1001
|
Bliss TVP, Cooke SF. Long-term potentiation and long-term depression: a clinical perspective. Clinics (Sao Paulo) 2011; 66 Suppl 1:3-17. [PMID: 21779718 PMCID: PMC3118435 DOI: 10.1590/s1807-59322011001300002] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 04/01/2011] [Indexed: 12/24/2022] Open
Abstract
Long-term potentiation and long-term depression are enduring changes in synaptic strength, induced by specific patterns of synaptic activity, that have received much attention as cellular models of information storage in the central nervous system. Work in a number of brain regions, from the spinal cord to the cerebral cortex, and in many animal species, ranging from invertebrates to humans, has demonstrated a reliable capacity for chemical synapses to undergo lasting changes in efficacy in response to a variety of induction protocols. In addition to their physiological relevance, long-term potentiation and depression may have important clinical applications. A growing insight into the molecular mechanisms underlying these processes, and technological advances in non-invasive manipulation of brain activity, now puts us at the threshold of harnessing long-term potentiation and depression and other forms of synaptic, cellular and circuit plasticity to manipulate synaptic strength in the human nervous system. Drugs may be used to erase or treat pathological synaptic states and non-invasive stimulation devices may be used to artificially induce synaptic plasticity to ameliorate conditions arising from disrupted synaptic drive. These approaches hold promise for the treatment of a variety of neurological conditions, including neuropathic pain, epilepsy, depression, amblyopia, tinnitus and stroke.
Collapse
|
1002
|
Abstract
Optogenetics is a technology that allows targeted, fast control of precisely defined events in biological systems as complex as freely moving mammals. By delivering optical control at the speed (millisecond-scale) and with the precision (cell type–specific) required for biological processing, optogenetic approaches have opened new landscapes for the study of biology, both in health and disease.
Collapse
Affiliation(s)
- Karl Deisseroth
- Howard Hughes Medical Institute, Department of Bioengineering and Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, USA.
| |
Collapse
|
1003
|
Lemaire JJ, Frew AJ, McArthur D, Gorgulho AA, Alger JR, Salomon N, Chen C, Behnke EJ, De Salles AAF. White matter connectivity of human hypothalamus. Brain Res 2011; 1371:43-64. [PMID: 21122799 DOI: 10.1016/j.brainres.2010.11.072] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 11/02/2010] [Accepted: 11/19/2010] [Indexed: 11/28/2022]
Affiliation(s)
- Jean-Jacques Lemaire
- Univ Clermont 1, UFR Médecine, EA3295, Equipe de Recherche en signal et Imagerie Médicale, Clermont-Ferrand, F-63001, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
1004
|
Ling QD, Ho LY, Ko YA, Chang Y, Higuchi A. Visible Light-Regulated Gene Expression and Neurite Outgrowth of Nerve Cells. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2011. [DOI: 10.1252/jcej.10we204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qing-Dong Ling
- Cathay Medical Research Institute, Cathay General Hospital
- Institute of Systems Biology and Bioinformatics, National Central University, Taiwan
| | - Ling-Yi Ho
- Department of Chemical and Materials Engineering, National Central University, Taiwan
| | - Yi-An Ko
- Institute of Systems Biology and Bioinformatics, National Central University, Taiwan
| | - Yung Chang
- Department of Chemical Engineering, R&D Center for Membrane Technology, Chung Yuan Christian University
| | - Akon Higuchi
- Cathay Medical Research Institute, Cathay General Hospital
- Department of Chemical and Materials Engineering, National Central University, Taiwan
- Department of Reproduction, National Research Institute for Child Health and Development
| |
Collapse
|
1005
|
Walker HC, Watts RL, Schrandt CJ, Huang H, Guthrie SL, Guthrie BL, Montgomery EB. Activation of subthalamic neurons by contralateral subthalamic deep brain stimulation in Parkinson disease. J Neurophysiol 2010; 105:1112-21. [PMID: 21177996 DOI: 10.1152/jn.00266.2010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Multiple studies have shown bilateral improvement in motor symptoms in Parkinson disease (PD) following unilateral deep brain stimulation (DBS) of the subthalamic nucleus (STN) and internal segment of the globus pallidus, yet the mechanism(s) underlying this phenomenon are poorly understood. We hypothesized that STN neuronal activity is altered by contralateral STN DBS. This hypothesis was tested intraoperatively in humans with advanced PD using microelectrode recordings of the STN during contralateral STN DBS. We demonstrate alterations in the discharge pattern of STN neurons in response to contralateral STN DBS including short latency, temporally precise, stimulation frequency-independent responses consistent with antidromic activation. Furthermore, the total discharge frequency during contralateral high frequency stimulation (160 Hz) was greater than during low frequency stimulation (30 Hz) and the resting state. These findings demonstrate complex responses to DBS and imply that output activation throughout the basal ganglia-thalamic-cortical network rather than local inhibition is a therapeutic mechanism of DBS.
Collapse
Affiliation(s)
- Harrison C Walker
- Division of Movement Disorders, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | | | | | | | | | | | | |
Collapse
|
1006
|
Cross-species affective functions of the medial forebrain bundle-implications for the treatment of affective pain and depression in humans. Neurosci Biobehav Rev 2010; 35:1971-81. [PMID: 21184778 DOI: 10.1016/j.neubiorev.2010.12.009] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 12/14/2010] [Indexed: 12/21/2022]
Abstract
Major depression (MD) might be conceptualized as pathological under-arousal of positive affective systems as parts of a network of brain regions assessing, reconciling and storing emotional stimuli versus an over-arousal of parts of the same network promoting separation-distress/GRIEF. In this context depression can be explained as an emotional pain state that is the result of a disregulation of several sub-systems that under physiological conditions are concerned with bodily or emotional homeostasis of the human organism in a social context. Physiologically, homeostasis is maintained by influences of the SEEKING system represented - amongst others - by the medial forebrain bundle (MFB). Neuroimaging studies show that the MFB has a proven access to the GRIEF/Sadness system. A functional decoupling of these systems with a dysfunctional GRIEF pathway might result in MD. Therewith GRIEF and SEEKING/PLEASURE systems play important roles as opponents in maintenance of emotional homeostasis. Chronic electrical modulation of the reward SEEKING pathways with deep brain stimulation might show anti-depressive effects in humans suffering from MD by re-initiating an emotional equilibrium (of higher or lower activity) between these opposing systems.
Collapse
|
1007
|
Talathi SS, Carney PR, Khargonekar PP. Control of neural synchrony using channelrhodopsin-2: a computational study. J Comput Neurosci 2010; 31:87-103. [PMID: 21174227 DOI: 10.1007/s10827-010-0296-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 11/03/2010] [Accepted: 11/18/2010] [Indexed: 10/18/2022]
Abstract
In this paper, we present an optical stimulation based approach to induce 1:1 in-phase synchrony in a network of coupled interneurons wherein each interneuron expresses the light sensitive protein channelrhodopsin-2 (ChR2). We begin with a transition rate model for the channel kinetics of ChR2 in response to light stimulation. We then define "functional optical time response curve (fOTRC)" as a measure of the response of a periodically firing interneuron (transfected with ChR2 ion channel) to a periodic light pulse stimulation. We specifically consider the case of unidirectionally coupled (UCI) network and propose an open loop control architecture that uses light as an actuation signal to induce 1:1 in-phase synchrony in the UCI network. Using general properties of the spike time response curves (STRCs) for Type-1 neuron model (Ermentrout, Neural Comput 8:979-1001, 1996) and fOTRC, we estimate the (open loop) optimal actuation signal parameters required to induce 1:1 in-phase synchrony. We then propose a closed loop controller architecture and a controller algorithm to robustly sustain stable 1:1 in-phase synchrony in the presence of unknown deviations in the network parameters. Finally, we test the performance of this closed-loop controller in a network of mutually coupled (MCI) interneurons.
Collapse
Affiliation(s)
- Sachin S Talathi
- Department of Pediatrics, University of Florida, Gainesville, FL 32611, USA.
| | | | | |
Collapse
|
1008
|
Gilmour TP, Lieu CA, Nolt MJ, Piallat B, Deogaonkar M, Subramanian T. The effects of chronic levodopa treatments on the neuronal firing properties of the subthalamic nucleus and substantia nigra reticulata in hemiparkinsonian rhesus monkeys. Exp Neurol 2010; 228:53-8. [PMID: 21146527 DOI: 10.1016/j.expneurol.2010.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 11/12/2010] [Accepted: 12/01/2010] [Indexed: 10/18/2022]
Abstract
Dopamine replacement therapy with levodopa (LD) is currently the most effective pharmacological treatment for Parkinson's disease (PD), a neurodegenerative disorder characterized by dysfunction of basal ganglia electrophysiology. The effects of chronic LD treatments on the electrophysiological activity of the subthalamic nucleus (STN) and the substantia nigra reticulata (SNR) in parkinsonism are not clear. In the present study we examined the effects of chronic LD treatments on the firing rate and firing pattern of STN and SNR neurons in the stable hemiparkinsonian monkey model of PD. We also evaluated local field potentials of both nuclei before and after LD treatments. In a stable hemiparkinsonian state, STN and SNR had a mean firing rate of 42.6 ± 3.5H z (mean ± SEM) and 52.1 ± 5.7 Hz, respectively. Chronic intermittent LD exposure induced marked amelioration of parkinsonism with no apparent drug-induced motor complications. LD treatments did not significantly change the mean firing rate of STN neurons (41.3 ± 3.3 Hz) or bursting neuronal firing patterns. However, LD treatments induced a significant reduction of the mean firing rates of SNR neurons to 36.2 ± 3.3 Hz (p<0.05) and a trend toward increased burstiness. The entropy of the spike sequences from STN and SNR was unchanged by LD treatment, while there was a shift of spectral power into higher frequency bands in the LFPs. The inability of chronic LD treatments to reduce the bursty firing patterns in the STN and SNR should be further examined as a potential pathophysiological mechanism for PD symptoms that are refractory to LD treatments.
Collapse
Affiliation(s)
- Timothy P Gilmour
- Department of Neurology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | | | | | | | | | | |
Collapse
|
1009
|
Litvak V, Jha A, Eusebio A, Oostenveld R, Foltynie T, Limousin P, Zrinzo L, Hariz MI, Friston K, Brown P. Resting oscillatory cortico-subthalamic connectivity in patients with Parkinson’s disease. Brain 2010; 134:359-74. [PMID: 21147836 DOI: 10.1093/brain/awq332] [Citation(s) in RCA: 314] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Vladimir Litvak
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1010
|
Mancuso JJ, Kim J, Lee S, Tsuda S, Chow NBH, Augustine GJ. Optogenetic probing of functional brain circuitry. Exp Physiol 2010; 96:26-33. [PMID: 21056968 DOI: 10.1113/expphysiol.2010.055731] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- James J Mancuso
- Laboratory of Synaptic Circuitry, Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, 2 Jalan Bukit Merah, Singapore 169547, Singapore
| | | | | | | | | | | |
Collapse
|
1011
|
Schoene-Bake JC, Parpaley Y, Weber B, Panksepp J, Hurwitz TA, Coenen VA. Tractographic analysis of historical lesion surgery for depression. Neuropsychopharmacology 2010; 35:2553-63. [PMID: 20736994 PMCID: PMC3055575 DOI: 10.1038/npp.2010.132] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 07/05/2010] [Accepted: 07/27/2010] [Indexed: 12/22/2022]
Abstract
Various surgical brain ablation procedures for the treatment of refractory depression were developed in the twentieth century. Most notably, key target sites were (i) the anterior cingulum, (ii) the anterior limb of the internal capsule, and (iii) the subcaudate white matter, which were regarded as effective targets. Long-term symptom remissions were better following lesions of the anterior internal capsule and subcaudate white matter than of the cingulum. It is possible that the observed clinical improvements of these various surgical procedures may reflect shared influences on presently unspecified brain affect-regulating networks. Such possibilities can now be analyzed using modern brain connectivity procedures such as diffusion tensor imaging (DTI) tractography. We determined whether the shared connectivities of the above lesion sites in healthy volunteers might explain the therapeutic effects of the various surgical approaches. Accordingly, modestly sized historical lesions, especially of the anatomical overlap areas, were 'implanted' in brain-MRI scans of 53 healthy subjects. These were entered as seed regions for probabilistic DTI connectivity reconstructions. We analyzed for the shared connectivities of bilateral anterior capsulotomy, anterior cingulotomy, subcaudate tractotomy, and stereotactic limbic leucotomy (a combination of the last two lesion sites). Shared connectivities between the four surgical approaches mapped onto the most mediobasal aspects of bilateral frontal lobe fibers, including the forceps minor and the anterior thalamic radiations that contacted subgenual cingulate regions. Anatomically, convergence of these shared connectivities may derive from the superolateral branch of the medial forebrain bundle (MFB), a structure that connects these frontal areas to the origin of the mesolimbic dopaminergic 'reward' system in the midbrain ventral tegmental area. Thus, all four surgical anti-depressant approaches may be promoting positive affect by converging influences onto the MFB.
Collapse
Affiliation(s)
- Jan-Christoph Schoene-Bake
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
- Department of NeuroCognition/Imaging, Life & Brain Center, Bonn, Germany
| | - Yaroslav Parpaley
- Stereotaxy and MR based OR Techniques/Department of Neurosurgery, University of Bonn Medical Center, Bonn, Germany
| | - Bernd Weber
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
- Department of NeuroCognition/Imaging, Life & Brain Center, Bonn, Germany
| | - Jaak Panksepp
- Department of VCAPP, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Trevor A Hurwitz
- Department of Psychiatry, University of British Columbia, Vancouver, CA, USA
| | - Volker A Coenen
- Stereotaxy and MR based OR Techniques/Department of Neurosurgery, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
1012
|
Garcia-Munoz M, Carrillo-Reid L, Arbuthnott GW. Functional anatomy: dynamic States in Basal Ganglia circuits. Front Neuroanat 2010; 4:144. [PMID: 21151374 PMCID: PMC2996244 DOI: 10.3389/fnana.2010.00144] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 10/19/2010] [Indexed: 11/24/2022] Open
Abstract
The most appealing models of how the basal ganglia function propose distributed patterns of cortical activity selectively interacting with striatal networks to yield the execution of context-dependent movements. If movement is encoded by patterns of activity then these may be disrupted by influences at once more subtle and more devastating than the increase or decrease of neuronal firing that dominate the usual models of the circuit. In the absence of dopamine the compositional capabilities of cell assemblies in the network could be disrupted by the generation of dominant synchronous activity that engages most of the system. Experimental evidence about Parkinson's disease suggests that dopamine loss produces abnormal patterns of activity in different nuclei. For example, increased oscillatory activity arises in the GPe, GPi, and STN and is reflected as increased cortical beta frequency coherence disrupting the ability to produce motor sequences. When the idea of deep brain stimulation was proposed – it was supported by the information that lesions of the subthalamus reversed the effects of damage to the dopamine input to the system. However, it seems increasingly unlikely that the stimulation acts by silencing the nucleus as was at first proposed. Perhaps the increased cortical beta activity caused by the lack of dopamine could have disabled the patterning of network activity. Stimulation of the subthalamic nucleus disrupts the on-going cortical rhythms. Subsequently asynchronous firing is reinstated and striatal cell assemblies and the whole basal ganglia circuit engage in a more normal pattern of activity. We will review the different variables involved in the generation of sequential activity patterns, integrate our data on deep brain stimulation and network population dynamics, and thus provide a novel interpretation of functional aspects of basal ganglia circuitry.
Collapse
Affiliation(s)
- Marianela Garcia-Munoz
- Brain Mechanisms for Behaviour Unit, Okinawa Institute for Science and Technology Onna, Okinawa, Japan
| | | | | |
Collapse
|
1013
|
Zhang TC, Grill WM. Modeling deep brain stimulation: point source approximation versus realistic representation of the electrode. J Neural Eng 2010; 7:066009. [PMID: 21084730 DOI: 10.1088/1741-2560/7/6/066009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Deep brain stimulation (DBS) has emerged as an effective treatment for movement disorders; however, the fundamental mechanisms by which DBS works are not well understood. Computational models of DBS can provide insights into these fundamental mechanisms and typically require two steps: calculation of the electrical potentials generated by DBS and, subsequently, determination of the effects of the extracellular potentials on neurons. The objective of this study was to assess the validity of using a point source electrode to approximate the DBS electrode when calculating the thresholds and spatial distribution of activation of a surrounding population of model neurons in response to monopolar DBS. Extracellular potentials in a homogenous isotropic volume conductor were calculated using either a point current source or a geometrically accurate finite element model of the Medtronic DBS 3389 lead. These extracellular potentials were coupled to populations of model axons, and thresholds and spatial distributions were determined for different electrode geometries and axon orientations. Median threshold differences between DBS and point source electrodes for individual axons varied between -20.5% and 9.5% across all orientations, monopolar polarities and electrode geometries utilizing the DBS 3389 electrode. Differences in the percentage of axons activated at a given amplitude by the point source electrode and the DBS electrode were between -9.0% and 12.6% across all monopolar configurations tested. The differences in activation between the DBS and point source electrodes occurred primarily in regions close to conductor-insulator interfaces and around the insulating tip of the DBS electrode. The robustness of the point source approximation in modeling several special cases--tissue anisotropy, a long active electrode and bipolar stimulation--was also examined. Under the conditions considered, the point source was shown to be a valid approximation for predicting excitation of populations of neurons in response to DBS.
Collapse
Affiliation(s)
- Tianhe C Zhang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | |
Collapse
|
1014
|
Fuentes R, Petersson P, Nicolelis MAL. Restoration of locomotive function in Parkinson's disease by spinal cord stimulation: mechanistic approach. THE EUROPEAN JOURNAL OF NEUROSCIENCE 2010. [PMID: 21039949 DOI: 10.1111/j.1460-9568.2010.07417.x.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Specific motor symptoms of Parkinson's disease (PD) can be treated effectively with direct electrical stimulation of deep nuclei in the brain. However, this is an invasive procedure, and the fraction of eligible patients is rather low according to currently used criteria. Spinal cord stimulation (SCS), a minimally invasive method, has more recently been proposed as a therapeutic approach to alleviate PD akinesia, in light of its proven ability to rescue locomotion in rodent models of PD. The mechanisms accounting for this effect are unknown but, from accumulated experience with the use of SCS in the management of chronic pain, it is known that the pathways most probably activated by SCS are the superficial fibers of the dorsal columns. We suggest that the prokinetic effect of SCS results from direct activation of ascending pathways reaching thalamic nuclei and the cerebral cortex. The afferent stimulation may, in addition, activate brainstem nuclei, contributing to the initiation of locomotion. On the basis of the striking change in the corticostriatal oscillatory mode of neuronal activity induced by SCS, we propose that, through activation of lemniscal and brainstem pathways, the locomotive increase is achieved by disruption of antikinetic low-frequency (<30 Hz) oscillatory synchronization in the corticobasal ganglia circuits.
Collapse
Affiliation(s)
- Romulo Fuentes
- Department of Neurobiology, Duke Medical Center, 311 Research Drive, Durham, NC 27710, USA.
| | | | | |
Collapse
|
1015
|
Freeman DK, Eddington DK, Rizzo JF, Fried SI. Selective activation of neuronal targets with sinusoidal electric stimulation. J Neurophysiol 2010; 104:2778-91. [PMID: 20810683 PMCID: PMC2997038 DOI: 10.1152/jn.00551.2010] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 08/31/2010] [Indexed: 11/22/2022] Open
Abstract
Electric stimulation of the CNS is being evaluated as a treatment modality for a variety of neurological, psychiatric, and sensory disorders. Despite considerable success in some applications, existing stimulation techniques offer little control over which cell types or neuronal substructures are activated by stimulation. The ability to more precisely control neuronal activation would likely improve the clinical outcomes associated with these applications. Here, we show that specific frequencies of sinusoidal stimulation can be used to preferentially activate certain retinal cell types: photoreceptors are activated at 5 Hz, bipolar cells at 25 Hz, and ganglion cells at 100 Hz. In addition, low-frequency stimulation (≤25 Hz) did not activate passing axons but still elicited robust synaptically mediated responses in ganglion cells; therefore, elicited neural activity is confined to within a focal region around the stimulating electrode. Our results suggest that sinusoidal stimulation provides significantly improved control over elicited neural activity relative to conventional pulsatile stimulation.
Collapse
Affiliation(s)
- Daniel K Freeman
- Center for Innovative Visual Rehabilitation, Boston Veterans Administration Healthcare System, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
1016
|
Grubb MS, Burrone J. Channelrhodopsin-2 localised to the axon initial segment. PLoS One 2010; 5:e13761. [PMID: 21048938 PMCID: PMC2966437 DOI: 10.1371/journal.pone.0013761] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 10/13/2010] [Indexed: 12/17/2022] Open
Abstract
The light-gated cation channel Channelrhodopsin-2 (ChR2) is a powerful and versatile tool for controlling neuronal activity. Currently available versions of ChR2 either distribute uniformly throughout the plasma membrane or are localised specifically to somatodendritic or synaptic domains. Localising ChR2 instead to the axon initial segment (AIS) could prove an extremely useful addition to the optogenetic repertoire, targeting the channel directly to the site of action potential initiation, and limiting depolarisation and associated calcium entry elsewhere in the neuron. Here, we describe a ChR2 construct that we localised specifically to the AIS by adding the ankyrinG-binding loop of voltage-gated sodium channels (NavII-III) to its intracellular terminus. Expression of ChR2-YFP-NavII-III did not significantly affect the passive or active electrical properties of cultured rat hippocampal neurons. However, the tiny ChR2 currents and small membrane depolarisations resulting from AIS targeting meant that optogenetic control of action potential firing with ChR2-YFP-NavII-III was unsuccessful in baseline conditions. We did succeed in stimulating action potentials with light in some ChR2-YFP-NavII-III-expressing neurons, but only when blocking KCNQ voltage-gated potassium channels. We discuss possible alternative approaches to obtaining precise control of neuronal spiking with AIS-targeted optogenetic constructs and propose potential uses for our ChR2-YFP-NavII-III probe where subthreshold modulation of action potential initiation is desirable.
Collapse
Affiliation(s)
- Matthew S Grubb
- Medical Research Council Centre for Developmental Neurobiology, King's College London, London, United Kingdom.
| | | |
Collapse
|
1017
|
Ryu MH, Moskvin OV, Siltberg-Liberles J, Gomelsky M. Natural and engineered photoactivated nucleotidyl cyclases for optogenetic applications. J Biol Chem 2010; 285:41501-8. [PMID: 21030591 DOI: 10.1074/jbc.m110.177600] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclic nucleotides, cAMP and cGMP, are ubiquitous second messengers that regulate metabolic and behavioral responses in diverse organisms. We describe purification, engineering, and characterization of photoactivated nucleotidyl cyclases that can be used to manipulate cAMP and cGMP levels in vivo. We identified the blaC gene encoding a putative photoactivated adenylyl cyclase in the Beggiatoa sp. PS genome. BlaC contains a BLUF domain involved in blue-light sensing using FAD and a nucleotidyl cyclase domain. The blaC gene was overexpressed in Escherichia coli, and its product was purified. Irradiation of BlaC in vitro resulted in a small red shift in flavin absorbance, typical of BLUF photoreceptors. BlaC had adenylyl cyclase activity that was negligible in the dark and up-regulated by light by 2 orders of magnitude. To convert BlaC into a guanylyl cyclase, we constructed a model of the nucleotidyl cyclase domain and mutagenized several residues predicted to be involved in substrate binding. One triple mutant, designated BlgC, was found to have photoactivated guanylyl cyclase in vitro. Irradiation with blue light of the E. coli cya mutant expressing BlaC or BlgC resulted in the significant increases in cAMP or cGMP synthesis, respectively. BlaC, but not BlgC, restored cAMP-dependent growth of the mutant in the presence of light. Small protein sizes, negligible activities in the dark, high light-to-dark activation ratios, functionality at broad temperature range and physiological pH, as well as utilization of the naturally occurring flavins as chromophores make BlaC and BlgC attractive for optogenetic applications in various animal and microbial models.
Collapse
Affiliation(s)
- Min-Hyung Ryu
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, USA
| | | | | | | |
Collapse
|
1018
|
Conditions for the generation of beta oscillations in the subthalamic nucleus-globus pallidus network. J Neurosci 2010; 30:12340-52. [PMID: 20844130 DOI: 10.1523/jneurosci.0817-10.2010] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The advance of Parkinson's disease is associated with the existence of abnormal oscillations within the basal ganglia with frequencies in the beta band (13-30 Hz). While the origin of these oscillations remains unknown, there is some evidence suggesting that oscillations observed in the basal ganglia arise due to interactions of two nuclei: the subthalamic nucleus (STN) and the globus pallidus pars externa (GPe). To investigate this hypothesis, we develop a computational model of the STN-GPe network based upon anatomical and electrophysiological studies. Significantly, our study shows that for certain parameter regimes, the model intrinsically oscillates in the beta range. Through an analytical study of the model, we identify a simple set of necessary conditions on model parameters that guarantees the existence of beta oscillations. These conditions for generation of oscillations are described by a set of simple inequalities and can be summarized as follows: (1) The excitatory connections from STN to GPe and the inhibitory connections from GPe to STN need to be sufficiently strong. (2) The time required by neurons to react to their inputs needs to be short relative to synaptic transmission delays. (3) The excitatory input from the cortex to STN needs to be high relative to the inhibition from striatum to GPe. We confirmed the validity of these conditions via numerical simulation. These conditions describe changes in parameters that are consistent with those expected as a result of the development of Parkinson's disease, and predict manipulations that could inhibit the pathological oscillations.
Collapse
|
1019
|
Butson CR, Cooper SE, Henderson JM, Wolgamuth B, McIntyre CC. Probabilistic analysis of activation volumes generated during deep brain stimulation. Neuroimage 2010; 54:2096-104. [PMID: 20974269 DOI: 10.1016/j.neuroimage.2010.10.059] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 10/13/2010] [Accepted: 10/18/2010] [Indexed: 10/18/2022] Open
Abstract
Deep brain stimulation (DBS) is an established therapy for the treatment of Parkinson's disease (PD) and shows great promise for the treatment of several other disorders. However, while the clinical analysis of DBS has received great attention, a relative paucity of quantitative techniques exists to define the optimal surgical target and most effective stimulation protocol for a given disorder. In this study we describe a methodology that represents an evolutionary addition to the concept of a probabilistic brain atlas, which we call a probabilistic stimulation atlas (PSA). We outline steps to combine quantitative clinical outcome measures with advanced computational models of DBS to identify regions where stimulation-induced activation could provide the best therapeutic improvement on a per-symptom basis. While this methodology is relevant to any form of DBS, we present example results from subthalamic nucleus (STN) DBS for PD. We constructed patient-specific computer models of the volume of tissue activated (VTA) for 163 different stimulation parameter settings which were tested in six patients. We then assigned clinical outcome scores to each VTA and compiled all of the VTAs into a PSA to identify stimulation-induced activation targets that maximized therapeutic response with minimal side effects. The results suggest that selection of both electrode placement and clinical stimulation parameter settings could be tailored to the patient's primary symptoms using patient-specific models and PSAs.
Collapse
Affiliation(s)
- Christopher R Butson
- Department of Biomedical Engineering, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
1020
|
Parker D. Neuronal network analyses: premises, promises and uncertainties. Philos Trans R Soc Lond B Biol Sci 2010; 365:2315-28. [PMID: 20603354 DOI: 10.1098/rstb.2010.0043] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neuronal networks assemble the cellular components needed for sensory, motor and cognitive functions. Any rational intervention in the nervous system will thus require an understanding of network function. Obtaining this understanding is widely considered to be one of the major tasks facing neuroscience today. Network analyses have been performed for some years in relatively simple systems. In addition to the direct insights these systems have provided, they also illustrate some of the difficulties of understanding network function. Nevertheless, in more complex systems (including human), claims are made that the cellular bases of behaviour are, or will shortly be, understood. While the discussion is necessarily limited, this issue will examine these claims and highlight some traditional and novel aspects of network analyses and their difficulties. This introduction discusses the criteria that need to be satisfied for network understanding, and how they relate to traditional and novel approaches being applied to addressing network function.
Collapse
Affiliation(s)
- David Parker
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
1021
|
Araque A, Navarrete M. Glial cells in neuronal network function. Philos Trans R Soc Lond B Biol Sci 2010; 365:2375-81. [PMID: 20603358 DOI: 10.1098/rstb.2009.0313] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Numerous evidence demonstrates that astrocytes, a type of glial cell, are integral functional elements of the synapses, responding to neuronal activity and regulating synaptic transmission and plasticity. Consequently, they are actively involved in the processing, transfer and storage of information by the nervous system, which challenges the accepted paradigm that brain function results exclusively from neuronal network activity, and suggests that nervous system function actually arises from the activity of neuron-glia networks. Most of our knowledge of the properties and physiological consequences of the bidirectional communication between astrocytes and neurons resides at cellular and molecular levels. In contrast, much less is known at higher level of complexity, i.e. networks of cells, and the actual impact of astrocytes in the neuronal network function remains largely unexplored. In the present article, we summarize the current evidence that supports the notion that astrocytes are integral components of nervous system networks and we discuss some functional properties of intercellular signalling in neuron-glia networks.
Collapse
Affiliation(s)
- Alfonso Araque
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid 28002, Spain.
| | | |
Collapse
|
1022
|
Chaturvedi A, Butson CR, Lempka SF, Cooper SE, McIntyre CC. Patient-specific models of deep brain stimulation: influence of field model complexity on neural activation predictions. Brain Stimul 2010; 3:65-7. [PMID: 20607090 DOI: 10.1016/j.brs.2010.01.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has become the surgical therapy of choice for medically intractable Parkinson's disease. However, quantitative understanding of the interaction between the electric field generated by DBS and the underlying neural tissue is limited. Recently, computational models of varying levels of complexity have been used to study the neural response to DBS. The goal of this study was to evaluate the quantitative impact of incrementally incorporating increasing levels of complexity into computer models of STN DBS. Our analysis focused on the direct activation of experimentally measureable fiber pathways within the internal capsule (IC). Our model system was customized to an STN DBS patient and stimulation thresholds for activation of IC axons were calculated with electric field models that ranged from an electrostatic, homogenous, isotropic model to one that explicitly incorporated the voltage-drop and capacitance of the electrode-electrolyte interface, tissue encapsulation of the electrode, and diffusion-tensor based 3D tissue anisotropy and inhomogeneity. The model predictions were compared to experimental IC activation defined from electromyographic (EMG) recordings from eight different muscle groups in the contralateral arm and leg of the STN DBS patient. Coupled evaluation of the model and experimental data showed that the most realistic predictions of axonal thresholds were achieved with the most detailed model. Furthermore, the more simplistic neurostimulation models substantially overestimated the spatial extent of neural activation.
Collapse
Affiliation(s)
- Ashutosh Chaturvedi
- Department of Biomedical Engineering, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
1023
|
Cell death and sexual differentiation of behavior: worms, flies, and mammals. Curr Opin Neurobiol 2010; 20:776-83. [PMID: 20934320 DOI: 10.1016/j.conb.2010.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 09/08/2010] [Accepted: 09/09/2010] [Indexed: 11/24/2022]
Abstract
Sex differences in the nervous system are found throughout the animal kingdom. Here, we discuss three prominent genetic models: nematodes, fruit flies, and mice. In all three, differential cell death is central to sexual differentiation and shared molecular mechanisms have been identified. Our knowledge of the precise function of neural sex differences lags behind. One fruitful approach to the 'function' question is to contrast sexual differentiation in standard laboratory animals with differentiation in species exhibiting unique social and reproductive organizations. Advanced genetic strategies are also addressing this question in worms and flies, and may soon be applicable to vertebrates.
Collapse
|
1024
|
Spieles-Engemann AL, Collier TJ, Sortwell CE. A functionally relevant and long-term model of deep brain stimulation of the rat subthalamic nucleus: advantages and considerations. Eur J Neurosci 2010; 32:1092-9. [DOI: 10.1111/j.1460-9568.2010.07416.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
1025
|
|
1026
|
|
1027
|
Naskar S, Sood SK, Goyal V, Dhara M. RETRACTED: Mechanism(s) of deep brain stimulation and insights into cognitive outcomes in Parkinson's disease. ACTA ACUST UNITED AC 2010; 65:1-13. [DOI: 10.1016/j.brainresrev.2010.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 04/12/2010] [Accepted: 04/27/2010] [Indexed: 11/30/2022]
|
1028
|
Nowak VA, Pereira EAC, Green AL, Aziz TZ. Optogenetics – shining light on neurosurgical conditions. Br J Neurosurg 2010; 24:618-24. [DOI: 10.3109/02688697.2010.520764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
1029
|
Scanless two-photon excitation of channelrhodopsin-2. Nat Methods 2010; 7:848-54. [PMID: 20852649 DOI: 10.1038/nmeth.1505] [Citation(s) in RCA: 260] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 08/20/2010] [Indexed: 11/08/2022]
Abstract
Light-gated ion channels and pumps have made it possible to probe intact neural circuits by manipulating the activity of groups of genetically similar neurons. What is needed now is a method for precisely aiming the stimulating light at single neuronal processes, neurons or groups of neurons. We developed a method that combines generalized phase contrast with temporal focusing (TF-GPC) to shape two-photon excitation for this purpose. The illumination patterns are generated automatically from fluorescence images of neurons and shaped to cover the cell body or dendrites, or distributed groups of cells. The TF-GPC two-photon excitation patterns generated large photocurrents in Channelrhodopsin-2-expressing cultured cells and neurons and in mouse acute cortical slices. The amplitudes of the photocurrents can be precisely modulated by controlling the size and shape of the excitation volume and, thereby, be used to trigger single action potentials or trains of action potentials.
Collapse
|
1030
|
Logothetis NK, Augath M, Murayama Y, Rauch A, Sultan F, Goense J, Oeltermann A, Merkle H. The effects of electrical microstimulation on cortical signal propagation. Nat Neurosci 2010; 13:1283-91. [PMID: 20818384 DOI: 10.1038/nn.2631] [Citation(s) in RCA: 249] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 08/04/2010] [Indexed: 11/09/2022]
Abstract
Electrical stimulation has been used in animals and humans to study potential causal links between neural activity and specific cognitive functions. Recently, it has found increasing use in electrotherapy and neural prostheses. However, the manner in which electrical stimulation-elicited signals propagate in brain tissues remains unclear. We used combined electrostimulation, neurophysiology, microinjection and functional magnetic resonance imaging (fMRI) to study the cortical activity patterns elicited during stimulation of cortical afferents in monkeys. We found that stimulation of a site in the lateral geniculate nucleus (LGN) increased the fMRI signal in the regions of primary visual cortex (V1) that received input from that site, but suppressed it in the retinotopically matched regions of extrastriate cortex. Consistent with previous observations, intracranial recordings indicated that a short excitatory response occurring immediately after a stimulation pulse was followed by a long-lasting inhibition. Following microinjections of GABA antagonists in V1, LGN stimulation induced positive fMRI signals in all of the cortical areas. Taken together, our findings suggest that electrical stimulation disrupts cortico-cortical signal propagation by silencing the output of any neocortical area whose afferents are electrically stimulated.
Collapse
|
1031
|
Escamilla-Sevilla F, Minguez-Castellanos A. Deep-brain stimulation for Parkinson's disease. N Engl J Med 2010; 363:987-8; author reply 988. [PMID: 20809850 DOI: 10.1056/nejmc1007650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
1032
|
|
1033
|
Mair RG, Onos KD, Hembrook JR. Cognitive activation by central thalamic stimulation: the yerkes-dodson law revisited. Dose Response 2010; 9:313-31. [PMID: 22013395 DOI: 10.2203/dose-response.10-017.mair] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Central thalamus regulates forebrain arousal, influencing activity in distributed neural networks that give rise to organized actions during alert, wakeful states. Central thalamus has been implicated in working memory by the effects of lesions and microinjected drugs in this part of the brain. Lesions and drugs that inhibit neural activity have been found to impair working memory. Drugs that increase activity have been found to enhance and impair memory depending on the dose tested. Electrical deep brain stimulation (DBS) similarly enhances working memory at low stimulating currents and impairs it at higher currents. These effects are time dependent. They were observed when DBS was applied during the memory delay (retention) or choice response (retrieval) but not earlier in trials during the sample (acquisition) phase. The effects of microinjected drugs and DBS are consistent with the Yerkes-Dodson law, which describes an inverted-U relationship between arousal and behavioral performance. Alternatively these results may reflect desensitization associated with higher levels of stimulation, spread of drugs or current to adjacent structures, or activation of less sensitive neurons or receptors at higher DBS currents or drug doses.
Collapse
Affiliation(s)
- Robert G Mair
- Department of Psychology, University of New Hampshire
| | | | | |
Collapse
|
1034
|
Bamann C, Nagel G, Bamberg E. Microbial rhodopsins in the spotlight. Curr Opin Neurobiol 2010; 20:610-6. [PMID: 20691581 DOI: 10.1016/j.conb.2010.07.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 07/07/2010] [Indexed: 10/19/2022]
Abstract
The discovery of the light-gated cation channel Channelrhodopsin-2 (ChR2) and the use of the rediscovered light-driven Cl-pump halorhodopsin (HR) as optogenetic tools--genetically encoded switches that enable neurons to be turned on or off with bursts of light--refines the functional study of neurons in larger networks. Cell-specific expression allows a fast optical scanning approach to determine neuronal crosstalk following plasticity at the single synapse level or long-range projections in locomotion and somatosensory networks. Both rhodopsins proved to work functionally and could evoke behavioral responses in lower model organisms, reinstall rudimentary visual perception in blind mice and were set in a biomedical context with the investigation of neurodegenerative diseases.
Collapse
Affiliation(s)
- Christian Bamann
- Max-Planck-Institut für Biophysik, Max-von-Laue Strasse 3, 60438 Frankfurt, Germany
| | | | | |
Collapse
|
1035
|
Higley MJ, Sabatini BL. Competitive regulation of synaptic Ca2+ influx by D2 dopamine and A2A adenosine receptors. Nat Neurosci 2010; 13:958-66. [PMID: 20601948 PMCID: PMC2910780 DOI: 10.1038/nn.2592] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 06/03/2010] [Indexed: 12/14/2022]
Abstract
Striatal D2-type dopamine receptors (D2Rs) have been implicated in the pathophysiology of neuropsychiatric disorders, including Parkinson's disease and schizophrenia. Although these receptors regulate striatal synaptic plasticity, the mechanisms underlying dopaminergic modulation of glutamatergic synapses are unclear. We combined optogenetics, two-photon microscopy and glutamate uncaging to examine D2R-dependent modulation of glutamatergic synaptic transmission in mouse striatopallidal neurons. We found that D2R activation reduces corticostriatal glutamate release and attenuates both synaptic- and action potential-evoked Ca2+ influx into dendritic spines by approximately 50%. Modulation of Ca2+ signaling was mediated by a protein kinase A (PKA)-dependent regulation of Ca2+ entry through NMDA-type glutamate receptors that was inhibited by D2Rs and enhanced by activation of 2A-type adenosine receptors (A2ARs). D2Rs also produced a PKA- and A2AR-independent reduction in Ca2+ influx through R-type voltage-gated Ca2+ channels. These findings reveal that dopamine regulates spine Ca2+ by multiple pathways and that competitive modulation of PKA controls NMDAR-mediated Ca2+ signaling in the striatum.
Collapse
Affiliation(s)
- Michael J Higley
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
1036
|
Huang H, Delikanli S, Zeng H, Ferkey DM, Pralle A. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. NATURE NANOTECHNOLOGY 2010; 5:602-6. [PMID: 20581833 DOI: 10.1038/nnano.2010.125] [Citation(s) in RCA: 497] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Accepted: 05/19/2010] [Indexed: 05/17/2023]
Abstract
Recently, optical stimulation has begun to unravel the neuronal processing that controls certain animal behaviours. However, optical approaches are limited by the inability of visible light to penetrate deep into tissues. Here, we show an approach based on radio-frequency magnetic-field heating of nanoparticles to remotely activate temperature-sensitive cation channels in cells. Superparamagnetic ferrite nanoparticles were targeted to specific proteins on the plasma membrane of cells expressing TRPV1, and heated by a radio-frequency magnetic field. Using fluorophores as molecular thermometers, we show that the induced temperature increase is highly localized. Thermal activation of the channels triggers action potentials in cultured neurons without observable toxic effects. This approach can be adapted to stimulate other cell types and, moreover, may be used to remotely manipulate other cellular machinery for novel therapeutics.
Collapse
Affiliation(s)
- Heng Huang
- Department of Physics, University at Buffalo, the State University of New York, Buffalo, New York 14260, USA
| | | | | | | | | |
Collapse
|
1037
|
Quintana A, Melon C, Goff LKL, Salin P, Savasta M, Sgambato-Faure V. Forelimb dyskinesia mediated by high-frequency stimulation of the subthalamic nucleus is linked to rapid activation of the NR2B subunit of N-methyl-d-aspartate receptors. Eur J Neurosci 2010; 32:423-34. [DOI: 10.1111/j.1460-9568.2010.07290.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
1038
|
Lee JH, Durand R, Gradinaru V, Zhang F, Goshen I, Kim DS, Fenno LE, Ramakrishnan C, Deisseroth K. Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature 2010; 465:788-92. [PMID: 20473285 DOI: 10.1038/nature09108] [Citation(s) in RCA: 475] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 06/10/2010] [Accepted: 04/26/2010] [Indexed: 12/19/2022]
Abstract
Despite a rapidly-growing scientific and clinical brain imaging literature based on functional magnetic resonance imaging (fMRI) using blood oxygenation level-dependent (BOLD) signals, it remains controversial whether BOLD signals in a particular region can be caused by activation of local excitatory neurons. This difficult question is central to the interpretation and utility of BOLD, with major significance for fMRI studies in basic research and clinical applications. Using a novel integrated technology unifying optogenetic control of inputs with high-field fMRI signal readouts, we show here that specific stimulation of local CaMKIIalpha-expressing excitatory neurons, either in the neocortex or thalamus, elicits positive BOLD signals at the stimulus location with classical kinetics. We also show that optogenetic fMRI (of MRI) allows visualization of the causal effects of specific cell types defined not only by genetic identity and cell body location, but also by axonal projection target. Finally, we show that of MRI within the living and intact mammalian brain reveals BOLD signals in downstream targets distant from the stimulus, indicating that this approach can be used to map the global effects of controlling a local cell population. In this respect, unlike both conventional fMRI studies based on correlations and fMRI with electrical stimulation that will also directly drive afferent and nearby axons, this of MRI approach provides causal information about the global circuits recruited by defined local neuronal activity patterns. Together these findings provide an empirical foundation for the widely-used fMRI BOLD signal, and the features of of MRI define a potent tool that may be suitable for functional circuit analysis as well as global phenotyping of dysfunctional circuitry.
Collapse
Affiliation(s)
- Jin Hyung Lee
- Department of Electrical Engineering, Psychiatry and Biobehavioral Sciences, Bioengineering, and Radiology, University of California, Los Angeles, California 90095, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
1039
|
Jouve L, Salin P, Melon C, Goff LKL. Deep brain stimulation of the center median-parafascicular complex of the thalamus has efficient anti-parkinsonian action associated with widespread cellular responses in the basal ganglia network in a rat model of Parkinson's disease. J Neurosci 2010; 30:9919-28. [PMID: 20660274 PMCID: PMC6632817 DOI: 10.1523/jneurosci.1404-10.2010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 05/04/2010] [Accepted: 06/11/2010] [Indexed: 11/21/2022] Open
Abstract
The thalamic centromedian-parafascicular (CM/Pf) complex, mainly represented by Pf in rodents, is proposed as an interesting target for the neurosurgical treatment of movement disorders, including Parkinson's disease. In this study, we examined the functional impact of subchronic high-frequency stimulation (HFS) of Pf in the 6-hydroxydopamine-lesioned hemiparkinsonian rat model. Pf-HFS had significant anti-akinetic action, evidenced by alleviation of limb use asymmetry (cylinder test). Whereas this anti-akinetic action was moderate, Pf-HFS totally reversed lateralized neglect (corridor task), suggesting potent action on sensorimotor integration. At the cellular level, Pf-HFS partially reversed the dopamine denervation-induced increase in striatal preproenkephalin A mRNA levels, a marker of the neurons of the indirect pathway, without interfering with the markers of the direct pathway (preprotachykinin and preprodynorphin). Pf-HFS totally reversed the lesion-induced changes in the gene expression of cytochrome oxidase subunit I in the subthalamic nucleus, the globus pallidus, and the substantia nigra pars reticulata, and partially in the entopeduncular nucleus. Unlike HFS of the subthalamic nucleus, Pf-HFS did not induce per se dyskinesias and directly, although partially, alleviated L-3,4-dihydroxyphenylalanine (L-DOPA)-induced forelimb dyskinesia. Conversely, L-DOPA treatment negatively interfered with the anti-parkinsonian effect of Pf-HFS. Altogether, these data show that Pf-DBS, by recruiting a large basal ganglia circuitry, provides moderate to strong anti-parkinsonian benefits that might, however, be affected by L-DOPA. The widespread behavioral and cellular outcomes of Pf-HFS evidenced here demonstrate that CM/Pf is an important node for modulating the pathophysiological functioning of basal ganglia and related disorders.
Collapse
Affiliation(s)
- Loréline Jouve
- Developmental Biology Institute of Marseille Luminy, Unité Mixte de Recherche 6216 Centre National de la Recherche Scientifique-Université de la Méditerranée, 13288 Marseille, France
| | - Pascal Salin
- Developmental Biology Institute of Marseille Luminy, Unité Mixte de Recherche 6216 Centre National de la Recherche Scientifique-Université de la Méditerranée, 13288 Marseille, France
| | - Christophe Melon
- Developmental Biology Institute of Marseille Luminy, Unité Mixte de Recherche 6216 Centre National de la Recherche Scientifique-Université de la Méditerranée, 13288 Marseille, France
| | - Lydia Kerkerian-Le Goff
- Developmental Biology Institute of Marseille Luminy, Unité Mixte de Recherche 6216 Centre National de la Recherche Scientifique-Université de la Méditerranée, 13288 Marseille, France
| |
Collapse
|
1040
|
Airaksinen K, Mäkelä JP, Taulu S, Ahonen A, Nurminen J, Schnitzler A, Pekkonen E. Effects of DBS on auditory and somatosensory processing in Parkinson's disease. Hum Brain Mapp 2010; 32:1091-9. [PMID: 20645306 DOI: 10.1002/hbm.21096] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/23/2010] [Accepted: 04/13/2010] [Indexed: 11/11/2022] Open
Abstract
Motor symptoms of Parkinson's disease (PD) can be relieved by deep brain stimulation (DBS). The mechanism of action of DBS is largely unclear. Magnetoencephalography (MEG) studies on DBS patients have been unfeasible because of strong magnetic artifacts. An artifact suppression method known as spatiotemporal signal space separation (tSSS) has mainly overcome these difficulties. We wanted to clarify whether tSSS enables noninvasive measurement of the modulation of cortical activity caused by DBS. We have studied auditory and somatosensory-evoked fields (AEFs and SEFs) of advanced PD patients with bilateral subthalamic nucleus (STN) DBS using MEG. AEFs were elicited by 1-kHz tones and SEFs by electrical pulses to the median nerve with DBS on and off. Data could be successfully acquired and analyzed from 12 out of 16 measured patients. The motor symptoms were significantly relieved by DBS, which clearly enhanced the ipsilateral auditory N100m responses in the right hemisphere. Contralateral N100m responses and somatosensory P60m responses also had a tendency to increase when bilateral DBS was on. MEG with tSSS offers a novel and powerful tool to investigate DBS modulation of the evoked cortical activity in PD with high temporal and spatial resolution. The results suggest that STN-DBS modulates auditory processing in advanced PD. Hum Brain Mapp, 2011. © 2010 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Katja Airaksinen
- BioMag Laboratory, HUSLAB, Helsinki University Central Hospital (HUCH), Finland.
| | | | | | | | | | | | | |
Collapse
|
1041
|
Abstract
Advances in optics, genetics, and chemistry have enabled the investigation of brain function at all levels, from intracellular signals to single synapses, whole cells, circuits, and behavior. Until recent years, these research tools have been utilized in an observational capacity: imaging neural activity with fluorescent reporters, for example, or correlating aberrant neural activity with loss-of-function and gain-of-function pharmacological or genetic manipulations. However, optics, genetics, and chemistry have now combined to yield a new strategy: using light to drive and halt neuronal activity with molecular specificity and millisecond precision. Photostimulation of neurons is noninvasive, has unmatched spatial and temporal resolution, and can be targeted to specific classes of neurons. The optical methods developed to date encompass a broad array of strategies, including photorelease of caged neurotransmitters, engineered light-gated receptors and channels, and naturally light-sensitive ion channels and pumps. In this review, we describe photostimulation methods, their applications, and opportunities for further advancement.
Collapse
Affiliation(s)
- Stephanie Szobota
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
1042
|
A transgenic mouse line for molecular genetic analysis of excitatory glutamatergic neurons. Mol Cell Neurosci 2010; 45:245-57. [PMID: 20600924 DOI: 10.1016/j.mcn.2010.06.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 06/18/2010] [Accepted: 06/25/2010] [Indexed: 12/22/2022] Open
Abstract
Excitatory glutamatergic neurons are part of most of the neuronal circuits in the mammalian nervous system. We have used BAC-technology to generate a BAC-Vglut2::Cre mouse line where Cre expression is driven by the vesicular glutamate transporter 2 (Vglut2) promotor. This BAC-Vglut2::Cre mouse line showed specific expression of Cre in Vglut2 positive cells in the spinal cord with no ectopic expression in GABAergic or glycinergic neurons. This mouse line also showed specific Cre expression in Vglut2 positive structures in the brain such as thalamus, hypothalamus, superior colliculi, inferior colliculi and deep cerebellar nuclei together with nuclei in the midbrain and hindbrain. Cre-mediated recombination was restricted to Cre expressing cells in the spinal cord and brain and occurred as early as E 12.5. Known Vglut2 positive neurons showed normal electrophysiological properties in the BAC-Vglut2::Cre transgenic mice. Altogether, this BAC-Vglut2::Cre mouse line provides a valuable tool for molecular genetic analysis of excitatory neuronal populations throughout the mouse nervous system.
Collapse
|
1043
|
Li XH, Wang JY, Gao G, Chang JY, Woodward DJ, Luo F. High-frequency stimulation of the subthalamic nucleus restores neural and behavioral functions during reaction time task in a rat model of Parkinson's disease. J Neurosci Res 2010; 88:1510-21. [PMID: 20025062 DOI: 10.1002/jnr.22313] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Deep brain stimulation (DBS) has been used in the clinic to treat Parkinson's disease (PD) and other neuropsychiatric disorders. Our previous work has shown that DBS in the subthalamic nucleus (STN) can improve major motor deficits, and induce a variety of neural responses in rats with unilateral dopamine (DA) lesions. In the present study, we examined the effect of STN DBS on reaction time (RT) performance and parallel changes in neural activity in the cortico-basal ganglia regions of partially bilateral DA- lesioned rats. We recorded neural activity with a multiple-channel single-unit electrode system in the primary motor cortex (MI), the STN, and the substantia nigra pars reticulata (SNr) during RT test. RT performance was severely impaired following bilateral injection of 6-OHDA into the dorsolateral part of the striatum. In parallel with such behavioral impairments, the number of responsive neurons to different behavioral events was remarkably decreased after DA lesion. Bilateral STN DBS improved RT performance in 6-OHDA lesioned rats, and restored operational behavior-related neural responses in cortico-basal ganglia regions. These behavioral and electrophysiological effects of DBS lasted nearly an hour after DBS termination. These results demonstrate that a partial DA lesion-induced impairment of RT performance is associated with changes in neural activity in the cortico-basal ganglia circuit. Furthermore, STN DBS can reverse changes in behavior and neural activity caused by partial DA depletion. The observed long-lasting beneficial effect of STN DBS suggests the involvement of the mechanism of neural plasticity in modulating cortico-basal ganglia circuits.
Collapse
Affiliation(s)
- Xiang-Hong Li
- Neuroscience Research Institute, Peking University, Beijing, China
| | | | | | | | | | | |
Collapse
|
1044
|
A light-gated, potassium-selective glutamate receptor for the optical inhibition of neuronal firing. Nat Neurosci 2010; 13:1027-32. [PMID: 20581843 PMCID: PMC2915903 DOI: 10.1038/nn.2589] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 05/26/2010] [Indexed: 12/12/2022]
Abstract
Genetically targeted light-activated ion channels and pumps make it possible to determine the role of specific neurons in neuronal circuits, information processing and behavior. Here, we describe the development of a K+-selective ionotropic glutamate receptor that reversibly inhibits neuronal activity in response to light in dissociated neurons and brain slice and reversibly suppresses behavior in zebrafish. The receptor is a chimera of the pore region of a K+-selective bacterial glutamate receptor and the ligand binding domain of the light-gated mammalian kainate receptor (iGluR6/GluK2). This hyperpolarizing light-gated channel, HyLighter, is turned on by a brief light pulse at one wavelength and turned off by a pulse at a second wavelength. The control is obtained at moderate intensity. After optical activation, the photo-current and optical silencing of activity persist in the dark for extended periods. The low light requirement and bi-stability of HyLighter represent advantages for the dissection of neural circuitry.
Collapse
|
1045
|
Schoenenberger P, Schärer YPZ, Oertner TG. Channelrhodopsin as a tool to investigate synaptic transmission and plasticity. Exp Physiol 2010; 96:34-9. [PMID: 20562296 DOI: 10.1113/expphysiol.2009.051219] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The light-gated cation channel channelrhodopsin-2 (ChR2) has been used in a variety of model systems to investigate the function of complex neuronal networks by stimulation of genetically targeted neurons. In slice physiology, ChR2 opens the door to novel types of experiments and greatly extends the technical possibilities offered by traditional electrophysiology. In this short review, we first consider several technical aspects concerning the use of ChR2 in slice physiology, providing examples from our own work. More specifically, we discuss differences between light-evoked action potentials and spontaneous or electrically induced action potentials. Our work implies that light-evoked action potentials are associated with increased calcium influx and a very high probability of neurotransmitter release. Furthermore, we point out the factors limiting the spatial resolution of ChR2 activation. Secondly, we discuss how synaptic transmission and plasticity can be studied using ChR2. Postsynaptic depolarization induced by ChR2 can be combined with two-photon glutamate uncaging to potentiate visually identified dendritic spines. ChR2-mediated stimulation of presynaptic axons induces neurotransmitter release and reliably activates postsynaptic spines. In conclusion, ChR2 is a powerful tool to investigate activity-dependent changes in structure and function of synapses.
Collapse
Affiliation(s)
- Philipp Schoenenberger
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
| | | | | |
Collapse
|
1046
|
Two-photon single-cell optogenetic control of neuronal activity by sculpted light. Proc Natl Acad Sci U S A 2010; 107:11981-6. [PMID: 20543137 DOI: 10.1073/pnas.1006620107] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent advances in optogenetic techniques have generated new tools for controlling neuronal activity, with a wide range of neuroscience applications. The most commonly used approach has been the optical activation of the light-gated ion channel channelrhodopsin-2 (ChR2). However, targeted single-cell-level optogenetic activation with temporal precessions comparable to the spike timing remained challenging. Here we report fast (< or = 1 ms), selective, and targeted control of neuronal activity with single-cell resolution in hippocampal slices. Using temporally focused laser pulses (TEFO) for which the axial beam profile can be controlled independently of its lateral distribution, large numbers of channels on individual neurons can be excited simultaneously, leading to strong (up to 15 mV) and fast (< or = 1 ms) depolarizations. Furthermore, we demonstrated selective activation of cellular compartments, such as dendrites and large presynaptic terminals, at depths up to 150 microm. The demonstrated spatiotemporal resolution and the selectivity provided by TEFO allow manipulation of neuronal activity, with a large number of applications in studies of neuronal microcircuit function in vitro and in vivo.
Collapse
|
1047
|
Stirman JN, Brauner M, Gottschalk A, Lu H. High-throughput study of synaptic transmission at the neuromuscular junction enabled by optogenetics and microfluidics. J Neurosci Methods 2010; 191:90-3. [PMID: 20538016 DOI: 10.1016/j.jneumeth.2010.05.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 05/26/2010] [Accepted: 05/26/2010] [Indexed: 10/19/2022]
Abstract
Over the past several years, optogenetic techniques have become widely used to help elucidate a variety of neuroscience problems. The unique optical control of neurons within a variety of organisms provided by optogenetics allows researchers to probe neural circuits and investigate neuronal function in a highly specific and controllable fashion. Recently, optogenetic techniques have been introduced to investigate synaptic transmission in the nematode Caenorhabditis elegans. For synaptic transmission studies, although quantitative, this technique is manual and very low-throughput. As it is, it is difficult to apply this technique to genetic studies. In this paper, we enhance this new tool by combining it with microfluidics technology and computer automation. This allows us to increase the assay throughput by several orders of magnitude as compared to the current standard approach, as well as improving standardization and consistency in data gathering. We also demonstrate the ability to infuse drugs to worms during optogenetic experiments using microfluidics. Together, these technologies will enable high-throughput genetic studies such as those of synaptic function.
Collapse
Affiliation(s)
- Jeffrey N Stirman
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA, USA
| | | | | | | |
Collapse
|
1048
|
Bass CE, Grinevich VP, Vance ZB, Sullivan RP, Bonin KD, Budygin EA. Optogenetic control of striatal dopamine release in rats. J Neurochem 2010; 114:1344-52. [PMID: 20534006 DOI: 10.1111/j.1471-4159.2010.06850.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Optogenetic control over neuronal firing has become an increasingly elegant method to dissect the microcircuitry of mammalian brains. To date, examination of these manipulations on neurotransmitter release has been minimal. Here we present the first in-depth analysis of optogenetic stimulation on dopamine neurotransmission in the dorsal striatum of urethane-anesthetized rats. By combining the tight spatial and temporal resolution of both optogenetics and fast-scan cyclic voltammetry we have determined the parameters necessary to control phasic dopamine release in the dorsal striatum of rats in vivo. The kinetics of optically induced dopamine release mirror established models of electrically evoked release, indicating that potential artifacts of electrical stimulation on ion channels and the dopamine transporter are negligible. Furthermore a lack of change in extracellular pH indicates that optical stimulation does not alter blood flow. Optical control over dopamine release is highly reproducible and flexible. We are able to repeatedly evoke concentrations of dopamine release as small as a single dopamine transient (50 nM). An inverted U-shaped frequency response curve exists with maximal stimulation inducing dopamine effluxes exceeding 500 nM. Taken together, these results have obvious implications for understanding the neurobiological basis of dopaminergic-based disorders and provide the framework to effectively manipulate dopamine patterns.
Collapse
Affiliation(s)
- Caroline E Bass
- Medical Center Boulevard, Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | | | |
Collapse
|
1049
|
Stereotactic implantation of deep brain stimulation electrodes: a review of technical systems, methods and emerging tools. Med Biol Eng Comput 2010; 48:611-24. [DOI: 10.1007/s11517-010-0633-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 05/05/2010] [Indexed: 10/19/2022]
|
1050
|
Selimbeyoglu A, Parvizi J. Electrical stimulation of the human brain: perceptual and behavioral phenomena reported in the old and new literature. Front Hum Neurosci 2010; 4:46. [PMID: 20577584 PMCID: PMC2889679 DOI: 10.3389/fnhum.2010.00046] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Accepted: 05/02/2010] [Indexed: 11/13/2022] Open
Abstract
In this review, we summarize the subjective experiential phenomena and behavioral changes that are caused by electrical stimulation of the cerebral cortex or subcortical nuclei in awake and conscious human subjects. Our comprehensive review contains a detailed summary of the data obtained from electrical brain stimulation (EBS) in humans in the last 100 years. Findings from the EBS studies may provide an additional layer of information about the neural correlates of cognition and behavior in healthy human subjects, or the neuroanatomy of illusions and hallucinations in patients with psychosis and the brain symptomatogenic zones in patients with epilepsy. We discuss some fundamental concepts, issues, and remaining questions that have defined the field of EBS, and review the current state of knowledge about the mechanism of action of EBS suggesting that the modulation of activity within a localized, but distributed, neuroanatomical network might explain the perceptual and behavioral phenomena that are reported during focal electrical stimulation of the human brain.
Collapse
Affiliation(s)
- Aslihan Selimbeyoglu
- Department of Neurology and Neurological Sciences, Stanford University Palo Alto, CA, USA
| | | |
Collapse
|