1051
|
Harnessing the complexity of DNA-damage response pathways to improve cancer treatment outcomes. Oncogene 2010; 29:6085-98. [DOI: 10.1038/onc.2010.407] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
1052
|
Topoisomerase II-mediated DNA damage is differently repaired during the cell cycle by non-homologous end joining and homologous recombination. PLoS One 2010; 5. [PMID: 20824055 PMCID: PMC2932731 DOI: 10.1371/journal.pone.0012541] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 08/10/2010] [Indexed: 11/26/2022] Open
Abstract
Topoisomerase II (Top2) is a nuclear enzyme involved in several metabolic processes of DNA. Chemotherapy agents that poison Top2 are known to induce persistent protein-mediated DNA double strand breaks (DSB). In this report, by using knock down experiments, we demonstrated that Top2α was largely responsible for the induction of γH2AX and cytotoxicity by the Top2 poisons idarubicin and etoposide in normal human cells. As DSB resulting from Top2 poisons-mediated damage may be repaired by non-homologous end joining (NHEJ) or homologous recombination (HR), we aimed to analyze both DNA repair pathways. We found that DNA-PKcs was rapidly activated in human cells, as evidenced by autophosphorylation at serine 2056, following Top2-mediated DNA damage. The chemical inhibition of DNA-PKcs by wortmannin and vanillin resulted in an increased accumulation of DNA DSB, as evaluated by the comet assay. This was supported by a hypersensitive phenotype to Top2 poisons of Ku80- and DNA-PKcs- defective Chinese hamster cell lines. We also showed that Rad51 protein levels, Rad51 foci formation and sister chromatid exchanges were increased in human cells following Top2-mediated DNA damage. In support, BRCA2- and Rad51C- defective Chinese hamster cells displayed hypersensitivity to Top2 poisons. The analysis by immunofluorescence of the DNA DSB repair response in synchronized human cell cultures revealed activation of DNA-PKcs throughout the cell cycle and Rad51 foci formation in S and late S/G2 cells. Additionally, we found an increase of DNA-PKcs-mediated residual repair events, but not Rad51 residual foci, into micronucleated and apoptotic cells. Therefore, we conclude that in human cells both NHEJ and HR are required, with cell cycle stage specificity, for the repair of Top2-mediated reversible DNA damage. Moreover, NHEJ-mediated residual repair events are more frequently associated to irreversibly damaged cells.
Collapse
|
1053
|
Tian L, Peng G, Parant JM, Leventaki V, Drakos E, Zhang Q, Parker-Thornburg J, Shackleford TJ, Dai H, Lin SY, Lozano G, Rassidakis GZ, Claret FX. Essential roles of Jab1 in cell survival, spontaneous DNA damage and DNA repair. Oncogene 2010; 29:6125-37. [PMID: 20802511 DOI: 10.1038/onc.2010.345] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Jun activation domain-binding protein 1 (JAB1) is a multifunctional protein that participates in the control of cell proliferation and the stability of multiple proteins. JAB1 overexpression has been implicated in the pathogenesis of human cancer. JAB1 regulates several key proteins and thereby produces varied effects on cell cycle progression, genome stability and cell survival. However, the biological significance of JAB1 activity in these cellular signaling pathways is unclear. Therefore, we developed mice that were deficient in Jab1 and analyzed the null embryos and heterozygous cells. This disruption of Jab1 in mice resulted in early embryonic lethality due to accelerated apoptosis. Loss of Jab1 expression sensitized both mouse primary embryonic fibroblasts and osteosarcoma cells to γ-radiation-induced apoptosis, with an increase in spontaneous DNA damage and homologous recombination (HR) defects, both of which correlated with reduced levels of the DNA repair protein Rad51 and elevated levels of p53. Furthermore, the accumulated p53 directly binds to Rad51 promoter, inhibits its activity and represents a major mechanism underlying the HR repair defect in Jab1-deficient cells. These results indicate that Jab1 is essential for efficient DNA repair and mechanistically link Jab1 to the maintenance of genome integrity and to cell survival.
Collapse
Affiliation(s)
- L Tian
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1054
|
Smeenk G, Wiegant WW, Vrolijk H, Solari AP, Pastink A, van Attikum H. The NuRD chromatin-remodeling complex regulates signaling and repair of DNA damage. ACTA ACUST UNITED AC 2010; 190:741-9. [PMID: 20805320 PMCID: PMC2935570 DOI: 10.1083/jcb.201001048] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
NuRD is recruited to DNA double-strand breaks, where it promotes RNF8/RNF168 histone ubiquitylation and accumulation of DNA repair factors (see also related paper by Larsen et al. in this issue). Cells respond to ionizing radiation (IR)–induced DNA double-strand breaks (DSBs) by orchestrating events that coordinate cell cycle progression and DNA repair. How cells signal and repair DSBs is not yet fully understood. A genome-wide RNA interference screen in Caenorhabditis elegans identified egr-1 as a factor that protects worm cells against IR. The human homologue of egr-1, MTA2 (metastasis-associated protein 2), is a subunit of the nucleosome-remodeling and histone deacetylation (NuRD) chromatin-remodeling complex. We show that knockdown of MTA2 and CHD4 (chromodomain helicase DNA-binding protein 4), the catalytic subunit (adenosine triphosphatase [ATPase]) of NuRD, leads to accumulation of spontaneous DNA damage and increased IR sensitivity. MTA2 and CHD4 accumulate in DSB-containing chromatin tracks generated by laser microirradiation. Directly at DSBs, CHD4 stimulates RNF8/RNF168-dependent formation of ubiquitin conjugates to facilitate the accrual of RNF168 and BRCA1. Finally, we show that CHD4 promotes DSB repair and checkpoint activation in response to IR. Thus, the NuRD chromatin–remodeling complex is a novel regulator of DNA damage responses that orchestrates proper signaling and repair of DSBs.
Collapse
Affiliation(s)
- Godelieve Smeenk
- Department of Toxicogenetics, Leiden University Medical Center, Leiden 2300RC, Netherlands
| | | | | | | | | | | |
Collapse
|
1055
|
Tomita M. Involvement of DNA-PK and ATM in radiation- and heat-induced DNA damage recognition and apoptotic cell death. JOURNAL OF RADIATION RESEARCH 2010; 51:493-501. [PMID: 20814172 DOI: 10.1269/jrr.10039] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Exposure to ionizing radiation and hyperthermia results in important biological consequences, e.g. cell death, chromosomal aberrations, mutations, and DNA strand breaks. There is good evidence that the nucleus, specifically cellular DNA, is the principal target for radiation-induced cell lethality. DNA double-strand breaks (DSBs) are considered to be the most serious type of DNA damage induced by ionizing radiation. On the other hand, verifiable mechanisms which can lead to heat-induced cell death are damage to the plasma membrane and/or inactivation of heat-labile proteins caused by protein denaturation and subsequent aggregation. Recently, several reports have suggested that DSBs can be induced after hyperthermia because heat-induced phosphorylated histone H2AX (γ-H2AX) foci formation can be observed in several mammalian cell lines. In mammalian cells, DSBs are repaired primarily through two distinct and complementary mechanisms: non-homologous end joining (NHEJ), and homologous recombination (HR) or homology-directed repair (HDR). DNA-dependent protein kinase (DNA-PK) and ataxia-telangiectasia mutated (ATM) are key players in the initiation of DSB repair and phosphorylate and/or activate many substrates, including themselves. These phosphorylated substrates have important roles in the functioning of cell cycle checkpoints and in cell death, as well as in DSB repair. Apoptotic cell death is a crucial cell suicide mechanism during development and in the defense of homeostasis. If DSBs are unrepaired or misrepaired, apoptosis is a very important system which can protect an organism against carcinogenesis. This paper reviews recently obtained results and current topics concerning the role of DNA-PK and ATM in heat- or radiation-induced apoptotic cell death.
Collapse
Affiliation(s)
- Masanori Tomita
- Department of Radiation Oncology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
1056
|
Ochi T, Sibanda BL, Wu Q, Chirgadze DY, Bolanos-Garcia VM, Blundell TL. Structural biology of DNA repair: spatial organisation of the multicomponent complexes of nonhomologous end joining. J Nucleic Acids 2010; 2010:621695. [PMID: 20862368 PMCID: PMC2938450 DOI: 10.4061/2010/621695] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Accepted: 07/02/2010] [Indexed: 11/20/2022] Open
Abstract
Nonhomologous end joining (NHEJ) plays a major role in double-strand break DNA repair, which involves a series of steps mediated by multiprotein complexes. A ring-shaped Ku70/Ku80 heterodimer forms first at broken DNA ends, DNA-dependent protein kinase catalytic subunit (DNA-PKcs) binds to mediate synapsis and nucleases process DNA overhangs. DNA ligase IV (LigIV) is recruited as a complex with XRCC4 for ligation, with XLF/Cernunnos, playing a role in enhancing activity of LigIV. We describe how a combination of methods-X-ray crystallography, electron microscopy and small angle X-ray scattering-can give insights into the transient multicomponent complexes that mediate NHEJ. We first consider the organisation of DNA-PKcs/Ku70/Ku80/DNA complex (DNA-PK) and then discuss emerging evidence concerning LigIV/XRCC4/XLF/DNA and higher-order complexes. We conclude by discussing roles of multiprotein systems in maintaining high signal-to-noise and the value of structural studies in developing new therapies in oncology and elsewhere.
Collapse
Affiliation(s)
- Takashi Ochi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Bancinyane Lynn Sibanda
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Qian Wu
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Dimitri Y. Chirgadze
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | | | - Tom L. Blundell
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
1057
|
Yang M, Zhang L, Bi N, Ji W, Tan W, Zhao L, Yu D, Wu C, Wang L, Lin D. Association of P53 and ATM polymorphisms with risk of radiation-induced pneumonitis in lung cancer patients treated with radiotherapy. Int J Radiat Oncol Biol Phys 2010; 79:1402-7. [PMID: 20729006 DOI: 10.1016/j.ijrobp.2009.12.042] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 12/12/2009] [Accepted: 12/23/2009] [Indexed: 01/01/2023]
Abstract
PURPOSE Radiation-induced pneumonitis (RP) is the most common dose-limiting complication in lung cancer patients treated with radiotherapy. Accumulating evidence indicates that P53 and the ataxia telangiectasia-mutated protein (ATM)-dependent signaling response cascade play a crucial role in radiation-induced diseases. Consistent with this, our previous study showed that a functional genetic ATM polymorphism was associated with increased RP risk. METHODS AND MATERIALS To evaluate the role of genetic P53 polymorphism in RP, we analyzed the P53 Arg72Pro polymorphism in a cohort including 253 lung cancer patients receiving thoracic irradiation. RESULTS We found that the P53 72Arg/Arg genotype was associated with increased RP risk compared with the 72Pro/Pro genotype. Furthermore, the P53 Arg72Pro and ATM -111G>A polymorphisms display an additive combination effect in intensifying the risk of developing RP. The cross-validation test showed that 63.2% of RP cases can be identified by P53 and ATM genotypes. CONCLUSIONS These results indicate that genetic polymorphisms in the ATM-P53 pathway influence susceptibility to RP and genotyping P53 and ATM polymorphisms might help to identify patients susceptible to developing RP when receiving radiotherapy.
Collapse
Affiliation(s)
- Ming Yang
- Department of Etiology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1058
|
Alaoui-El-Azher M, Mans JJ, Baker HV, Chen C, Progulske-Fox A, Lamont RJ, Handfield M. Role of the ATM-checkpoint kinase 2 pathway in CDT-mediated apoptosis of gingival epithelial cells. PLoS One 2010; 5:e11714. [PMID: 20668524 PMCID: PMC2909199 DOI: 10.1371/journal.pone.0011714] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 06/15/2010] [Indexed: 02/06/2023] Open
Abstract
The cytolethal distending toxin (CDT) of the oral pathogen Aggregatibacter actinomycetemcomitans induces cell cycle arrest and apoptosis in various cell types. Western analysis, pharmacological inhibition and siRNA silencing were performed in human immortalized gingival keratinocytes (HIGK) to dissect the functional role of the ataxia telangiectasia mutated (ATM) pathway in the signal transduction steps triggered by the CDT. Infection of HIGK was associated with a time-dependent induction of cytoplasmic histone-associated DNA fragmentation. However, in the absence of CDT, infected HIGK underwent reversible DNA strand breaks but not apoptosis, while caspase 3 activity, p21 levels, and HIGK viability were unaffected. Caspase 9 activity was attenuated in the CDT mutant-infected HIGK compared to wild-type infected cells. Pharmacological inhibition and siRNA-silencing of the ATM downstream effector, the protein kinase checkpoint kinase 2 (Chk2), significantly impacted CDT-mediated apoptosis. Together, these findings provide insight on the specificity of the ATM-Chk2 pathway in response to the CDT of A. actinomycetemcomitans in oral epithelial cells, which ultimately leads to apoptosis. We further propose the existence of an unidentified factor that is distinct from the CDT, and involved with a reversible DNA fragmentation that does not trigger terminal apoptosis in oral epithelial cells. This model potentially explains conflicting reports on the biological activity of the A. actinomycetemcomitans CDT.
Collapse
Affiliation(s)
- Mounia Alaoui-El-Azher
- Department of Oral Biology and Center for Molecular Microbiology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Jeffrey J. Mans
- Department of Oral Biology and Center for Molecular Microbiology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Henry V. Baker
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Casey Chen
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Ann Progulske-Fox
- Department of Oral Biology and Center for Molecular Microbiology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Richard J. Lamont
- Department of Oral Biology and Center for Molecular Microbiology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Martin Handfield
- Department of Oral Biology and Center for Molecular Microbiology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
1059
|
Gao LB, Pan XM, Li LJ, Liang WB, Zhu Y, Zhang LS, Wei YG, Tang M, Zhang L. RAD51 135G/C polymorphism and breast cancer risk: a meta-analysis from 21 studies. Breast Cancer Res Treat 2010; 125:827-35. [PMID: 20640595 DOI: 10.1007/s10549-010-0995-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 06/11/2010] [Indexed: 01/11/2023]
Abstract
Growing evidence suggests that RAD51 plays a pivotal role in the repair of DNA double-strand breaks and the maintenance of genomic stability. A single nucleotide polymorphism, 135G/C, has been identified in the 5' untranslated region of the RAD51 gene and has been shown to influence gene transcription activity. Previous studies yielded conflicting results as to the association of 135G/C polymorphism with breast cancer. We aimed to assess the effect of 135G/C of RAD51 on breast cancer susceptibility with the use of a meta-analysis. We performed a meta-analysis of 21 published case-control studies up to April 2010. We found that the CC genotype was associated with a significantly increased risk of breast cancer when compared with the GG, CG, and CG/GG genotypes. Subgroup analyses showed that individuals carrying the CC genotype were associated with an elevated tumor risk in European populations and in sporadic breast cancer. After stratified analyses according to manuscript quality, the CC genotype was associated with a significantly increased risk of breast cancer compared with the CG genotype in studies of both higher and lower quality. However, significantly elevated risk was found in studies of higher quality, but not in studies of lower quality when homozygote and a recessive comparison model were tested. This meta-analysis indicates that RAD51 135G/C polymorphism may be identified as a susceptibility locus for breast cancer.
Collapse
Affiliation(s)
- Lin-Bo Gao
- Laboratory of Molecular Translational Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
1060
|
Kidd AR, Snider JL, Martin TD, Graboski SF, Der CJ, Cox AD. Ras-related small GTPases RalA and RalB regulate cellular survival after ionizing radiation. Int J Radiat Oncol Biol Phys 2010; 78:205-12. [PMID: 20619549 DOI: 10.1016/j.ijrobp.2010.03.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 03/05/2010] [Accepted: 03/10/2010] [Indexed: 01/25/2023]
Abstract
PURPOSE Oncogenic activation of Ras renders cancer cells resistant to ionizing radiation (IR), but the mechanisms have not been fully characterized. The Ras-like small GTPases RalA and RalB are downstream effectors of Ras function and are critical for both tumor growth and survival. The Ral effector RalBP1/RLIP76 mediates survival of mice after whole-body irradiation, but the role of the Ral GTPases themselves in response to IR is unknown. We have investigated the role of RalA and RalB in cellular responses to IR. METHODS AND MATERIALS RalA, RalB, and their major effectors RalBP1 and Sec5 were knocked down by stable expression of short hairpin RNAs in the K-Ras-dependent pancreatic cancer-derived cell line MIA PaCa-2. Radiation responses were measured by standard clonogenic survival assays for reproductive survival, gammaH2AX expression for double-strand DNA breaks (DSBs), and poly(ADP-ribose)polymerase (PARP) cleavage for apoptosis. RESULTS Knockdown of K-Ras, RalA, or RalB reduced colony-forming ability post-IR, and knockdown of either Ral isoform decreased the rate of DSB repair post-IR. However, knockdown of RalB, but not RalA, increased cell death. Surprisingly, neither RalBP1 nor Sec5 suppression affected colony formation post-IR. CONCLUSIONS Both RalA and RalB contribute to K-Ras-dependent IR resistance of MIA PaCa-2 cells. Sensitization due to suppressed Ral expression is likely due in part to decreased efficiency of DNA repair (RalA and RalB) and increased susceptibility to apoptosis (RalB). Ral-mediated radioresistance does not depend on either the RalBP1 or the exocyst complex, the two best-characterized Ral effectors, and instead may utilize an atypical or novel effector.
Collapse
Affiliation(s)
- Ambrose R Kidd
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
1061
|
Abstract
The tumor suppressor, breast cancer susceptibility gene 1 (BRCA1), plays an integral role in the maintenance of genome stability and, in particular, the cellular response to DNA damage. Here, the emerging role of BRCA1 in nonhomologous end-joining-mediated DNA repair following DNA damage will be reviewed, as well as the activation of apoptotic pathways. The control of these functions via DNA damage-induced BRCA1 shuttling will also be discussed, in particular BRCA1 shuttling induced by erlotinib and irradiation. Finally, the potential targeting of BRCA1 shuttling as a novel strategy to sensitize cells to DNA damage will be entertained.
Collapse
Affiliation(s)
- Eddy S Yang
- Department of Radiation Oncology, Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232-5671, USA
| | | |
Collapse
|
1062
|
Mandal RK, Kapoor R, Mittal RD. Polymorphic variants of DNA repair gene XRCC3 and XRCC7 and risk of prostate cancer: a study from North Indian population. DNA Cell Biol 2010; 29:669-74. [PMID: 20590474 DOI: 10.1089/dna.2010.1047] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA repair gene alterations may cause a reduction in DNA repair capacity and influence an individual's susceptibility to carcinogenesis. We hypothesized that single nucleotide polymorphisms of DNA repair genes may be a risk factor for prostate cancer (PCa) susceptibility, influencing expression of homologous recombination (XRCC3) and nonhomologous end-joining (XRCC7) genes and conferring predisposition to PCa. In a case-control study, genotyping was done in 192 patients with PCa and 224 age matched unrelated healthy controls of similar ethnicity to determine variants in XRCC3 Exon 7 (C18067T, rs861539), IVS5-14 (A17893G, rs1799796), and XRCC7 Intron 8 (G6721T, rs7003908) by polymerase chain reaction-restriction fragment-length polymorphism methods. Variant genotype GG (odds ratio [OR], 2.23; p=0.003) and combined genotype TG+GG (OR, 1.541; p=0.049), G allele of XRCC7 Intron 8 (G>T), demonstrated significant risk for PCa (OR, 1.529; p=0.002). Stratification on bases of Gleason grade and bone metastasis, significant risk with high Gleason grade for CT genotype of XRCC3 Exon 7, and variant genotype GG of XRCC7 Intron 8 were observed. Our results strongly support that common sequence variants (GG) genotype of XRCC7 may increase risk of PCa. G allele being a risk allele in our study also suggests that this polymorphism be used as a marker for the PCa susceptibility.
Collapse
Affiliation(s)
- Raju K Mandal
- Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | | | | |
Collapse
|
1063
|
Petersen EJ, Nelson BC. Mechanisms and measurements of nanomaterial-induced oxidative damage to DNA. Anal Bioanal Chem 2010; 398:613-50. [DOI: 10.1007/s00216-010-3881-7] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 05/24/2010] [Accepted: 05/26/2010] [Indexed: 01/10/2023]
|
1064
|
Chan SS, Chang S. Defending the end zone: studying the players involved in protecting chromosome ends. FEBS Lett 2010; 584:3773-8. [PMID: 20579983 DOI: 10.1016/j.febslet.2010.06.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 06/14/2010] [Accepted: 06/14/2010] [Indexed: 10/19/2022]
Abstract
The linear nature of eukaryotic chromosomes leaves natural DNA ends susceptible to triggering DNA damage responses. Telomeres are specialized nucleoprotein structures that comprise the "end zone" of chromosomes. Besides having specialized sequences and structures, there are six resident proteins at telomeres that play prominent roles in protecting chromosome ends. In this review, we discuss this team of proteins, termed shelterin, and how it is involved in regulating DNA damage signaling, repair and replication at telomeres.
Collapse
Affiliation(s)
- Suzanne S Chan
- Department of Genetics, The MD Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
1065
|
Cohn ZJ, Kim A, Huang L, Brand J, Wang H. Lipopolysaccharide-induced inflammation attenuates taste progenitor cell proliferation and shortens the life span of taste bud cells. BMC Neurosci 2010; 11:72. [PMID: 20537148 PMCID: PMC2898829 DOI: 10.1186/1471-2202-11-72] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 06/10/2010] [Indexed: 11/18/2022] Open
Abstract
Background The mammalian taste bud, a complex collection of taste sensory cells, supporting cells, and immature basal cells, is the structural unit for detecting taste stimuli in the oral cavity. Even though the cells of the taste bud undergo constant turnover, the structural homeostasis of the bud is maintained by balancing cell proliferation and cell death. Compared with nongustatory lingual epithelial cells, taste cells express higher levels of several inflammatory receptors and signalling proteins. Whether inflammation, an underlying condition in some diseases associated with taste disorders, interferes with taste cell renewal and turnover is unknown. Here we report the effects of lipopolysaccharide (LPS)-induced inflammation on taste progenitor cell proliferation and taste bud cell turnover in mouse taste tissues. Results Intraperitoneal injection of LPS rapidly induced expression of several inflammatory cytokines, including tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and interleukin (IL)-6, in mouse circumvallate and foliate papillae. TNF-α and IFN-γ immunoreactivities were preferentially localized to subsets of cells in taste buds. LPS-induced inflammation significantly reduced the number of 5-bromo-2'-deoxyuridine (BrdU)-labeled newborn taste bud cells 1-3 days after LPS injection, suggesting an inhibition of taste bud cell renewal. BrdU pulse-chase experiments showed that BrdU-labeled taste cells had a shorter average life span in LPS-treated mice than in controls. To investigate whether LPS inhibits taste cell renewal by suppressing taste progenitor cell proliferation, we studied the expression of Ki67, a cell proliferation marker. Quantitative real-time RT-PCR revealed that LPS markedly reduced Ki67 mRNA levels in circumvallate and foliate epithelia. Immunofluorescent staining using anti-Ki67 antibodies showed that LPS decreased the number of Ki67-positive cells in the basal regions surrounding circumvallate taste buds, the niche for taste progenitor cells. PCR array experiments showed that the expression of cyclin B2 and E2F1, two key cell cycle regulators, was markedly downregulated by LPS in the circumvallate and foliate epithelia. Conclusions Our results show that LPS-induced inflammation inhibits taste progenitor cell proliferation and interferes with taste cell renewal. LPS accelerates cell turnover and modestly shortens the average life span of taste cells. These effects of inflammation may contribute to the development of taste disorders associated with infections.
Collapse
Affiliation(s)
- Zachary J Cohn
- Monell Chemical Senses Center, Philadelphia, PA 19104-3308, USA
| | | | | | | | | |
Collapse
|
1066
|
Abstract
The acquisition of genomic instability is a crucial feature in tumor development and there are at least 3 distinct pathways in colorectal cancer pathogenesis: the chromosomal instability (CIN), microsatellite instability, and CpG island methylator phenotype pathways. Most cases of colorectal cancer arise through the CIN pathway, which is characterized by widespread imbalances in chromosome number (aneuploidy) and loss of heterozygosity. It can result from defects in chromosomal segregation, telomere stability, and the DNA damage response, although the full complement of genes underlying CIN remains incompletely described. Coupled with the karyotypic abnormalities observed in CIN tumors are the accumulation of a characteristic set of mutations in specific tumor suppressor genes and oncogenes that activate pathways critical for colorectal cancer initiation and progression. Whether CIN creates the appropriate milieu for the accumulation of these mutations or vice versa remains a provocative and unanswered question. The goal of this review is to provide an updated perspective on the mechanisms that lead to CIN and the key mutations that are acquired in this pathway.
Collapse
Affiliation(s)
- Maria S Pino
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
1067
|
Pino MS, Chung DC. The chromosomal instability pathway in colon cancer. Gastroenterology 2010; 138:2059-72. [PMID: 20420946 PMCID: PMC4243705 DOI: 10.1053/j.gastro.2009.12.065] [Citation(s) in RCA: 603] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 12/16/2009] [Accepted: 12/29/2009] [Indexed: 02/07/2023]
Abstract
The acquisition of genomic instability is a crucial feature in tumor development and there are at least 3 distinct pathways in colorectal cancer pathogenesis: the chromosomal instability (CIN), microsatellite instability, and CpG island methylator phenotype pathways. Most cases of colorectal cancer arise through the CIN pathway, which is characterized by widespread imbalances in chromosome number (aneuploidy) and loss of heterozygosity. It can result from defects in chromosomal segregation, telomere stability, and the DNA damage response, although the full complement of genes underlying CIN remains incompletely described. Coupled with the karyotypic abnormalities observed in CIN tumors are the accumulation of a characteristic set of mutations in specific tumor suppressor genes and oncogenes that activate pathways critical for colorectal cancer initiation and progression. Whether CIN creates the appropriate milieu for the accumulation of these mutations or vice versa remains a provocative and unanswered question. The goal of this review is to provide an updated perspective on the mechanisms that lead to CIN and the key mutations that are acquired in this pathway.
Collapse
Affiliation(s)
- Maria S Pino
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
1068
|
Subramanian L, Nakamura TM. To fuse or not to fuse: how do checkpoint and DNA repair proteins maintain telomeres? FRONT BIOSCI-LANDMRK 2010; 15:1105-18. [PMID: 20515744 PMCID: PMC2880829 DOI: 10.2741/3664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
DNA damage checkpoint and DNA repair mechanisms play critical roles in the stable maintenance of genetic information. Various forms of DNA damage that arise inside cells due to common errors in normal cellular processes, such as DNA replication, or due to exposure to various DNA damaging agents, must be quickly detected and repaired by checkpoint signaling and repair factors. Telomeres, the natural ends of linear chromosomes, share many features with undesired "broken" DNA, and are recognized and processed by various DNA damage checkpoint and DNA repair proteins. However, their modes of action at telomeres must be altered from their actions at other DNA damage sites to avoid telomere fusions and permanent cell cycle arrest. Interestingly, accumulating evidence indicates that DNA damage checkpoint and DNA repair proteins are essential for telomere maintenance. In this article, we review our current knowledge on various mechanisms by which DNA damage checkpoint and DNA repair proteins are modulated at telomeres and how they might contribute to telomere maintenance in eukaryotes.
Collapse
Affiliation(s)
- Lakxmi Subramanian
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | |
Collapse
|
1069
|
Richard DJ, Bolderson E, Khanna KK. Multiple human single-stranded DNA binding proteins function in genome maintenance: structural, biochemical and functional analysis. Crit Rev Biochem Mol Biol 2010; 44:98-116. [PMID: 19367476 DOI: 10.1080/10409230902849180] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
DNA exists predominantly in a duplex form that is preserved via specific base pairing. This base pairing affords a considerable degree of protection against chemical or physical damage and preserves coding potential. However, there are many situations, e.g. during DNA damage and programmed cellular processes such as DNA replication and transcription, in which the DNA duplex is separated into two single-stranded DNA (ssDNA) strands. This ssDNA is vulnerable to attack by nucleases, binding by inappropriate proteins and chemical attack. It is very important to control the generation of ssDNA and protect it when it forms, and for this reason all cellular organisms and many viruses encode a ssDNA binding protein (SSB). All known SSBs use an oligosaccharide/oligonucleotide binding (OB)-fold domain for DNA binding. SSBs have multiple roles in binding and sequestering ssDNA, detecting DNA damage, stimulating strand-exchange proteins and helicases, and mediation of protein-protein interactions. Recently two additional human SSBs have been identified that are more closely related to bacterial and archaeal SSBs. Prior to this it was believed that replication protein A, RPA, was the only human equivalent of bacterial SSB. RPA is thought to be required for most aspects of DNA metabolism including DNA replication, recombination and repair. This review will discuss in further detail the biological pathways in which human SSBs function.
Collapse
Affiliation(s)
- Derek J Richard
- Cancer and Cell Biology Division, The Queensland Institute of Medical Research, 300 Herston Road, Herston, QLD 4006, Australia
| | | | | |
Collapse
|
1070
|
Price M, Monteiro ANA. Fine tuning chemotherapy to match BRCA1 status. Biochem Pharmacol 2010; 80:647-53. [PMID: 20510205 DOI: 10.1016/j.bcp.2010.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 05/12/2010] [Accepted: 05/14/2010] [Indexed: 02/01/2023]
Abstract
Targeted cancer therapies have been primarily directed at inhibiting oncogenes that are overexpressed or constitutively active in tumors. It is thought that as the cell's circuitry gets re-wired by the constitutive activation of some pathways it becomes exquisitely dependent on this activity. Tumor cell death normally results from inhibiting constitutively active pathways. The dependence of tumor cells on the activity of these pathways has been called oncogene addiction. Approaches that aim to exploit loss of function, rather than gain of function changes have also become a powerful addition to our arsenal of cancer therapies. In particular, when tumors acquire mutations that disrupt pathways in the DNA damage response they rely on alternative pathways that can be targeted pharmacologically. Here we review the use of BRCA1 as a marker of response to therapy with a particular focus on the use of Cisplatin and PARP inhibitors. We also explore the use of BRCA1 as a marker of response to microtubule inhibitors and how all these approaches will bring us closer to the goal of personalized medicine in cancer treatment.
Collapse
Affiliation(s)
- Melissa Price
- Risk Assessment, Detection, and Intervention Program, H. Lee Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | | |
Collapse
|
1071
|
Park SL, Bastani D, Goldstein BY, Chang SC, Cozen W, Cai L, Cordon-Cardo C, Ding B, Greenland S, He N, Hussain SK, Jiang Q, Lee YCA, Liu S, Lu ML, Mack TM, Mao JT, Morgenstern H, Mu LN, Oh SS, Pantuck A, Papp JC, Rao J, Reuter VE, Tashkin DP, Wang H, You NCY, Yu SZ, Zhao JK, Zhang ZF. Associations between NBS1 polymorphisms, haplotypes and smoking-related cancers. Carcinogenesis 2010; 31:1264-71. [PMID: 20478923 DOI: 10.1093/carcin/bgq096] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Constituents of tobacco smoke can cause DNA double-strand breaks (DSBs), leading to tumorigenesis. The NBS1 gene product is a vital component in DSB detection and repair, thus genetic variations may influence cancer development. We examined the associations between NBS1 polymorphisms and haplotypes and newly incident smoking-related cancers in three case-control studies (Los Angeles: 611 lung and 601 upper aero-digestive tract (UADT) cancer cases and 1040 controls; Memorial Sloan-Kettering Cancer Center: 227 bladder cancer cases and 211 controls and Taixing, China: 218 esophagus, 206 stomach, 204 liver cancer cases and 415 controls). rs1061302 was associated with cancers of the lung [adjusted odds ratio (OR(adj)) = 1.6, 95% confidence interval (CI): 1.2, 2.4], larynx (OR(adj) = 0.56, 95% CI: 0.32, 0.97) and liver (OR(adj) = 1.7, 95% CI: 1.0, 2.9). Additionally, positive associations were found for rs709816 with bladder cancer (OR(adj) = 4.2, 95% CI: 1.4, 12) and rs1063054 with lung cancer (OR(adj) = 1.6, 95% CI: 1.0, 2.3). Some associations in lung and stomach cancers varied with smoking status. CAC haplotype was positively associated with smoking-related cancers: lung (OR(adj) = 1.7, 95% CI: 1.1, 2.9) and UADT (OR(adj) = 2.0, 95% CI: 1.1, 3.7), specifically, oropharynx (OR(adj) = 2.1, 95% CI: 1.0, 4.2) and larynx (OR(adj) = 4.8, 95% CI: 1.7, 14). Bayesian false-discovery probabilities were calculated to assess Type I error. It appears that NBS1 polymorphisms and haplotypes may be associated with smoking-related cancers and that these associations may differ by smoking status. Our findings also suggest that single-nucleotide polymorphisms located in the binding region of the MRE-RAD50-NBS1 complex or microRNA targeted pathways may influence tumor development. These hypotheses should be further examined in functional studies.
Collapse
Affiliation(s)
- Sungshim L Park
- Department of Epidemiology, School of Public Health, University of California, Los Angeles, 71-225 CHS, Box 951772, 650 Charles E Young Drive, South, Los Angeles, CA 90095-1772, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1072
|
Joyner-Matos J, Predmore BL, Stein JR, Leeuwenburgh C, Julian D. Hydrogen sulfide induces oxidative damage to RNA and DNA in a sulfide-tolerant marine invertebrate. Physiol Biochem Zool 2010; 83:356-65. [PMID: 19327040 DOI: 10.1086/597529] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hydrogen sulfide acts as an environmental toxin across a range of concentrations and as a cellular signaling molecule at very low concentrations. Despite its toxicity, many animals, including the mudflat polychaete Glycera dibranchiata, are periodically or continuously exposed to sulfide in their environment. We tested the hypothesis that a broad range of ecologically relevant sulfide concentrations induces oxidative stress and oxidative damage to RNA and DNA in G. dibranchiata. Coelomocytes exposed in vitro to sulfide (0-3 mmol L(-1) for 1 h) showed dose-dependent increases in oxidative stress (as 2',7'-dichlorofluorescein fluorescence) and superoxide production (as dihydroethidine fluorescence). Coelomocytes exposed in vitro to sulfide (up to 0.73 mmol L(-1) for 2 h) also acquired increased oxidative damage to RNA (detected as 8-oxo-7,8-dihydroguanosine) and DNA (detected as 8-oxo-7,8-dihydro-2'-deoxyguanosine). Worms exposed in vivo to sulfide (0-10 mmol L(-1) for 24 h) acquired elevated oxidative damage to RNA and DNA in both coelomocytes and body wall tissue. While the consequences of RNA and DNA oxidative damage are poorly understood, oxidatively damaged deoxyguanosine bases preferentially bind thymine, causing G-T transversions and potentially causing heritable point mutations. This suggests that sulfide can be an environmental mutagen in sulfide-tolerant invertebrates.
Collapse
Affiliation(s)
- Joanna Joyner-Matos
- Department of Zoology, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | | | |
Collapse
|
1073
|
Squillaro T, Alessio N, Cipollaro M, Renieri A, Giordano A, Galderisi U. Partial silencing of methyl cytosine protein binding 2 (MECP2) in mesenchymal stem cells induces senescence with an increase in damaged DNA. FASEB J 2010; 24:1593-1603. [PMID: 20065105 DOI: 10.1096/fj.09-143057] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
Abstract
DNA methylation is an epigenetic modification that occurs almost exclusively on CpG dinucleotides. MECP2 is a member of a family of proteins that preferentially bind to methylated CpGs. We analyzed the contribution of MECP2 to the physiology of mesenchymal stem cells (MSCs). Partial silencing of MECP2 in human MSCs induced a significant reduction of S-phase cells, along with an increase in G(1) cells. These changes were accompanied by a reduction of apoptosis, the triggering of senescence, a decrease in telomerase activity, and the down-regulation of genes involved in maintaining stem cell properties. Senescence appeared to rely on impairment of DNA damage repair and seemed to occur through RB- and P53-related pathways. The effects of MECP2 silencing could be related to the modification of the DNA methylation status. Our results indicate that the silencing of MECP2 induces an increase in methylated cytosines in the genome. Nevertheless, MECP2 partial silencing did not change the methylation of promoters, whose expression is affected by MECP2 down-regulation.
Collapse
Affiliation(s)
- Tiziana Squillaro
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
1074
|
Attene-Ramos MS, Nava GM, Muellner MG, Wagner ED, Plewa MJ, Gaskins HR. DNA damage and toxicogenomic analyses of hydrogen sulfide in human intestinal epithelial FHs 74 Int cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:304-14. [PMID: 20120018 DOI: 10.1002/em.20546] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Hydrogen sulfide (H(2)S), a metabolic end product of sulfate-reducing bacteria, represents a genotoxic insult to the colonic epithelium, which may also be linked with chronic disorders such as ulcerative colitis and colorectal cancer. This study defined the early (30 min) and late (4 hr) response of nontransformed human intestinal epithelial cells (FHs 74 Int) to H(2)S. The genotoxicity of H(2)S was measured using the single-cell gel electrophoresis (comet) assay. Changes in gene expression were analyzed after exposure to a genotoxic, but not cytotoxic, concentration of H(2)S (500 muM H(2)S) using pathway-specific quantitative RT-PCR gene arrays. H(2)S was genotoxic in a concentration range from 250 to 2,000 microM, which is similar to concentrations found in the large intestine. Significant changes in gene expression were predominantly observed at 4 hr, with the greatest responses by PTGS2 (COX-2; 7.92-fold upregulated) and WNT2 (7.08-fold downregulated). COX-2 was the only gene upregulated at both 30 min and 4 hr. Overall, the study demonstrates that H(2)S modulates the expression of genes involved in cell-cycle progression and triggers both inflammatory and DNA repair responses. This study confirms the genotoxic properties of H(2)S in nontransformed human intestinal epithelial cells and identifies functional pathways by which this bacterial metabolite may perturb cellular homeostasis and contribute to the onset of chronic intestinal disorders.
Collapse
Affiliation(s)
- Matias S Attene-Ramos
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | |
Collapse
|
1075
|
Ding Z, Zhang J, Cheng Q, Shen J, Hu Y, Chen H. The LIG4 Ile658Val polymorphism does not affect the risk of cervical carcinoma. Pathol Res Pract 2010; 206:556-9. [PMID: 20400235 DOI: 10.1016/j.prp.2010.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 01/25/2010] [Accepted: 03/01/2010] [Indexed: 11/18/2022]
Abstract
The aim of this study was to investigate whether gene LIG4 genetic polymorphism affects the risk of cervical carcinoma. We studied 500 cervical carcinoma patients and 800 normal women as controls. Demographic and epidemiologic risk factors were recorded. Single nucleotide polymorphisms (SNPs) (LIG4 Ile658Val) were genotyped. Compared to LIG4 Ile658Ile (AA) genotype, LIG4 Ile658Val (AG) did not increase or decrease the risk of cervical carcinoma or cervical squamous cell carcinoma [ORs and 95% CIs being 1.07 (0.70-1.63) and 1.01 (0.65-1.55)], while no homozygous LIG4 Val658Val (GG) was found in the cervical carcinoma group. Analyzing the risk of variant LIG4 Ile658Val genotypes for cervical carcinoma of different histologic types or HPV infection status, we found striking similarities between the squamous cell carcinoma group and the HPV-positive group and the overall carcinoma. In conclusion, in the Chinese population, LIG4 Ile658Val has only a slight impact on the risk of developing cervical carcinoma.
Collapse
Affiliation(s)
- Zhiming Ding
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Xueshi Rd #2, Hangzhou 310006, China
| | | | | | | | | | | |
Collapse
|
1076
|
O'Donovan PJ, Livingston DM. BRCA1 and BRCA2: breast/ovarian cancer susceptibility gene products and participants in DNA double-strand break repair. Carcinogenesis 2010; 31:961-7. [PMID: 20400477 DOI: 10.1093/carcin/bgq069] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BRCA1 and BRCA2 are tumor suppressor genes, familial mutations in which account for approximately 5% of breast cancer cases in the USA annually. Germ line mutations in BRCA1 that truncate or inactivate the protein lead to a cumulative risk of breast cancer, by age 70, of up to 80%, whereas the risk of ovarian cancer is 30-40%. For germ line BRCA2 mutations, the breast cancer cumulative risk approaches 50%, whereas for ovarian cancers, it is between 10 and 15%. Both BRCA1 and BRCA2 are involved in maintaining genome integrity at least in part by engaging in DNA repair, cell cycle checkpoint control and even the regulation of key mitotic or cell division steps. Unsurprisingly, the complete loss of function of either protein leads to a dramatic increase in genomic instability. How they function in maintaining genome integrity after the onset of DNA damage will be the focus of this review.
Collapse
Affiliation(s)
- Peter J O'Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | |
Collapse
|
1077
|
Patro BS, Maity B, Chattopadhyay S. Topoisomerase inhibitor coralyne photosensitizes DNA, leading to elicitation of Chk2-dependent S-phase checkpoint and p53-independent apoptosis in cancer cells. Antioxid Redox Signal 2010; 12:945-60. [PMID: 19922265 DOI: 10.1089/ars.2009.2508] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The possibility of synergism between the topoisomerase inhibition by coralyne and its DNA photonicking properties being used to kill cancer cells was explored. Compared with coralyne alone, the CUVA treatment dramatically enhanced DNA damage and apoptosis in cells. Despite causing an increased p53 expression, the CUVA treatment led to p53-independent apoptosis, causing almost similar cell death in wild-type, p53 mutant, and p53-silenced tumor cells. Expression of the p53-regulated downstream proteins like p21, and DNA-damage-dependent p53 phosphorylation at serine-15 residue also was not elicited by the CUVA treatment, at a low coralyne concentration. Instead, it led to an immediate activation of the Chk2-mediated S-phase arrest, despite activating PARP protein for DNA repair. The S-phase arrest subsequently ensures apoptosis through activation of caspases-3 and -9, the latter being reflected from the results with a specific caspase-9 inhibitor. Abrogation of Chk2 activity by shRNA or by using ATM-specific inhibitor (ATMi) led to a defective S-phase checkpoint and further augmentation in apoptosis. However, at a high coralyne concentration, the CUVA-induced apoptosis followed multiple and independent pathways, involving several caspases. The CUVA treatment may represent a novel mechanism-based protocol for increasing the efficacy of coralyne in inducing apoptosis in both p53 wild-type and mutant tumor cells.
Collapse
|
1078
|
Koizumi T, Negishi M, Nakamura S, Oguro H, Satoh K, Ichinose M, Iwama A. Depletion of Dnmt1-associated protein 1 triggers DNA damage and compromises the proliferative capacity of hematopoietic stem cells. Int J Hematol 2010; 91:611-9. [PMID: 20387133 DOI: 10.1007/s12185-010-0563-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 03/17/2010] [Accepted: 03/17/2010] [Indexed: 01/23/2023]
Abstract
Dnmt1-associated protein 1 (Dmap1) is a core component of the NuA4 histone acetyltransferase complex and the Swr1 chromatin-remodeling complex. However, the cellular function of Dmap1 remains largely unknown. We previously reported that Dmap1 plays a crucial role in DNA repair and is indispensable for the maintenance of chromosomal integrity of mouse embryonic fibroblasts. In this study, we examined the role of Dmap1 in self-renewing HSCs. Dmap1-knockdown induced by Dmap1-specific shRNA severely compromised the proliferative capacity of HSCs in vitro and long-term repopulating capacity of HSCs in recipient mice. Dmap1-knockdown in HSCs triggered DNA damage as evident by the formation of foci of gamma-H2AX and activated p53-dependent cell cycle checkpoints. Deletion of p53 in HSCs abrogated the activation of p53-dependent cell cycle checkpoints, but did not restore the HSC function impaired by the knockdown of Dmap1. These findings suggest that Dmap1 is essential for the maintenance of genomic integrity of self-renewing HSCs and highlight DNA damage as one of the major stresses causing HSC depletion.
Collapse
Affiliation(s)
- Tomoe Koizumi
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
1079
|
Sedelnikova OA, Redon CE, Dickey JS, Nakamura AJ, Georgakilas AG, Bonner WM. Role of oxidatively induced DNA lesions in human pathogenesis. Mutat Res 2010; 704:152-9. [PMID: 20060490 PMCID: PMC3074954 DOI: 10.1016/j.mrrev.2009.12.005] [Citation(s) in RCA: 249] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 12/08/2009] [Accepted: 12/14/2009] [Indexed: 02/06/2023]
Abstract
Genome stability is essential for maintaining cellular and organismal homeostasis, but it is subject to many threats. One ubiquitous threat is from a class of compounds known as reactive oxygen species (ROS), which can indiscriminately react with many cellular biomolecules including proteins, lipids, and DNA to produce a variety of oxidative lesions. These DNA oxidation products are a direct risk to genome stability, and of particular importance are oxidative clustered DNA lesions (OCDLs), defined as two or more oxidative lesions present within 10 bp of each other. ROS can be produced by exposure of cells to exogenous environmental agents including ionizing radiation, light, chemicals, and metals. In addition, they are produced by cellular metabolism including mitochondrial ATP generation. However, ROS also serve a variety of critical cellular functions and optimal ROS levels are maintained by multiple cellular antioxidant defenses. Oxidative DNA lesions can be efficiently repaired by base excision repair or nucleotide excision repair. If ROS levels increase beyond the capacity of its antioxidant defenses, the cell's DNA repair capacity can become overwhelmed, leading to the accumulation of oxidative DNA damage products including OCDLs, which are more difficult to repair than individual isolated DNA damage products. Here we focus on the induction and repair of OCDLs and other oxidatively induced DNA lesions. If unrepaired, these lesions can lead to the formation of mutations, DNA DSBs, and chromosome abnormalities. We discuss the roles of these lesions in human pathologies including aging and cancer, and in bystander effects.
Collapse
Affiliation(s)
- Olga A Sedelnikova
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
1080
|
Kongruttanachok N, Phuangphairoj C, Thongnak A, Ponyeam W, Rattanatanyong P, Pornthanakasem W, Mutirangura A. Replication independent DNA double-strand break retention may prevent genomic instability. Mol Cancer 2010; 9:70. [PMID: 20356374 PMCID: PMC2867818 DOI: 10.1186/1476-4598-9-70] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Accepted: 03/31/2010] [Indexed: 01/16/2023] Open
Abstract
Background Global hypomethylation and genomic instability are cardinal features of cancers. Recently, we established a method for the detection of DNA methylation levels at sites close to endogenous DNA double strand breaks (EDSBs), and found that those sites have a higher level of methylation than the rest of the genome. Interestingly, the most significant differences between EDSBs and genomes were observed when cells were cultured in the absence of serum. DNA methylation levels on each genomic location are different. Therefore, there are more replication-independent EDSBs (RIND-EDSBs) located in methylated genomic regions. Moreover, methylated and unmethylated RIND-EDSBs are differentially processed. Euchromatins respond rapidly to DSBs induced by irradiation with the phosphorylation of H2AX, γ-H2AX, and these initiate the DSB repair process. During G0, most DSBs are repaired by non-homologous end-joining repair (NHEJ), mediated by at least two distinct pathways; the Ku-mediated and the ataxia telangiectasia-mutated (ATM)-mediated. The ATM-mediated pathway is more precise. Here we explored how cells process methylated RIND-EDSBs and if RIND-EDSBs play a role in global hypomethylation-induced genomic instability. Results We observed a significant number of methylated RIND-EDSBs that are retained within deacetylated chromatin and free from an immediate cellular response to DSBs, the γ-H2AX. When cells were treated with tricostatin A (TSA) and the histones became hyperacetylated, the amount of γ-H2AX-bound DNA increased and the retained RIND-EDSBs were rapidly repaired. When NHEJ was simultaneously inhibited in TSA-treated cells, more EDSBs were detected. Without TSA, a sporadic increase in unmethylated RIND-EDSBs could be observed when Ku-mediated NHEJ was inhibited. Finally, a remarkable increase in RIND-EDSB methylation levels was observed when cells were depleted of ATM, but not of Ku86 and RAD51. Conclusions Methylated RIND-EDSBs are retained in non-acetylated heterochromatin because there is a prolonged time lag between RIND-EDSB production and repair. The rapid cellular responses to DSBs may be blocked by compact heterochromatin structure which then allows these breaks to be repaired by a more precise ATM-dependent pathway. In contrast, Ku-mediated NHEJ can repair euchromatin-associated EDSBs. Consequently, spontaneous mutations in hypomethylated genome are produced at faster rates because unmethylated EDSBs are unable to avoid the more error-prone NHEJ mechanisms.
Collapse
Affiliation(s)
- Narisorn Kongruttanachok
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | | | | | | | |
Collapse
|
1081
|
Differential requirement for H2AX and 53BP1 in organismal development and genome maintenance in the absence of poly(ADP)ribosyl polymerase 1. Mol Cell Biol 2010; 30:2341-52. [PMID: 20231360 DOI: 10.1128/mcb.00091-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Combined deficiencies of poly(ADP)ribosyl polymerase 1 (PARP1) and ataxia telangiectasia mutated (ATM) result in synthetic lethality and, in the mouse, early embryonic death. Here, we investigated the genetic requirements for this lethality via analysis of mice deficient for PARP1 and either of two ATM-regulated DNA damage response (DDR) factors: histone H2AX and 53BP1. We found that, like ATM, H2AX is essential for viability in a PARP1-deficient background. In contrast, deficiency for 53BP1 modestly exacerbates phenotypes of growth retardation, genomic instability, and organismal radiosensitivity observed in PARP1-deficient mice. To gain mechanistic insights into these different phenotypes, we examined roles for 53BP1 in the repair of replication-associated double-strand breaks (DSBs) in several cellular contexts. We show that 53BP1 is required for DNA-PKcs-dependent repair of hydroxyurea (HU)-induced DSBs but dispensable for RPA/RAD51-dependent DSB repair in the same setting. Moreover, repair of mitomycin C (MMC)-induced DSBs and sister chromatid exchanges (SCEs), two RAD51-dependent processes, are 53BP1 independent. Overall, our findings define 53BP1 as a main facilitator of nonhomologous end joining (NHEJ) during the S phase of the cell cycle, beyond highly specialized lymphocyte rearrangements. These findings have important implications for our understanding of the mechanisms whereby ATM-regulated DDR prevents human aging and cancer.
Collapse
|
1082
|
Micronucleus formation, DNA damage and repair in premenopausal women chronically exposed to high level of indoor air pollution from biomass fuel use in rural India. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2010; 697:47-54. [DOI: 10.1016/j.mrgentox.2010.02.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 01/28/2010] [Accepted: 02/07/2010] [Indexed: 12/30/2022]
|
1083
|
Teoh N, Pyakurel P, Dan YY, Swisshelm K, Hou J, Mitchell C, Fausto N, Gu Y, Farrell G. Induction of p53 renders ATM-deficient mice refractory to hepatocarcinogenesis. Gastroenterology 2010; 138:1155-65.e1-2. [PMID: 19919837 DOI: 10.1053/j.gastro.2009.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 11/02/2009] [Accepted: 11/10/2009] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS p53 Mutations are very common in human hepatocellular carcinoma, and induction of hepatic p53 expression causes lysis of implanted hepatoblastoma cells in a chimeric mouse. Ataxia Telangiectasia Mutated (ATM) kinase senses DNA strand breaks and induces p53. Our aims were to establish whether ATM deficiency alters the carcinogenic response of hepatocytes to diethylnitrosamine (DEN). METHODS Male ATM-deficient (ATM(-/-)), heterozygote (ATM(+/-)), and wild-type (WT) mice were injected with DEN at age 15 days, and animals were killed up to 12 months to assess p53, cell cycle, apoptosis, and liver tumor development. RESULTS Whereas >80% of WT and ATM(+/-) mice developed hepatocellular carcinoma (HCC), at 9-12 months, ATM(-/-) mice remained refractory to DEN-induced HCC up to 15 months. At 6 and 9 months, and compared with WT mice, p53 and p19(ARF) expression were greatly enhanced in ATM(-/-) liver associated with up-regulation of ATR and Chk1; cleaved caspase-3 immunohistochemistry and caspase-3 activity were also significantly increased. Whereas livers of DEN-treated ATM(-/-) mice showed markers of senescence (beta-galactosidase, Cxcl-1), up-regulation of telomerase occurred concurrently. The possibility that such balanced senescence could result in immortalization was demonstrated in hepatocytes prepared at 9 months from DEN-treated ATM(-/-) liver. CONCLUSIONS Hepatocarcinogenesis is abrogated in ATM-deficient mice in association with induction of ATR, Chk1, p53, and p19(ARF). Resultant cell cycle arrest and apoptosis of DNA-damaged cells are possible mechanisms that underlie this unique "refractoriness" to malignant transformation in DEN-initiated ATM(-/-) hepatocytes. The findings also show that prolonged up-regulation of p53 associated with some features of senescence does not inevitably cause organ failure.
Collapse
Affiliation(s)
- Narci Teoh
- Australian National University Medical School at The Canberra Hospital, Canberra, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
1084
|
Xiao X, Song W, Bi Y. Role of DNA-PKcs in the biological effect of a benzene metabolite: Phenol toxicity to human K562 cells in vitro. Chem Biol Interact 2010; 184:302-5. [DOI: 10.1016/j.cbi.2010.01.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
1085
|
Zhang L, Yang M, Bi N, Fang M, Sun T, Ji W, Tan W, Zhao L, Yu D, Lin D, Wang L. ATM polymorphisms are associated with risk of radiation-induced pneumonitis. Int J Radiat Oncol Biol Phys 2010; 77:1360-8. [PMID: 20171797 DOI: 10.1016/j.ijrobp.2009.07.1675] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 06/04/2009] [Accepted: 07/04/2009] [Indexed: 11/25/2022]
Abstract
PURPOSE Since the ataxia telangiectasia mutated (ATM) protein plays crucial roles in repair of double-stranded DNA breaks, control of cell cycle checkpoints, and radiosensitivity, we hypothesized that variations in this gene might be associated with radiation-induced pneumonitis (RP). METHODS AND MATERIALS A total of 253 lung cancer patients receiving thoracic irradiation between 2004 and 2006 were included in this study. Common Terminology Criteria for Adverse Events version 3.0 was used to grade RP. Five haplotype-tagging single nucleotide polymorphisms (SNPs) in the ATM gene were genotyped using DNA from blood lymphocytes. Hazard ratios (HRs) and 95% confidence intervals (CIs) of RP for genotypes were computed by the Cox model, adjusted for clinical factors. The function of the ATM SNP associated with RP was examined by biochemical assays. RESULTS During the median 22-month follow-up, 44 (17.4%) patients developed grade > or = 2 RP. In multivariate Cox regression models adjusted for other clinical predictors, we found two ATM variants were independently associated with increased RP risk. They were an 111G > A) polymorphism (HR, 2.49; 95% CI, 1.07-5.80) and an ATM 126713G > A polymorphism (HR, 2.47; 95% CI, 1.16-5.28). Furthermore, genotype-dependent differences in ATM expression were demonstrated both in cell lines (p < 0.001) and in individual lung tissue samples (p = 0.003), which supported the results of the association study. CONCLUSIONS Genetic polymorphisms of ATM are significantly associated with RP risk. These variants might exert their effect through regulation of ATM expression and serve as independent biomarkers for prediction of RP in patients treated with thoracic radiotherapy.
Collapse
Affiliation(s)
- Li Zhang
- Department of Radiation Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1086
|
|
1087
|
Carra C, Cucinotta FA. Binding Sites of theE. ColiDNA Recombinase Protein to the ssDNA: A Computational Study. J Biomol Struct Dyn 2010; 27:407-28. [DOI: 10.1080/07391102.2010.10507327] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
1088
|
Furusawa Y, Zhao QL, Hassan MA, Tabuchi Y, Takasaki I, Wada S, Kondo T. Ultrasound-induced apoptosis in the presence of Sonazoid and associated alterations in gene expression levels: A possible therapeutic application. Cancer Lett 2010; 288:107-15. [DOI: 10.1016/j.canlet.2009.06.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 06/24/2009] [Accepted: 06/25/2009] [Indexed: 01/22/2023]
|
1089
|
Cyclin-C-dependent cell-cycle entry is required for activation of non-homologous end joining DNA repair in postmitotic neurons. Cell Death Differ 2010; 17:1189-98. [PMID: 20111042 DOI: 10.1038/cdd.2009.221] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
It is commonly believed that neurons remain in G(0) phase of the cell cycle indefinitely. Cell-cycle re-entry, however, is known to contribute to neuronal apoptosis. Moreover, recent evidence demonstrates the expression of cell-cycle proteins in differentiated neurons under physiological conditions. The functional roles of such expression remain unclear. Since DNA repair is generally attenuated by differentiation in most cell types, the cell-cycle-associated events in postmitotic cells may reflect the need to re-enter the cell cycle to activate DNA repair. We show that cyclin-C-directed, pRb-dependent G(0) exit activates the non-homologous end joining pathway of DNA repair (NHEJ) in postmitotic neurons. Using RNA interference, we found that abrogation of cyclin-C-mediated exit from G(0) compromised DNA repair but did not initiate apoptosis. Forced G(1) entry combined with prevention of G(1) --> S progression triggered NHEJ activation even in the absence of DNA lesions, but did not induce apoptosis in contrast to unrestricted progression through G(1) --> S. We conclude that G(0) --> G(1) transition is functionally significant for NHEJ repair in postmitotic neurons. These findings reveal the importance of cell-cycle activation for controlling both DNA repair and apoptosis in postmitotic neurons, and underline the particular role of G(1) --> S progression in apoptotic signaling, providing new insights into the mechanisms of DNA damage response (DDR) in postmitotic neurons.
Collapse
|
1090
|
van Vugt MATM, Gardino AK, Linding R, Ostheimer GJ, Reinhardt HC, Ong SE, Tan CS, Miao H, Keezer SM, Li J, Pawson T, Lewis TA, Carr SA, Smerdon SJ, Brummelkamp TR, Yaffe MB. A mitotic phosphorylation feedback network connects Cdk1, Plk1, 53BP1, and Chk2 to inactivate the G(2)/M DNA damage checkpoint. PLoS Biol 2010; 8:e1000287. [PMID: 20126263 PMCID: PMC2811157 DOI: 10.1371/journal.pbio.1000287] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 12/11/2009] [Indexed: 12/18/2022] Open
Abstract
DNA damage checkpoints arrest cell cycle progression to facilitate DNA repair. The ability to survive genotoxic insults depends not only on the initiation of cell cycle checkpoints but also on checkpoint maintenance. While activation of DNA damage checkpoints has been studied extensively, molecular mechanisms involved in sustaining and ultimately inactivating cell cycle checkpoints are largely unknown. Here, we explored feedback mechanisms that control the maintenance and termination of checkpoint function by computationally identifying an evolutionary conserved mitotic phosphorylation network within the DNA damage response. We demonstrate that the non-enzymatic checkpoint adaptor protein 53BP1 is an in vivo target of the cell cycle kinases Cyclin-dependent kinase-1 and Polo-like kinase-1 (Plk1). We show that Plk1 binds 53BP1 during mitosis and that this interaction is required for proper inactivation of the DNA damage checkpoint. 53BP1 mutants that are unable to bind Plk1 fail to restart the cell cycle after ionizing radiation-mediated cell cycle arrest. Importantly, we show that Plk1 also phosphorylates the 53BP1-binding checkpoint kinase Chk2 to inactivate its FHA domain and inhibit its kinase activity in mammalian cells. Thus, a mitotic kinase-mediated negative feedback loop regulates the ATM-Chk2 branch of the DNA damage signaling network by phosphorylating conserved sites in 53BP1 and Chk2 to inactivate checkpoint signaling and control checkpoint duration.
Collapse
Affiliation(s)
- Marcel A. T. M. van Vugt
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Alexandra K. Gardino
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Rune Linding
- Cellular and Molecular Logic Team Integrative Network Biology initiative (INBi) Section of Cell and Molecular Biology, The Institute of Cancer Research, London, United Kingdom
| | - Gerard J. Ostheimer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Departments of Biological Engineering and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - H. Christian Reinhardt
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Shao-En Ong
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Chris S. Tan
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Hua Miao
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Susan M. Keezer
- Cell Signaling Technologies, Danvers, Massachusetts, United States of America
| | - Jeijin Li
- Division of Molecular Structure, Medical Research Council (MRC) National Institute for Medical Research, London, United Kingdom
| | - Tony Pawson
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Timothy A. Lewis
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Steven A. Carr
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Stephen J. Smerdon
- Division of Molecular Structure, Medical Research Council (MRC) National Institute for Medical Research, London, United Kingdom
| | - Thijn R. Brummelkamp
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Michael B. Yaffe
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Departments of Biological Engineering and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| |
Collapse
|
1091
|
Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nat Med 2010; 16:198-204. [PMID: 20098431 DOI: 10.1038/nm.2088] [Citation(s) in RCA: 614] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 12/18/2009] [Indexed: 01/02/2023]
Abstract
Gene-modified autologous hematopoietic stem cells (HSC) can provide ample clinical benefits to subjects suffering from X-linked chronic granulomatous disease (X-CGD), a rare inherited immunodeficiency characterized by recurrent, often life-threatening bacterial and fungal infections. Here we report on the molecular and cellular events observed in two young adults with X-CGD treated by gene therapy in 2004. After the initial resolution of bacterial and fungal infections, both subjects showed silencing of transgene expression due to methylation of the viral promoter, and myelodysplasia with monosomy 7 as a result of insertional activation of ecotropic viral integration site 1 (EVI1). One subject died from overwhelming sepsis 27 months after gene therapy, whereas a second subject underwent an allogeneic HSC transplantation. Our data show that forced overexpression of EVI1 in human cells disrupts normal centrosome duplication, linking EVI1 activation to the development of genomic instability, monosomy 7 and clonal progression toward myelodysplasia.
Collapse
|
1092
|
A nonhomologous end-joining pathway is required for protein phosphatase 2A promotion of DNA double-strand break repair. Neoplasia 2010; 11:1012-21. [PMID: 19794960 DOI: 10.1593/neo.09720] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 06/25/2009] [Accepted: 06/25/2009] [Indexed: 12/31/2022] Open
Abstract
Protein phosphatase 2A (PP2A) functions as a potent tumor suppressor, but its mechanism(s) remains enigmatic. Specific disruption of PP2A by either expression of SV40 small tumor antigen or depletion of endogenous PP2A/C by RNA interference inhibits Ku DNA binding and DNA-PK activities, which results in suppression of DNA double-strand break (DSB) repair and DNA end-joining in association with increased genetic instability (i.e., chromosomal and chromatid breaks). Overexpression of the PP2A catalytic subunit (PP2A/C) enhances Ku and DNA-PK activities with accelerated DSB repair. Camptothecin-induced DSBs promote PP2A to associate with Ku 70 and Ku 86. PP2A directly dephosphorylates Ku as well as the DNA-PK catalytic subunit (DNA-PKcs) in vitro and in vivo, which enhances the formation of a functional Ku/DNA-PKcs complex. Intriguingly, PP2A promotes DSB repair in wild type mouse embryonic fibroblast (MEF) cells but has no such effect in Ku-deficient MEF cells, suggesting that the Ku 70/86 heterodimer is required for PP2A promotion of DSB repair. Thus, PP2A promotion of DSB repair may occur in a novel mechanism by activating the nonhomologous end-joining pathway through direct dephosphorylation of Ku and DNA-PKcs, which may contribute to maintenance of genetic stability.
Collapse
|
1093
|
Momcilović O, Choi S, Varum S, Bakkenist C, Schatten G, Navara C. Ionizing radiation induces ataxia telangiectasia mutated-dependent checkpoint signaling and G(2) but not G(1) cell cycle arrest in pluripotent human embryonic stem cells. Stem Cells 2010; 27:1822-35. [PMID: 19544417 DOI: 10.1002/stem.123] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Human embryonic stem (ES) cells are highly sensitive to environmental insults including DNA damaging agents, responding with high levels of apoptosis. To understand the response of human ES cells to DNA damage, we investigated the function of the ataxia telangiectasia mutated (ATM) DNA damage signaling pathway in response to gamma-irradiation. Here, we demonstrate for the first time in human ES cells that ATM kinase is phosphorylated and properly localized to the sites of DNA double-strand breaks within 15 minutes of irradiation. Activation of ATM kinase resulted in phosphorylation of its downstream targets: Chk2, p53, and Nbs1. In contrast to murine ES cells, Chk2 and p53 were localized to the nucleus of irradiated human ES cells. We further show that irradiation resulted in a temporary arrest of the cell cycle at the G(2), but not G(1), phase. Human ES cells resumed cycling approximately 16 hours after irradiation, but had a fourfold higher incidence of aberrant mitotic figures compared to nonirradiated cells. Finally, we demonstrate an essential role of ATM in establishing G(2) arrest since inhibition with the ATM-specific inhibitor KU55933 resulted in abolishment of G(2) arrest, evidenced by an increase in the number of cycling cells 2 hours after irradiation. In summary, these results indicate that human ES cells activate the DNA damage checkpoint, resulting in an ATM-dependent G(2) arrest. However, these cells re-enter the cell cycle with prominent mitotic spindle defects.
Collapse
Affiliation(s)
- Olga Momcilović
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
1094
|
Costes SV, Chiolo I, Pluth JM, Barcellos-Hoff MH, Jakob B. Spatiotemporal characterization of ionizing radiation induced DNA damage foci and their relation to chromatin organization. Mutat Res 2010; 704:78-87. [PMID: 20060491 DOI: 10.1016/j.mrrev.2009.12.006] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 12/17/2009] [Accepted: 12/22/2009] [Indexed: 11/28/2022]
Abstract
DNA damage sensing proteins have been shown to localize to the sites of DNA double strand breaks (DSB) within seconds to minutes following ionizing radiation (IR) exposure, resulting in the formation of microscopically visible nuclear domains referred to as radiation-induced foci (RIF). This review characterizes the spatiotemporal properties of RIF at physiological doses, minutes to hours following exposure to ionizing radiation, and it proposes a model describing RIF formation and resolution as a function of radiation quality and chromatin territories. Discussion is limited to RIF formed by three interrelated proteins ATM (Ataxia telangiectasia mutated), 53BP1 (p53 binding protein 1) and gammaH2AX (phosphorylated variant histone H2AX), with an emphasis on the later. This review discusses the importance of not equating RIF with DSB in all situations and shows how dose and time dependence of RIF frequency is inconsistent with a one to one equivalence. Instead, we propose that RIF mark regions of the chromatin that would serve as scaffolds rigid enough to keep broken DNA from diffusing away, but open enough to allow the repair machinery to access the damage site. We review data indicating clear kinetic and physical differences between RIF emerging from dense and uncondensed regions of the nucleus. We suggest that persistent RIF observed days following exposure to ionizing radiation are nuclear marks of permanent rearrangement of the chromatin architecture. Such chromatin alterations may not always lead to growth arrest as cells have been shown to replicate these in progeny. Thus, heritable persistent RIF spanning over tens of Mbp may reflect persistent changes in the transcriptome of a large progeny of cells. Such model opens the door to a "non-DNA-centric view" of radiation-induced phenotypes.
Collapse
Affiliation(s)
- S V Costes
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | | | | | | | |
Collapse
|
1095
|
KOIKE M, KOIKE A, SUGASAWA J, TOYOOKA T, IBUKI Y. Dynamics of Ku80 in Living Hamster Cells with DNA Double-Strand Breaks Induced by Chemotherapeutic Drugs. J Vet Med Sci 2010; 72:1405-12. [DOI: 10.1292/jvms.10-0185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Manabu KOIKE
- DNA Repair Gene Res., National Institute of Radiological Sciences
| | - Aki KOIKE
- DNA Repair Gene Res., National Institute of Radiological Sciences
| | - Jun SUGASAWA
- DNA Repair Gene Res., National Institute of Radiological Sciences
| | - Tatsushi TOYOOKA
- Laboratory of Radiation Biology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka
| | - Yuko IBUKI
- Laboratory of Radiation Biology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka
| |
Collapse
|
1096
|
Vandersickel V, Depuydt J, Van Bockstaele B, Perletti G, Philippe J, Thierens H, Vral A. Early increase of radiation-induced γH2AX foci in a human Ku70/80 knockdown cell line characterized by an enhanced radiosensitivity. JOURNAL OF RADIATION RESEARCH 2010; 51:633-641. [PMID: 21116096 DOI: 10.1269/jrr.10033] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A better understanding of the underlying mechanisms of DNA repair after exposure to ionizing radiation represents a research priority aimed at improving the outcome of clinical radiotherapy. Because of the close association with DNA double strand break (DSB) repair, phosphorylation of the histone H2AX protein (γH2AX), quantified by immunodetection, has recently been used as a method to study DSB induction and repair at low and clinically relevant radiation doses. However, the lack of consistency in literature points to the need to further validate the role of H2AX phosphorylation in DSB repair and the use of this technique to determine intrinsic radiosensitivity. In the present study we used human mammary epithelial MCF10A cells, characterized by a radiosensitive phenotype due to reduced levels of the Ku70 and Ku80 repair proteins, and investigated whether this repair-deficient cell line displays differences in the phosphorylation pattern of H2AX protein compared to repair-proficient MCF10A cells. This was established by measuring formation and disappearance of γH2AX foci after irradiating synchronized cell populations with (60)Co γ-rays. Our results show statistically significant differences in the number of γH2AX foci between the repair-deficient and -proficient cell line, with a higher amount of γH2AX foci present at early times post-irradiation in the Ku-deficient cell line. However, the disappearance of those differences at later post-irradiation times questions the use of this assay to determine intrinsic radiosensitivity, especially in a clinical setting.
Collapse
|
1097
|
Mok MT, Henderson BR. A comparison of BRCA1 nuclear localization with 14 DNA damage response proteins and domains: Identification of specific differences between BRCA1 and 53BP1 at DNA damage-induced foci. Cell Signal 2010; 22:47-56. [DOI: 10.1016/j.cellsig.2009.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 09/09/2009] [Indexed: 01/08/2023]
|
1098
|
Abstract
DNA polymerases (Pols) act as key players in DNA metabolism. These enzymes are the only biological macromolecules able to duplicate the genetic information stored in the DNA and are absolutely required every time this information has to be copied, as during DNA replication or during DNA repair, when lost or damaged DNA sequences have to be replaced with "original" or "correct" copies. In each DNA repair pathway one or more specific Pols are required. A feature of mammalian DNA repair pathways is their redundancy. The failure of one of these pathways can be compensated by another one. However, several DNA lesions require a specific repair pathway for error free repair. In many tumors one or more DNA repair pathways are affected, leading to error prone repair of some kind of lesions by alternatives routes, thus leading to accumulation of mutations and contributing to genomic instability, a common feature of cancer cell. In this chapter, we present the role of each Pol in genome maintenance and highlight the connections between the malfunctioning of these enzymes and cancer progress.
Collapse
Affiliation(s)
- Emmanuele Crespan
- Istituto di Genetica Molecolare IGM-CNR, Consiglio Nazionale delle Ricerche, I-27100 Pavia, Italy
| | | | | |
Collapse
|
1099
|
Cellular responses to etoposide: cell death despite cell cycle arrest and repair of DNA damage. Apoptosis 2009; 15:162-72. [DOI: 10.1007/s10495-009-0440-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
1100
|
Toulany M, Kehlbach R, Rodemann HP, Mozdarani H. Radiocontrast media affect radiation-induced DNA damage repair in vitro and in vivo by affecting Akt signalling. Radiother Oncol 2009; 94:110-6. [PMID: 20005591 DOI: 10.1016/j.radonc.2009.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 10/19/2009] [Accepted: 11/16/2009] [Indexed: 12/16/2022]
Abstract
PURPOSE The study was performed to investigate cytogenetic effects of ionic and non-ionic radiocontrast media (RCM) meglumine, iohexol alone and in combination with irradiation in mouse bone marrow cells in vivo and in vitro. MATERIALS AND METHODS Micronuclei assay was performed in bone marrow cells (BMC) of Balb/C mice intraperitoneally injected with RCM in the presence or absence of whole-body irradiation of 50 mGy. DNA repair (NHEJ) signalling and efficiency were analyzed by Western blot and gammaH2AX-foci assay in normal fibroblast HSF-7 and HUVEC cells. RESULTS Both compounds reduced proliferation of BMC significantly. Concentrations of 0.5, 1 and 2 ml/kg meglumine or iohexol significantly enhanced the frequency of micronucleated polychromatic erythrocytes (MnPCEs) at all doses of meglumine (p<0.01) and 2 ml/kg of iohexol (p<0.05). Combined with irradiation meglumine at 0.5 and 1 ml/kg led to a higher frequency of MnPCEs than iohexol/IR (p<0.05). Meglumine induced DNA-double strand breaks (DNA-DSB) in non-irradiated HSF and strongly increased residual DNA-DSB within 10 min to 24h after irradiation with 200 or 400 mGy (p<0.001). Iohexol did not induce DNA-DSB but blocked repair of radiation-induced DNA-DSB significantly (p<0.05). Meglumine blocked IR-induced Akt phosphorylation, phosphorylation of DNA-PKcs (S2056, T2609) and ATM (S1981). Iohexol only blocked phosphorylation of Akt and DNA-PKcs at S2056. CONCLUSION RCM result in clastogenic effects through interference intracellular signalling cascades involved in the regulation of non-homologous end-joining repair of DNA-DSB.
Collapse
Affiliation(s)
- Mahmoud Toulany
- Department of Radiation Oncology, University of Tuebingen, 72076 Tuebingen, Germany
| | | | | | | |
Collapse
|