951
|
Ferri E, Petosa C, McKenna CE. Bromodomains: Structure, function and pharmacology of inhibition. Biochem Pharmacol 2015; 106:1-18. [PMID: 26707800 DOI: 10.1016/j.bcp.2015.12.005] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/08/2015] [Indexed: 12/22/2022]
Abstract
Bromodomains are epigenetic readers of histone acetylation involved in chromatin remodeling and transcriptional regulation. The human proteome comprises 46 bromodomain-containing proteins with a total of 61 bromodomains, which, despite highly conserved structural features, recognize a wide array of natural peptide ligands. Over the past five years, bromodomains have attracted great interest as promising new epigenetic targets for diverse human diseases, including inflammation, cancer, and cardiovascular disease. The demonstration in 2010 that two small molecule compounds, JQ1 and I-BET762, potently inhibit proteins of the bromodomain and extra-terminal (BET) family with translational potential for cancer and inflammatory disease sparked intense efforts in academia and pharmaceutical industry to develop novel bromodomain antagonists for therapeutic applications. Several BET inhibitors are already in clinical trials for hematological malignancies, solid tumors and cardiovascular disease. Currently, the field faces the challenge of single-target selectivity, especially within the BET family, and of overcoming problems related to the development of drug resistance. At the same time, new trends in bromodomain inhibitor research are emerging, including an increased interest in non-BET bromodomains and a focus on drug synergy with established antitumor agents to improve chemotherapeutic efficacy. This review presents an updated view of the structure and function of bromodomains, traces the development of bromodomain inhibitors and their potential therapeutic applications, and surveys the current challenges and future directions of this vibrant new field in drug discovery.
Collapse
Affiliation(s)
- Elena Ferri
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, CA 90089, United States
| | - Carlo Petosa
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, 38044 Grenoble, France; Centre National de la Recherche Scientifique, IBS, 38044 Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, IBS, 38044 Grenoble, France
| | - Charles E McKenna
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, CA 90089, United States.
| |
Collapse
|
952
|
Yeh JE, Frank DA. STAT3-Interacting Proteins as Modulators of Transcription Factor Function: Implications to Targeted Cancer Therapy. ChemMedChem 2015; 11:795-801. [DOI: 10.1002/cmdc.201500482] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/01/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Jennifer E. Yeh
- Department of Medical Oncology; Dana-Farber Cancer Institute; 450 Brookline Avenue Boston MA 02215 USA
| | - David A. Frank
- Department of Medical Oncology; Dana-Farber Cancer Institute; 450 Brookline Avenue Boston MA 02215 USA
| |
Collapse
|
953
|
Giguère SSB, Guise AJ, Jean Beltran PM, Joshi PM, Greco TM, Quach OL, Kong J, Cristea IM. The Proteomic Profile of Deleted in Breast Cancer 1 (DBC1) Interactions Points to a Multifaceted Regulation of Gene Expression. Mol Cell Proteomics 2015; 15:791-809. [PMID: 26657080 DOI: 10.1074/mcp.m115.054619] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Indexed: 01/01/2023] Open
Abstract
Deleted in breast cancer 1 (DBC1) has emerged as an important regulator of multiple cellular processes, ranging from gene expression to cell cycle progression. DBC1 has been linked to tumorigenesis both as an inhibitor of histone deacetylases, HDAC3 and sirtuin 1, and as a transcriptional cofactor for nuclear hormone receptors. However, despite mounting interest in DBC1, relatively little is known about the range of its interacting partners and the scope of its functions. Here, we carried out a functional proteomics-based investigation of DBC1 interactions in two relevant cell types, T cells and kidney cells. Microscopy, molecular biology, biochemistry, and mass spectrometry studies allowed us to assess DBC1 mRNA and protein levels, localization, phosphorylation status, and protein interaction networks. The comparison of DBC1 interactions in these cell types revealed conserved regulatory roles for DBC1 in gene expression, chromatin organization and modification, and cell cycle progression. Interestingly, we observe previously unrecognized DBC1 interactions with proteins encoded by cancer-associated genes. Among these interactions are five components of the SWI/SNF complex, the most frequently mutated chromatin remodeling complex in human cancers. Additionally, we identified a DBC1 interaction with TBL1XR1, a component of the NCoR complex, which we validated by reciprocal isolation. Strikingly, we discovered that DBC1 associates with proteins that regulate the circadian cycle, including DDX5, DHX9, and SFPQ. We validated this interaction by colocalization and reciprocal isolation. Functional assessment of this association demonstrated that DBC1 protein levels are important for regulating CLOCK and BMAL1 protein oscillations in synchronized T cells. Our results suggest that DBC1 is integral to the maintenance of the circadian molecular clock. Furthermore, the identified interactions provide a valuable resource for the exploration of pathways involved in DBC1-associated tumorigenesis.
Collapse
Affiliation(s)
- Sophie S B Giguère
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544
| | - Amanda J Guise
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544
| | - Pierre M Jean Beltran
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544
| | - Preeti M Joshi
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544
| | - Todd M Greco
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544
| | - Olivia L Quach
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544
| | - Jeffery Kong
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544
| | - Ileana M Cristea
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544
| |
Collapse
|
954
|
Romero FA, Taylor AM, Crawford TD, Tsui V, Côté A, Magnuson S. Disrupting Acetyl-Lysine Recognition: Progress in the Development of Bromodomain Inhibitors. J Med Chem 2015; 59:1271-98. [PMID: 26572217 DOI: 10.1021/acs.jmedchem.5b01514] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bromodomains, small protein modules that recognize acetylated lysine on histones, play a significant role in the epigenome, where they function as "readers" that ultimately determine the functional outcome of the post-translational modification. Because the initial discovery of selective BET inhibitors have helped define the role of that protein family in oncology and inflammation, BET bromodomains have continued to garner the most attention of any other bromodomain. More recently, non-BET bromodomain inhibitors that are potent and selective have been disclosed for ATAD2, CBP, BRD7/9, BRPF, BRPF/TRIM24, CECR2, SMARCA4, and BAZ2A/B. Such novel inhibitors can be used to probe the physiological function of these non-BET bromodomains and further understanding of their role in certain disease states. Here, we provide an update to the progress in identifying selective bromodomain inhibitors and their use as biological tools, as well as our perspective on the field.
Collapse
Affiliation(s)
- F Anthony Romero
- Discovery Chemistry, Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Alexander M Taylor
- Constellation Pharmaceuticals, Inc. 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Terry D Crawford
- Discovery Chemistry, Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Vickie Tsui
- Discovery Chemistry, Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Alexandre Côté
- Constellation Pharmaceuticals, Inc. 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Steven Magnuson
- Discovery Chemistry, Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
955
|
Ogiwara H, Sasaki M, Mitachi T, Oike T, Higuchi S, Tominaga Y, Kohno T. Targeting p300 Addiction in CBP-Deficient Cancers Causes Synthetic Lethality by Apoptotic Cell Death due to Abrogation of MYC Expression. Cancer Discov 2015; 6:430-45. [DOI: 10.1158/2159-8290.cd-15-0754] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/20/2015] [Indexed: 11/16/2022]
|
956
|
Luchini C, Veronese N, Solmi M, Cho H, Kim JH, Chou A, Gill AJ, Faraj SF, Chaux A, Netto GJ, Nakayama K, Kyo S, Lee SY, Kim DW, Yousef GM, Scorilas A, Nelson GS, Köbel M, Kalloger SE, Schaeffer DF, Yan HB, Liu F, Yokoyama Y, Zhang X, Pang D, Lichner Z, Sergi G, Manzato E, Capelli P, Wood LD, Scarpa A, Correll CU. Prognostic role and implications of mutation status of tumor suppressor gene ARID1A in cancer: a systematic review and meta-analysis. Oncotarget 2015; 6:39088-39097. [PMID: 26384299 PMCID: PMC4770758 DOI: 10.18632/oncotarget.5142] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/27/2015] [Indexed: 12/17/2022] Open
Abstract
Loss of the tumor suppressor gene AT-rich interactive domain-containing protein 1A (ARID1A) has been demonstrated in several cancers, but its prognostic role is unknown. We aimed to investigate the risk associated with loss of ARID1A (ARID1A-) for all-cause mortality, cancer-specific mortality and recurrence of disease in subjects with cancer. PubMed and SCOPUS search from database inception until 01/31/2015 without language restriction was conducted, contacting authors for unpublished data. Eligible were prospective studies reporting data on prognostic parameters in subjects with cancer, comparing participants with presence of ARID1A (ARID1A+) vs. ARID1A-, assessed either via immunohistochemistry (loss of expression) or with genetic testing (presence of mutation). Data were summarized using risk ratios (RR) for number of deaths/recurrences and hazard ratios (HR) for time-dependent risk related to ARID1A- adjusted for potential confounders. Of 136 hits, 25 studies with 5,651 participants (28 cohorts; ARID1A-: n = 1,701; ARID1A+: n = 3,950), with a mean follow-up period of 4.7 ± 1.8 years, were meta-analyzed. Compared to ARID1A+, ARID1A- significantly increased cancer-specific mortality (studies = 3; RR = 1.55, 95% confidence interval (CI) = 1.19-2.00, I(2) = 31%). Using HRs adjusted for potential confounders, ARID1A- was associated with a greater risk of cancer-specific mortality (studies = 2; HR = 2.55, 95%CI = 1.19-5.45, I(2) = 19%) and cancer recurrence (studies = 10; HR = 1.93, 95%CI = 1.22-3.05, I(2) = 76%). On the basis of these results, we have demonstrated that loss of ARID1A shortened time to cancer-specific mortality, and to recurrence of cancer when adjusting for potential confounders. For its role, this gene should be considered as an important potential target for personalized medicine in cancer treatment.
Collapse
Affiliation(s)
- Claudio Luchini
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
- Department of Pathology, The Johns Hopkins University, Baltimore, MD, USA
| | - Nicola Veronese
- Department of Medicine, Geriatrics Division, University of Padova, Padova, Italy
| | - Marco Solmi
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Hanbyoul Cho
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Angela Chou
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, St. Leonards, Australia, Sydney Vital Translational Research Centre St. Leonards Australia and University of Sydney, Sydney, NSW, Australia
- Department of Anatomical Pathology, SYDPATH St. Vincent's Hospital, Sydney, NSW, Australia
| | - Anthony J. Gill
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, St. Leonards, Australia, Sydney Vital Translational Research Centre St. Leonards Australia and University of Sydney, Sydney, NSW, Australia
| | - Sheila F. Faraj
- Department of Pathology, The Johns Hopkins University, Baltimore, MD, USA
| | - Alcides Chaux
- Department of Pathology, The Johns Hopkins University, Baltimore, MD, USA
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Asunción, Paraguay
| | - George J. Netto
- Department of Pathology, The Johns Hopkins University, Baltimore, MD, USA
| | - Kentaro Nakayama
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Shimane, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Shimane, Japan
| | - Soo Young Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea
| | - Duck-Woo Kim
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - George M. Yousef
- Department of Laboratory Medicine and Keenan Research Centre, Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Athens, Athens, Greece
| | - Gregg S. Nelson
- Department of Gynecologic Oncology, Tom Baker Cancer Centre, Calgary, Alberta, Canada
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Steve E. Kalloger
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - David F. Schaeffer
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hai-Bo Yan
- Department of Systems Biology for Medicine of School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Feng Liu
- Department of Systems Biology for Medicine of School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yoshihito Yokoyama
- Department of Obstetrics and Gynecology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Xianyu Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zsuzsanna Lichner
- Department of Laboratory Medicine and Keenan Research Centre, Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Giuseppe Sergi
- Department of Medicine, Geriatrics Division, University of Padova, Padova, Italy
| | - Enzo Manzato
- Department of Medicine, Geriatrics Division, University of Padova, Padova, Italy
| | - Paola Capelli
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Laura D. Wood
- Department of Pathology, The Johns Hopkins University, Baltimore, MD, USA
| | - Aldo Scarpa
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Christoph U. Correll
- The Zucker Hillside Hospital, Psychiatry Research, North Shore - Long Island Jewish Health System, Glen Oaks, New York, USA
- Hofstra North Shore LIJ School of Medicine, Hempstead, New York, USA
- The Feinstein Institute for Medical Research, Manhasset, New York, USA
- Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
957
|
SWI/SNF-mutant cancers depend on catalytic and non-catalytic activity of EZH2. Nat Med 2015; 21:1491-6. [PMID: 26552009 DOI: 10.1038/nm.3968] [Citation(s) in RCA: 324] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 09/08/2015] [Indexed: 12/14/2022]
Abstract
Human cancer genome sequencing has recently revealed that genes that encode subunits of SWI/SNF chromatin remodeling complexes are frequently mutated across a wide variety of cancers, and several subunits of the complex have been shown to have bona fide tumor suppressor activity. However, whether mutations in SWI/SNF subunits result in shared dependencies is unknown. Here we show that EZH2, a catalytic subunit of the polycomb repressive complex 2 (PRC2), is essential in all tested cancer cell lines and xenografts harboring mutations of the SWI/SNF subunits ARID1A, PBRM1, and SMARCA4, which are several of the most frequently mutated SWI/SNF subunits in human cancer, but that co-occurrence of a Ras pathway mutation is correlated with abrogation of this dependence. Notably, we demonstrate that SWI/SNF-mutant cancer cells are primarily dependent on a non-catalytic role of EZH2 in the stabilization of the PRC2 complex, and that they are only partially dependent on EZH2 histone methyltransferase activity. These results not only reveal a shared dependency of cancers with genetic alterations in SWI/SNF subunits, but also suggest that EZH2 enzymatic inhibitors now in clinical development may not fully suppress the oncogenic activity of EZH2.
Collapse
|
958
|
Wu Q, Madany P, Akech J, Dobson JR, Douthwright S, Browne G, Colby JL, Winter GE, Bradner JE, Pratap J, Sluder G, Bhargava R, Chiosea SI, van Wijnen AJ, Stein JL, Stein GS, Lian JB, Nickerson JA, Imbalzano AN. The SWI/SNF ATPases Are Required for Triple Negative Breast Cancer Cell Proliferation. J Cell Physiol 2015; 230:2683-94. [PMID: 25808524 PMCID: PMC4516601 DOI: 10.1002/jcp.24991] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 03/18/2015] [Indexed: 12/30/2022]
Abstract
The Brahma (BRM) and Brahma-related Gene 1 (BRG1) ATPases are highly conserved homologs that catalyze the chromatin remodeling functions of the multi-subunit human SWI/SNF chromatin remodeling enzymes in a mutually exclusive manner. SWI/SNF enzyme subunits are mutated or missing in many cancer types, but are overexpressed without apparent mutation in other cancers. Here, we report that both BRG1 and BRM are overexpressed in most primary breast cancers independent of the tumor's receptor status. Knockdown of either ATPase in a triple negative breast cancer cell line reduced tumor formation in vivo and cell proliferation in vitro. Fewer cells in S phase and an extended cell cycle progression time were observed without any indication of apoptosis, senescence, or alterations in migration or attachment properties. Combined knockdown of BRM and BRG1 showed additive effects in the reduction of cell proliferation and time required for completion of cell cycle, suggesting that these enzymes promote cell cycle progression through independent mechanisms. Knockout of BRG1 or BRM using CRISPR/Cas9 technology resulted in the loss of viability, consistent with a requirement for both enzymes in triple negative breast cancer cells.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Pasil Madany
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jacqueline Akech
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jason R Dobson
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Molecular Biology, Cell Biology and Biochemistry, Center for Computational Molecular Biology, Brown University, Providence, Rhode Island
- Department of Computer Science, Brown University, Providence, Rhode Island
| | - Stephen Douthwright
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Gillian Browne
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Biochemistry and Vermont Cancer Center for Basic and Translational Research, University of Vermont College of Medicine, Burlington, Vermont
| | - Jennifer L Colby
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Georg E Winter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Jitesh Pratap
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Anatomy and Cell Biology, Rush University, Chicago, Illinois
| | - Greenfield Sluder
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Rohit Bhargava
- Department of Pathology, Magee-Womens Hospital, Pittsburgh, Pennsylvania
| | - Simion I Chiosea
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Andre J van Wijnen
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
- Departments of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Janet L Stein
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Biochemistry and Vermont Cancer Center for Basic and Translational Research, University of Vermont College of Medicine, Burlington, Vermont
| | - Gary S Stein
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Biochemistry and Vermont Cancer Center for Basic and Translational Research, University of Vermont College of Medicine, Burlington, Vermont
| | - Jane B Lian
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Biochemistry and Vermont Cancer Center for Basic and Translational Research, University of Vermont College of Medicine, Burlington, Vermont
- Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jeffrey A Nickerson
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Anthony N Imbalzano
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
959
|
SWI/SNF complexes are required for full activation of the DNA-damage response. Oncotarget 2015; 6:732-45. [PMID: 25544751 PMCID: PMC4359251 DOI: 10.18632/oncotarget.2715] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/09/2014] [Indexed: 01/09/2023] Open
Abstract
SWI/SNF complexes utilize BRG1 (also known as SMARCA4) or BRM (also known as SMARCA2) as alternative catalytic subunits with ATPase activity to remodel chromatin. These chromatin-remodeling complexes are required for mammalian development and are mutated in ~20% of all human primary tumors. Yet our knowledge of their tumor-suppressor mechanism is limited. To investigate the role of SWI/SNF complexes in the DNA-damage response (DDR), we used shRNAs to deplete BRG1 and BRM and then exposed these cells to a panel of 6 genotoxic agents. Compared to controls, the shRNA knockdown cells were hypersensitive to certain genotoxic agents that cause double-strand breaks (DSBs) associated with stalled/collapsed replication forks but not to ionizing radiation-induced DSBs that arise independently of DNA replication. These findings were supported by our analysis of DDR kinases, which demonstrated a more prominent role for SWI/SNF in the activation of the ATR-Chk1 pathway than the ATM-Chk2 pathway. Surprisingly, γH2AX induction was attenuated in shRNA knockdown cells exposed to a topoisomerase II inhibitor (etoposide) but not to other genotoxic agents including IR. However, this finding is compatible with recent studies linking SWI/SNF with TOP2A and TOP2BP1. Depletion of BRG1 and BRM did not result in genomic instability in a tumor-derived cell line but did result in nucleoplasmic bridges in normal human fibroblasts. Taken together, these results suggest that SWI/SNF tumor-suppressor activity involves a role in the DDR to attenuate replicative stress and genomic instability. These results may also help to inform the selection of chemotherapeutics for tumors deficient for SWI/SNF function.
Collapse
|
960
|
Affiliation(s)
- Guangtao Zhang
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai , 1425 Madison Avenue, New York, New York 10029, United States
| | - Steven G Smith
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai , 1425 Madison Avenue, New York, New York 10029, United States
| | - Ming-Ming Zhou
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai , 1425 Madison Avenue, New York, New York 10029, United States
| |
Collapse
|
961
|
Abstract
Throughout development, proliferative progenitors lose their mitotic potential, exit the cell cycle, and differentiate. In this issue, Ruijtenberg and van den Heuvel identify an important lineage-specific role for a SWI/SNF chromatin-remodeling complex that collaborates with core cell-cycle regulators to promote cell-cycle exit and terminal muscle cell differentiation.
Collapse
Affiliation(s)
- Erdem Sendinc
- Division of Newborn Medicine, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ashwini Jambhekar
- Division of Newborn Medicine, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Yang Shi
- Division of Newborn Medicine, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
962
|
Roy N, Malik S, Villanueva KE, Urano A, Lu X, Von Figura G, Seeley ES, Dawson DW, Collisson EA, Hebrok M. Brg1 promotes both tumor-suppressive and oncogenic activities at distinct stages of pancreatic cancer formation. Genes Dev 2015; 29:658-71. [PMID: 25792600 PMCID: PMC4378197 DOI: 10.1101/gad.256628.114] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pancreatic Ductal Adenocarcinoma (PDA) develops predominantly through pancreatic intraepithelial neoplasia (PanIN) and intraductal papillary mucinous neoplasm (IPMN) precursor lesions. Roy et al. identify critical antagonistic roles for Brg1, a catalytic subunit of the SWI/SNF complexes, during IPMN-PDA development. In mature duct cells Brg1 inhibits the dedifferentiation that precedes neoplastic transformation. In contrast, Brg1 promotes tumorigenesis in full-blown PDA by supporting a mesenchymal-like transcriptional landscape. JQ1 impairs PDA tumorigenesis by both mimicking some and inhibiting other Brg1-mediated functions. Pancreatic ductal adenocarcinoma (PDA) develops predominantly through pancreatic intraepithelial neoplasia (PanIN) and intraductal papillary mucinous neoplasm (IPMN) precursor lesions. Pancreatic acinar cells are reprogrammed to a “ductal-like” state during PanIN-PDA formation. Here, we demonstrate a parallel mechanism operative in mature duct cells during which functional cells undergo “ductal retrogression” to form IPMN-PDA. We further identify critical antagonistic roles for Brahma-related gene 1 (Brg1), a catalytic subunit of the SWI/SNF complexes, during IPMN-PDA development. In mature duct cells, Brg1 inhibits the dedifferentiation that precedes neoplastic transformation, thus attenuating tumor initiation. In contrast, Brg1 promotes tumorigenesis in full-blown PDA by supporting a mesenchymal-like transcriptional landscape. We further show that JQ1, a drug that is currently being tested in clinical trials for hematological malignancies, impairs PDA tumorigenesis by both mimicking some and inhibiting other Brg1-mediated functions. In summary, our study demonstrates the context-dependent roles of Brg1 and points to potential therapeutic treatment options based on epigenetic regulation in PDA.
Collapse
Affiliation(s)
- Nilotpal Roy
- Diabetes Center, Department of Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | - Shivani Malik
- Department of Medicine/Hematology and Oncology, University of California at San Francisco, San Francisco, California 94143, USA
| | - Karina E Villanueva
- Diabetes Center, Department of Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | - Atsushi Urano
- Diabetes Center, Department of Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | - Xinyuan Lu
- Department of Medicine/Hematology and Oncology, University of California at San Francisco, San Francisco, California 94143, USA
| | - Guido Von Figura
- II. Medizinische Klinik und Poliklinik, Klinikum Rechts der Isar der Technischen Universität München, 81675 Munich, Germany
| | - E Scott Seeley
- Department of Pathology, University of California at San Francisco, San Francisco, California 94143, USA
| | - David W Dawson
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Eric A Collisson
- Department of Medicine/Hematology and Oncology, University of California at San Francisco, San Francisco, California 94143, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California at San Francisco, San Francisco, California 94143, USA;
| |
Collapse
|
963
|
Sahu A, Singhal U, Chinnaiyan AM. Long noncoding RNAs in cancer: from function to translation. Trends Cancer 2015; 1:93-109. [PMID: 26693181 DOI: 10.1016/j.trecan.2015.08.010] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
While our understanding of the molecular mechanisms underlying cancer has significantly improved, most of our knowledge focuses on protein-coding genes that make up a fraction of the genome. Recent studies have uncovered thousands of long noncoding RNAs (lncRNAs) that populate the cancer genome. A subset of these molecules shows striking cancer- and lineage-specific expression patterns, suggesting they may be potential drivers of cancer biology and have utility as clinical biomarkers. Here, we discuss emerging modalities of lncRNA biology and their interplay with cancer-associated concepts, including epigenetic regulation, DNA damage and cell cycle control, microRNA silencing, signal transduction pathways, and hormone-driven disease. Additionally, we highlight the translational impact of lncRNAs, tools for their mechanistic investigation, and directions for future lncRNA research.
Collapse
Affiliation(s)
- Anirban Sahu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan USA. ; Department of Pathology, University of Michigan, Ann Arbor, Michigan USA
| | - Udit Singhal
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan USA. ; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan USA. ; Department of Pathology, University of Michigan, Ann Arbor, Michigan USA. ; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan USA. ; Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan USA. ; Department of Urology, University of Michigan, Ann Arbor, Michigan USA
| |
Collapse
|
964
|
Banerjee R, Bultman SJ, Holley D, Hillhouse C, Bain JR, Newgard CB, Muehlbauer MJ, Willis MS. Non-targeted metabolomics of Brg1/Brm double-mutant cardiomyocytes reveals a novel role for SWI/SNF complexes in metabolic homeostasis. Metabolomics 2015; 11:1287-1301. [PMID: 26392817 PMCID: PMC4574504 DOI: 10.1007/s11306-015-0786-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mammalian SWI/SNF chromatin-remodeling complexes utilize either BRG1 or Brm as alternative catalytic subunits to alter the position of nucleosomes and regulate gene expression. Genetic studies have demonstrated that SWI/SNF complexes are required during cardiac development and also protect against cardiovascular disease and cancer. However, Brm constitutive null mutants do not exhibit a cardiomyocyte phenotype and inducible Brg1 conditional mutations in cardiomyocyte do not demonstrate differences until stressed with transverse aortic constriction, where they exhibit a reduction in cardiac hypertrophy. We recently demonstrated the overlapping functions of Brm and Brg1 in vascular endothelial cells and sought here to test if this overlapping function occurred in cardiomyocytes. Brg1/Brm double mutants died within 21 days of severe cardiac dysfunction associated with glycogen accumulation and mitochondrial defects based on histological and ultrastructural analyses. To determine the underlying defects, we performed nontargeted metabolomics analysis of cardiac tissue by GC/MS from a line of Brg1/Brm double-mutant mice, which lack both Brg1 and Brm in cardiomyocytes in an inducible manner, and two groups of controls. Metabolites contributing most significantly to the differences between Brg1/Brm double-mutant and control-group hearts were then determined using the variable importance in projection analysis. Increased cardiac linoleic acid and oleic acid suggest alterations in fatty acid utilization or intake are perturbed in Brg1/Brm double mutants. Conversely, decreased glucose-6-phosphate, fructose-6-phosphate, and myoinositol suggest that glycolysis and glycogen formation are impaired. These novel metabolomics findings provide insight into SWI/SNF-regulated metabolic pathways and will guide mechanistic studies evaluating the role of SWI/SNF complexes in homeostasis and cardiovascular disease prevention.
Collapse
Affiliation(s)
- Ranjan Banerjee
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Scott J. Bultman
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Darcy Holley
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Carolyn Hillhouse
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - James R. Bain
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA. Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Christopher B. Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA. Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Michael J. Muehlbauer
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Monte S. Willis
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA. McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
965
|
Jiang Z, Tang Y, Zhao X, Zhang M, Donovan DM, Tian X(C. Knockdown of Brm and Baf170, Components of Chromatin Remodeling Complex, Facilitates Reprogramming of Somatic Cells. Stem Cells Dev 2015; 24:2328-2336. [PMID: 26121422 PMCID: PMC4582692 DOI: 10.1089/scd.2015.0069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/27/2015] [Indexed: 11/12/2022] Open
Abstract
The SWI/SNF (SWItch/Sucrose NonFermentable or BAF, Brg/Brahma-associated factors) complexes are epigenetic modifiers of chromatin structure and undergo progressive changes in subunit composition during cellular differentiation. For example, in embryonic stem cells, esBAF contains Brg1 and Baf155, while their homologs, Brm and Baf170, are present in BAF of somatic cells. In this study, we sought to determine whether Brm and Baf170 play any roles in induced pluripotent stem cell (iPSC) reprogramming by using shRNA-mediated knockdown studies in the mouse model. We found that knocking down Brm during early, mid, and late stages (days 3, 6, and 9 after initial iPSC induction) and knocking down Baf170 during late-stage (day 9) reprogramming improve the numbers of iPSC colonies formed. We further showed that inhibition of these somatic BAF components also promotes complete reprogramming of partially reprogrammed somatic cells (pre-iPSCs). Finally, we found that the expression of Brm and Baf170 during reprogramming was regulated by Jak/Stat3 activity. Taken together, these data suggest that inhibiting somatic BAF improves complete reprogramming by facilitating the activation of the pluripotency circuitry.
Collapse
Affiliation(s)
- Zongliang Jiang
- Department of Animal Science, Center for Regenerative Biology, University of Connecticut, Storrs, Connecticut
| | - Yong Tang
- Department of Animal Science, Center for Regenerative Biology, University of Connecticut, Storrs, Connecticut
| | - Xueming Zhao
- Department of Animal Science, Center for Regenerative Biology, University of Connecticut, Storrs, Connecticut
| | - Mingyuan Zhang
- Department of Animal Science, Center for Regenerative Biology, University of Connecticut, Storrs, Connecticut
| | - David M. Donovan
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services, United States Department of Agriculture, Beltsville, Maryland
| | - Xiuchun (Cindy) Tian
- Department of Animal Science, Center for Regenerative Biology, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
966
|
Brettingham-Moore KH, Taberlay PC, Holloway AF. Interplay between Transcription Factors and the Epigenome: Insight from the Role of RUNX1 in Leukemia. Front Immunol 2015; 6:499. [PMID: 26483790 PMCID: PMC4586508 DOI: 10.3389/fimmu.2015.00499] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/14/2015] [Indexed: 01/13/2023] Open
Abstract
The genome has the ability to respond in a precise and co-ordinated manner to cellular signals. It achieves this through the concerted actions of transcription factors and the chromatin platform, which are targets of the signaling pathways. Our understanding of the molecular mechanisms through which transcription factors and the chromatin landscape each control gene activity has expanded dramatically over recent years, and attention has now turned to understanding the complex, multifaceted interplay between these regulatory layers in normal and disease states. It has become apparent that transcription factors as well as the components and modifiers of the epigenetic machinery are frequent targets of genomic alterations in cancer cells. Through the study of these factors, we can gain unique insight into the dynamic interplay between transcription factors and the epigenome, and how their dysregulation leads to aberrant gene expression programs in cancer. Here, we will highlight how these factors normally co-operate to establish and maintain the transcriptional and epigenetic landscape of cells, and how this is reprogramed in cancer, focusing on the RUNX1 transcription factor and oncogenic derivative RUNX1–ETO in leukemia as paradigms of transcriptional and epigenetic reprograming.
Collapse
Affiliation(s)
| | - Phillippa C Taberlay
- Genomics and Epigenetics Program, The Garvan Institute of Medical Research , Sydney, NSW , Australia
| | - Adele F Holloway
- School of Medicine, University of Tasmania , Hobart, TAS , Australia
| |
Collapse
|
967
|
Le Loarer F, Watson S, Pierron G, de Montpreville VT, Ballet S, Firmin N, Auguste A, Pissaloux D, Boyault S, Paindavoine S, Dechelotte PJ, Besse B, Vignaud JM, Brevet M, Fadel E, Richer W, Treilleux I, Masliah-Planchon J, Devouassoux-Shisheboran M, Zalcman G, Allory Y, Bourdeaut F, Thivolet-Bejui F, Ranchere-Vince D, Girard N, Lantuejoul S, Galateau-Sallé F, Coindre JM, Leary A, Delattre O, Blay JY, Tirode F. SMARCA4 inactivation defines a group of undifferentiated thoracic malignancies transcriptionally related to BAF-deficient sarcomas. Nat Genet 2015; 47:1200-5. [PMID: 26343384 DOI: 10.1038/ng.3399] [Citation(s) in RCA: 266] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 08/17/2015] [Indexed: 01/09/2023]
Abstract
While investigating cohorts of unclassified sarcomas by RNA sequencing, we identified 19 cases with inactivation of SMARCA4, which encodes an ATPase subunit of BAF chromatin-remodeling complexes. Clinically, the cases were all strikingly similar, presenting as compressive mediastino-pulmonary masses in 30- to 35-year-old adults with a median survival time of 7 months. To help define the nosological relationships of these tumors, we compared their transcriptomic profiles with those of SMARCA4-mutated small-cell carcinomas of the ovary, hypercalcemic type (SCCOHTs), SMARCB1-inactivated malignant rhabdoid tumors (MRTs) and lung carcinomas (of which 10% display SMARCA4 mutations). Gene profiling analyses demonstrated that these tumors were distinct from lung carcinomas but related to MRTs and SCCOHTs. Transcriptome analyses, further validated by immunohistochemistry, highlighted strong expression of SOX2, a marker that supports the differential diagnosis of these tumors from SMARCA4-deficient lung carcinomas. The prospective recruitment of cases confirmed this new category of 'SMARCA4-deficient thoracic sarcomas' as readily recognizable in clinical practice, providing opportunities to tailor their therapeutic management.
Collapse
Affiliation(s)
- Francois Le Loarer
- Cancer Research Center of Lyon, INSERM U1052, Lyon, France.,Centre Leon Berard, Department of Pathology, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France
| | - Sarah Watson
- Genetics and Biology of Cancer Unit, Institut Curie Research Center, Paris Sciences et Lettres Research University, Paris, France.,INSERM U830, Institut Curie Research Center, Paris, France
| | - Gaelle Pierron
- Institut Curie Hospital Group, Unité de Génétique Somatique, Paris, France
| | | | - Stelly Ballet
- Institut Curie Hospital Group, Unité de Génétique Somatique, Paris, France
| | - Nelly Firmin
- Institut de Cancerologie de Montpellier, Department of Oncology, Montpellier, France
| | | | | | | | | | - Pierre Joseph Dechelotte
- Centre Hospitalier Universitaire (CHU) de Clermont Ferrand, Department of Pathology, Clermont Ferrand, France
| | - Benjamin Besse
- Gustave Roussy, Department of Cancer Medicine, Villejuif, France.,Université Paris Sud, Paris, France
| | | | - Marie Brevet
- Université Claude Bernard Lyon 1, Lyon, France.,Hospices Civils de Lyon, Groupement Hospitalier Est, Department of Pathology, Lyon, France
| | - Elie Fadel
- Université Paris Sud, Paris, France.,Centre Chirurgical Marie Lannelongue, Department of Thoracic Surgery, Le Plessis Robinson, France
| | - Wilfrid Richer
- Genetics and Biology of Cancer Unit, Institut Curie Research Center, Paris Sciences et Lettres Research University, Paris, France.,Site de Recherche Intégrée en Cancérologie (SiRIC) Institut Curie, Recherche Translationelle en Oncologie Pédiatrique (RTOP), Paris, France
| | | | - Julien Masliah-Planchon
- INSERM U830, Institut Curie Research Center, Paris, France.,Institut Curie Hospital Group, Unité de Génétique Somatique, Paris, France
| | | | - Gerard Zalcman
- CHU Caen, Department of Pneumology and Thoracic Oncology, Caen, France.,Unité Mixte de Recherche (UMR) INSERM U186, Université Caen-Basse Normandie, Caen, France
| | - Yves Allory
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Henri Mondor, Plateforme de Ressources Biologiques, Creteil, France.,Université Paris-Est, Créteil, France.,INSERM U955, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Franck Bourdeaut
- Institut Curie Hospital Group, Unité de Génétique Somatique, Paris, France.,Institut Curie, Département d'Oncologie Pédiatrique, Paris, France
| | - Francoise Thivolet-Bejui
- Université Claude Bernard Lyon 1, Lyon, France.,Hospices Civils de Lyon, Groupement Hospitalier Est, Department of Pathology, Lyon, France
| | | | - Nicolas Girard
- Université Claude Bernard Lyon 1, Lyon, France.,Hospices Civils de Lyon, Groupement Hospitalier Est, Department of Respiratory Medicine, Lyon, France
| | - Sylvie Lantuejoul
- CHU Grenoble, Department of Pathology, Grenoble, France.,Université de Grenoble Joseph Fourier, Grenoble, France
| | | | - Jean Michel Coindre
- Institut Bergonie, Department of Pathology, Bordeaux, France.,Université Bordeaux 2, Bordeaux, France
| | - Alexandra Leary
- Gustave Roussy, INSERM U981, Villejuif, France.,Gustave Roussy, Department of Cancer Medicine, Villejuif, France
| | - Olivier Delattre
- Genetics and Biology of Cancer Unit, Institut Curie Research Center, Paris Sciences et Lettres Research University, Paris, France.,INSERM U830, Institut Curie Research Center, Paris, France.,Institut Curie Hospital Group, Unité de Génétique Somatique, Paris, France
| | - Jean Yves Blay
- Cancer Research Center of Lyon, INSERM U1052, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France.,Centre Leon Berard, Department of Oncology, Lyon, France
| | - Franck Tirode
- Genetics and Biology of Cancer Unit, Institut Curie Research Center, Paris Sciences et Lettres Research University, Paris, France.,INSERM U830, Institut Curie Research Center, Paris, France
| |
Collapse
|
968
|
Vasileiou G, Ekici AB, Uebe S, Zweier C, Hoyer J, Engels H, Behrens J, Reis A, Hadjihannas MV. Chromatin-Remodeling-Factor ARID1B Represses Wnt/β-Catenin Signaling. Am J Hum Genet 2015; 97:445-56. [PMID: 26340334 DOI: 10.1016/j.ajhg.2015.08.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/04/2015] [Indexed: 12/12/2022] Open
Abstract
The link of chromatin remodeling to both neurodevelopment and cancer has recently been highlighted by the identification of mutations affecting BAF chromatin-remodeling components, such as ARID1B, in individuals with intellectual disability and cancer. However, the underlying molecular mechanism(s) remains unknown. Here, we show that ARID1B is a repressor of Wnt/β-catenin signaling. Through whole-transcriptome analysis, we find that in individuals with intellectual disability and ARID1B loss-of-function mutations, Wnt/β-catenin target genes are upregulated. Using cellular models of low and high Wnt/β-catenin activity, we demonstrate that knockdown of ARID1B activates Wnt/β-catenin target genes and Wnt/β-catenin-dependent transcriptional reporters in a β-catenin-dependent manner. Reciprocally, forced expression of ARID1B inhibits Wnt/β-catenin signaling downstream of the β-catenin destruction complex. Both endogenous and exogenous ARID1B associate with β-catenin and repress Wnt/β-catenin-mediated transcription through the BAF core subunit BRG1. Accordingly, mutations in ARID1B leading to partial or complete deletion of its BRG1-binding domain, as is often observed in intellectual disability and cancers, compromise association with β-catenin, and the resultant ARID1B mutant proteins fail to suppress Wnt/β-catenin signaling. Finally, knockdown of ARID1B in mouse neuroblastoma cells leads to neurite outgrowth through β-catenin. The data suggest that aberrations in chromatin-remodeling factors, such as ARID1B, might contribute to neurodevelopmental abnormalities and cancer through deregulation of developmental and oncogenic pathways, such as the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Georgia Vasileiou
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Steffen Uebe
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Juliane Hoyer
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Hartmut Engels
- Institute of Human Genetics, University of Bonn, 53105 Bonn, Germany
| | - Jürgen Behrens
- Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Michel V Hadjihannas
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
969
|
Abstract
PURPOSE OF REVIEW To describe recent advances in the application of advanced genomic technologies towards the identification of biomarkers of prognosis and treatment response in breast cancer. RECENT FINDINGS Advances in high-throughput genomic profiling such as massively parallel sequencing have enabled researchers to catalogue the spectrum of somatic alterations in breast cancers. These tools also hold promise for precision medicine through accurate patient prognostication, stratification, and the dynamic monitoring of treatment response. For example, recent efforts have defined robust molecular subgroups of breast cancer and novel subtype-specific oncogenes. In addition, previously unappreciated activating mutations in human epidermal growth factor receptor 2 have been reported, suggesting new therapeutic opportunities. Genomic profiling of cell-free tumor DNA and circulating tumor cells has been used to monitor disease burden and the emergence of resistance, and such 'liquid biopsy' approaches may facilitate the early, noninvasive detection of aggressive disease. Finally, single-cell genomics is coming of age and will contribute to an understanding of breast cancer evolutionary dynamics. SUMMARY Here, we highlight recent studies that employ high-throughput genomic technologies in an effort to elucidate breast cancer biology, discover new therapeutic targets, improve prognostication and stratification, and discuss the implications for precision cancer medicine.
Collapse
|
970
|
Wijdeven RH, Pang B, van der Zanden SY, Qiao X, Blomen V, Hoogstraat M, Lips EH, Janssen L, Wessels L, Brummelkamp TR, Neefjes J. Genome-Wide Identification and Characterization of Novel Factors Conferring Resistance to Topoisomerase II Poisons in Cancer. Cancer Res 2015; 75:4176-87. [PMID: 26260527 DOI: 10.1158/0008-5472.can-15-0380] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 07/14/2015] [Indexed: 02/03/2023]
Abstract
The topoisomerase II poisons doxorubicin and etoposide constitute longstanding cornerstones of chemotherapy. Despite their extensive clinical use, many patients do not respond to these drugs. Using a genome-wide gene knockout approach, we identified Keap1, the SWI/SNF complex, and C9orf82 (CAAP1) as independent factors capable of driving drug resistance through diverse molecular mechanisms, all converging on the DNA double-strand break (DSB) and repair pathway. Loss of Keap1 or the SWI/SNF complex inhibits generation of DSB by attenuating expression and activity of topoisomerase IIα, respectively, whereas deletion of C9orf82 augments subsequent DSB repair. Their corresponding genes, frequently mutated or deleted in human tumors, may impact drug sensitivity, as exemplified by triple-negative breast cancer patients with diminished SWI/SNF core member expression who exhibit reduced responsiveness to chemotherapy regimens containing doxorubicin. Collectively, our work identifies genes that may predict the response of cancer patients to the broadly used topoisomerase II poisons and defines alternative pathways that could be therapeutically exploited in treatment-resistant patients.
Collapse
Affiliation(s)
- Ruud H Wijdeven
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Baoxu Pang
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Xiaohang Qiao
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Vincent Blomen
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marlous Hoogstraat
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands. Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Esther H Lips
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands. Division of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Lennert Janssen
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Lodewyk Wessels
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Thijn R Brummelkamp
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jacques Neefjes
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
971
|
Brownlee PM, Meisenberg C, Downs JA. The SWI/SNF chromatin remodelling complex: Its role in maintaining genome stability and preventing tumourigenesis. DNA Repair (Amst) 2015; 32:127-133. [PMID: 25981841 DOI: 10.1016/j.dnarep.2015.04.023] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Genes encoding subunits of the two SWI/SNF chromatin remodelling complexes (BAF and PBAF) are mutated in almost 20% of all human cancers. In addition to a role in regulating transcription, recent work from our laboratory and others identified roles for both complexes in DNA damage responses and the maintenance of sister chromatid cohesion, which may have profound impacts on genome stability and contribute to its role as a tumour suppressor. Here, we review some of the transcription-independent functions of the SWI/SNF chromatin remodelling complex and discuss these in light of their potential relevance to tumourigenesis.
Collapse
Affiliation(s)
- Peter M Brownlee
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Cornelia Meisenberg
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Jessica A Downs
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| |
Collapse
|
972
|
Xu B, Konze KD, Jin J, Wang GG. Targeting EZH2 and PRC2 dependence as novel anticancer therapy. Exp Hematol 2015; 43:698-712. [PMID: 26027790 PMCID: PMC4706459 DOI: 10.1016/j.exphem.2015.05.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 05/01/2015] [Accepted: 05/05/2015] [Indexed: 02/06/2023]
Abstract
Distinctive patterns of chromatin modification control gene expression and define cellular identity during development and cell differentiation. Polycomb repressive complex 2 (PRC2), the sole mammalian enzymatic complex capable of establishing gene-repressive high-degree methylation of histone H3 at lysine 27 (H3K27), plays crucial roles in regulation of normal and malignant hematopoiesis. Recently, increasing evidence has indicated that recurrent gain-of-function mutation and overexpression of EZH2, the catalytic subunit of PRC2, drive and promote malignant transformation such as B-cell lymphomagenesis, providing a rationale for PRC2 inhibition as a novel anticancer strategy. Here, we summarize the recently developed strategies for inhibition of PRC2, which include a series of highly specific, highly potent, small-molecule inhibitors of EZH2 and EZH1, an EZH2-related methyltransferase. PRC2 establishes functional crosstalk with numerous epigenetic machineries during dynamic regulation of gene transcription. Perturbation of such functional crosstalk caused by genetic events observed in various hematologic cancers, such as inactivation of SNF5 and somatic mutation of UTX, confers PRC2 dependence, thus rendering an increased sensitivity to PRC2 inhibition. We discuss our current understanding of EZH2 somatic mutations frequently found in B-cell lymphomas and recurrent mutations in various other epigenetic regulators as novel molecular predictors and determinants of PRC2 sensitivity. As recent advances have indicated a critical developmental or tumor-suppressive role for PRC2 and EZH2 in various tissue types, we discuss concerns over potentially toxic or even adverse effects associated with EZH2/1 inhibition in certain biological contexts or on cancer genetic background. Collectively, inhibition of PRC2 catalytic activity has emerged as a promising therapeutic intervention for the precise treatment of a range of genetically defined hematologic malignancies and can be potentially applied to a broader spectrum of human cancers that bear similar genetic and epigenetic characteristics.
Collapse
Affiliation(s)
- Bowen Xu
- Department of Biochemistry and Biophysics, The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kyle D Konze
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jian Jin
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gang Greg Wang
- Department of Biochemistry and Biophysics, The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
973
|
Mohankumar KM, Currle DS, White E, Boulos N, Dapper J, Eden C, Nimmervoll B, Thiruvenkatam R, Connelly M, Kranenburg TA, Neale G, Olsen S, Wang YD, Finkelstein D, Wright K, Gupta K, Ellison DW, Thomas AO, Gilbertson RJ. An in vivo screen identifies ependymoma oncogenes and tumor-suppressor genes. Nat Genet 2015; 47:878-87. [PMID: 26075792 PMCID: PMC4520751 DOI: 10.1038/ng.3323] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/06/2015] [Indexed: 12/14/2022]
Abstract
Cancers are characterized by non-random chromosome copy number alterations that presumably contain oncogenes and tumor-suppressor genes (TSGs). The affected loci are often large, making it difficult to pinpoint which genes are driving the cancer. Here we report a cross-species in vivo screen of 84 candidate oncogenes and 39 candidate TSGs, located within 28 recurrent chromosomal alterations in ependymoma. Through a series of mouse models, we validate eight new ependymoma oncogenes and ten new ependymoma TSGs that converge on a small number of cell functions, including vesicle trafficking, DNA modification and cholesterol biosynthesis, identifying these as potential new therapeutic targets.
Collapse
Affiliation(s)
- Kumarasamypet M Mohankumar
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - David S Currle
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Elsie White
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Nidal Boulos
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jason Dapper
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Christopher Eden
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Birgit Nimmervoll
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Radhika Thiruvenkatam
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Michele Connelly
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Tanya A Kranenburg
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Geoffrey Neale
- Hartwell Center for Biotechnology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Scott Olsen
- Hartwell Center for Biotechnology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yong-Dong Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Karen Wright
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Kirti Gupta
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - David W Ellison
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Arzu Onar Thomas
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Richard J Gilbertson
- 1] Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. [2] Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
974
|
The yeast chromatin remodeler Rsc1-RSC complex is required for transcriptional activation of autophagy-related genes and inhibition of the TORC1 pathway in response to nitrogen starvation. Biochem Biophys Res Commun 2015. [PMID: 26212438 DOI: 10.1016/j.bbrc.2015.07.114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The yeast RSC, an ATP-dependent chromatin-remodeling complex, is essential for mitotic and meiotic growth. There are two distinct isoforms of this complex defined by the presence of either Rsc1 or Rsc2; however, the functional differences between these complexes are unclear. Here we show that the RSC complex containing Rsc1, but not Rsc2, functions in autophagy induction. Rsc1 was required not only for full expression of ATG8 mRNA but also for maintenance of Atg8 protein stability. Interestingly, decreased autophagic activity and Atg8 protein stability in rsc1Δ cells, but not the defect in ATG8 mRNA expression, were partially suppressed by deletion of TOR1. In addition, we found that rsc1Δ impaired the binding between the Rho GTPase Rho1 and the TORC1-specific component Kog1, which is required for down-regulation of TORC1 activity. These results suggest that the Rsc1-containing RSC complex plays dual roles in the proper induction of autophagy: 1) the transcriptional activation of autophagy-related genes independent of the TORC1 pathway and 2) the inactivation of TORC1, possibly through enhancement of Rho1-Kog1 binding.
Collapse
|
975
|
Ruijtenberg S, van den Heuvel S. G1/S Inhibitors and the SWI/SNF Complex Control Cell-Cycle Exit during Muscle Differentiation. Cell 2015; 162:300-313. [PMID: 26144318 DOI: 10.1016/j.cell.2015.06.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/10/2015] [Accepted: 05/14/2015] [Indexed: 12/13/2022]
Abstract
The transition from proliferating precursor cells to post-mitotic differentiated cells is crucial for development, tissue homeostasis, and tumor suppression. To study cell-cycle exit during differentiation in vivo, we developed a conditional knockout and lineage-tracing system for Caenorhabditis elegans. Combined lineage-specific gene inactivation and genetic screening revealed extensive redundancies between previously identified cell-cycle inhibitors and the SWI/SNF chromatin-remodeling complex. Muscle precursor cells missing either SWI/SNF or G1/S inhibitor function could still arrest cell division, while simultaneous inactivation of these regulators caused continued proliferation and a C. elegans tumor phenotype. Further genetic analyses support that SWI/SNF acts in concert with hlh-1 MyoD, antagonizes Polycomb-mediated transcriptional repression, and suppresses cye-1 Cyclin E transcription to arrest cell division of muscle precursors. Thus, SWI/SNF and G1/S inhibitors provide alternative mechanisms to arrest cell-cycle progression during terminal differentiation, which offers insight into the frequent mutation of SWI/SNF genes in human cancers.
Collapse
Affiliation(s)
- Suzan Ruijtenberg
- Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Sander van den Heuvel
- Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
976
|
Vangamudi B, Paul TA, Shah PK, Kost-Alimova M, Nottebaum L, Shi X, Zhan Y, Leo E, Mahadeshwar HS, Protopopov A, Futreal A, Tieu TN, Peoples M, Heffernan TP, Marszalek JR, Toniatti C, Petrocchi A, Verhelle D, Owen DR, Draetta G, Jones P, Palmer WS, Sharma S, Andersen JN. The SMARCA2/4 ATPase Domain Surpasses the Bromodomain as a Drug Target in SWI/SNF-Mutant Cancers: Insights from cDNA Rescue and PFI-3 Inhibitor Studies. Cancer Res 2015; 75:3865-3878. [PMID: 26139243 DOI: 10.1158/0008-5472.can-14-3798] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 06/15/2015] [Indexed: 12/21/2022]
Abstract
The SWI/SNF multisubunit complex modulates chromatin structure through the activity of two mutually exclusive catalytic subunits, SMARCA2 and SMARCA4, which both contain a bromodomain and an ATPase domain. Using RNAi, cancer-specific vulnerabilities have been identified in SWI/SNF-mutant tumors, including SMARCA4-deficient lung cancer; however, the contribution of conserved, druggable protein domains to this anticancer phenotype is unknown. Here, we functionally deconstruct the SMARCA2/4 paralog dependence of cancer cells using bioinformatics, genetic, and pharmacologic tools. We evaluate a selective SMARCA2/4 bromodomain inhibitor (PFI-3) and characterize its activity in chromatin-binding and cell-functional assays focusing on cells with altered SWI/SNF complex (e.g., lung, synovial sarcoma, leukemia, and rhabdoid tumors). We demonstrate that PFI-3 is a potent, cell-permeable probe capable of displacing ectopically expressed, GFP-tagged SMARCA2-bromodomain from chromatin, yet contrary to target knockdown, the inhibitor fails to display an antiproliferative phenotype. Mechanistically, the lack of pharmacologic efficacy is reconciled by the failure of bromodomain inhibition to displace endogenous, full-length SMARCA2 from chromatin as determined by in situ cell extraction, chromatin immunoprecipitation, and target gene expression studies. Furthermore, using inducible RNAi and cDNA complementation (bromodomain- and ATPase-dead constructs), we unequivocally identify the ATPase domain, and not the bromodomain of SMARCA2, as the relevant therapeutic target with the catalytic activity suppressing defined transcriptional programs. Taken together, our complementary genetic and pharmacologic studies exemplify a general strategy for multidomain protein drug-target validation and in case of SMARCA2/4 highlight the potential for drugging the more challenging helicase/ATPase domain to deliver on the promise of synthetic-lethality therapy.
Collapse
Affiliation(s)
- Bhavatarini Vangamudi
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | | | - Parantu K Shah
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | - Maria Kost-Alimova
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | | | - Xi Shi
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | - Yanai Zhan
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | - Elisabetta Leo
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | - Harshad S Mahadeshwar
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | - Alexei Protopopov
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, TX
| | - Trang N Tieu
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | - Mike Peoples
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | - Timothy P Heffernan
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | - Joseph R Marszalek
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | - Carlo Toniatti
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | - Alessia Petrocchi
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | | | | | - Giulio Draetta
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | - Philip Jones
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | - Wylie S Palmer
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | | | - Jannik N Andersen
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| |
Collapse
|
977
|
Han SK, Wu MF, Cui S, Wagner D. Roles and activities of chromatin remodeling ATPases in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:62-77. [PMID: 25977075 DOI: 10.1111/tpj.12877] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 05/18/2023]
Abstract
Chromatin remodeling ATPases and their associated complexes can alter the accessibility of the genome in the context of chromatin by using energy derived from the hydrolysis of ATP to change the positioning, occupancy and composition of nucleosomes. In animals and plants, these remodelers have been implicated in diverse processes ranging from stem cell maintenance and differentiation to developmental phase transitions and stress responses. Detailed investigation of their roles in individual processes has suggested a higher level of selectivity of chromatin remodeling ATPase activity than previously anticipated, and diverse mechanisms have been uncovered that can contribute to the selectivity. This review summarizes recent advances in understanding the roles and activities of chromatin remodeling ATPases in plants.
Collapse
Affiliation(s)
- Soon-Ki Han
- Howard Hughes Medical Institute and Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Miin-Feng Wu
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sujuan Cui
- Hebei Key Laboratory of Molecular Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
978
|
Bitler BG, Fatkhutdinov N, Zhang R. Potential therapeutic targets in ARID1A-mutated cancers. Expert Opin Ther Targets 2015; 19:1419-22. [PMID: 26125128 DOI: 10.1517/14728222.2015.1062879] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
ARID1A is a subunit of the Switch/Sucrose Non-Fermentable (SWI/SNF) chromatin-remodeling complex that regulates gene expression by controlling gene accessibility. ARID1A shows one of the highest mutation rates across different human cancer types. For example, ARID1A is mutated in ∼ 50% of ovarian clear cell carcinoma (OCCC). There is considerable interest in developing cancer therapeutics that correlate with ARID1A mutational status. A recent study demonstrated a synthetic lethality by targeting EZH2 histone methyltransferase activity in ARID1A-mutated OCCC using a clinically applicable small-molecule inhibitor. The observed synthetic lethality correlated with inhibition of PI3K/AKT signaling. In addition, there is evidence indicating that ARID1A-mutated cancer may also be subjected to therapeutic intervention by targeting residual SWI/SNF activity, the PI3K/AKT pathway, the DNA damage response, the tumor immunological microenvironment and stabilizing wild-type p53. In summary, we propose EZH2 inhibitor-based combinatorial strategies for targeting ARID1A-mutated cancers.
Collapse
Affiliation(s)
- Benjamin G Bitler
- a 1 The Wistar Institute, Gene Expression and Regulation Program , Room 312, Philadelphia, PA 19104, USA +1 215 495 6840 ;
| | - Nail Fatkhutdinov
- a 1 The Wistar Institute, Gene Expression and Regulation Program , Room 312, Philadelphia, PA 19104, USA +1 215 495 6840 ; .,b 2 Kazan Federal University , Kazan, Russia
| | - Rugang Zhang
- a 1 The Wistar Institute, Gene Expression and Regulation Program , Room 312, Philadelphia, PA 19104, USA +1 215 495 6840 ;
| |
Collapse
|
979
|
RSC Chromatin-Remodeling Complex Is Important for Mitochondrial Function in Saccharomyces cerevisiae. PLoS One 2015; 10:e0130397. [PMID: 26086550 PMCID: PMC4472808 DOI: 10.1371/journal.pone.0130397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/19/2015] [Indexed: 11/19/2022] Open
Abstract
RSC (Remodel the Structure of Chromatin) is an ATP-dependent chromatin remodeling complex essential for the growth of Saccharomyces cerevisiae. RSC exists as two distinct isoforms that share core subunits including the ATPase subunit Nps1/Sth1 but contain either Rsc1or Rsc2. Using the synthetic genetic array (SGA) of the non-essential null mutation method, we screened for mutations exhibiting synthetic growth defects in combination with the temperature-sensitive mutant, nps1-105, and found connections between mitochondrial function and RSC. rsc mutants, including rsc1Δ, rsc2Δ, and nps1-13, another temperature-sensitive nps1 mutant, exhibited defective respiratory growth; in addition, rsc2Δ and nps1-13 contained aggregated mitochondria. The rsc2Δ phenotypes were relieved by RSC1 overexpression, indicating that the isoforms play a redundant role in respiratory growth. Genome-wide expression analysis in nps1-13 under respiratory conditions suggested that RSC regulates the transcription of some target genes of the HAP complex, a transcriptional activator of respiratory gene expression. Nps1 physically interacted with Hap4, the transcriptional activator moiety of the HAP complex, and overexpression of HAP4 alleviated respiratory defects in nps1-13, suggesting that RSC plays pivotal roles in mitochondrial gene expression and shares a set of target genes with the HAP complex.
Collapse
|
980
|
Nasipak BT, Padilla-Benavides T, Green KM, Leszyk JD, Mao W, Konda S, Sif S, Shaffer SA, Ohkawa Y, Imbalzano AN. Opposing calcium-dependent signalling pathways control skeletal muscle differentiation by regulating a chromatin remodelling enzyme. Nat Commun 2015; 6:7441. [PMID: 26081415 PMCID: PMC4530624 DOI: 10.1038/ncomms8441] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 05/06/2015] [Indexed: 01/03/2023] Open
Abstract
Calcium signaling is important for differentiation-dependent gene expression, but is also involved in other cellular functions. Therefore mechanisms must exist to distinguish calcium signaling relevant to differentiation. Calcineurin is a calcium-regulated phosphatase that is required for myogenic gene expression and skeletal muscle differentiation. Here, we demonstrate that inhibition of calcineurin blocks chromatin remodeling and that the Brg1 ATPase of the SWI/SNF chromatin remodeling enzyme, which is required for the activation of myogenic gene expression, is a calcineurin substrate. Furthermore, we identify the calcium-regulated classical protein kinase C beta (PKCβ) as a repressor of myogenesis and as the enzyme that opposes calcineurin function. Replacement of endogenous Brg1 with a phosphomimetic mutant in primary myoblasts inhibits myogenesis, while replacement with a non-phosphorylatable mutant allows myogenesis despite inhibition of calcineurin signaling, demonstrating the functionality of calcineurin/PKC modified residues. Thus the Brg1 chromatin remodeling enzyme integrates two antagonistic calcium-dependent signaling pathways that control myogenic differentiation.
Collapse
Affiliation(s)
- Brian T Nasipak
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| | - Teresita Padilla-Benavides
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| | - Karin M Green
- Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| | - John D Leszyk
- Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| | - Wenjie Mao
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| | - Silvana Konda
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| | - Saïd Sif
- Department of Internal Medicine, College of Medicine, Ohio State University, Columbus, Ohio 43210, USA.,Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, PO Box 2713, Doha, Qatar
| | - Scott A Shaffer
- Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| | - Yasuyuki Ohkawa
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA.,Department Advanced Medical Initiatives, JST-CREST, Faculty of Medicine, Kyushu University, 3-1-1 Maidashi Fukuoka 812-8582, Japan
| | - Anthony N Imbalzano
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| |
Collapse
|
981
|
Pfister NT, Fomin V, Regunath K, Zhou JY, Zhou W, Silwal-Pandit L, Freed-Pastor WA, Laptenko O, Neo SP, Bargonetti J, Hoque M, Tian B, Gunaratne J, Engebraaten O, Manley JL, Børresen-Dale AL, Neilsen PM, Prives C. Mutant p53 cooperates with the SWI/SNF chromatin remodeling complex to regulate VEGFR2 in breast cancer cells. Genes Dev 2015; 29:1298-315. [PMID: 26080815 PMCID: PMC4495400 DOI: 10.1101/gad.263202.115] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/26/2015] [Indexed: 01/15/2023]
Abstract
In this study, Pfister et al. identified a new mutant p53 target gene, VEGFR2, and demonstrated that mutant p53 stimulates expression of VEGFR2 by cooperating with the SWI/SNF chromatin remodeling complex to superactivate the VEGFR2 gene. They also show that >50% of all mutant p53-regulated gene expression is mediated by SWI/SNF, providing insight into the observation that mutant p53 alters the expression of many genes. Mutant p53 impacts the expression of numerous genes at the level of transcription to mediate oncogenesis. We identified vascular endothelial growth factor receptor 2 (VEGFR2), the primary functional VEGF receptor that mediates endothelial cell vascularization, as a mutant p53 transcriptional target in multiple breast cancer cell lines. Up-regulation of VEGFR2 mediates the role of mutant p53 in increasing cellular growth in two-dimensional (2D) and three-dimensional (3D) culture conditions. Mutant p53 binds near the VEGFR2 promoter transcriptional start site and plays a role in maintaining an open conformation at that location. Relatedly, mutant p53 interacts with the SWI/SNF complex, which is required for remodeling the VEGFR2 promoter. By both querying individual genes regulated by mutant p53 and performing RNA sequencing, the results indicate that >40% of all mutant p53-regulated gene expression is mediated by SWI/SNF. We surmise that mutant p53 impacts transcription of VEGFR2 as well as myriad other genes by promoter remodeling through interaction with and likely regulation of the SWI/SNF chromatin remodeling complex. Therefore, not only might mutant p53-expressing tumors be susceptible to anti VEGF therapies, impacting SWI/SNF tumor suppressor function in mutant p53 tumors may also have therapeutic potential.
Collapse
Affiliation(s)
- Neil T Pfister
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Vitalay Fomin
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Kausik Regunath
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Jeffrey Y Zhou
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Wen Zhou
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Laxmi Silwal-Pandit
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radiumhospital, 0310 Oslo, Norway; The K.G. Jebsen Center for Breast Cancer Research, Faculty of Medicine, Institute for Clinical Medicine, University of Oslo, 0450 Oslo, Norway
| | - William A Freed-Pastor
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Oleg Laptenko
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Suat Peng Neo
- Quantitative Proteomics Group, Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore S138673
| | - Jill Bargonetti
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York 10065, USA
| | - Mainul Hoque
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Bin Tian
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Jayantha Gunaratne
- Quantitative Proteomics Group, Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore S138673; Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Olav Engebraaten
- The K.G. Jebsen Center for Breast Cancer Research, Faculty of Medicine, Institute for Clinical Medicine, University of Oslo, 0450 Oslo, Norway; Department of Oncology, Oslo University Hospital, 0424 Oslo, Norway
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Anne-Lise Børresen-Dale
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radiumhospital, 0310 Oslo, Norway; The K.G. Jebsen Center for Breast Cancer Research, Faculty of Medicine, Institute for Clinical Medicine, University of Oslo, 0450 Oslo, Norway
| | - Paul M Neilsen
- Swinburne University of Technology, Kuching 93350, Sarawak, Malaysia
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
982
|
Lei I, West J, Yan Z, Gao X, Fang P, Dennis JH, Gnatovskiy L, Wang W, Kingston RE, Wang Z. BAF250a Protein Regulates Nucleosome Occupancy and Histone Modifications in Priming Embryonic Stem Cell Differentiation. J Biol Chem 2015; 290:19343-52. [PMID: 26070559 DOI: 10.1074/jbc.m115.637389] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Indexed: 12/22/2022] Open
Abstract
The unique chromatin signature of ES cells is fundamental to the pluripotency and differentiation of ES cells. One key feature is the poised chromatin state of master developmental genes that are transcriptionally repressed in ES cells but ready to be activated in response to differentiation signals. Poised chromatin in ES cells contains both H3 Lys-4 trimethylation (H3K4me3) and H3 Lys-27 trimethylation (H3K27me3) methylation, indicating activating and repressing potential. However, the contribution of non-covalent chromatin structure to the poised state is not well understood. To address whether remodeling of nucleosomes is important to the poised state, we characterized the function of BAF250a, a key regulatory subunit of the ES cell ATP-dependent Brahma-associated factor (BAF) chromatin remodeling complex (esBAF). Acute deletion of BAF250a disrupted the differentiation potential of ES cells by altering the expression timing of key developmental genes and pluripotent genes. Our genome-wide nucleosome and histone modification analyses indicated that the disruption of gene expression timing was largely due to changes of chromatin structures at poised genes, particularly those key developmental genes mediated by BAF250a. Specifically, BAF250a deletion caused a nucleosome occupancy increase at H3K4me3- and/or H3K27me3-associated promoters. Moreover, H3K27me3 levels and the number of bivalent promoter genes were reduced in BAF250a KO ES cells. We revealed that BAF250a ablation led to elevated Brg1 but reduced Suz12 recruitment at nucleosome occupancy-increased regions, indicating an unexpected and complicated role of BAF250a in regulating esBAF and Polycomb repressive complex (PRC) activities. Together, our studies identified that BAF250a mediates esBAF and PRC functions to establish the poised chromatin configuration in ES cells, which is essential for the proper differentiation of ES cells.
Collapse
Affiliation(s)
- Ienglam Lei
- From the Department of Cardiac Surgery, Cardiovascular Research Center, University of Michigan, Ann Arbor, Michigan 48109
| | | | - Zhijiang Yan
- the Genome Instability and Chromatin Remodeling Section, NIA, National Institutes of Health, Baltimore, Maryland 21224, and
| | - Xiaolin Gao
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Peng Fang
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Jonathan H Dennis
- the Department of Biological Science, Florida State University, Tallahassee, Florida 32306
| | - Leonid Gnatovskiy
- From the Department of Cardiac Surgery, Cardiovascular Research Center, University of Michigan, Ann Arbor, Michigan 48109
| | - Weidong Wang
- the Genome Instability and Chromatin Remodeling Section, NIA, National Institutes of Health, Baltimore, Maryland 21224, and
| | | | - Zhong Wang
- From the Department of Cardiac Surgery, Cardiovascular Research Center, University of Michigan, Ann Arbor, Michigan 48109,
| |
Collapse
|
983
|
Chromatin Remodelers: From Function to Dysfunction. Genes (Basel) 2015; 6:299-324. [PMID: 26075616 PMCID: PMC4488666 DOI: 10.3390/genes6020299] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/01/2015] [Accepted: 06/03/2015] [Indexed: 12/20/2022] Open
Abstract
Chromatin remodelers are key players in the regulation of chromatin accessibility and nucleosome positioning on the eukaryotic DNA, thereby essential for all DNA dependent biological processes. Thus, it is not surprising that upon of deregulation of those molecular machines healthy cells can turn into cancerous cells. Even though the remodeling enzymes are very abundant and a multitude of different enzymes and chromatin remodeling complexes exist in the cell, the particular remodeling complex with its specific nucleosome positioning features must be at the right place at the right time in order to ensure the proper regulation of the DNA dependent processes. To achieve this, chromatin remodeling complexes harbor protein domains that specifically read chromatin targeting signals, such as histone modifications, DNA sequence/structure, non-coding RNAs, histone variants or DNA bound interacting proteins. Recent studies reveal the interaction between non-coding RNAs and chromatin remodeling complexes showing importance of RNA in remodeling enzyme targeting, scaffolding and regulation. In this review, we summarize current understanding of chromatin remodeling enzyme targeting to chromatin and their role in cancer development.
Collapse
|
984
|
Glucocorticoid Receptor Transcriptional Activation via the BRG1-Dependent Recruitment of TOP2β and Ku70/86. Mol Cell Biol 2015; 35:2799-817. [PMID: 26055322 DOI: 10.1128/mcb.00230-15] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/27/2015] [Indexed: 12/20/2022] Open
Abstract
BRG1, the central ATPase of the human SWI/SNF complex, is critical for biological functions, including nuclear receptor (NR)-regulated transcription. Analysis of BRG1 mutants demonstrated that functional motifs outside the ATPase domain are important for transcriptional activity. In the course of experiments examining protein interactions mediated through these domains, Ku70 (XRCC6) was found to associate with a BRG1 fragment encompassing the conserved helicase-SANT-associated (HSA) and BRK domains of BRG1. Subsequent transcriptional activation assays and chromatin immunoprecipitation studies showed that Ku70/86 and components of the topoisomerase IIβ (TOP2β)/poly(ADP ribose) polymerase 1 (PARP1) complex are necessary for NR-mediated SWI/SNF-dependent transcriptional activation from endogenous promoters. In addition to establishing Ku-BRG1 binding and TOP2β/PARP1 recruitment by nuclear receptor transactivation, we demonstrate that the transient appearance of glucocorticoid receptor (GR)/BRG1-dependent, TOP2β-mediated double-strand DNA breaks is required for efficient GR-stimulated transcription. Taken together, these results suggest that a direct interaction between Ku70/86 and BRG1 brings together SWI/SNF remodeling capabilities and TOP2β activity to enhance the transcriptional response to hormone stimulation.
Collapse
|
985
|
Kadoch C, Crabtree GR. Mammalian SWI/SNF chromatin remodeling complexes and cancer: Mechanistic insights gained from human genomics. SCIENCE ADVANCES 2015; 1:e1500447. [PMID: 26601204 PMCID: PMC4640607 DOI: 10.1126/sciadv.1500447] [Citation(s) in RCA: 624] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 04/26/2015] [Indexed: 05/25/2023]
Abstract
Over the past 4 years, nearly 100 exome sequencing studies have revealed the high frequency of mutations in the genes encoding the subunits of ATP-dependent chromatin remodelers in human cancer. Most of these mutations are within the genes encoding subunits of the BAF (Brg/Brahma-associated factors) or mSWI/SNF complex, which is one of two dozen predicted ATP-dependent chromatin remodeling complexes in mammals. Considering BAF complexes as a single entity, the 15 subunits encoded by 29 genes are mutated in >20% of human cancer, across a broad range of tumor types. These observations demonstrate that there is little redundancy in the oncogenic function of BAF complexes with the other remodeling complexes, underscoring their unique roles. Several important conclusions emerge from these genomic data: specific subunits appear to be mutated in specific cancers, highlighting tissue-specific protective roles; mutations can function as tumor suppressors or oncogenes; mutations can be homozygous or, more commonly, heterozygous, implying their dosage-sensitive roles in an unknown yet fundamental process used to suppress the genesis of cancer. These new human genetic findings paired with biochemical studies are challenging old ideas on how chromatin remodeling complexes function, generating new hypotheses with respect to their normal and oncogenic mechanisms and highlighting potential avenues for therapeutic intervention in human cancer.
Collapse
Affiliation(s)
- Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gerald R. Crabtree
- Howard Hughes Medical Institute, Departments of Pathology and Developmental Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
986
|
Abou El Hassan M, Huang K, Eswara MBK, Zhao M, Song L, Yu T, Liu Y, Liu JC, McCurdy S, Ma A, Wither J, Jin J, Zacksenhaus E, Wrana JL, Bremner R. Cancer Cells Hijack PRC2 to Modify Multiple Cytokine Pathways. PLoS One 2015; 10:e0126466. [PMID: 26030458 PMCID: PMC4450877 DOI: 10.1371/journal.pone.0126466] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/03/2015] [Indexed: 01/21/2023] Open
Abstract
Polycomb Repressive Complex 2 (PRC2) is an epigenetic regulator induced in many cancers. It is thought to drive tumorigenesis by repressing division, stemness, and/or developmental regulators. Cancers evade immune detection, and diverse immune regulators are perturbed in different tumors. It is unclear how such cell-specific effects are coordinated. Here, we show a profound and cancer-selective role for PRC2 in repressing multiple cytokine pathways. We find that PRC2 represses hundreds of IFNγ stimulated genes (ISGs), cytokines and cytokine receptors. This target repertoire is significantly broadened in cancer vs non-cancer cells, and is distinct in different cancer types. PRC2 is therefore a higher order regulator of the immune program in cancer cells. Inhibiting PRC2 with either RNAi or EZH2 inhibitors activates cytokine/cytokine receptor promoters marked with bivalent H3K27me3/H3K4me3 chromatin, and augments responsiveness to diverse immune signals. PRC2 inhibition rescues immune gene induction even in the absence of SWI/SNF, a tumor suppressor defective in ~20% of human cancers. This novel PRC2 function in tumor cells could profoundly impact the mechanism of action and efficacy of EZH2 inhibitors in cancer treatment.
Collapse
Affiliation(s)
| | - Katherine Huang
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, Ontario, Canada
| | - Manoja B. K. Eswara
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, Ontario, Canada
| | - Michael Zhao
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, Ontario, Canada
| | - Lan Song
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, Ontario, Canada
| | - Tao Yu
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, Ontario, Canada
| | - Yu Liu
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, Ontario, Canada
| | - Jeffrey C. Liu
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Sean McCurdy
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, Ontario, Canada
- Department of Lab Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Anqi Ma
- Department of Structural and Chemical Biology, Icahn School of Medicine, Mt Sinai Hospital, New York, New York, United States of America
| | - Joan Wither
- Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Jian Jin
- Department of Structural and Chemical Biology, Icahn School of Medicine, Mt Sinai Hospital, New York, New York, United States of America
| | - Eldad Zacksenhaus
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Lab Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey L. Wrana
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, Ontario, Canada
| | - Rod Bremner
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, Ontario, Canada
- Department of Lab Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
987
|
Izhar L, Adamson B, Ciccia A, Lewis J, Pontano-Vaites L, Leng Y, Liang AC, Westbrook TF, Harper JW, Elledge SJ. A Systematic Analysis of Factors Localized to Damaged Chromatin Reveals PARP-Dependent Recruitment of Transcription Factors. Cell Rep 2015; 11:1486-500. [PMID: 26004182 DOI: 10.1016/j.celrep.2015.04.053] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/16/2015] [Accepted: 04/25/2015] [Indexed: 01/09/2023] Open
Abstract
Localization to sites of DNA damage is a hallmark of DNA damage response (DDR) proteins. To identify DDR factors, we screened epitope-tagged proteins for localization to sites of chromatin damaged by UV laser microirradiation and found >120 proteins that localize to damaged chromatin. These include the BAF tumor suppressor complex and the amyotrophic lateral sclerosis (ALS) candidate protein TAF15. TAF15 contains multiple domains that bind damaged chromatin in a poly-(ADP-ribose) polymerase (PARP)-dependent manner, suggesting a possible role as glue that tethers multiple PAR chains together. Many positives were transcription factors; > 70% of randomly tested transcription factors localized to sites of DNA damage, and of these, ∼90% were PARP dependent for localization. Mutational analyses showed that localization to damaged chromatin is DNA-binding-domain dependent. By examining Hoechst staining patterns at damage sites, we see evidence of chromatin decompaction that is PARP dependent. We propose that PARP-regulated chromatin remodeling at sites of damage allows transient accessibility of DNA-binding proteins.
Collapse
Affiliation(s)
- Lior Izhar
- Department of Genetics, Harvard University Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute; Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Britt Adamson
- Department of Genetics, Harvard University Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute; Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alberto Ciccia
- Department of Genetics, Harvard University Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute; Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Jedd Lewis
- Department of Genetics, Harvard University Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute; Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Laura Pontano-Vaites
- Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA
| | - Yumei Leng
- Department of Genetics, Harvard University Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute; Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Anthony C Liang
- Department of Genetics, Harvard University Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute; Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Thomas F Westbrook
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Human Genetics, and Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA
| | - Stephen J Elledge
- Department of Genetics, Harvard University Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute; Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
988
|
Lin L, Yuan J, Sander B, Golas MM. In Vitro Differentiation of Human Neural Progenitor Cells Into Striatal GABAergic Neurons. Stem Cells Transl Med 2015; 4:775-88. [PMID: 25972145 DOI: 10.5966/sctm.2014-0083] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 03/05/2015] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED : Huntington's disease (HD) results from a CAG repeat expansion in the gene encoding the huntingtin protein. This inherited disorder is characterized by progressive neurodegeneration. In particular, HD progression involves the loss of striatal projection neurons. The limited availability of reliable sources of human striatal projection neurons currently hampers our understanding of HD mechanisms and hinders the development of novel HD treatments. In this paper, we described two- and three-step methods for differentiating human neural progenitor cells toward striatal projection neurons. In the two-step differentiation protocol, 90%, 54%, and 6% of MAP2-positive cells were immunopositive for GABA, calbindin (CALB1), and DARPP-32/PPP1R1B, respectively. In the three-step differentiation protocol, 96%, 84%, and 21% of MAP2-positive cells were immunopositive for GABA, calbindin, and DARPP-32/PPP1R1B, respectively. In line with a striatal projection neuron phenotype, cells differentiated with our protocols displayed significantly increased expression of MAP2, CALB1, DARPP-32/PPP1R1B, ARPP21, and CTIP2. Application of glutamate receptor agonists induced calcium influx; accordingly, the cells also expressed various ionotropic glutamate receptor subunits. Differentiated cells also released GABA on stimulation. We suggest that our three-step differentiation protocol presents a reliable and simplified method for the generation of striatal projection neurons, yielding a critical resource for neuronal physiology and neurodegenerative disorder studies. SIGNIFICANCE The earliest changes in the neurodegenerative disorder Huntington's disease affect a specific type of brain neurons, the so-called medium spiny neurons of the striatum. In this study, two protocols were developed for the differentiation of neural progenitor cells into striatal medium spiny neurons, and the differentiated neurons were extensively characterized. The data indicate that the three-step differentiation protocol presents a reliable and simplified method for the generation of striatal medium spiny neurons. The generated striatal medium spiny neurons could represent a critical resource for the study of neurodegenerative disorders, a model system for drug discovery, and a step toward cell-based regeneration therapies.
Collapse
Affiliation(s)
- Lin Lin
- Department of Biomedicine, Stereology and Electron Microscopy Laboratory, Department of Clinical Medicine, and Center for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus, Denmark
| | - Juan Yuan
- Department of Biomedicine, Stereology and Electron Microscopy Laboratory, Department of Clinical Medicine, and Center for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus, Denmark
| | - Bjoern Sander
- Department of Biomedicine, Stereology and Electron Microscopy Laboratory, Department of Clinical Medicine, and Center for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus, Denmark
| | - Monika M Golas
- Department of Biomedicine, Stereology and Electron Microscopy Laboratory, Department of Clinical Medicine, and Center for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus, Denmark
| |
Collapse
|
989
|
Koster M, Snel B, Timmers H. Genesis of Chromatin and Transcription Dynamics in the Origin of Species. Cell 2015; 161:724-36. [DOI: 10.1016/j.cell.2015.04.033] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Indexed: 11/15/2022]
|
990
|
|
991
|
Theodoulou NH, Bamborough P, Bannister AJ, Becher I, Bit RA, Che KH, Chung CW, Dittmann A, Drewes G, Drewry DH, Gordon L, Grandi P, Leveridge M, Lindon M, Michon AM, Molnar J, Robson SC, Tomkinson NCO, Kouzarides T, Prinjha RK, Humphreys PG. Discovery of I-BRD9, a Selective Cell Active Chemical Probe for Bromodomain Containing Protein 9 Inhibition. J Med Chem 2015; 59:1425-39. [PMID: 25856009 DOI: 10.1021/acs.jmedchem.5b00256] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Acetylation of histone lysine residues is one of the most well-studied post-translational modifications of chromatin, selectively recognized by bromodomain "reader" modules. Inhibitors of the bromodomain and extra terminal domain (BET) family of bromodomains have shown profound anticancer and anti-inflammatory properties, generating much interest in targeting other bromodomain-containing proteins for disease treatment. Herein, we report the discovery of I-BRD9, the first selective cellular chemical probe for bromodomain-containing protein 9 (BRD9). I-BRD9 was identified through structure-based design, leading to greater than 700-fold selectivity over the BET family and 200-fold over the highly homologous bromodomain-containing protein 7 (BRD7). I-BRD9 was used to identify genes regulated by BRD9 in Kasumi-1 cells involved in oncology and immune response pathways and to the best of our knowledge, represents the first selective tool compound available to elucidate the cellular phenotype of BRD9 bromodomain inhibition.
Collapse
Affiliation(s)
- Natalie H Theodoulou
- Epinova Discovery Performance Unit, GlaxoSmithKline R&D , Stevenage, Hertfordshire SG1 2NY, U.K.,WestCHEM, Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde , 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - Paul Bamborough
- Computational & Structural Chemistry, Molecular Discovery Research, GlaxoSmithKline R&D , Stevenage, Hertfordshire SG1 2NY, U.K
| | - Andrew J Bannister
- Department of Pathology, Gurdon Institute , Tennis Court Road, Cambridge CB2 1QN, U.K
| | - Isabelle Becher
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline R&D , Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Rino A Bit
- Epinova Discovery Performance Unit, GlaxoSmithKline R&D , Stevenage, Hertfordshire SG1 2NY, U.K
| | - Ka Hing Che
- Department of Pathology, Gurdon Institute , Tennis Court Road, Cambridge CB2 1QN, U.K
| | - Chun-wa Chung
- Computational & Structural Chemistry, Molecular Discovery Research, GlaxoSmithKline R&D , Stevenage, Hertfordshire SG1 2NY, U.K
| | - Antje Dittmann
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline R&D , Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Gerard Drewes
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline R&D , Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - David H Drewry
- Department of Chemical Biology, GlaxoSmithKline , Research Triangle Park, North Carolina 27709, United States
| | - Laurie Gordon
- Biological Sciences, Molecular Discovery Research, GlaxoSmithKline R&D , Stevenage, Hertfordshire SG1 2NY, U.K
| | - Paola Grandi
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline R&D , Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Melanie Leveridge
- Biological Sciences, Molecular Discovery Research, GlaxoSmithKline R&D , Stevenage, Hertfordshire SG1 2NY, U.K
| | - Matthew Lindon
- Epinova Discovery Performance Unit, GlaxoSmithKline R&D , Stevenage, Hertfordshire SG1 2NY, U.K
| | - Anne-Marie Michon
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline R&D , Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Judit Molnar
- Epinova Discovery Performance Unit, GlaxoSmithKline R&D , Stevenage, Hertfordshire SG1 2NY, U.K
| | - Samuel C Robson
- Department of Pathology, Gurdon Institute , Tennis Court Road, Cambridge CB2 1QN, U.K
| | - Nicholas C O Tomkinson
- WestCHEM, Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde , 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - Tony Kouzarides
- Department of Pathology, Gurdon Institute , Tennis Court Road, Cambridge CB2 1QN, U.K
| | - Rab K Prinjha
- Epinova Discovery Performance Unit, GlaxoSmithKline R&D , Stevenage, Hertfordshire SG1 2NY, U.K
| | - Philip G Humphreys
- Epinova Discovery Performance Unit, GlaxoSmithKline R&D , Stevenage, Hertfordshire SG1 2NY, U.K
| |
Collapse
|
992
|
Rekhi B, Vogel U. Utility of characteristic ‘Weak to Absent’ INI1/SMARCB1/BAF47 expression in diagnosis of synovial sarcomas. APMIS 2015; 123:618-28. [DOI: 10.1111/apm.12395] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/05/2015] [Indexed: 02/03/2023]
Affiliation(s)
- Bharat Rekhi
- Department of Pathology; Tata Memorial Centre; Parel Mumbai India
| | - Ulrich Vogel
- Institute of Pathology; University Hospital Tuebingen; Eberhard-Karls-University; Tuebingen Germany
| |
Collapse
|
993
|
Thompson KW, Marquez SB, Lu L, Reisman D. Induction of functional Brm protein from Brm knockout mice. Oncoscience 2015; 2:349-61. [PMID: 26097869 PMCID: PMC4468321 DOI: 10.18632/oncoscience.153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 04/08/2015] [Indexed: 12/18/2022] Open
Abstract
Once the knockout of the Brm gene was found to be nontumorigenic in mice, the study of BRM's involvement in cancer seemed less important compared with that of its homolog, Brg1. This has likely contributed to the disparity that has been observed in the publication ratio between BRG1 and BRM. We show that a previously published Brm knockout mouse is an incomplete knockout whereby a truncated isoform of Brm is detected in normal tissue and in tumors. We show that this truncated Brm isoform has functionality comparable to wild type Brm. By immunohistochemistry (IHC), this truncated Brm is undetectable in normal lung tissue and is minimal to very low in Brmnull tumors. However, it is significant in a subset (~40%) of Brg1/Brm double knockout (DKO) tumors that robustly express this truncated BRM, which in part stems from an increase in Brm mRNA levels. Thus, it is likely that this mutant mouse model does not accurately reflect the role that Brm plays in cancer development. We suggest that the construction of a completely new mouse Brm knockout, where Brm is functionally absent, is needed to determine whether or not Brm is actually tumorigenic and if Brm might be a tumor suppressor.
Collapse
Affiliation(s)
- Kenneth W. Thompson
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Stefanie B. Marquez
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Li Lu
- Department of Pathology, University of Florida, Gainesville, Florida, USA
| | - David Reisman
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
994
|
Mayes K, Qiu Z, Alhazmi A, Landry JW. ATP-dependent chromatin remodeling complexes as novel targets for cancer therapy. Adv Cancer Res 2015; 121:183-233. [PMID: 24889532 DOI: 10.1016/b978-0-12-800249-0.00005-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The progression to advanced stage cancer requires changes in many characteristics of a cell. These changes are usually initiated through spontaneous mutation. As a result of these mutations, gene expression is almost invariably altered allowing the cell to acquire tumor-promoting characteristics. These abnormal gene expression patterns are in part enabled by the posttranslational modification and remodeling of nucleosomes in chromatin. These chromatin modifications are established by a functionally diverse family of enzymes including histone and DNA-modifying complexes, histone deposition pathways, and chromatin remodeling complexes. Because the modifications these enzymes deposit are essential for maintaining tumor-promoting gene expression, they have recently attracted much interest as novel therapeutic targets. One class of enzyme that has not generated much interest is the chromatin remodeling complexes. In this review, we will present evidence from the literature that these enzymes have both causal and enabling roles in the transition to advanced stage cancers; as such, they should be seriously considered as high-value therapeutic targets. Previously published strategies for discovering small molecule regulators to these complexes are described. We close with thoughts on future research, the field should perform to further develop this potentially novel class of therapeutic target.
Collapse
Affiliation(s)
- Kimberly Mayes
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Zhijun Qiu
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Aiman Alhazmi
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Joseph W Landry
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
| |
Collapse
|
995
|
Abou El Hassan M, Yu T, Song L, Bremner R. Polycomb Repressive Complex 2 Confers BRG1 Dependency on the CIITA Locus. THE JOURNAL OF IMMUNOLOGY 2015; 194:5007-13. [PMID: 25862816 DOI: 10.4049/jimmunol.1403247] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/12/2015] [Indexed: 01/11/2023]
Abstract
CIITA (or MHC2TA) coordinates constitutive and IFN-γ-induced expression of MHC class II genes. IFN-γ responsiveness of CIITA requires BRG1 (SMARCA4), the ATPase engine of the chromatin remodeling SWI/SNF complex (also called BAF). SWI/SNF is defective in many human cancers, providing a mechanism to explain IFN-γ resistance. BRG1 dependency is mediated through remote elements. Short CIITA reporters lacking these elements respond to IFN-γ, even in BRG1-deficient cells, suggesting that BRG1 counters a remote repressive influence. The nature of this distal repressor is unknown, but it would represent a valuable therapeutic target to reactivate IFN-γ responsiveness in cancer. In this article, we show that the polycomb repressive complex 2 (PRC2) components EZH2 and SUZ12, as well as the associated histone mark H3K27me3, are codetected at interenhancer regions across the CIITA locus. IFN-γ caused a BRG1-dependent reduction in H3K27me3, associated with nucleosome displacement. SUZ12 knockdown restored IFN-γ responsiveness in BRG1-null cells, and it mimicked the ability of BRG1 to induce active histone modifications (H3K27ac, H3K4me) at the -50-kb enhancer. Thus, PRC2 confers BRG1 dependency on the CIITA locus. Our data suggest that, in addition to its known roles in promoting stemness and proliferation, PRC2 may inhibit immune surveillance, and it could be targeted to reactivate CIITA expression in SWI/SNF deficient cancers.
Collapse
Affiliation(s)
- Mohamed Abou El Hassan
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G1X5, Canada
| | - Tao Yu
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G1X5, Canada
| | - Lan Song
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G1X5, Canada
| | - Rod Bremner
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G1X5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario M5T 3A9, Canada
| |
Collapse
|
996
|
Sakamaki A, Katsuragi Y, Otsuka K, Tomita M, Obata M, Iwasaki T, Abe M, Sato T, Ochiai M, Sakuraba Y, Aoyagi Y, Gondo Y, Sakimura K, Nakagama H, Mishima Y, Kominami R. Bcl11b SWI/SNF-complex subunit modulates intestinal adenoma and regeneration after γ-irradiation through Wnt/β-catenin pathway. Carcinogenesis 2015; 36:622-31. [PMID: 25827435 DOI: 10.1093/carcin/bgv044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 03/28/2015] [Indexed: 01/23/2023] Open
Abstract
SWI/SNF chromatin remodeling complexes constitute a highly related family of multi-subunit complexes to modulate transcription, and SWI/SNF subunit genes are collectively mutated in 20% of all human cancers. Bcl11b is a SWI/SNF subunit and acts as a haploinsufficient tumor suppressor in leukemia/lymphomas. Here, we show expression of Bcl11b in intestinal crypt cells and promotion of intestinal tumorigenesis by Bcl11b attenuation in Apc (min/+) mice. Of importance, mutations or allelic loss of BCL11B was detected in one-third of human colon cancers. We also show that attenuated Bcl11b activity in the crypt base columnar (CBC) cells expressing the Lgr5 stem cell marker enhanced regeneration of intestinal epithelial cells after the radiation-induced injury. Interestingly, BCL11B introduction in human cell lines downregulated transcription of β-catenin target genes, whereas Bcl11b attenuation in Lgr5(+) CBCs increased expression of β-catenin targets including c-Myc and cyclin D1. Together, our results argue that Bcl11b impairment promotes tumor development in mouse and human intestine at least in part through deregulation of β-catenin pathway.
Collapse
Affiliation(s)
- Akira Sakamaki
- Department of Molecular Genetics, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1 Iwado-kita, Komae-shi, Tokyo, 201-8511, Japan, Brain Research Institute, Niigata University, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan and RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yoshinori Katsuragi
- Department of Molecular Genetics, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1 Iwado-kita, Komae-shi, Tokyo, 201-8511, Japan, Brain Research Institute, Niigata University, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan and RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kensuke Otsuka
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1 Iwado-kita, Komae-shi, Tokyo, 201-8511, Japan
| | - Masanori Tomita
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1 Iwado-kita, Komae-shi, Tokyo, 201-8511, Japan
| | - Miki Obata
- Department of Molecular Genetics, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1 Iwado-kita, Komae-shi, Tokyo, 201-8511, Japan, Brain Research Institute, Niigata University, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan and RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Tomohiro Iwasaki
- Department of Molecular Genetics, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1 Iwado-kita, Komae-shi, Tokyo, 201-8511, Japan, Brain Research Institute, Niigata University, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan and RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Manabu Abe
- Brain Research Institute, Niigata University, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan
| | - Toshihiro Sato
- Department of Molecular Genetics, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1 Iwado-kita, Komae-shi, Tokyo, 201-8511, Japan, Brain Research Institute, Niigata University, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan and RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Masako Ochiai
- Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan and
| | - Yoshiyuki Sakuraba
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yutaka Aoyagi
- Department of Molecular Genetics, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1 Iwado-kita, Komae-shi, Tokyo, 201-8511, Japan, Brain Research Institute, Niigata University, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan and RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yoichi Gondo
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kenji Sakimura
- Brain Research Institute, Niigata University, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan
| | - Hitoshi Nakagama
- Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan and
| | - Yukio Mishima
- Department of Molecular Genetics, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1 Iwado-kita, Komae-shi, Tokyo, 201-8511, Japan, Brain Research Institute, Niigata University, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan and RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Ryo Kominami
- Department of Molecular Genetics, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1 Iwado-kita, Komae-shi, Tokyo, 201-8511, Japan, Brain Research Institute, Niigata University, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan and RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
997
|
Picaud S, Strocchia M, Terracciano S, Lauro G, Mendez J, Daniels D, Riccio R, Bifulco G, Bruno I, Filippakopoulos P. 9H-purine scaffold reveals induced-fit pocket plasticity of the BRD9 bromodomain. J Med Chem 2015; 58:2718-36. [PMID: 25703523 PMCID: PMC4403932 DOI: 10.1021/jm501893k] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Indexed: 12/20/2022]
Abstract
The 2-amine-9H-purine scaffold was identified as a weak bromodomain template and was developed via iterative structure based design into a potent nanomolar ligand for the bromodomain of human BRD9 with small residual micromolar affinity toward the bromodomain of BRD4. Binding of the lead compound 11 to the bromodomain of BRD9 results in an unprecedented rearrangement of residues forming the acetyllysine recognition site, affecting plasticity of the protein in an induced-fit pocket. The compound does not exhibit any cytotoxic effect in HEK293 cells and displaces the BRD9 bromodomain from chromatin in bioluminescence proximity assays without affecting the BRD4/histone complex. The 2-amine-9H-purine scaffold represents a novel template that can be further modified to yield highly potent and selective tool compounds to interrogate the biological role of BRD9 in diverse cellular systems.
Collapse
Affiliation(s)
- Sarah Picaud
- Nuffield
Department of Clinical Medicine, Structural
Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K.
| | - Maria Strocchia
- Department
of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Stefania Terracciano
- Department
of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Gianluigi Lauro
- Department
of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Jacqui Mendez
- Promega
Corporation, 2800 Woods
Hollow Road, Madison, Wisconsin 53711, United States
| | - Danette
L. Daniels
- Promega
Corporation, 2800 Woods
Hollow Road, Madison, Wisconsin 53711, United States
| | - Raffaele Riccio
- Department
of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Giuseppe Bifulco
- Department
of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Ines Bruno
- Department
of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Panagis Filippakopoulos
- Nuffield
Department of Clinical Medicine, Structural
Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K.
- Nuffield
Department of Clinical Medicine, Ludwig
Cancer Research, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K.
| |
Collapse
|
998
|
Abedalthagafi MS, Bi WL, Merrill PH, Gibson WJ, Rose MF, Du Z, Francis JM, Du R, Dunn IF, Ligon AH, Beroukhim R, Santagata S. ARID1A and TERT promoter mutations in dedifferentiated meningioma. Cancer Genet 2015; 208:345-50. [PMID: 25963524 DOI: 10.1016/j.cancergen.2015.03.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 12/30/2022]
Abstract
Unlike patients with World Health Organization (WHO) grade I meningiomas, which are considered benign, patients with WHO grade III meningiomas have very high mortality rates. The principles underlying tumor progression in meningioma are largely unknown, yet a detailed understanding of these mechanisms will be required for effective management of patients with these high grade lethal tumors. We present a case of an intraventricular meningioma that at first presentation displayed remarkable morphologic heterogeneity-composed of distinct regions independently fulfilling histopathologic criteria for WHO grade I, II, and III designations. The lowest grade regions had classic meningothelial features, while the highest grade regions were markedly dedifferentiated. Whereas progression in meningiomas is generally observed during recurrence following radiation and systemic medical therapies, the current case offers us a snapshot of histologic progression and intratumoral heterogeneity in a native pretreatment context. Using whole exome sequencing and high resolution array-based comparative genomic hybridization, we observed marked genetic heterogeneity between the various areas. Notably, in the higher grade regions we found increased aneuploidy with progressive loss of heterozygosity, the emergence of mutations in the TERT promoter, and compromise of ARID1A. These findings provide new insights into intratumoral heterogeneity in the evolution of malignant phenotypes in anaplastic meningiomas and potential pathways of malignant progression.
Collapse
Affiliation(s)
- Malak S Abedalthagafi
- Division of Neuropathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Parker H Merrill
- Division of Neuropathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - William J Gibson
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Matthew F Rose
- Division of Neuropathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ziming Du
- Division of Neuropathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joshua M Francis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Rose Du
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ian F Dunn
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Azra H Ligon
- Clinical Cytogenetics Laboratory, Center for Advanced Molecular Diagnostics, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rameen Beroukhim
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Sandro Santagata
- Division of Neuropathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
999
|
|
1000
|
Marquez SB, Thompson KW, Lu L, Reisman D. Beyond Mutations: Additional Mechanisms and Implications of SWI/SNF Complex Inactivation. Front Oncol 2015; 4:372. [PMID: 25774356 PMCID: PMC4343012 DOI: 10.3389/fonc.2014.00372] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/11/2014] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED SWI/SNF is a major regulator of gene expression. Its role is to facilitate the shifting and exposure of DNA segments within the promoter and other key domains to transcription factors and other essential cellular proteins. This complex interacts with a wide range of proteins and does not function within a single, specific pathway; thus, it is involved in a multitude of cellular processes, including DNA repair, differentiation, development, cell adhesion, and growth control. Given SWI/SNF's prominent role in these processes, many of which are important for blocking cancer development, it is not surprising that the SWI/SNF complex is targeted during cancer initiation and progression both by mutations and by non-mutational mechanisms. Currently, the understanding of the types of alterations, their frequency, and their impact on the SWI/SNF subunits is an area of intense research that has been bolstered by a recent cadre of NextGen sequencing studies. These studies have revealed mutations in SWI/SNF subunits, indicating that this complex is thus important for cancer development. The purpose of this review is to put into perspective the role of mutations versus other mechanisms in the silencing of SWI/SNF subunits, in particular, BRG1 and BRM. In addition, this review explores the recent development of synthetic lethality and how it applies to this complex, as well as how BRM polymorphisms are becoming recognized as potential clinical biomarkers for cancer risk. SIGNIFICANCE Recent reviews have detailed the occurrence of mutations in nearly all SWI/SNF subunits, which indicates that this complex is an important target for cancer. However, when the frequency of mutations in a given tumor type is compared to the frequency of subunit loss, it becomes clear that other non-mutational mechanisms must play a role in the inactivation of SWI/SNF subunits. Such data indicate that epigenetic mechanisms that are known to regulate BRM may also be involved in the loss of expression of other SWI/SNF subunits. This is important since epigenetically silenced genes are inducible, and thus, the reversal of the silencing of these non-mutationally suppressed subunits may be a viable mode of targeted therapy.
Collapse
Affiliation(s)
- Stefanie B Marquez
- Department of Medicine, Division of Hematology/Oncology, University of Florida , Gainesville, FL , USA
| | - Kenneth W Thompson
- Department of Medicine, Division of Hematology/Oncology, University of Florida , Gainesville, FL , USA
| | - Li Lu
- Department of Pathology, University of Florida , Gainesville, FL , USA
| | - David Reisman
- Department of Medicine, Division of Hematology/Oncology, University of Florida , Gainesville, FL , USA
| |
Collapse
|