1001
|
Zeng Y, Li L, Yang R, Yi X, Zhang B. Contribution and distribution of inorganic ions and organic compounds to the osmotic adjustment in Halostachys caspica response to salt stress. Sci Rep 2015; 5:13639. [PMID: 26350977 PMCID: PMC4563356 DOI: 10.1038/srep13639] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 07/06/2015] [Indexed: 11/30/2022] Open
Abstract
The mechanism by which plants cope with salt stress remains poorly understood. The goal of this study is to systematically investigate the contribution and distribution of inorganic ions and organic compounds to the osmotic adjustment (OA) in the halophyte species Halostachys caspica. The results indicate that 100–200 mM NaCl is optimal for plant growth; the water content and degree of succulence of the assimilating branches are higher in this treatment range than that in other treatments; parenchyma cells are more numerous with 100 mM NaCl treatment than they are in control. Inorganic ions (mainly Na+ and Cl-) may play a more important role than organic compounds in NaCl-induced OA and are the primary contributors in OA in H. caspica. The inorganic ions and organic solutes display a tissue-dependent distribution. Na+ and Cl− are accumulated in the reproductive organs and within assimilating branches, which may represent a mechanism for protecting plant growth by way of salt ion dilution and organ abscission. Additionally, OA via increased accumulation of organic substances also protected plant growth and development. This finding provides additional evidence for plant tolerance to salinity stress which can be used for breeding new cultivars for stress tolerance.
Collapse
Affiliation(s)
- Youling Zeng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Ling Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Ruirui Yang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Xiaoya Yi
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
1002
|
Conte P. Effects of ions on water structure: a low-field ¹H T₁ NMR relaxometry approach. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2015; 53:711-718. [PMID: 25356882 DOI: 10.1002/mrc.4174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/30/2014] [Accepted: 10/03/2014] [Indexed: 06/04/2023]
Abstract
Aqueous salt solutions play an important role in nature because of their effects on environmental biogeochemical processes and on structural properties of biomolecules. Upon dissolution, salts split in ions that are solvated. Water in hydration shells is subjected to molecular motions that can be monitored by (1)H T1 NMR relaxometry. This technique allowed the evaluation of the nature of the interactions between water and ions via variable temperature experiments. Examination of relaxometry properties of aqueous solutions at variable salt concentrations allowed acknowledgement of the role played by ions in either structuring or destructuring water aggregates. A mathematical model has been applied on six environmentally relevant salts: NaCl, KCl, CaCl2, CaCO3, NaNO3, and NH4NO3. It was linear only for the concentration dependence of KCl-R1. This model accorded with the one reported in literature where it has been considered valid only for diluted solutions. However, in the present study, the range of linearity for KCl was extended up to the saturation point. The model was modified for NaCl, CaCl2, and CaCO3 by using it as an exponential form in order to account for the nonlinearity of the R1-versus-concentration curves. Nonlinearity was explained by the nonnegligible ion-ion interactions occurring as concentration was increased. Finally, further modification was needed to account for the asymmetric distribution of water around nitrate (in NaNO3 and NH4NO3) and ammonium (in NH4NO3). This study is preliminary to the comprehension of the diffusion mechanisms of ions in water solutions at the equilibrium condition with solid surfaces such as soils and biochar-amended soils.
Collapse
Affiliation(s)
- Pellegrino Conte
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi di Palermo, v.le delle Scienze edificio 4, 90128, Palermo, Italy
| |
Collapse
|
1003
|
Swapnil P, Singh M, Singh S, Sharma NK, Rai AK. Recombinant glycinebetaine improves metabolic activities, ionic balance and salt tolerance in diazotrophic freshwater cyanobacteria. ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.06.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
1004
|
Gómez-Bellot MJ, Nortes PA, Ortuño MF, Romero C, Fernández-García N, Sánchez-Blanco MJ. Influence of arbuscular mycorrhizal fungi and treated wastewater on water relations and leaf structure alterations of Viburnum tinus L. plants during both saline and recovery periods. JOURNAL OF PLANT PHYSIOLOGY 2015; 188:96-105. [PMID: 26476190 DOI: 10.1016/j.jplph.2015.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/04/2015] [Accepted: 09/09/2015] [Indexed: 06/05/2023]
Abstract
Nowadays, irrigation with low quality water is becoming an alternative to satisfy the needs of crops. However, some plant species have to deal with high salinity of reclaimed water, by adapting their physiological behaviour during both saline and recovery periods and developing morphological changes in their leaves. The application of arbuscular mycorrhizal fungi (AMF) could also be a suitable option to mitigate the negative effects of this kind of water, although the effectiveness of plant-AMF association is influenced by many factors. In this work, during forty weeks, the combined effect of Glomus iranicum var. tenuihypharum and two types of water: control, C, EC<0.9 dS m(-1) and reclaimed water, RW (with EC: 4 dS m(-1) during a first saline period and EC: 6 dS m(-1) during a second saline period) was evaluated for laurustinus plants (Viburnum tinus L.) transplanted in soil. This was followed by a recovery period of eight weeks, when all the plants were irrigated in the control irrigation conditions. Seasonal and daily changes in stem water potential (Ψstem), stomatal conductance (gs), photosynthesis (Pn) and leaf internal CO2 concentration (Ci) of laurustinus plants were evaluated. Leaf structure alterations, nutrient imbalance, height and leaf hydraulic conductivity (Kleaf) were also determined. Due to the high difficulty of absorbing water from the soil, RW plants showed a high volumetric water content (θv) in soil. The stem water potential and the stomatal conductance (gs) values were reduced in RW plants throughout the second saline period. These decreases were also found during the day. Leaf Ca(2+)/Na(+) and K(+)/Na(+) ratios diminished in RW plants respect to the C plants due to the Na(+) accumulation, although height and chlorophyll content values did not show statistical differences. Leaves from RW plants showed a significantly thicker mesophyll than Control leaves as a consequence of high EC. The area of palisade parenchyma (PP) increased while the area of spongy parenchyma (SP) decreased in RW leaves with respect to the C leaves. These structural changes could be considered as a strategy to maximize photosynthesis potential in saline conditions. Mycorrhizal inoculation improved the water status of both C and RW plants by increasing their Ψstem and gs values. As regards leaf structure, AMF showed an opposite effect to salinity for PP and SP. At the end of the recovery period, hardly any statistical differences of physiological parameters were found between treatments, although a tendency to improve them was observed in inoculated plants. In any case, the leaf structural changes and the great reduction in Kleaf observed at Ψleaf below -1.5 MPa would constitute an important mechanism for laurustinus plants to reduce the water loses produced by salinity.
Collapse
Affiliation(s)
- María José Gómez-Bellot
- Department of Irrigation, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), P.O. Box 164, 30100 Espinardo-Murcia, Spain
| | - Pedro Antonio Nortes
- Department of Irrigation, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), P.O. Box 164, 30100 Espinardo-Murcia, Spain
| | - María Fernanda Ortuño
- Department of Irrigation, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), P.O. Box 164, 30100 Espinardo-Murcia, Spain
| | - Cristina Romero
- Department of Irrigation, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), P.O. Box 164, 30100 Espinardo-Murcia, Spain
| | - Nieves Fernández-García
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), P.O. Box 164, 30100 Espinardo-Murcia, Spain
| | - María Jesús Sánchez-Blanco
- Department of Irrigation, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), P.O. Box 164, 30100 Espinardo-Murcia, Spain.
| |
Collapse
|
1005
|
Amin M, Anjum L, Alazba A, Rizwan M. Effect of the irrigation frequency and quality on yield, growth and water productivity of maize crops. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2015. [DOI: 10.3920/qas2014.0519] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- M.T. Amin
- King Saud University, Alamoudi Water Research Chair, P.O. Box 2460, Riyadh 11451, Kingdom of Saudi Arabia
- COMSATS Institute of Information Technology, Department of Environmental Sciences, Abbottabad 22060, Pakistan
| | - L. Anjum
- University of Agriculture, Faculty of Agricultural Engineering & Technology, Department of Irrigation and Drainage, 38040 Faisalabad, Pakistan
| | - A.A. Alazba
- King Saud University, Alamoudi Water Research Chair, P.O. Box 2460, Riyadh 11451, Kingdom of Saudi Arabia
| | - M. Rizwan
- Hanyang University, Department of Civil and Environmental Engineering, 133-791 Seoul, Republic of Korea
| |
Collapse
|
1006
|
Britto DT, Kronzucker HJ. Sodium efflux in plant roots: what do we really know? JOURNAL OF PLANT PHYSIOLOGY 2015; 186-187:1-12. [PMID: 26318642 DOI: 10.1016/j.jplph.2015.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/03/2015] [Accepted: 08/03/2015] [Indexed: 05/27/2023]
Abstract
The efflux of sodium (Na(+)) ions across the plasma membrane of plant root cells into the external medium is surprisingly poorly understood. Nevertheless, Na(+) efflux is widely regarded as a major mechanism by which plants restrain the rise of Na(+) concentrations in the cytosolic compartments of root cells and, thus, achieve a degree of tolerance to saline environments. In this review, several key ideas and bodies of evidence concerning root Na(+) efflux are summarized with a critical eye. Findings from decades past are brought to bear on current thinking, and pivotal studies are discussed, both "purely physiological", and also with regard to the SOS1 protein, the only major Na(+) efflux transporter that has, to date, been genetically characterized. We find that the current model of rapid transmembrane sodium cycling (RTSC), across the plasma membrane of root cells, is not adequately supported by evidence from the majority of efflux studies. An alternative hypothesis cannot be ruled out, that most Na(+) tracer efflux from the root in the salinity range does not proceed across the plasma membrane, but through the apoplast. Support for this idea comes from studies showing that Na(+) efflux, when measured with tracers, is rarely affected by the presence of inhibitors or the ionic composition in saline rooting media. We conclude that the actual efflux of Na(+) across the plasma membrane of root cells may be much more modest than what is often reported in studies using tracers, and may predominantly occur in the root tips, where SOS1 expression has been localized.
Collapse
Affiliation(s)
- D T Britto
- University of Toronto, Canadian Centre for World Hunger Research, Canada
| | - H J Kronzucker
- University of Toronto, Canadian Centre for World Hunger Research, Canada.
| |
Collapse
|
1007
|
Adnane B, Mainassara ZA, Mohamed F, Mohamed L, Jean-Jacques D, Rim MT, Georg C. Physiological and Molecular Aspects of Tolerance to Environmental Constraints in Grain and Forage Legumes. Int J Mol Sci 2015; 16:18976-9008. [PMID: 26287163 PMCID: PMC4581282 DOI: 10.3390/ijms160818976] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/09/2015] [Accepted: 08/05/2015] [Indexed: 12/04/2022] Open
Abstract
Despite the agronomical and environmental advantages of the cultivation of legumes, their production is limited by various environmental constraints such as water or nutrient limitation, frost or heat stress and soil salinity, which may be the result of pedoclimatic conditions, intensive use of agricultural lands, decline in soil fertility and environmental degradation. The development of more sustainable agroecosystems that are resilient to environmental constraints will therefore require better understanding of the key mechanisms underlying plant tolerance to abiotic constraints. This review provides highlights of legume tolerance to abiotic constraints with a focus on soil nutrient deficiencies, drought, and salinity. More specifically, recent advances in the physiological and molecular levels of the adaptation of grain and forage legumes to abiotic constraints are discussed. Such adaptation involves complex multigene controlled-traits which also involve multiple sub-traits that are likely regulated under the control of a number of candidate genes. This multi-genetic control of tolerance traits might also be multifunctional, with extended action in response to a number of abiotic constraints. Thus, concrete efforts are required to breed for multifunctional candidate genes in order to boost plant stability under various abiotic constraints.
Collapse
Affiliation(s)
- Bargaz Adnane
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Box 103, SE-23053 Alnarp, Sweden.
| | - Zaman-Allah Mainassara
- International Maize and Wheat Improvement Center (CIMMYT), Southern Africa Regional Office, MP163 Harare, Zimbabwe.
| | - Farissi Mohamed
- Polyvalent Laboratory for Research & Development, Polydisciplinary Faculty, Sultan Moulay Sliman University, 23000 Beni-Mellal, Morocco.
| | - Lazali Mohamed
- Faculté des Sciences de la Nature et de la Vie & des Sciences de la Terre, Université de Khemis Miliana, 44225 Ain Defla, Algeria.
| | - Drevon Jean-Jacques
- Unité mixte de recherche, Écologie Fonctionnelle & Biogéochimie des Sols et Agroécosystèmes, Institut National de la Recherche Agronomique, 34060 Montpellier, France.
| | - Maougal T Rim
- Laboratoire de génétique Biochimie et biotechnologies végétales Faculté des Sciences de la Nature et de la Vie, Université des frères Mentouri, 25017 Constantine, Algeria.
| | - Carlsson Georg
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Box 103, SE-23053 Alnarp, Sweden.
| |
Collapse
|
1008
|
Ma Y, Shabala S, Li C, Liu C, Zhang W, Zhou M. Quantitative Trait Loci for Salinity Tolerance Identified under Drained and Waterlogged Conditions and Their Association with Flowering Time in Barley (Hordeum vulgare. L). PLoS One 2015; 10:e0134822. [PMID: 26247774 PMCID: PMC4527667 DOI: 10.1371/journal.pone.0134822] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 07/14/2015] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Salinity is one of the major abiotic stresses affecting crop production via adverse effects of osmotic stress, specific ion toxicity, and stress-related nutritional disorders. Detrimental effects of salinity are also often exacerbated by low oxygen availability when plants are grown under waterlogged conditions. Developing salinity-tolerant varieties is critical to overcome these problems, and molecular marker assisted selection can make breeding programs more effective. METHODS In this study, a double haploid (DH) population consisting of 175 lines, derived from a cross between a Chinese barley variety Yangsimai 1 (YSM1) and an Australian malting barley variety Gairdner, was used to construct a high density molecular map which contained more than 8,000 Diversity Arrays Technology (DArT) markers and single nucleotide polymorphism (SNP) markers. Salinity tolerance of parental and DH lines was evaluated under drained (SalinityD) and waterlogged (SalinityW) conditions at two different sowing times. RESULTS Three quantitative trait loci (QTL) located on chromosome 1H, single QTL located on chromosomes 1H, 2H, 4H, 5H and 7H, were identified to be responsible for salinity tolerance under different environments. Waterlogging stress, daylight length and temperature showed significant effects on barley salinity tolerance. The QTL for salinity tolerance mapped on chromosomes 4H and 7H, QSlwd.YG.4H, QSlwd.YG.7H and QSlww.YG.7H were only identified in winter trials, while the QTL on chromosome 2H QSlsd.YG.2H and QSlsw.YG.2H were only detected in summer trials. Genes associated with flowering time were found to pose significant effects on the salinity QTL mapped on chromosomes 2H and 5H in summer trials. Given the fact that the QTL for salinity tolerance QSlsd.YG.1H and QSlww.YG.1H-1 reported here have never been considered in the literature, this warrants further investigation and evaluation for suitability to be used in breeding programs.
Collapse
Affiliation(s)
- Yanling Ma
- Tasmanian Institute of Agriculture and School of Land and Food, University of Tasmania, P.O. Box 46, Kings Meadows, TAS, 7249, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture and School of Land and Food, University of Tasmania, P.O. Box 46, Kings Meadows, TAS, 7249, Australia
| | - Chengdao Li
- Western Barley Genetics Alliance, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Chunji Liu
- CSIRO Plant Industry, 306 Carmody Road, St. Lucia, QLD, 4067, Australia
| | - Wenying Zhang
- School of Agriculture, Yangtze University, Jingzhou, 434025, P.R. China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture and School of Land and Food, University of Tasmania, P.O. Box 46, Kings Meadows, TAS, 7249, Australia
- School of Agriculture, Yangtze University, Jingzhou, 434025, P.R. China
| |
Collapse
|
1009
|
Daleo P, Alberti J, Bruschetti CM, Pascual J, Iribarne O, Silliman BR. Physical stress modifies top-down and bottom-up forcing on plant growth and reproduction in a coastal ecosystem. Ecology 2015; 96:2147-56. [DOI: 10.1890/14-1776.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
1010
|
Zou P, Li K, Liu S, Xing R, Qin Y, Yu H, Zhou M, Li P. Effect of chitooligosaccharides with different degrees of acetylation on wheat seedlings under salt stress. Carbohydr Polym 2015; 126:62-9. [DOI: 10.1016/j.carbpol.2015.03.028] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/11/2015] [Accepted: 03/14/2015] [Indexed: 11/30/2022]
|
1011
|
Sghaier DB, Duarte B, Bankaji I, Caçador I, Sleimi N. Growth, chlorophyll fluorescence and mineral nutrition in the halophyte Tamarix gallica cultivated in combined stress conditions: Arsenic and NaCl. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 149:204-14. [DOI: 10.1016/j.jphotobiol.2015.06.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/14/2015] [Accepted: 06/08/2015] [Indexed: 10/23/2022]
|
1012
|
Álvarez S, Sánchez-Blanco MJ. Comparison of individual and combined effects of salinity and deficit irrigation on physiological, nutritional and ornamental aspects of tolerance in Callistemon laevis plants. JOURNAL OF PLANT PHYSIOLOGY 2015; 185:65-74. [PMID: 26277754 DOI: 10.1016/j.jplph.2015.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/05/2015] [Accepted: 07/14/2015] [Indexed: 06/04/2023]
Abstract
The effect of water deficit, salinity and both applied simultaneously on several physiological and morphological parameters in the ornamental plant Callistemon laevis was studied to identify the tolerance mechanisms developed by this species to these sources of stress and to evaluate their adaptability to such conditions. C. laevis plants were grown in pots outdoors and subjected to four irrigation treatments lasting ten months: control (0.8 dS m(-1), 100% water holding capacity), water deficit (0.8 dS m(-1), 50% of the amount of water supplied in control), saline (4.0 dS m(-1), same amount of water supplied as control) and saline water deficit (4.0 dS m(-1), 50% of the water supplied in the control). Water and saline stress, when applied individually, led to a reduction of 12% and 39% of total biomass, respectively, while overall plant quality (leaf color and flowering) was unaffected. However, saline water deficit affected leaf color and flowering and induced an excessive decrease of growth (68%) due to leaf tissue dehydration and a high leaf Cl and Na concentration. Biomass partitioning depended not only on the amount of water applied, but also on the electrical conductivity of the water. Water stress induced active osmotic adjustment and decreased leaf tissue elasticity. Although both Na and Cl concentrations in the plant tissues increased with salinity, Cl entry through the roots was more restricted. In plants submitted to salinity individually, Na tended to remain in the roots and stems, and little reached the leaves. However, plants simultaneously submitted to water and saline stress were not able to retain this ion in the woody parts. The decrease in stomatal conductance and photosynthesis was more marked in the plants submitted to both stresses, the effect of which decreased photosynthesis, and this together with membrane damage delayed plant recovery. The results show that the combination of deficit irrigation and salinity in C. laevis is not recommended since it magnifies the adverse effects of either when applied individually.
Collapse
Affiliation(s)
- Sara Álvarez
- Departamento de Riego, Centro de Edafología y Biología Aplicada del Segura (CSIC), P.O. Box 164, E-30100 Murcia, Spain.
| | - M Jesús Sánchez-Blanco
- Departamento de Riego, Centro de Edafología y Biología Aplicada del Segura (CSIC), P.O. Box 164, E-30100 Murcia, Spain
| |
Collapse
|
1013
|
Smith MJ, Drake PL, Vogwill R, McCormick CA. Managing natural resources for their human values. Ecosphere 2015. [DOI: 10.1890/es15-00125.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
1014
|
Taochy C, Gaillard I, Ipotesi E, Oomen R, Leonhardt N, Zimmermann S, Peltier JB, Szponarski W, Simonneau T, Sentenac H, Gibrat R, Boyer JC. The Arabidopsis root stele transporter NPF2.3 contributes to nitrate translocation to shoots under salt stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:466-79. [PMID: 26058834 DOI: 10.1111/tpj.12901] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/28/2015] [Accepted: 06/01/2015] [Indexed: 05/20/2023]
Abstract
In most plants, NO(3)(-) constitutes the major source of nitrogen, and its assimilation into amino acids is mainly achieved in shoots. Furthermore, recent reports have revealed that reduction of NO(3)(-) translocation from roots to shoots is involved in plant acclimation to abiotic stress. NPF2.3, a member of the NAXT (nitrate excretion transporter) sub-group of the NRT1/PTR family (NPF) from Arabidopsis, is expressed in root pericycle cells, where it is targeted to the plasma membrane. Transport assays using NPF2.3-enriched Lactococcus lactis membranes showed that this protein is endowed with NO(3)(-) transport activity, displaying a strong selectivity for NO(3)(-) against Cl(-). In response to salt stress, NO(3)(-) translocation to shoots is reduced, at least partly because expression of the root stele NO(3)(-) transporter gene NPF7.3 is decreased. In contrast, NPF2.3 expression was maintained under these conditions. A loss-of-function mutation in NPF2.3 resulted in decreased root-to-shoot NO(3)(-) translocation and reduced shoot NO(3)(-) content in plants grown under salt stress. Also, the mutant displayed impaired shoot biomass production when plants were grown under mild salt stress. These mutant phenotypes were dependent on the presence of Na(+) in the external medium. Our data indicate that NPF2.3 is a constitutively expressed transporter whose contribution to NO(3)(-) translocation to the shoots is quantitatively and physiologically significant under salinity.
Collapse
Affiliation(s)
- Christelle Taochy
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS, UMR 0386 INRA/Montpellier SupAgro/Université de Montpellier, F-34060, Montpellier, France
| | - Isabelle Gaillard
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS, UMR 0386 INRA/Montpellier SupAgro/Université de Montpellier, F-34060, Montpellier, France
| | - Emilie Ipotesi
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS, UMR 0386 INRA/Montpellier SupAgro/Université de Montpellier, F-34060, Montpellier, France
| | - Ronald Oomen
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS, UMR 0386 INRA/Montpellier SupAgro/Université de Montpellier, F-34060, Montpellier, France
| | - Nathalie Leonhardt
- Laboratoire de Biologie du Développement des Plantes, Institut de Biologie Environnementale et Biotechnologie, Laboratoire des Echanges Membranaires et Signalisation, UMR 7265 CNRS/CEA/Université Aix-Marseille II, F-13108, St Paul lez Durance, France
| | - Sabine Zimmermann
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS, UMR 0386 INRA/Montpellier SupAgro/Université de Montpellier, F-34060, Montpellier, France
| | - Jean-Benoît Peltier
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS, UMR 0386 INRA/Montpellier SupAgro/Université de Montpellier, F-34060, Montpellier, France
| | - Wojciech Szponarski
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS, UMR 0386 INRA/Montpellier SupAgro/Université de Montpellier, F-34060, Montpellier, France
| | - Thierry Simonneau
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Institut de Biologie Intégrative des Plantes, UMR 0759 INRA/Montpellier SupAgro, F-34060, Montpellier, France
| | - Hervé Sentenac
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS, UMR 0386 INRA/Montpellier SupAgro/Université de Montpellier, F-34060, Montpellier, France
| | - Rémy Gibrat
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS, UMR 0386 INRA/Montpellier SupAgro/Université de Montpellier, F-34060, Montpellier, France
| | - Jean-Christophe Boyer
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS, UMR 0386 INRA/Montpellier SupAgro/Université de Montpellier, F-34060, Montpellier, France
| |
Collapse
|
1015
|
The effect of triazole induced photosynthetic pigments and biochemical constituents of Zea mays L. (Maize) under drought stress. APPLIED NANOSCIENCE 2015. [DOI: 10.1007/s13204-015-0482-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
1016
|
Kath J, Powell S, Reardon-Smith K, El Sawah S, Jakeman AJ, Croke BFW, Dyer FJ. Groundwater salinization intensifies drought impacts in forests and reduces refuge capacity. J Appl Ecol 2015. [DOI: 10.1111/1365-2664.12495] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jarrod Kath
- Institute for Applied Ecology and Collaborative Research Network for Murray-Darling Basin Futures; University of Canberra; Canberra ACT 2602 Australia
| | - Sue Powell
- Institute for Applied Ecology and Collaborative Research Network for Murray-Darling Basin Futures; University of Canberra; Canberra ACT 2602 Australia
| | - Kathryn Reardon-Smith
- International Centre for Applied Climate Sciences; University of Southern Queensland; Toowoomba Qld 4350 Australia
| | - Sondoss El Sawah
- Integrated Catchment Assessment and Management (iCAM); Fenner School of Environment and Society; National Centre for Groundwater Research and Training (NCGRT); The Australian National University; Canberra ACT 2601 Australia
| | - Anthony J. Jakeman
- Integrated Catchment Assessment and Management (iCAM); Fenner School of Environment and Society; National Centre for Groundwater Research and Training (NCGRT); The Australian National University; Canberra ACT 2601 Australia
| | - Barry F. W. Croke
- Integrated Catchment Assessment and Management (iCAM); Fenner School of Environment and Society; National Centre for Groundwater Research and Training (NCGRT); The Australian National University; Canberra ACT 2601 Australia
- Mathematical Sciences Institute; Australian National University; Canberra ACT 2601 Australia
| | - Fiona J. Dyer
- Institute for Applied Ecology and Collaborative Research Network for Murray-Darling Basin Futures; University of Canberra; Canberra ACT 2602 Australia
| |
Collapse
|
1017
|
Guo R, Yang Z, Li F, Yan C, Zhong X, Liu Q, Xia X, Li H, Zhao L. Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress. BMC PLANT BIOLOGY 2015; 15:170. [PMID: 26149720 PMCID: PMC4492011 DOI: 10.1186/s12870-015-0546-x] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/10/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND It is well known that salinization (high-pH) has been considered as a major environmental threat to agricultural systems. The aim of this study was to investigate the differences between salt stress and alkali stress in metabolic profiles and nutrient accumulation of wheat; these parameters were also evaluated to determine the physiological adaptive mechanisms by which wheat tolerates alkali stress. RESULTS The harmful effect of alkali stress on the growth and photosynthesis of wheat were stronger than those of salt stress. High-pH of alkali stress induced the most of phosphate and metal ions to precipitate; as a result, the availability of nutrients significantly declined. Under alkali stress, Ca sharply increased in roots, however, it decreased under salt stress. In addition, we detected the 75 metabolites that were different among the treatments according to GC-MS analysis, including organic acids, amino acids, sugars/polyols and others. The metabolic data showed salt stress and alkali stress caused different metabolic shifts; alkali stress has a stronger injurious effect on the distribution and accumulation of metabolites than salt stress. These outcomes correspond to specific detrimental effects of a highly pH environment. CONCLUSIONS Ca had a significant positive correlation with alkali tolerates, and increasing Ca concentration can immediately trigger SOS Na exclusion system and reduce the Na injury. Salt stress caused metabolic shifts toward gluconeogenesis with increased sugars to avoid osmotic stress; energy in roots and active synthesis in leaves were needed by wheat to develop salt tolerance. Alkali stress (at high pH) significantly inhibited photosynthetic rate; thus, sugar production was reduced, N metabolism was limited, amino acid production was reduced, and glycolysis was inhibited.
Collapse
Affiliation(s)
- Rui Guo
- Institute of Environment and Sustainable Development in Agriculture (IEDA), Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Beijing, 100081, P.R. China.
| | - Zongze Yang
- Key laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Feng Li
- Institute of Environment and Sustainable Development in Agriculture (IEDA), Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Beijing, 100081, P.R. China.
| | - Changrong Yan
- Institute of Environment and Sustainable Development in Agriculture (IEDA), Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Beijing, 100081, P.R. China.
| | - Xiuli Zhong
- Institute of Environment and Sustainable Development in Agriculture (IEDA), Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Beijing, 100081, P.R. China.
| | - Qi Liu
- Institute of Environment and Sustainable Development in Agriculture (IEDA), Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Beijing, 100081, P.R. China.
| | - Xu Xia
- Institute of Environment and Sustainable Development in Agriculture (IEDA), Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Beijing, 100081, P.R. China.
| | - Haoru Li
- Institute of Environment and Sustainable Development in Agriculture (IEDA), Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Beijing, 100081, P.R. China.
| | - Long Zhao
- Key laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
1018
|
Hu G, Liu Y, Zhang X, Yao F, Huang Y, Ervin EH, Zhao B. Physiological Evaluation of Alkali-Salt Tolerance of Thirty Switchgrass (Panicum virgatum) Lines. PLoS One 2015; 10:e0125305. [PMID: 26146987 PMCID: PMC4492678 DOI: 10.1371/journal.pone.0125305] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/13/2015] [Indexed: 11/18/2022] Open
Abstract
Soil salt-alkalization is a major limiting factor for crop production in many regions. Switchgrass (Panicum virgatum L.) is a warm-season C4 perennial rhizomatous bunchgrass and a target lignocellulosic biofuel species. The objective of this study was to evaluate relative alkali-salt tolerance among 30 switchgrass lines. Tillers of each switchgrass line were transplanted into pots filled with fine sand. Two months after transplanting, plants at E5 developmental stage were grown in either half strength Hoagland’s nutrient solution with 0 mM Na+ (control) or half strength Hoagland’s nutrient solution with 150 mM Na+ and pH of 9.5 (alkali-salt stress treatment) for 20 d. Alkali-salt stress damaged cell membranes [higher electrolyte leakage (EL) ], reduced leaf relative water content (RWC), net photosynthetic rate (Pn), stomatal conductance (gs), and transpiration rate (Tr). An alkali-salt stress tolerance trait index (ASTTI) for each parameter was calculated based on the ratio of the value under alkali-salt stress and the value under non-stress conditions for each parameter of each line. Relative alkali-salt tolerance was determined based on principal components analysis and cluster analysis of the physiological parameters and their ASTTI values. Significant differences in alkali-salt stress tolerance were found among the 30 lines. Lowland lines TEM-SEC, Alamo, TEM-SLC and Kanlow were classified as alkali-salt tolerant. In contrast, three lowland lines (AM-314/MS-155, BN-13645-64) and two upland lines (Caddo and Blackwell-1) were classified as alkali-salt sensitive. The results suggest wide variations exist in alkali-salt stress tolerance among the 30 switchgrass lines. The approach of using a combination of principal components and cluster analysis of the physiological parameters and related ASTTI is feasible for evaluating alkali-salt tolerance in switchgrass.
Collapse
Affiliation(s)
- Guofu Hu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang Province, P.R. China
- Department of Crop and Soil Environmental Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Yiming Liu
- Department of Crop and Soil Environmental Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Xunzhong Zhang
- Department of Crop and Soil Environmental Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- * E-mail: (XZ); (BZ)
| | - Fengjiao Yao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang Province, P.R. China
| | - Yan Huang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang Province, P.R. China
| | - Erik H. Ervin
- Department of Crop and Soil Environmental Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Bingyu Zhao
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- * E-mail: (XZ); (BZ)
| |
Collapse
|
1019
|
Alvarez-Gerding X, Espinoza C, Inostroza-Blancheteau C, Arce-Johnson P. Molecular and physiological changes in response to salt stress in Citrus macrophylla W plants overexpressing Arabidopsis CBF3/DREB1A. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 92:71-80. [PMID: 25914135 DOI: 10.1016/j.plaphy.2015.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 05/23/2023]
Abstract
Plant stress induced by high salinity has leading to an important reduction in crop yields. Due to their tropical origin, citrus fruits are highly sensitive to salts. Rootstocks are the root system of fruit trees, regulating ion uptake and transport to the canopy. Therefore, increasing their salt tolerance could improve the salt tolerance of the fruit tree. For this, we genetically-transformed an important rootstock for lemon, Citrus macrophylla W, to constitutively express the CBF3/DREB1A gene from Arabidopsis, a well-studied salinity tolerance transcription factor. Transgenic lines showed normal size, with no dwarfism. Under salt stress, some transgenic lines showed greater growth, similar accumulation of chloride and sodium in the leaves and better stomatal conductance, in comparison to wild-type plants. Quantitative real-time analyses showed a similar expression of several CBF3/DREB1A target genes, such as COR15A, LEA 4/5, INV, SIP1, P5CS, GOLS, ADC2 and LKR/SDH, in transgenic lines and wild type plants, with the exception of INV that shows increased expression in line 4C15. Under salt stress, all measured transcript increased in both wild type and transgenics lines, with the exception of INV. Altogether, these results suggest a higher salt tolerance of transgenic C. macrophylla plants induced by the overexpression of AtCBF3/DREB1A.
Collapse
Affiliation(s)
- Ximena Alvarez-Gerding
- Facultad de Agronomía e Ingeniería Forestal, Pontifica Universidad Católica de Chile, Av. Vicuña Mackenna 4560, Santiago, Chile; Facultad de Ciencias Biológicas, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Av. Alameda 340, P.O. Box 114-D, Santiago, Chile
| | - Carmen Espinoza
- Facultad de Ciencias Biológicas, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Av. Alameda 340, P.O. Box 114-D, Santiago, Chile
| | - Claudio Inostroza-Blancheteau
- Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Escuela de Agronomía, Universidad Católica de Temuco, P.O. Box 56-D, Temuco, Chile
| | - Patricio Arce-Johnson
- Facultad de Ciencias Biológicas, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Av. Alameda 340, P.O. Box 114-D, Santiago, Chile.
| |
Collapse
|
1020
|
Gómez-Bellot MJ, Ortuño MF, Nortes PA, Vicente-Sánchez J, Martín FF, Bañón S, Sánchez-Blanco MJ. Protective effects of Glomus iranicum var. tenuihypharum on soil and Viburnum tinus plants irrigated with treated wastewater under field conditions. MYCORRHIZA 2015; 25:399-409. [PMID: 25492808 DOI: 10.1007/s00572-014-0621-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/24/2014] [Indexed: 06/04/2023]
Abstract
Currently, irrigation using recycled water is increasing, especially in semiarid environments, but a potential problem of using reclaimed wastewater is its elevated salt levels. The application of arbuscular mycorrhizal fungi (AMF) could be a suitable option to mitigate the negative effects produced by the salinity. In this work, the combined effect of Glomus iranicum var. tenuihypharum and two types of water: Control, C, with EC <0.9 dS m(-1) and reclaimed water (wastewater previously treated in a sewage treatment plant) with EC 4 dS m(-1) during a first saline period (11 weeks) and with EC 6 dS m(-1) during a second saline period (25 weeks), was evaluated for laurustinus (Viburnum tinus) plants under field conditions. This plant is a popular shrub very used for gardening. Chemical properties of soil as well as physiological behavior, leaf nutrition, and esthetic value of plants were evaluated. Due to the high salinity from wastewater at 6 dS m(-1), laurustinus plants decreased their stem water potential values and, to a lesser extent, the stomatal conductance. Also, the visual quality of the plants was diminished. The inoculated AMF satisfactorily colonized the laurustinus roots and enhanced the structure of the soil by increasing the glomalin and carbon contents. Furthermore, G. iranicum var. tenuihypharum inoculation decreased Na and Cl content, stimulated flowering and improved the stem water potential of the plants irrigated with both types of reclaimed water. The AMF also had a positive effect as a consequence of stimulation of plant physiological parameters, such as the stem water potential and stomatal conductance. Effective AMF associations that avoid excessive salinity could provide wastewater reuse options, especially when the plants grow in soils.
Collapse
Affiliation(s)
- María José Gómez-Bellot
- Departamento de Riego, Centro de Edafología y Biología Aplicada del Segura (CSIC), P.O. Box 164, 30100, Murcia, Spain,
| | | | | | | | | | | | | |
Collapse
|
1021
|
Gill SS, Anjum NA, Gill R, Yadav S, Hasanuzzaman M, Fujita M, Mishra P, Sabat SC, Tuteja N. Superoxide dismutase--mentor of abiotic stress tolerance in crop plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:10375-94. [PMID: 25921757 DOI: 10.1007/s11356-015-4532-5] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/12/2015] [Indexed: 05/20/2023]
Abstract
Abiotic stresses impact growth, development, and productivity, and significantly limit the global agricultural productivity mainly by impairing cellular physiology/biochemistry via elevating reactive oxygen species (ROS) generation. If not metabolized, ROS (such as O2 (•-), OH(•), H2O2, or (1)O2) exceeds the status of antioxidants and cause damage to DNA, proteins, lipids, and other macromolecules, and finally cellular metabolism arrest. Plants are endowed with a family of enzymes called superoxide dismutases (SODs) that protects cells against potential consequences caused by cytotoxic O2 (•-) by catalyzing its conversion to O2 and H2O2. Hence, SODs constitute the first line of defense against abiotic stress-accrued enhanced ROS and its reaction products. In the light of recent reports, the present effort: (a) overviews abiotic stresses, ROS, and their metabolism; (b) introduces and discusses SODs and their types, significance, and appraises abiotic stress-mediated modulation in plants; (c) analyzes major reports available on genetic engineering of SODs in plants; and finally, (d) highlights major aspects so far least studied in the current context. Literature appraised herein reflects clear information paucity in context with the molecular/genetic insights into the major functions (and underlying mechanisms) performed by SODs, and also with the regulation of SODs by post-translational modifications. If the previous aspects are considered in the future works, the outcome can be significant in sustainably improving plant abiotic stress tolerance and efficiently managing agricultural challenges under changing climatic conditions.
Collapse
Affiliation(s)
- Sarvajeet Singh Gill
- Stress Physiology and Molecular Biology Lab, Centre for Biotechnology, MD University, Rohtak, Haryana, 124001, India,
| | | | | | | | | | | | | | | | | |
Collapse
|
1022
|
Lin Y, Di Toro DM, Allen HE. Development and validation of a terrestrial biotic ligand model for Ni toxicity to barley root elongation for non-calcareous soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 202:41-49. [PMID: 25800936 DOI: 10.1016/j.envpol.2015.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/10/2015] [Accepted: 03/12/2015] [Indexed: 06/04/2023]
Abstract
A Terrestrial Biotic Ligand Model (TBLM) for Ni toxicity to barley root elongation (RE) developed from experiments conducted in sand culture was used to predict toxicity in non-calcareous soils. Ca(2+) and Mg(2+) concentrations and pH in sand solution were varied individually and TBLM parameters were computed. EC50 increased as Mg(2+) increased, whereas the effect of Ca(2+) was insignificant. TBLM parameters developed from sand culture were validated by toxicity tests in eight Ni-amended, non-calcareous soils. Additional to Ni(2+) toxicity, toxicity from all solution ions was modelled independently as an osmotic effect and needed to be included for soil culture results. The EC50s and EC10s in soil culture were predicted within twofold of measured results. These are close to the results obtained using parameters estimated from the soil culture data itself.
Collapse
Affiliation(s)
- Yanqing Lin
- Center for the Study of Metals in the Environment, Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, USA
| | - Dominic M Di Toro
- Center for the Study of Metals in the Environment, Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, USA
| | - Herbert E Allen
- Center for the Study of Metals in the Environment, Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
1023
|
Horváth E, Csiszár J, Gallé Á, Poór P, Szepesi Á, Tari I. Hardening with salicylic acid induces concentration-dependent changes in abscisic acid biosynthesis of tomato under salt stress. JOURNAL OF PLANT PHYSIOLOGY 2015; 183:54-63. [PMID: 26086888 DOI: 10.1016/j.jplph.2015.05.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/19/2015] [Accepted: 05/23/2015] [Indexed: 05/08/2023]
Abstract
The role of salicylic acid (SA) in the control of abscisic acid (ABA) biosynthesis is controversial although both plant growth regulators may accumulate in tissues under abiotic and biotic stress conditions. Hardening of tomato plants to salinity stress with 10(-4)M SA ("high SA") resulted in an up-regulation of ABA biosynthesis genes, zeaxanthin epoxidase (SlZEP1), 9-cis-epoxycarotenoid dioxygenase (SlNCED1) and aldehyde oxidases (SlAO1 and SlAO2) in the roots and led to ABA accumulation both in root and leaf tissues. In plants pre-treated with lower concentration of SA (10(-7)M, "low SA"), the up-regulation of SlNCED1 in the roots promoted ABA accumulation in the root tissues but the hormone concentration remained at control level in the leaves. Salt stress induced by 100mM NaCl reduced the transcript abundance of ABA biosynthetic genes and inhibited SlAO activity in plants hardened with "high SA", but the tissues maintained root ABA level over the untreated control. The combined effect of "high SA" and ABA under salt stress led to partially recovered photosynthetic activity, reduced ethylene production in root apices, and restored root growth, which is one of the main features of salt tolerance. Unlike "high SA", hardening with "low SA" had no influence on ethylene production, and led to reduced elongation of roots in plants exposed to 100mM NaCl. The up-regulation of carotenoid cleavage dioxygenases SlCCD1A and SlCCD1B by SA, which produce apocarotenoids, may open new pathways in SA sensing and signalling processes.
Collapse
Affiliation(s)
- Edit Horváth
- Department of Plant Biology, Faculty of Sciences, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Jolán Csiszár
- Department of Plant Biology, Faculty of Sciences, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Ágnes Gallé
- Department of Plant Biology, Faculty of Sciences, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Péter Poór
- Department of Plant Biology, Faculty of Sciences, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Ágnes Szepesi
- Department of Plant Biology, Faculty of Sciences, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Irma Tari
- Department of Plant Biology, Faculty of Sciences, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| |
Collapse
|
1024
|
Dar TA, Uddin M, Khan MMA, Hakeem K, Jaleel H. Jasmonates counter plant stress: A Review. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2015; 115:49-57. [PMID: 0 DOI: 10.1016/j.envexpbot.2015.02.010] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
|
1025
|
Geilfus CM, Niehaus K, Gödde V, Hasler M, Zörb C, Gorzolka K, Jezek M, Senbayram M, Ludwig-Müller J, Mühling KH. Fast responses of metabolites in Vicia faba L. to moderate NaCl stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 92:19-29. [PMID: 25900421 DOI: 10.1016/j.plaphy.2015.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/08/2015] [Accepted: 04/08/2015] [Indexed: 06/04/2023]
Abstract
Salt stress impairs global agricultural crop production by reducing vegetative growth and yield. Despite this importance, a number of gaps exist in our knowledge about very early metabolic responses that ensue minutes after plants experience salt stress. Surprisingly, this early phase remains almost as a black box. Therefore, systematic studies focussing on very early plant physiological responses to salt stress (in this case NaCl) may enhance our understanding on strategies to develop crop plants with a better performance under saline conditions. In the present study, hydroponically grown Vicia faba L. plants were exposed to 90 min of NaCl stress, whereby every 15 min samples were taken for analyzing short-term physiologic responses. Gas chromatography-mass spectrometry-based metabolite profiles were analysed by calculating a principal component analysis followed by multiple contrast tests. Follow-up experiments were run to analyze downstream effects of the metabolic changes on the physiological level. The novelty of this study is the demonstration of complex stress-induced metabolic changes at the very beginning of a moderate salt stress in V. faba, information that are very scant for this early stage. This study reports for the first that the proline analogue trans-4-hydroxy-L-proline, known to inhibit cell elongation, was increasingly synthesized after NaCl-stress initiation. Leaf metabolites associated with the generation or scavenging of reactive oxygen species (ROS) were affected in leaves that showed a synchronized increase in ROS formation. A reduced glutamine synthetase activity indicated that disturbances in the nitrogen assimilation occur earlier than it was previously thought under salt stress.
Collapse
Affiliation(s)
- Christoph-Martin Geilfus
- Institute of Plant Nutrition and Soil Science, Christian Albrechts University Kiel, Hermann-Rodewald Str. 2, D-24118 Kiel, Germany.
| | - Karsten Niehaus
- Department of Proteome and Metabolome Research, Faculty of Biology, Bielefeld University, Postfach 100131, D-33501 Bielefeld, Germany
| | - Victoria Gödde
- Department of Proteome and Metabolome Research, Faculty of Biology, Bielefeld University, Postfach 100131, D-33501 Bielefeld, Germany
| | - Mario Hasler
- Lehrfach Variationsstatistik, Christian Albrechts University Kiel, Hermann-Rodewald Str. 9, D-24118 Kiel, Germany
| | - Christian Zörb
- Institute of Crop Science, Quality of Plant Products, University Hohenheim, Schloss, Westhof West, 118, D-70593 Stuttgart, Germany
| | - Karin Gorzolka
- Department of Proteome and Metabolome Research, Faculty of Biology, Bielefeld University, Postfach 100131, D-33501 Bielefeld, Germany
| | - Mareike Jezek
- Institute of Plant Nutrition and Soil Science, Christian Albrechts University Kiel, Hermann-Rodewald Str. 2, D-24118 Kiel, Germany
| | - Mehmet Senbayram
- Institute of Applied Plant Nutrition, Plant Nutrition, Georg-August-University Göttingen, Carl-Sprengel-Weg 1, D-37075 Göttingen, Germany
| | - Jutta Ludwig-Müller
- Institute of Botany, Technische Universität Dresden, Zellescher Weg 20b, D-01062 Dresden, Germany
| | - Karl H Mühling
- Institute of Plant Nutrition and Soil Science, Christian Albrechts University Kiel, Hermann-Rodewald Str. 2, D-24118 Kiel, Germany
| |
Collapse
|
1026
|
Westphal C, Gachón P, Bravo J, Navarrete C, Salas C, Ibáñez C. The Potential of Algarrobo (Prosopis chilensis (Mol.) Stuntz) for Regeneration of Desertified Soils: Assessing Seed Germination Under Saline Conditions. ENVIRONMENTAL MANAGEMENT 2015; 56:209-220. [PMID: 25894272 DOI: 10.1007/s00267-015-0490-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 03/31/2015] [Indexed: 06/04/2023]
Abstract
Due to their multipurpose use, leguminous trees are desirable for the restoration of degraded ecosystems. Our aim was to investigate seed germination of the leguminous tree Prosopis chilensis in response to salinity, one of the major abiotic challenges of desertified soils. Germination percentages of seed from 12 wild P. chilensis populations were studied. Treatments included four aqueous NaCl concentrations (150, 300, 450, and 600 mM). In each population, the highest germination percentage was seen using distilled water (control), followed closely by 150 mM NaCl. At 300 mM NaCl or higher salt concentration, germination was progressively inhibited attaining the lowest value at 450 mM NaCl, while at 600 mM NaCl germination remained reduced but with large variation among group of samples. These results allowed us to allocate the 12 groups from where seeds were collected into three classes. First, the seeds from Huanta-Rivadavia showed the lowest percent germination for each salt condition. The second group was composed of moderately salt-tolerant seeds with 75% germination at 300 mM NaCl, followed by 50% germination at 450 mM NaCl and 30% germination at 600 mM NaCl. The third group from Maitencillo and Rapel areas was the most salt tolerant with an impressive seed germination level of 97% at 300 mM NaCl, 82 % at 450 mM NaCl, and 42 % at 600 mM NaCl. Our results demonstrate that P. chilensis seeds from these latter localities have an increased germination capability under saline stress, confirming that P. chilensis is an appropriate species to rehabilitate desertified soils.
Collapse
Affiliation(s)
- Claus Westphal
- Departamento de Biología, Facultad de Ciencias, Universidad de La Serena, La Serena, Chile
| | | | | | | | | | | |
Collapse
|
1027
|
Akhtar SS, Andersen MN, Naveed M, Zahir ZA, Liu F. Interactive effect of biochar and plant growth-promoting bacterial endophytes on ameliorating salinity stress in maize. FUNCTIONAL PLANT BIOLOGY : FPB 2015; 42:770-781. [PMID: 32480720 DOI: 10.1071/fp15054] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/24/2015] [Indexed: 06/11/2023]
Abstract
The objective of this work was to study the interactive effect of biochar and plant growth-promoting endophytic bacteria containing 1-aminocyclopropane-1-carboxylate deaminase and exopolysaccharide activity on mitigating salinity stress in maize (Zea mays L.). The plants were grown in a greenhouse under controlled conditions, and were subjected to separate or combined treatments of biochar (0% and 5%, w/w) and two endophytic bacterial strains (Burkholderia phytofirmans (PsJN) and Enterobacter sp. (FD17)) and salinity stress. The results indicated that salinity significantly decreased the growth of maize, whereas both biochar and inoculation mitigated the negative effects of salinity on maize performance either by decreasing the xylem Na+ concentration ([Na+]xylem) uptake or by maintaining nutrient balance within the plant, especially when the two treatments were applied in combination. Moreover, in biochar-amended saline soil, strain FD17 performed significantly better than did PsJN in reducing [Na+]xylem. Our results suggested that inoculation of plants with endophytic baterial strains along with biochar amendment could be an effective approach for sustaining crop production in salt-affected soils.
Collapse
Affiliation(s)
- Saqib Saleem Akhtar
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark
| | - Mathias Neumann Andersen
- Sino-Danish Center for Education and Research, 3 Zhongguancun South 1st Alley, Haidian District, 100190 Beijing, China
| | - Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad-38040, Pakistan
| | - Zahir Ahmad Zahir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad-38040, Pakistan
| | - Fulai Liu
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark
| |
Collapse
|
1028
|
Chen C, Sun X, Duanmu H, Yu Y, Liu A, Xiao J, Zhu Y. Ectopic Expression of a Glycine soja myo-Inositol Oxygenase Gene (GsMIOX1a) in Arabidopsis Enhances Tolerance to Alkaline Stress. PLoS One 2015; 10:e0129998. [PMID: 26091094 PMCID: PMC4474918 DOI: 10.1371/journal.pone.0129998] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 05/16/2015] [Indexed: 02/04/2023] Open
Abstract
Myo-inositol participates in various aspects of plant physiology, and myo-inositol oxygenase is the key enzyme of the myo-inositol oxygenation pathway. Previous studies indicated that myo-inositol oxygenase may play a role in plant responses to abiotic stresses. In this study, we focused on the functional characterization of GsMIOX1a, a remarkable alkaline stress-responsive gene of Glycine soja 07256, based on RNA-seq data. Using quantitative real-time PCR, we demonstrated that GsMIOX1a is rapidly induced by alkaline stress and expressed predominantly in flowers. We also elucidated the positive function of GsMIOX1a in the alkaline response in the wild type, atmiox1 mutant as well as GsMIOX1a-overexpressing Arabidopsis. We determined that atmiox1 mutant decreased Arabidopsis tolerance to alkaline stress, whereas GsMIOX1a overexpression increased tolerance. Moreover, the expression levels of some alkaline stress-responsive and inducible marker genes, including H+-Ppase, NADP-ME, KIN1 and RD29B, were also up-regulated in GsMIOX1a overexpression lines compared with the wild type and atmiox1 mutant. Together, these results suggest that the GsMIOX1a gene positively regulates plant tolerance to alkaline stress. This is the first report to demonstrate that ectopic expression of myo-inositol oxygenase improves alkaline tolerance in plants.
Collapse
Affiliation(s)
- Chen Chen
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Xiaoli Sun
- Agronomy College, Heilongjiang Bayi Agricultural University, Daqing, 163319, P.R. China
| | - Huizi Duanmu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Yang Yu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Ailin Liu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Jialei Xiao
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Yanming Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, P.R. China
- * E-mail:
| |
Collapse
|
1029
|
Khan HA, Siddique KHM, Munir R, Colmer TD. Salt sensitivity in chickpea: Growth, photosynthesis, seed yield components and tissue ion regulation in contrasting genotypes. JOURNAL OF PLANT PHYSIOLOGY 2015; 182:1-12. [PMID: 26037693 DOI: 10.1016/j.jplph.2015.05.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 04/30/2015] [Accepted: 05/13/2015] [Indexed: 05/20/2023]
Abstract
Chickpea is a relatively salt sensitive species but shows genotypic variation for salt tolerance, measured as grain yield per plant in mild-to-moderately saline soil. This experiment was designed to evaluate some physiological responses to salinity in three contrasting genotypes. One tolerant (Genesis836), one moderately tolerant (JG11) and one sensitive (Rupali) genotype were grown for 108d in non-saline nutrient solution (controls) and two levels of salinity treatment (30 and 60mM NaCl). No plants survived to maturity in the 60mM NaCl treatment; however, Genesis836 survived longer (87d) than JG11 (67d) while Rupali died after 27d; only Genesis836 flowered, but no pods were filled. At 30mM NaCl, Genesis836 produced a few filled pods, whereas JG11 and Rupali did not. Genotypic differences in plant dry mass at the vegetative stage were evident only at 60mM NaCl, while at maturity differences were evident at 30mM NaCl. Photosynthesis was maintained to different degrees by the three genotypes (e.g. at 30mM NaCl, 35-81% of controls; highest in Genesis836); photosynthesis was restricted predominately due to non-stomatal limitations as the intercellular CO2 concentration was only modestly affected (94-99% of controls). Photosystem II damage was evident in the less tolerant genotypes (e.g. at 30mM NaCl, actual quantum efficiency of photosystem II values were 63-96% of controls). Across treatments, shoot dry mass was negatively correlated with both Na(+) and Cl(-) shoot concentrations. However, the sensitive genotype (Rupali) had equal or lower concentrations of these ions in green leaves, stems or roots compared to tolerant genotypes (JG11 and Genesis836); ion 'exclusion' does not explain variation for salt tolerance among these three chickpea genotypes. The large difference between Rupali (sensitive) and Genesis836 (tolerant) in the salt-induced reduction in net photosynthesis via non-stomatal limitations and the assessed damage to photosystem II, but with similar leaf ion concentrations, provides evidence that variation in 'tissue tolerance' of Na(+) and/or Cl(-) in leaves contributes to the differential salt tolerance of these chickpea genotypes.
Collapse
Affiliation(s)
- Hammad Aziz Khan
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Kadambot H M Siddique
- UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Rushna Munir
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Timothy David Colmer
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| |
Collapse
|
1030
|
Hafize DT, Tulin A. Protective effects of Ca2+ against NaCl induced salt stress in two lentil (Lens culinaris) cultivars. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/ajar2014.9479] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
1031
|
He C, Zhang J, Liu X, Zeng S, Wu K, Yu Z, Wang X, Teixeira da Silva JA, Lin Z, Duan J. Identification of genes involved in biosynthesis of mannan polysaccharides in Dendrobium officinale by RNA-seq analysis. PLANT MOLECULAR BIOLOGY 2015; 88:219-31. [PMID: 25924595 DOI: 10.1007/s11103-015-0316-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/01/2015] [Indexed: 05/21/2023]
Abstract
Dendrobium officinale is a traditional Chinese medicinal plant. The stems of D. officinale contain mannan polysaccharides, which are promising bioactive polysaccharides for use as drugs. However, the genes involved in the biosynthesis of mannan polysaccharides in D. officinale have not yet been identified. In this study, four digital gene expression profiling analyses were performed on developing stems of greenhouse-grown D. officinale to identify such genes. Based on the accumulation of mannose and on gene expression levels, eight CELLULOSE SYNTHASE-LIKE A genes (CSLA), which are highly likely to be related to the biosynthesis of bioactive mannan polysaccharides, were identified from the differentially expressed genes database. In order to further analyze these DoCSLA genes, a full-length cDNA of each was obtained by RACE. The eight genes, belonging to the CSLA family of the CesA superfamily, contain conserved domains of the CesA superfamily. Most of the genes, which were highly expressed in the stems of D. officinale, were related to abiotic stress. Our results suggest that the CSLA family genes from D. officinale are involved in the biosynthesis of bioactive mannan polysaccharides.
Collapse
Affiliation(s)
- Chunmei He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1032
|
Abdollah Hosseini S, Gharechahi J, Heidari M, Koobaz P, Abdollahi S, Mirzaei M, Nakhoda B, Hosseini Salekdeh G. Comparative proteomic and physiological characterisation of two closely related rice genotypes with contrasting responses to salt stress. FUNCTIONAL PLANT BIOLOGY : FPB 2015; 42:527-542. [PMID: 32480698 DOI: 10.1071/fp14274] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/07/2015] [Indexed: 06/11/2023]
Abstract
Salinity is a limiting factor affecting crop growth. We evaluated the responses of a salt-tolerant recombinant inbred rice (Oryza sativa L.) line, FL478, and the salt-sensitive IR29. Seedlings were exposed to salt stress and the growth rate was monitored to decipher the effect of long-term stress. At Day 16, IR29 produced lower shoot biomass than FL478. Significant differences for Na+ and K+ concentrations and Na+ : K+ ratios in roots and shoots were observed between genotypes. Changes in the proteomes of control and salt-stressed plants were analysed, identifying 59 and 39 salt-responsive proteins in roots and leaves, respectively. Proteomic analysis showed greater downregulation of proteins in IR29. In IR29, proteins related to pathways involved in salt tolerance (e.g. oxidative stress response, amino acid biosynthesis, polyamine biosynthesis, the actin cytoskeleton and ion compartmentalisation) changed to combat salinity. We found significant downregulation of proteins related to photosynthetic electron transport in IR29, indicating that photosynthesis was influenced, probably increasing the risk of reactive oxygen species formation. The sensitivity of IR29 might be related to its inability to exclude salt from its transpiration stream, to compartmentalise excess ions and to maintain a healthy photosynthetic apparatus during salt stress, or might be because of the leakiness of its roots, allowing excess salt to enter apoplastically. In FL478, superoxide dismutase, ferredoxin thioredoxin reductase, fibre protein and inorganic pyrophosphatase, which may participate in salt tolerance, increased in abundance. Our analyses provide novel insights into the mechanisms behind salt tolerance and sensitivity in genotypes with close genetic backgrounds.
Collapse
Affiliation(s)
- Seyed Abdollah Hosseini
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, PO Box 31535-1897, Karaj 3135933151, Iran
| | - Javad Gharechahi
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, PO Box 19395-5478, Tehran 1435916471, Iran
| | - Manzar Heidari
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, PO Box 31535-1897, Karaj 3135933151, Iran
| | - Parisa Koobaz
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, PO Box 31535-1897, Karaj 3135933151, Iran
| | - Shapour Abdollahi
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, PO Box 31535-1897, Karaj 3135933151, Iran
| | - Mehdi Mirzaei
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Babak Nakhoda
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, PO Box 31535-1897, Karaj 3135933151, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, PO Box 31535-1897, Karaj 3135933151, Iran
| |
Collapse
|
1033
|
Sanadhya P, Agarwal P, Agarwal PK. Ion homeostasis in a salt-secreting halophytic grass. AOB PLANTS 2015; 7:plv055. [PMID: 25990364 PMCID: PMC4512041 DOI: 10.1093/aobpla/plv055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/11/2015] [Indexed: 05/05/2023]
Abstract
Salinity adversely affects plant growth and development, and disturbs intracellular ion homeostasis, resulting in cellular toxicity. Plants that tolerate salinity, halophytes, do so by manifesting numerous physiological and biochemical processes in coordination to alleviate cellular ionic imbalance. The present study was undertaken to analyse the salt tolerance mechanism in Aeluropus lagopoides (L.) trin. Ex Thw. (Poaceae) at both physiological and molecular levels. Plants secreted salt from glands, which eventually produced pristine salt crystals on leaves and leaf sheaths. The rate of salt secretion increased with increasing salt concentration in the growth medium. Osmotic adjustment was mainly achieved by inorganic osmolytes (Na(+)) and at 100 mM NaCl no change was observed in organic osmolytes in comparison to control plants. At 300 mM NaCl and with 150 mM NaCl + 150 mM KCl, the concentration of proline, soluble sugars and amino acids was significantly increased. Transcript profiling of transporter genes revealed differential spatial and temporal expressions in both shoot and root tissues in a manner synchronized towards maintaining ion homeostasis. In shoots, AlHKT2;1 transcript up-regulation was observed at 12 and 24 h in all the treatments, whereas in roots, maximum induction was observed at 48 h with K(+) starvation. The HAK transcript was relatively abundant in shoot tissue with all the treatments. The plasma membrane Na(+)/H(+) antiporter, SOS1, and tonoplast Na(+)/H(+) antiporter, NHX1, were found to be significantly up-regulated in shoot tissue. Our data demonstrate that AlHKT2;1, HAK, SOS1, NHX1 and V-ATPase genes play a pivotal role in regulating the ion homeostasis in A. lagopoides.
Collapse
Affiliation(s)
- Payal Sanadhya
- Wasteland Research Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar 364 002, Gujarat, India Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar 364 002, Gujarat, India
| | - Parinita Agarwal
- Wasteland Research Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar 364 002, Gujarat, India
| | - Pradeep K Agarwal
- Wasteland Research Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar 364 002, Gujarat, India Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar 364 002, Gujarat, India
| |
Collapse
|
1034
|
Sequencing and expression analysis of salt-responsive miRNAs and target genes in the halophyte smooth cordgrass (Spartina alternifolia Loisel). Mol Biol Rep 2015; 42:1341-50. [DOI: 10.1007/s11033-015-3880-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/07/2015] [Indexed: 12/27/2022]
|
1035
|
Morari F, Meggio F, Lunardon A, Scudiero E, Forestan C, Farinati S, Varotto S. Time course of biochemical, physiological, and molecular responses to field-mimicked conditions of drought, salinity, and recovery in two maize lines. FRONTIERS IN PLANT SCIENCE 2015; 6:314. [PMID: 26029220 PMCID: PMC4429227 DOI: 10.3389/fpls.2015.00314] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/20/2015] [Indexed: 05/20/2023]
Abstract
Drought and salinity stresses will have a high impact on future crop productivity, due to climate change and the increased competition for land, water, and energy. The response to drought (WS), salinity (SS), and the combined stresses (WS+SS) was monitored in two maize lines: the inbred B73 and an F1 commercial stress-tolerant hybrid. A protocol mimicking field progressive stress conditions was developed and its effect on plant growth analyzed at different time points. The results indicated that the stresses limited growth in the hybrid and arrested it in the inbred line. In SS, the two genotypes had different ion accumulation and translocation capacity, particularly for Na(+) and Cl(-). Moreover, the hybrid perceived the stress, reduced all the analyzed physiological parameters, and kept them reduced until the recovery. B73 decreased all physiological parameters more gradually, being affected mainly by SS. Both lines recovered better from WS than the other stresses. Molecular analysis revealed a diverse modulation of some stress markers in the two genotypes, reflecting their different response to stresses. Combining biochemical and physiological data with expression analyses yielded insight into the mechanisms regulating the different stress tolerance of the two lines.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Serena Varotto
- Department of Agronomy, Animals, Food, Natural Resources and Environment, University of Padova Agripolis Viale dell'UniversitàPadova, Italy
| |
Collapse
|
1036
|
Fan H, Xu Y, Du C, Wu X. Phloem sap proteome studied by iTRAQ provides integrated insight into salinity response mechanisms in cucumber plants. J Proteomics 2015; 125:54-67. [PMID: 25958826 DOI: 10.1016/j.jprot.2015.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/27/2015] [Accepted: 05/01/2015] [Indexed: 10/23/2022]
Abstract
Cucumber is an economically important crop as well as a model system for plant vascular biology. Salinity is one of the major environmental factors limiting plant growth. Here, we used an iTRAQ-based quantitative proteomics approach for comparative analysis of protein abundances in cucumber phloem sap in response to salt. A total of 745 distinct proteins were identified and 111 proteins were differentially expressed upon salinity in sensitive and tolerant cultivars, of which 69 and 65 proteins changed significantly in sensitive and tolerant cultivars, respectively. A bioinformatics analysis indicated that cucumber phloem employed a combination of induced metabolism, protein turnover, common stress response, energy and transport, signal transduction and regulation of transcription, and development proteins as protection mechanisms against salinity. The proteins that were mapped to the carbon fixation pathway decreased in abundance in sensitive cultivars and had no change in tolerant cultivars under salt stress, suggesting that this pathway may promote salt tolerance by stabilizing carbon fixation and maintaining the essential energy and carbohydrates in tolerant cultivars. This study leads to a better understanding of the salinity mechanism in cucumber phloem and provides a list of potential gene targets for the further engineering of salt tolerance in plants.
Collapse
Affiliation(s)
- Huaifu Fan
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang Agriculture & Forestry University, Lin'an 311300, China
| | - Yanli Xu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang Agriculture & Forestry University, Lin'an 311300, China
| | - Changxia Du
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang Agriculture & Forestry University, Lin'an 311300, China.
| | - Xue Wu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang Agriculture & Forestry University, Lin'an 311300, China
| |
Collapse
|
1037
|
Assaha DV, Mekawy AMM, Ueda A, Saneoka H. Salinity-induced expression of HKT may be crucial for Na+ exclusion in the leaf blade of huckleberry (Solanum scabrum Mill.), but not of eggplant (Solanum melongena L.). Biochem Biophys Res Commun 2015; 460:416-21. [DOI: 10.1016/j.bbrc.2015.03.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 03/10/2015] [Indexed: 02/02/2023]
|
1038
|
Kaneko T, Horie T, Nakahara Y, Tsuji N, Shibasaka M, Katsuhara M. Dynamic regulation of the root hydraulic conductivity of barley plants in response to salinity/osmotic stress. PLANT & CELL PHYSIOLOGY 2015; 56:875-82. [PMID: 25634964 DOI: 10.1093/pcp/pcv013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 01/23/2015] [Indexed: 05/15/2023]
Abstract
Salinity stress significantly reduces the root hydraulic conductivity (Lpr) of several plant species including barley (Hordeum vulgare). Here we characterized changes in the Lpr of barley plants in response to salinity/osmotic stress in detail using a pressure chamber. Salt-tolerant and intermediate barley cultivars, K305 and Haruna-nijyo, but not a salt-sensitive cultivar, I743, exhibited characteristic time-dependent Lpr changes induced by 100 mM NaCl. An identical response was evoked by isotonic sorbitol, indicating that this phenomenon was triggered by osmotic imbalances. Further examination of this mechanism using barley cv. Haruna-nijyo plants in combination with the use of various inhibitors suggested that various cellular processes such as protein phosphorylation/dephosphorylation and membrane internalization appear to be involved. Interestingly, the three above-mentioned barley cultivars did not exhibit a remarkable difference in root cell sap osmolality under hypertonic conditions, in contrast to the case of Lpr. The possible biological significance of the regulation of Lpr in barley plants upon salinity/osmotic stress is discussed.
Collapse
Affiliation(s)
- Toshiyuki Kaneko
- Institute of Plant Science and Resources, Okayama University, 20-1, Chuo-2-chome, Kurashiki, Okayama, 710-0046 Japan Department of Physiology, Asahikawa Medical University, 2-1-1-1, Midorigaoka-higashi, Asahikawa, Hokkaido, 078-8510 Japan These authors contributed equally to this work
| | - Tomoaki Horie
- Institute of Plant Science and Resources, Okayama University, 20-1, Chuo-2-chome, Kurashiki, Okayama, 710-0046 Japan Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano, 386-8567 Japan These authors contributed equally to this work
| | - Yoshiki Nakahara
- Institute of Plant Science and Resources, Okayama University, 20-1, Chuo-2-chome, Kurashiki, Okayama, 710-0046 Japan
| | - Nobuya Tsuji
- Institute of Plant Science and Resources, Okayama University, 20-1, Chuo-2-chome, Kurashiki, Okayama, 710-0046 Japan
| | - Mineo Shibasaka
- Institute of Plant Science and Resources, Okayama University, 20-1, Chuo-2-chome, Kurashiki, Okayama, 710-0046 Japan
| | - Maki Katsuhara
- Institute of Plant Science and Resources, Okayama University, 20-1, Chuo-2-chome, Kurashiki, Okayama, 710-0046 Japan
| |
Collapse
|
1039
|
Li J, Cai W. A ginseng PgTIP1 gene whose protein biological activity related to Ser(128) residue confers faster growth and enhanced salt stress tolerance in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 234:74-85. [PMID: 25804811 DOI: 10.1016/j.plantsci.2015.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/06/2015] [Accepted: 02/08/2015] [Indexed: 05/14/2023]
Abstract
Water movement across cellular membranes is mostly regulated by aquaporins. A tonoplast intrinsic protein PgTIP1 from Panax ginseng has been found to play an important role in plant growth and development, and also in the response of plants to abiotic stress. However, the regulation of its function and activity remains unknown. To answer this question, mutated forms of PgTIP1 were made by replacing Ser(128) with Ala (named S128A) or Asp (named S128D), and also by replacing Thr(54) with Ala (named T54A) or Asp (named T54D). Then, wild type or mutated PgTIP1 was expressed in yeast and water transport was monitored in protoplasts. The substitution of Ser(128) abolished the water channel activity of PgTIP1, while the substitution of Thr(54) did not inhibit its activity. Moreover, the overexpression of PgTIP1 but not S128A or S128D in Arabidopsis significantly increased plant growth as determined by biomass production, it also had a beneficial effect on salt stress tolerance. Importantly, the overexpression of PgTIP1 led to the altered expression of stress-related genes, which made the plants more tolerant to salt stress. Our results demonstrated that PgTIP1 conferred faster growth and enhanced tolerance to salt in Arabidopsis, and that its biological activity related to Ser(128) residue.
Collapse
Affiliation(s)
- Jia Li
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| | - Weiming Cai
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| |
Collapse
|
1040
|
Bouthour D, Kalai T, Chaffei HC, Gouia H, Corpas FJ. Differential response of NADP-dehydrogenases and carbon metabolism in leaves and roots of two durum wheat (Triticum durum Desf.) cultivars (Karim and Azizi) with different sensitivities to salt stress. JOURNAL OF PLANT PHYSIOLOGY 2015; 179:56-63. [PMID: 25835711 DOI: 10.1016/j.jplph.2015.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/07/2015] [Accepted: 02/09/2015] [Indexed: 05/20/2023]
Abstract
Wheat (Triticum durum Desf.) is a common Mediterranean species of considerable agronomic importance. Salinity is one of the major threats to sustainable agricultural production mainly because it limits plant productivity. After exposing the Karim and Azizi durum wheat cultivars, which are of agronomic significance in Tunisia, to 100mM NaCl salinity, growth parameters (dry weight and length), proline content and chlorophylls were evaluated in their leaves and roots. In addition, we analyzed glutathione content and key enzymatic activities, including phosphoenolpyruvate carboxylase (PEPC), NADP-isocitrate dehydrogenase (NADP-ICDH), NADP-malic enzyme (NADP-ME), glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH), involved in the carbon metabolism and NADPH-generating system. The sensitivity index indicates that cv Karim was more tolerant to salinity than cv Azizi. This higher tolerance was corroborated at the biochemical level, as cv Karim showed a greater capacity to accumulate proline, especially in leaves, while the enzyme activities studied were differentially regulated in both organs, with NADP-ICDH being the only activity to be unaffected in all organs. In summary, the data indicate that higher levels of proline accumulation and the differential responses of some key enzymes involved in the carbon metabolism and NADPH regeneration contribute to the salinity tolerance mechanism and lead to increased biomass accumulation in cv Karim.
Collapse
Affiliation(s)
- Donia Bouthour
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apdo 419, E-18080 Granada, Spain; Faculty of Sciences of Tunisia, University Tunis El Manar, Tunis, Tunis
| | - Tawba Kalai
- Faculty of Sciences of Tunisia, University Tunis El Manar, Tunis, Tunis
| | - Haouari C Chaffei
- Faculty of Sciences of Tunisia, University Tunis El Manar, Tunis, Tunis
| | - Houda Gouia
- Faculty of Sciences of Tunisia, University Tunis El Manar, Tunis, Tunis
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apdo 419, E-18080 Granada, Spain.
| |
Collapse
|
1041
|
Banaei-Asl F, Bandehagh A, Uliaei ED, Farajzadeh D, Sakata K, Mustafa G, Komatsu S. Proteomic analysis of canola root inoculated with bacteria under salt stress. J Proteomics 2015; 124:88-111. [PMID: 25896739 DOI: 10.1016/j.jprot.2015.04.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/26/2015] [Accepted: 04/04/2015] [Indexed: 01/06/2023]
Abstract
UNLABELLED Plant-growth promoting bacteria can ameliorate the negative effects of salt stress on canola. To better understand the role of bacteria in canola under salt stress, salt-sensitive (Sarigol) and salt-tolerant (Hyola308) cultivars were inoculated with Pseudomonas fluorescens and protein profiles of roots were compared. Bacterial inoculation increased the dry weight and length of canola roots under salt stress. Using a gel-free proteomic technique, 55 commonly changed proteins were identified in Sarigol and Hyola308 roots inoculated with bacteria under salt stress. In both canola cultivars, proteins related to amino acid metabolism and tricarboxylic acid cycle were affected. Hierarchical cluster analysis divided the identified proteins into three clusters. Proteins related to Clusters II and III, which were secretion-associated RAS super family 1, dynamin-like protein, and histone, were increased in roots of both Sarigol and Hyola308 inoculated with bacteria under salt stress. Based on pathway mapping, proteins related to amino acid metabolism and the tricarboxylic acid cycle significantly changed in canola cultivars inoculated with or without bacteria under salt stress. These results suggest that bacterial inoculation of canola roots increases tolerance to salt stress by proteins related to energy metabolism and cell division. BIOLOGICAL SIGNIFICANCE Plant-growth promoting bacteria as an emerging aid can ameliorate the negative effect of salt stress on canola. To understand the role of bacteria in canola under salt stress, salt sensitive Sarigol and tolerant Hyola308 cultivars were used. Dry weight and length of canola root were improved by inoculation of bacteria under salt stress. Using gel-free proteomic technique, 55 commonly changed proteins identified in Sarigol and Hyola308 inoculated with bacteria under salt stress. In both canola cultivars, the number of proteins related to amino acid metabolism and tricarboxylic acid cycle was more than other categories with higher change in protein abundance. Hierarchical cluster analysis divided into 3 clusters. Cluster II including secretion-associated RAS super family 1 and dynamin-like protein and Cluster III including histones H2A were increased by bacterial inoculation in both cultivars. Furthermore, pathway mapping highlighted the importance of S-denosylmethionine synthetase and malate dehydrogenase that decreased in canola inoculated with bacteria under salt stress. These results suggest that bacterial inoculation helps the canola to endure salt stress by modulating the proteins related to energy metabolism and cell division.
Collapse
Affiliation(s)
- Farzad Banaei-Asl
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan; Department of Plant Breeding and Biotechnology, University of Tabriz, Tabriz 51666-16471, Iran
| | - Ali Bandehagh
- Department of Plant Breeding and Biotechnology, University of Tabriz, Tabriz 51666-16471, Iran
| | - Ebrahim Dorani Uliaei
- Department of Plant Breeding and Biotechnology, University of Tabriz, Tabriz 51666-16471, Iran
| | - Davoud Farajzadeh
- Department of Cellular and Molecular Biology, Azarbaijan Shahid Madani University, Tabriz 53751-71379, Iran
| | - Katsumi Sakata
- Maebashi Institute of Technology, Maebashi 371-0816, Japan
| | - Ghazala Mustafa
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
1042
|
Kitazumi A, Kawahara Y, Onda TS, De Koeyer D, de los Reyes BG. Implications of miR166 and miR159 induction to the basal response mechanisms of an andigena potato (Solanum tuberosum subsp. andigena) to salinity stress, predicted from network models in Arabidopsis. Genome 2015; 58:13-24. [PMID: 25955479 DOI: 10.1139/gen-2015-0011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNA (miRNA) mediated changes in gene expression by post-transcriptional modulation of major regulatory transcription factors is a potent mechanism for integrating growth and stress-related responses. Exotic plants including many traditional varieties of Andean potatoes (Solanum tuberosum subsp. andigena) are known for better adaptation to marginal environments. Stress physiological studies confirmed earlier reports on the salinity tolerance potentials of certain andigena cultivars. Guided by the hypothesis that certain miRNAs play important roles in growth modulation under suboptimal conditions, we identified and characterized salinity stress-responsive miRNA-target gene pairs in the andigena cultivar Sullu by parallel analysis of noncoding and coding RNA transcriptomes. Inverse relationships were established by the reverse co-expression between two salinity stress-regulated miRNAs (miR166, miR159) and their target transcriptional regulators HD-ZIP-Phabulosa/Phavulota and Myb101, respectively. Based on heterologous models in Arabidopsis, the miR166-HD-ZIP-Phabulosa/Phavulota network appears to be involved in modulating growth perhaps by mediating vegetative dormancy, with linkages to defense-related pathways. The miR159-Myb101 network may be important for the modulation of vegetative growth while also controlling stress-induced premature transition to reproductive phase. We postulate that the induction of miR166 and miR159 under salinity stress represents important network hubs for balancing gene expression required for basal growth adjustments.
Collapse
Affiliation(s)
- Ai Kitazumi
- School of Biology and Ecology, University of Maine, 5735 Hitchner Hall, Orono, ME 04469, USA
| | | | | | | | | |
Collapse
|
1043
|
Tack J, Singh RK, Nalley LL, Viraktamath BC, Krishnamurthy SL, Lyman N, Jagadish KSV. High vapor pressure deficit drives salt-stress-induced rice yield losses in India. GLOBAL CHANGE BIOLOGY 2015; 21:1668-78. [PMID: 25379616 DOI: 10.1111/gcb.12803] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/14/2014] [Indexed: 05/21/2023]
Abstract
Flooded rice is grown across wide geographic boundaries from as far north as Manchuria and as far south as Uruguay and New South Wales, primarily because of its adaptability across diverse agronomic and climatic conditions. Salt-stress damage, a common occurrence in delta and coastal rice production zones, could be heightened by the interactions between high temperature and relative humidity (vapor pressure deficit--VPD). Using temporal and spatial observations spanning 107 seasons and 19 rice-growing locations throughout India with varying electrical conductivity (EC), including coastal saline, inland saline, and alkaline soils, we quantified the proportion of VPD inducing salinity damage in rice. While controlling for time-invariant factors such as trial locations, rice cultivars, and soil types, our regression analysis indicates that EC has a nonlinear detrimental effect on paddy rice yield. Our estimates suggest these yield reductions become larger at higher VPD. A one standard deviation (SD) increase in EC from its mean value is associated with 1.68% and 4.13% yield reductions at median and maximum observed VPD levels, respectively. Yield reductions increase roughly sixfold when the one SD increase is taken from the 75th percentile of EC. In combination, high EC and VPD generate near catastrophic crop loss as predicted yield approaches zero. If higher VPD levels driven by global warming materialize in conjunction with rising sea levels or salinity incursion in groundwater, this interaction becomes an important and necessary predictor of expected yield losses and global food security.
Collapse
Affiliation(s)
- Jesse Tack
- Department of Agricultural Economics, Mississippi State University, Starkville, MS, USA
| | | | | | | | | | | | | |
Collapse
|
1044
|
Richter JA, Erban A, Kopka J, Zörb C. Metabolic contribution to salt stress in two maize hybrids with contrasting resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 233:107-115. [PMID: 25711818 DOI: 10.1016/j.plantsci.2015.01.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/08/2015] [Accepted: 01/10/2015] [Indexed: 05/17/2023]
Abstract
Salt stress reduces the growth of salt-sensitive plants such as maize. The cultivation of salt-resistant maize varieties might therefore help to reduce yield losses. For the elucidation of the underlying physiological and biochemical processes of a resistant hybrid, we used a gas chromatography mass spectrometry approach and analyzed five different salt stress levels. By comparing a salt-sensitive and a salt-resistant maize hybrid, we were able to identify an accumulation of sugars such as glucose, fructose, and sucrose in leaves as a salt-resistance adaption of the salt-sensitive hybrid. Although, both hybrids showed a strong decrease of the metabolite concentration in the tricarboxylic acid cycle. These decreases resulted in the same reduced catabolism for the salt-sensitive and even the salt-resistant maize hybrid. Surprisingly, the change of root metabolism was negligible under salt stress. Moreover, the salt-resistance mechanisms were the most effective at low salt-stress levels in the leaves of the salt-sensitive maize.
Collapse
Affiliation(s)
- Julia Annika Richter
- University of Hohenheim, Institute of Crop Science, Quality of Plant Products, 70599 Stuttgart, Germany.
| | - Alexander Erban
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Christian Zörb
- University of Hohenheim, Institute of Crop Science, Quality of Plant Products, 70599 Stuttgart, Germany
| |
Collapse
|
1045
|
Malekzadeh P. Influence of exogenous application of glycinebetaine on antioxidative system and growth of salt-stressed soybean seedlings (Glycine max L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2015; 21:225-32. [PMID: 25964715 PMCID: PMC4411384 DOI: 10.1007/s12298-015-0292-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/09/2015] [Indexed: 05/03/2023]
Abstract
Glycinebetaine is one of the most competitive compounds which play an important role in salt stress in plants. In this study, the enhanced salt tolerance in soybean (Glycine max L.) by exogenous application of glycinebetaine was evaluated. To improve salt tolerance at the seedling stage, GB was applied in four different concentrations (0, 5, 25 and 50 mM) as a pre-sowing seed treatment. Salinity stress in the form of a final concentration of 150 mM sodium chloride (NaCl) over a 15 day period drastically affected the plants as indicated by increased proline, MDA and Na(+) content of soybean plants. In contrast, supplementation with 50 mM GB improved growth of soybean plants under NaCl as evidenced by a decrease in proline, MDA and Na(+) content of soybean plants. Further analysis showed that treatments with GB, resulted in increasing of CAT and SOD activity of soybean seedlings in salt stress. We propose that the role of GB in increasing tolerance to salinity stress in soybean may result from either its antioxidant capacity by direct scavenging of H2O2 or its role in activating CAT activity which is mandatory in scavenging H2O2.
Collapse
Affiliation(s)
- Parviz Malekzadeh
- Department of Biology, Faculty of Sciences, University of Qom, Qom, Iran
| |
Collapse
|
1046
|
Lashari MS, Ye Y, Ji H, Li L, Kibue GW, Lu H, Zheng J, Pan G. Biochar-manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from central China: a 2-year field experiment. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:1321-1327. [PMID: 25042565 DOI: 10.1002/jsfa.6825] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/06/2014] [Accepted: 07/10/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Salinity is a major stress threatening crop production in dry lands. A 2-year field experiment was conducted to assess the potential of a biochar product to alleviate salt-stress to a maize crop in a saline soil. The soil was amended with a compost at 12 t ha(-1) of wheat straw biochar and poultry manure compost (BPC), and a diluted pyroligneous solution (PS) at 0.15 t ha(-1) (BPC-PS). Changes in soil salinity and plant performance, leaf bioactivity were examined in the first (BPC-PS1) and second (BPC-PS2) year following a single amendment. RESULTS While soil salinity significantly decreased, there were large increases in leaf area index, plant performance, and maize grain yield, with a considerable decrease in leaf electrolyte leakage when grown in amendments. Maize leaf sap nitrogen, phosphorus and potassium increased while sodium and chloride decreased, leaf bioactivity related to osmotic stress was significantly improved following the treatments. These effects were generally greater in the second than in the first year. CONCLUSION A combined amendment of crop straw biochar with manure compost plus pyroligneous solution could help combat salinity stress to maize and improve productivity in saline croplands in arid/semi-arid regions threatened increasingly by global climate change.
Collapse
Affiliation(s)
- Muhammad Siddique Lashari
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Faculty of Crop Production, Department of Soil Science, Sindh Agriculture University, Tandojam, 70060, Pakistan
| | | | | | | | | | | | | | | |
Collapse
|
1047
|
Wu TM, Lin WR, Kao CH, Hong CY. Gene knockout of glutathione reductase 3 results in increased sensitivity to salt stress in rice. PLANT MOLECULAR BIOLOGY 2015; 87:555-564. [PMID: 25636203 DOI: 10.1007/s11103-015-0290-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/27/2015] [Indexed: 06/04/2023]
Abstract
Glutathione reductase (GR) is one of important antioxidant enzymes in plants. This enzyme catalyzes the reduction of glutathione disulfide (GSSG) to reduced glutathione (GSH) with the accompanying oxidation of NADPH. Previously, we showed that salt-stress-responsive GR3 is a functional protein localized in chloroplasts and mitochondria in rice. To learn more about the role of GR3 in salt-stress tolerance, we investigated the response to 100 mM NaCl treatment in wild-type rice (WT); GR3 knockout mutant of rice (gr3); and the functional gr3-complementation line (C1). Rice GR3 was primarily expressed in roots at the seedling stage and ubiquitously expressed in all tissues except the sheath at heading stage. GR3 promoter-GUS was expressed in the vascular cylinder and cortex of root tissues in rice seedlings, vascular tissue of nodes, embryo and aleurone layer of seeds, and young flowers. Under both normal and salt-stress conditions, total GR activity was decreased by 20 % in gr3. Oxidative stress, indicated by malondialdehyde content, was greater in gr3 than the WT under salt stress. As compared with the WT, gr3 was sensitive to salt and methyl viologen; it showed inhibited growth, decreased maximal efficiency of photosystem II, decreased GSH and GSSG contents, and the ratio of GSH to GSSG. Conversely, the gr3-complementation line C1 rescued the tolerance to methyl viologen and salinity and recovered the growth and physiological damage caused by salinity. These results reveal that GR3 plays an important role in salt stress tolerance by regulating the GSH redox state in rice.
Collapse
Affiliation(s)
- Tsung-Meng Wu
- Department of Agricultural Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | | | | | | |
Collapse
|
1048
|
Boumaaza B, Benkhelifa M, Belkhoudja M. Effects of Two Salts Compounds on Mycelial Growth, Sporulation, and Spore Germination of Six Isolates of Botrytis cinerea in the Western North of Algeria. Int J Microbiol 2015; 2015:572626. [PMID: 25883657 PMCID: PMC4391690 DOI: 10.1155/2015/572626] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/26/2015] [Accepted: 03/05/2015] [Indexed: 11/26/2022] Open
Abstract
Six isolates of Botrytis cinerea were isolated from leaves and stems of different tomato varieties taken from four areas in the northwest of Algeria where tomato is mostly grown in greenhouses and high tunnels. The purpose of this research was to determine the effect of two salts, NaCl and CaCl2, on three stages of Botrytis cinerea's life cycle. All isolates tested were stimulated in 50 to 150 ppm; NaCl was the most effective treatment to increase mycelial growth at two tested concentrations. However, at 300 ppm concentration, CaCl2 completely inhibited the growth of mycelium; they reach 34.78% for the isolate TR46 and 26.72% for isolate F27. The sodium and calcium salts stimulated conidia production in liquid culture. We noticed that the effect of calcium chloride on sporulation was average while sodium chloride. In the medium containing 50 ppm, calcium chloride and sodium chloride increased the germination capacity of most isolates compared with the control. Other calcium salts, at 100 or 300 ppm, decreased the germination percentage of the conidia. With the exception of sodium salts, the inhibitions of germination reduce at 150 or 300 compared with the control. Conidial germination was slightly inhibited by sodium chloride only when the concentration was over 300 ppm.
Collapse
Affiliation(s)
- Boualem Boumaaza
- Department of Agronomy, Laboratory of Plant Protection, University of Abdelhamid Ibn Badis, BP 300, 27000 Mostaganem, Algeria
| | - Mohamed Benkhelifa
- Department of Agronomy, Laboratory of Plant Protection, University of Abdelhamid Ibn Badis, BP 300, 27000 Mostaganem, Algeria
| | - Moulay Belkhoudja
- Sciences Faculty, Vegetal Ecophysiology Laboratory, University of Es Senia, BP 1524, ElMnouer, Oran, Algeria
| |
Collapse
|
1049
|
Wang J, Li B, Meng Y, Ma X, Lai Y, Si E, Yang K, Ren P, Shang X, Wang H. Transcriptomic profiling of the salt-stress response in the halophyte Halogeton glomeratus. BMC Genomics 2015; 16:169. [PMID: 25880042 PMCID: PMC4363069 DOI: 10.1186/s12864-015-1373-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 02/20/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Halogeton glomeratus (H. glomeratus) is an extreme halophyte that is widely distributed in arid regions, including foothills, the Gobi desert of northwest China, and the marginal loess of Central Asia. However, research on the salt-tolerant mechanisms and genes of this species are limited because of a lack of genomic sequences. In the present study, the transcriptome of H. glomeratus was analyzed using next-generation sequencing technology to identify genes involved in salt tolerance and better understand mechanisms of salt response in the halophyte H. glomeratus. RESULTS Illumina RNA-sequencing was performed in five sequencing libraries that were prepared from samples treated with 200 mM NaCl for 6, 12, 24, and 72 h and a control sample to investigate changes in the H. glomeratus transcriptome in response to salt stress. The de novo assembly of five transcriptomes identified 50,267 transcripts. Among these transcripts, 31,496 (62.66%) were annotated, including 44 Gene Ontology (GO) terms and 128 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Compared with transcriptomes from the control and NaCl-treated samples, there were 2,223, 5,643, 7,510 and 10,908 genes that were differentially expressed after exposure to NaCl for 6, 12, 24, and 72 h, respectively. One hundred and eighteen salt-induced genes were common to at least two stages of salt stress, and 291 up-regulated genes were common to various stages of salt stress. Numerous genes that are related to ion transport, reactive oxygen species scavenging, energy metabolism, hormone-response pathways, and responses to biotic and abiotic stress appear to play a significant role in adaptation to salinity conditions in this species. The detection of expression patterns of 18 salt-induced genes by quantitative real-time polymerase chain reaction were basically consistent with their changes in transcript abundance determined by RNA sequencing. CONCLUSIONS Our findings provide a genomic sequence resource for functional genetic assignments of an extreme halophyte, H. glomeratus. We believe that the transcriptome datasets will help elucidate the genetic basis of this species' response to a salt environment and develop stress-tolerant crops based on favorable wild genetic resources.
Collapse
Affiliation(s)
- Juncheng Wang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm Enhancement, Lanzhou, China.
- College of Agronomy, Gansu Agriculture University, Lanzhou, China.
| | - Baochun Li
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm Enhancement, Lanzhou, China.
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou, China.
| | - Yaxiong Meng
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm Enhancement, Lanzhou, China.
- College of Agronomy, Gansu Agriculture University, Lanzhou, China.
| | - Xiaole Ma
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm Enhancement, Lanzhou, China.
- College of Agronomy, Gansu Agriculture University, Lanzhou, China.
| | - Yong Lai
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm Enhancement, Lanzhou, China.
- College of Agronomy, Gansu Agriculture University, Lanzhou, China.
| | - Erjing Si
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm Enhancement, Lanzhou, China.
- College of Agronomy, Gansu Agriculture University, Lanzhou, China.
| | - Ke Yang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm Enhancement, Lanzhou, China.
- College of Agronomy, Gansu Agriculture University, Lanzhou, China.
| | - Panrong Ren
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm Enhancement, Lanzhou, China.
- College of Agronomy, Gansu Agriculture University, Lanzhou, China.
| | - Xunwu Shang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm Enhancement, Lanzhou, China.
| | - Huajun Wang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm Enhancement, Lanzhou, China.
- College of Agronomy, Gansu Agriculture University, Lanzhou, China.
| |
Collapse
|
1050
|
Geilfus CM, Ober D, Eichacker LA, Mühling KH, Zörb C. Down-regulation of ZmEXPB6 (Zea mays β-expansin 6) protein is correlated with salt-mediated growth reduction in the leaves of Z. mays L. J Biol Chem 2015; 290:11235-45. [PMID: 25750129 DOI: 10.1074/jbc.m114.619718] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Indexed: 11/06/2022] Open
Abstract
The salt-sensitive crop Zea mays L. shows a rapid leaf growth reduction upon NaCl stress. There is increasing evidence that salinity impairs the ability of the cell walls to expand, ultimately inhibiting growth. Wall-loosening is a prerequisite for cell wall expansion, a process that is under the control of cell wall-located expansin proteins. In this study the abundance of those proteins was analyzed against salt stress using gel-based two-dimensional proteomics and two-dimensional Western blotting. Results show that ZmEXPB6 (Z. mays β-expansin 6) protein is lacking in growth-inhibited leaves of salt-stressed maize. Of note, the exogenous application of heterologously expressed and metal-chelate-affinity chromatography-purified ZmEXPB6 on growth-reduced leaves that lack native ZmEXPB6 under NaCl stress partially restored leaf growth. In vitro assays on frozen-thawed leaf sections revealed that recombinant ZmEXPB6 acts on the capacity of the walls to extend. Our results identify expansins as a factor that partially restores leaf growth of maize in saline environments.
Collapse
Affiliation(s)
- Christoph-Martin Geilfus
- From the Institute of Plant Nutrition and Soil Science, Christian-Albrechts-University, Hermann-Rodewald-Strasse 2, 24118 Kiel, Germany,
| | - Dietrich Ober
- Botanical Institute and Botanical Gardens, Biochemical Ecology and Molecular Evolution, Christian-Albrechts-University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Lutz A Eichacker
- Universitetet i Stavanger, Center for Organelle Research (CORE), Richard Johnsensgt. 4, N-4021, Norway, and
| | - Karl Hermann Mühling
- From the Institute of Plant Nutrition and Soil Science, Christian-Albrechts-University, Hermann-Rodewald-Strasse 2, 24118 Kiel, Germany
| | - Christian Zörb
- From the Institute of Plant Nutrition and Soil Science, Christian-Albrechts-University, Hermann-Rodewald-Strasse 2, 24118 Kiel, Germany, Institute of Crop Science, Quality of Plant Products, University Hohenheim, Schloss, Westhof West, 118, 70593 Stuttgart, Germany
| |
Collapse
|