomic nervous system. The current guidelines are intended to inform and guide psychophysiological research involving pupil measurement by (1) summarizing important aspects concerning the physiology of the pupil, (2) providing methodological and data-analytic guidelines and recommendations, and (3) briefly reviewing psychological phenomena that modulate pupillary reactivity. Because of the increased ease and tractability of pupil measurement, the goal of these guidelines is to promote accurate recording, analysis, and reporting of pupillary data in psychophysiological research.
Collapse
Affiliation(s)
- Stuart R. Steinhauer
- Veterans Affairs Pittsburgh Healthcare System, VISN 4 MIRECC, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Greg J. Siegle
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Annika Dix
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
- Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, Dresden, Germany
| |
Collapse
|