1051
|
Patil N, Truong V, Holmberg MH, Lavoie NS, McCoy MR, Dutton JR, Holmberg EG, Parr AM. Safety and Efficacy of Rose Bengal Derivatives for Glial Scar Ablation in Chronic Spinal Cord Injury. J Neurotrauma 2018; 35:1745-1754. [PMID: 29373946 PMCID: PMC6033306 DOI: 10.1089/neu.2017.5398] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There are no effective therapies available currently to ameliorate loss of function for patients with spinal cord injuries (SCIs). In addition, proposed treatments that demonstrated functional recovery in animal models of acute SCI have failed almost invariably when applied to chronic injury models. Glial scar formation in chronic injury is a likely contributor to limitation on regeneration. We have removed existing scar tissue in chronically contused rat spinal cord using a rose Bengal-based photo ablation approach. In this study, we compared two chemically modified rose bengal derivatives to unmodified rose bengal, both confirming and expanding on our previously published report. Rats were treated with unmodified rose bengal (RB1) or rose bengal modified with hydrocarbon (RB2) or polyethylene glycol (RB3), to determine the effects on scar components and spared tissue post-treatment. Our results showed that RB1 was more efficacious than RB2, while still maintaining minimal collateral effects on spared tissue. RB3 was not taken up by the cells, likely because of its size, and therefore had no effect. Treatment with RB1 also resulted in an increase in serotonin eight days post-treatment in chronically injured spinal cords. Thus, we suggest that unmodified rose Bengal is a potent candidate agent for the development of a therapeutic strategy for scar ablation in chronic SCI.
Collapse
Affiliation(s)
- Nandadevi Patil
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
| | - Vincent Truong
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
| | - Mackenzie H. Holmberg
- Department of Chemistry, University of Alaska Anchorage, Anchorage, Alaska
- University of Washington School of Medicine, Seattle, Washington
| | - Nicolas S. Lavoie
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
| | - Mark R. McCoy
- Department of Chemistry, University of Alaska Anchorage, Anchorage, Alaska
| | - James R. Dutton
- Department of Genetics, Cell Biology and Development, Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
| | - Eric G. Holmberg
- Department of Chemistry, University of Alaska Anchorage, Anchorage, Alaska
| | - Ann M. Parr
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
1052
|
GULBRANSEN BRIAND, CHRISTOFI FIEVOSL. Are We Close to Targeting Enteric Glia in Gastrointestinal Diseases and Motility Disorders? Gastroenterology 2018; 155:245-251. [PMID: 29964042 PMCID: PMC6452442 DOI: 10.1053/j.gastro.2018.06.050] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
1053
|
Ruschel J, Bradke F. Systemic administration of epothilone D improves functional recovery of walking after rat spinal cord contusion injury. Exp Neurol 2018; 306:243-249. [PMID: 29223322 DOI: 10.1016/j.expneurol.2017.12.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 10/28/2017] [Accepted: 12/04/2017] [Indexed: 01/31/2023]
Abstract
Central nervous system (CNS) injuries cause permanent impairments of sensorimotor functions as mature neurons fail to regenerate their severed axons. The poor intrinsic growth capacity of adult CNS neurons and the formation of an inhibitory lesion scar are key impediments to axon regeneration. Systemic administration of the microtubule stabilizing agent epothilone B promotes axon regeneration and recovery of motor function by activating the intrinsic axonal growth machinery and by reducing the inhibitory fibrotic lesion scar. Thus, epothilones hold clinical promise as potential therapeutics for spinal cord injury. Here we tested the efficacy of epothilone D, an epothilone B analog with a superior safety profile. By using liquid chromatography and mass spectrometry (LC/MS), we found adequate CNS penetration and distribution of epothilone D after systemic administration, confirming the suitability of the drug for non-invasive CNS treatment. Systemic administration of epothilone D reduced inhibitory fibrotic scarring, promoted regrowth of injured raphespinal fibers and improved walking function after mid-thoracic spinal cord contusion injury in adult rats. These results confirm that systemic administration of epothilones is a valuable therapeutic strategy for CNS regeneration and repair after injury and provides a further advance for potential clinical translation.
Collapse
Affiliation(s)
- Jörg Ruschel
- German Center for Neurodegenerative Diseases, Sigmund-Freud-Strasse 27, 53127 Bonn, Germany.
| | - Frank Bradke
- German Center for Neurodegenerative Diseases, Sigmund-Freud-Strasse 27, 53127 Bonn, Germany.
| |
Collapse
|
1054
|
Abstract
Neuropathic pain is a common health problem that affects millions of people worldwide. Despite being studied extensively, the cellular and molecular events underlying the central immunomodulation and the pathophysiology of neuropathic pain is still controversial. The idea that 'glial cells are merely housekeepers' is incorrect and with respect to initiation and maintenance of neuropathic pain, microglia and astrocytes have important roles to play. Glial cells differentially express opioid receptors and are thought to be functionally modulated by the activation of these receptors. In this review, we discuss evidence for glia-opioid modulation of pain by focusing on the pattern of astrocyte and microglial activation throughout the progress of nerve injury/neuropathic pain. Activation of astrocytes and microglia is a key step in central immunomodulation in terms of releasing pro-inflammatory markers and propagation of a 'central immune response'. Inhibition of astrocytes before and after induction of neuropathic pain has been found to prevent and reverse neuropathic pain, respectively. Moreover, microglial inhibitors have been found to prevent (but not to reverse) neuropathic pain. As they are expressed by glia, opioid receptors are expected to have a role to play in neuropathic pain.
Collapse
|
1055
|
Lu X, Perera TH, Aria AB, Callahan LAS. Polyethylene glycol in spinal cord injury repair: a critical review. J Exp Pharmacol 2018; 10:37-49. [PMID: 30100766 PMCID: PMC6067622 DOI: 10.2147/jep.s148944] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Polyethylene glycol (PEG) is a synthetic biocompatible polymer with many useful properties for developing therapeutics to treat spinal cord injury. Direct application of PEG as a fusogen to the injury site can repair cell membranes, mitigate oxidative stress, and promote axonal regeneration to restore motor function. PEG can be covalently or noncovalently conjugated to proteins, peptides, and nanoparticles to limit their clearance by the reticuloendothelial system, reduce their immunogenicity, and facilitate crossing the blood-brain barrier. Cross-linking PEG produces hydrogels that can act as delivery vehicles for bioactive molecules including growth factors and cells such as bone marrow stromal cells, which can modulate the inflammatory response and support neural tissue regeneration. PEG hydrogels can be cross-linked in vitro or delivered as an injectable formulation that can gel in situ at the site of injury. Chemical and mechanical properties of PEG hydrogels are tunable and must be optimized for creating the most favorable delivery environment. Peptides mimicking extracellular matrix protein such as laminin and n-cadherin can be incorporated into PEG hydrogels to promote neural differentiation and axonal extensions. Different hydrogel cross-linking densities and stiffness will also affect the differentiation process. PEG hydrogels with a gradient of peptide concentrations or Young's modulus have been developed to systematically study these factors. This review will describe these and other recent advancements of PEG in the field of spinal cord injury in greater detail.
Collapse
Affiliation(s)
- Xi Lu
- Department of Neurosurgery, Center for Stem Cells and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA,
| | - T Hiran Perera
- Department of Neurosurgery, Center for Stem Cells and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA,
| | - Alexander B Aria
- Department of Neurosurgery, Center for Stem Cells and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA,
| | - Laura A Smith Callahan
- Department of Neurosurgery, Center for Stem Cells and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA,
| |
Collapse
|
1056
|
Swanton T, Cook J, Beswick JA, Freeman S, Lawrence CB, Brough D. Is Targeting the Inflammasome a Way Forward for Neuroscience Drug Discovery? SLAS DISCOVERY 2018; 23:991-1017. [PMID: 29969573 DOI: 10.1177/2472555218786210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neuroinflammation is becoming increasingly recognized as a critical factor in the pathology of both acute and chronic neurological conditions. Inflammasomes such as the one formed by NACHT, LRR, and PYD domains containing protein 3 (NLRP3) are key regulators of inflammation due to their ability to induce the processing and secretion of interleukin 1β (IL-1β). IL-1β has previously been identified as a potential therapeutic target in a variety of conditions due to its ability to promote neuronal damage under conditions of injury. Thus, inflammasome inhibition has the potential to curtail inflammatory signaling, which could prove beneficial in certain diseases. In this review, we discuss the evidence for inflammasome contributions to the pathology of neurodegenerative conditions such as Alzheimer's disease and Parkinson's disease, epilepsy, and acute degeneration following brain trauma or stroke. In addition, we review the current landscape of drug development targeting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Tessa Swanton
- 1 Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - James Cook
- 1 Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - James A Beswick
- 2 Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Sally Freeman
- 2 Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Catherine B Lawrence
- 1 Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - David Brough
- 1 Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
1057
|
Hackett AR, Yahn SL, Lyapichev K, Dajnoki A, Lee DH, Rodriguez M, Cammer N, Pak J, Mehta ST, Bodamer O, Lemmon VP, Lee JK. Injury type-dependent differentiation of NG2 glia into heterogeneous astrocytes. Exp Neurol 2018; 308:72-79. [PMID: 30008424 DOI: 10.1016/j.expneurol.2018.07.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 12/28/2022]
Abstract
The glial scar is comprised of a heterogeneous population of reactive astrocytes. NG2 glial cells (also known as oligodendrocyte progenitor cells or polydendrocytes) may contribute to this heterogeneity by differentiating into astrocytes in the injured CNS, but there have been conflicting reports about whether astrocytes comprise a significant portion of the NG2 cell lineage. By using genetic fate mapping after spinal cord injury (SCI) and experimental autoimmune encephalomyelitis (EAE) in mice, the goal of this study was to confirm and extend upon previous findings, which have shown that NG2 cell plasticity varies across CNS injuries. We generated mice that express tdTomato in NG2 lineage cells and express GFP under the Aldh1l1 or Glt1 promoter so that NG2 glia-derived astrocytes can be detected by their expression of GFAP and/or GFP. We found that astrocytes comprise approximately 25% of the total NG2 cell lineage in the glial scar by 4 weeks after mid-thoracic contusive SCI, but only 9% by the peak of functional deficit after EAE. Interestingly, a subpopulation of astrocytes expressed only GFP without co-expression of GFAP, uncovering their heterogeneity and the possibility of an underestimation of NG2 glia-derived astrocytes in previous studies. Additionally, we used high performance liquid chromatography to measure the level of tamoxifen and its metabolites in the spinal cord and show that genetic labeling of NG2 glia-derived astrocytes is not an artifact of residual tamoxifen. Overall, our data demonstrate that a heterogeneous population of astrocytes are derived from NG2 glia in an injury type-dependent manner.
Collapse
Affiliation(s)
- Amber R Hackett
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL 33136, United States
| | - Stephanie L Yahn
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL 33136, United States
| | - Kirill Lyapichev
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL 33136, United States
| | - Angela Dajnoki
- Department of Human Genetics, University of Miami School of Medicine, Miami, FL 33136, United States
| | - Do-Hun Lee
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL 33136, United States
| | - Mario Rodriguez
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL 33136, United States
| | - Natasha Cammer
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL 33136, United States
| | - Ji Pak
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL 33136, United States
| | - Saloni T Mehta
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL 33136, United States
| | - Olaf Bodamer
- Department of Human Genetics, University of Miami School of Medicine, Miami, FL 33136, United States; Division of Genetics ad Genomics, Boston Children's Hospital, Harvard Medical Scool, United States
| | - Vance P Lemmon
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL 33136, United States
| | - Jae K Lee
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL 33136, United States.
| |
Collapse
|
1058
|
Nih LR, Gojgini S, Carmichael ST, Segura T. Dual-function injectable angiogenic biomaterial for the repair of brain tissue following stroke. NATURE MATERIALS 2018; 17:642-651. [PMID: 29784996 PMCID: PMC6019573 DOI: 10.1038/s41563-018-0083-8] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 04/16/2018] [Indexed: 04/14/2023]
Abstract
Stroke is the primary cause of disability due to the brain's limited ability to regenerate damaged tissue. After stroke, an increased inflammatory and immune response coupled with severely limited angiogenesis and neuronal growth results in a stroke cavity devoid of normal brain tissue. In the adult, therapeutic angiogenic materials have been used to repair ischaemic tissues through the formation of vascular networks. However, whether a therapeutic angiogenic material can regenerate brain tissue and promote neural repair is poorly understood. Here we show that the delivery of an engineered immune-modulating angiogenic biomaterial directly to the stroke cavity promotes tissue formation de novo, and results in axonal networks along thee generated blood vessels. This regenerated tissue produces functional recovery through the established axonal networks. Thus, this biomaterials approach generates a vascularized network of regenerated functional neuronal connections within previously dead tissue and lays the groundwork for the use of angiogenic materials to repair other neurologically diseased tissues.
Collapse
Affiliation(s)
- Lina R Nih
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, USA
- Department of Neurology David Geffen School of Medicine, University of California, Los Angeles, USA, CA
| | - Shiva Gojgini
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, USA
| | - S Thomas Carmichael
- Department of Neurology David Geffen School of Medicine, University of California, Los Angeles, USA, CA.
| | - Tatiana Segura
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, USA.
- Department of Biomedical Engineering, Neurology, Dermatology, Duke University, Durham, NC, USA.
| |
Collapse
|
1059
|
Orr MB, Gensel JC. Spinal Cord Injury Scarring and Inflammation: Therapies Targeting Glial and Inflammatory Responses. Neurotherapeutics 2018; 15:541-553. [PMID: 29717413 PMCID: PMC6095779 DOI: 10.1007/s13311-018-0631-6] [Citation(s) in RCA: 383] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Deficits in neuronal function are a hallmark of spinal cord injury (SCI) and therapeutic efforts are often focused on central nervous system (CNS) axon regeneration. However, secondary injury responses by astrocytes, microglia, pericytes, endothelial cells, Schwann cells, fibroblasts, meningeal cells, and other glia not only potentiate SCI damage but also facilitate endogenous repair. Due to their profound impact on the progression of SCI, glial cells and modification of the glial scar are focuses of SCI therapeutic research. Within and around the glial scar, cells deposit extracellular matrix (ECM) proteins that affect axon growth such as chondroitin sulfate proteoglycans (CSPGs), laminin, collagen, and fibronectin. This dense deposition of material, i.e., the fibrotic scar, is another barrier to endogenous repair and is a target of SCI therapies. Infiltrating neutrophils and monocytes are recruited to the injury site through glial chemokine and cytokine release and subsequent upregulation of chemotactic cellular adhesion molecules and selectins on endothelial cells. These peripheral immune cells, along with endogenous microglia, drive a robust inflammatory response to injury with heterogeneous reparative and pathological properties and are targeted for therapeutic modification. Here, we review the role of glial and inflammatory cells after SCI and the therapeutic strategies that aim to replace, dampen, or alter their activity to modulate SCI scarring and inflammation and improve injury outcomes.
Collapse
Affiliation(s)
- Michael B Orr
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky College of Medicine, 741 S. Limestone, B463 BBSRB, Lexington, Kentucky, 40536, USA
| | - John C Gensel
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky College of Medicine, 741 S. Limestone, B463 BBSRB, Lexington, Kentucky, 40536, USA.
| |
Collapse
|
1060
|
Abstract
Glial cell types were classified less than 100 years ago by del Rio-Hortega. For instance, he correctly surmised that microglia in pathologic central nervous system (CNS) were "voracious monsters" that helped clean the tissue. Although these historical predictions were remarkably accurate, innovative technologies have revealed novel molecular, cellular, and dynamic physiologic aspects of CNS glia. In this review, we integrate recent findings regarding the roles of glia and glial interactions in healthy and injured spinal cord. The three major glial cell types are considered in healthy CNS and after spinal cord injury (SCI). Astrocytes, which in the healthy CNS regulate neurotransmitter and neurovascular dynamics, respond to SCI by becoming reactive and forming a glial scar that limits pathology and plasticity. Microglia, which in the healthy CNS scan for infection/damage, respond to SCI by promoting axon growth and remyelination-but also with hyperactivation and cytotoxic effects. Oligodendrocytes and their precursors, which in healthy tissue speed axon conduction and support axonal function, respond to SCI by differentiating and producing myelin, but are susceptible to death. Thus, post-SCI responses of each glial cell can simultaneously stimulate and stifle repair. Interestingly, potential therapies could also target interactions between these cells. Astrocyte-microglia cross-talk creates a feed-forward loop, so shifting the response of either cell could amplify repair. Astrocytes, microglia, and oligodendrocytes/precursors also influence post-SCI cell survival, differentiation, and remyelination, as well as axon sparing. Therefore, optimizing post-SCI responses of glial cells-and interactions between these CNS cells-could benefit neuroprotection, axon plasticity, and functional recovery.
Collapse
Affiliation(s)
- Andrew D Gaudet
- Department of Psychology and Neuroscience, University of Colorado Boulder, Muenzinger D244 | 345 UCB, Boulder, CO, 80309, USA.
- Center for Neuroscience, University of Colorado Boulder, Muenzinger D244 | 345 UCB, Boulder, CO, 80309, USA.
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
1061
|
Monteagudo A, Feola J, Natola H, Ji C, Pröschel C, Johnson GVW. Depletion of astrocytic transglutaminase 2 improves injury outcomes. Mol Cell Neurosci 2018; 92:128-136. [PMID: 29969654 DOI: 10.1016/j.mcn.2018.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 01/12/2023] Open
Abstract
Astrocytes play an indispensable role in maintaining a healthy, functional neural network in the central nervous system (CNS). A primary function of CNS astrocytes is to support the survival and function of neurons. In response to injury, astrocytes take on a reactive phenotype, which alters their molecular functions. Reactive astrocytes have been reported to be both beneficial and harmful to the CNS recovery process subsequent to injury. Understanding the molecular processes and regulatory proteins that determine the extent to which an astrocyte hinders or supports neuronal survival is important within the context of CNS repair. One protein that plays a role in modulating cellular survival is transglutaminase 2 (TG2). Global deletion of TG2 results in beneficial outcomes subsequent to in vivo ischemic brain injury. Ex vivo studies have also implicated TG2 as a negative regulator of astrocyte viability subsequent to injury. In this study we show that knocking down TG2 in astrocytes significantly increases their ability to protect neurons from oxygen glucose deprivation (OGD)/reperfusion injury. To begin to understand how deletion of TG2 in astrocytes improves their ability to protect neurons from injury, we performed transcriptome analysis of wild type and TG2-/- astrocytes. TG2 deletion resulted in alterations in genes involved in extracellular matrix remodeling, cell adhesion and axon growth/guidance. In addition, the majority of genes that showed increases in the TG2-/- astrocytes had predicted cJun/AP-1 binding motifs in their promoters. Furthermore, phospho-cJun levels were robustly elevated in TG2-/- astrocytes, a finding which was consistent with the increase in expression of AP-1 responsive genes. These in vitro data were subsequently extended into an in vivo model to determine whether the absence of astrocytic TG2 improves outcomes after CNS injury. Our results show that, following a spinal cord injury, scar formation is significantly attenuated in mice with astrocyte-specific TG2 deletion compared to mice expressing normal TG2 levels. Taken together, these data indicate that TG2 plays a pivotal role in mediating reactive astrocyte properties following CNS injury. Further, the data suggest that limiting the AP-1 mediated pro-survival injury response may be a contributing factor to that the detrimental effects of astrocytic TG2.
Collapse
Affiliation(s)
- Alina Monteagudo
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | - Julianne Feola
- Department of Biomedical Genetics, University of Rochester, Rochester, NY 14642, USA
| | - Heather Natola
- Department of Biomedical Genetics, University of Rochester, Rochester, NY 14642, USA
| | - Changyi Ji
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY 14642, USA
| | - Christoph Pröschel
- Department of Biomedical Genetics, University of Rochester, Rochester, NY 14642, USA; Stem Cell and Regenerative Medicine Institute, University of Rochester, Rochester, NY 14642, USA
| | - Gail V W Johnson
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14642, USA; Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
1062
|
Kim J, Sajid MS, Trakhtenberg EF. The extent of extra-axonal tissue damage determines the levels of CSPG upregulation and the success of experimental axon regeneration in the CNS. Sci Rep 2018; 8:9839. [PMID: 29959434 PMCID: PMC6026156 DOI: 10.1038/s41598-018-28209-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/19/2018] [Indexed: 02/07/2023] Open
Abstract
The failure of mature central nervous system (CNS) projection neurons to regenerate axons over long distances drastically limits the recovery of functions lost after various CNS injuries and diseases. Although a number of manipulations that stimulate some degree of axon regeneration that overcomes the inhibitory environment after CNS injury have been discovered, the extent of regeneration remains very limited, emphasizing the need for improved therapies. Regenerating axons need nerve tissue environment capable of supporting their growth, and severe extra-axonal tissue damage and remodeling after injury may disrupt such environment. Here, we used traumatic injury to the mouse optic nerve as a model system to investigate how the extent of extra-axonal tissue damage affects experimental axon regeneration. Axon regeneration was stimulated by the shRNA-mediated knockdown (KD) of Pten gene expression in the retinal ganglion cells, and the extent of extra-axonal tissue damage was varied by changing the duration of optic nerve crush. Although no axons were spared using either 1 or 5 seconds crush, we found that Pten KD-stimulated axon regeneration was significantly reduced in 5 seconds compared with 1 second crush. The more severe extra-axonal tissue damage did not cause tissue atrophy, but led to significantly higher upregulation of axon growth-inhibiting chondroitin sulfate proteoglycan (CSPG) in the glial scar and also enlarged glial scar size, compared with less severely damaged tissue. Thus, the success of axon-regenerating approaches that target neuronal intrinsic mechanisms of axon growth is dependent on the preservation of appropriate extra-axonal tissue environment, which may need to be co-concurrently repaired by tissue remodeling methods.
Collapse
Affiliation(s)
- Juhwan Kim
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT, 06030, USA
| | - Muhammad S Sajid
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT, 06030, USA
- University of Hartford, 200 Bloomfield Ave., West Hartford, CT, 06117, USA
| | - Ephraim F Trakhtenberg
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT, 06030, USA.
| |
Collapse
|
1063
|
Jha MK, Jo M, Kim JH, Suk K. Microglia-Astrocyte Crosstalk: An Intimate Molecular Conversation. Neuroscientist 2018; 25:227-240. [PMID: 29931997 DOI: 10.1177/1073858418783959] [Citation(s) in RCA: 375] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Microglia-astrocyte crosstalk has recently been at the forefront of glial research. Emerging evidence illustrates that microglia- and astrocyte-derived signals are the functional determinants for the fates of astrocytes and microglia, respectively. By releasing diverse signaling molecules, both microglia and astrocytes establish autocrine feedback and their bidirectional conversation for a tight reciprocal modulation during central nervous system (CNS) insult or injury. Microglia, the constant sensors of changes in the CNS microenvironment and restorers of tissue homeostasis, not only serve as the primary immune cells of the CNS but also regulate the innate immune functions of astrocytes. Similarly, microglia determine the functions of reactive astrocytes, ranging from neuroprotective to neurotoxic. Conversely, astrocytes through their secreted molecules regulate microglial phenotypes and functions ranging from motility to phagocytosis. Altogether, the microglia-astrocyte crosstalk is fundamental to neuronal functions and dysfunctions. This review discusses the current understanding of the intimate molecular conversation between microglia and astrocytes and outlines its potential implications in CNS health and disease.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- 1 Department of Pharmacology, Brain Science & Engineering Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,2 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Myungjin Jo
- 1 Department of Pharmacology, Brain Science & Engineering Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,3 Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jae-Hong Kim
- 1 Department of Pharmacology, Brain Science & Engineering Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoungho Suk
- 1 Department of Pharmacology, Brain Science & Engineering Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
1064
|
Noristani HN, They L, Perrin FE. C57BL/6 and Swiss Webster Mice Display Differences in Mobility, Gliosis, Microcavity Formation and Lesion Volume After Severe Spinal Cord Injury. Front Cell Neurosci 2018; 12:173. [PMID: 29977191 PMCID: PMC6021489 DOI: 10.3389/fncel.2018.00173] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/01/2018] [Indexed: 12/20/2022] Open
Abstract
Spinal cord injuries (SCI) are neuropathologies causing enormous physical and emotional anguish as well as irreversibly disabilities with great socio/economic burdens to our society. The availability of multiple mouse strains is important for studying the underlying pathophysiological response after SCI. Although strain differences have been shown to directly affect spontaneous functional recovery following incomplete SCI, its influence after complete lesion of the spinal cord is unclear. To study the influence of mouse strain on recovery after severe SCI, we first carried out behavioral analyses up to 6 weeks following complete transection of the spinal cord in mice with two different genetic backgrounds namely, C57BL/6 and Swiss Webster. Using immunohistochemistry, we then analyzed glial cell reactivity not only at different time-points after injury but also at different distances from the lesion epicenter. Behavioral assessments using CatWalk™ and open field analyses revealed increased mobility (measured using average speed) and differential forelimb gross sensory response in Swiss Webster compared to C57BL/6 mice after complete transection of the spinal cord. Comprehensive histological assessment revealed elevated microglia/macrophage reactivity and a moderate increase in astrogliosis in Swiss Webster that was associated with reduced microcavity formation and reduced lesion volume after spinal cord transection compared to C57BL/6 mice. Our results thus suggest that increased mobility correlates with enhanced gliosis and better tissue protection after complete transection of the spinal cord.
Collapse
Affiliation(s)
- Harun Najib Noristani
- INSERM U1198, University of Montpellier, EPHE, Montpellier, France.,INSERM U1051, Montpellier, France
| | | | - Florence Evelyne Perrin
- INSERM U1198, University of Montpellier, EPHE, Montpellier, France.,INSERM U1051, Montpellier, France
| |
Collapse
|
1065
|
Huang W, Bai X, Stopper L, Catalin B, Cartarozzi LP, Scheller A, Kirchhoff F. During Development NG2 Glial Cells of the Spinal Cord are Restricted to the Oligodendrocyte Lineage, but Generate Astrocytes upon Acute Injury. Neuroscience 2018; 385:154-165. [PMID: 29913244 DOI: 10.1016/j.neuroscience.2018.06.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/17/2018] [Accepted: 06/07/2018] [Indexed: 01/30/2023]
Abstract
NG2 glia are self-renewal cells widely populating the entire central nervous system (CNS). The differentiation potential of NG2 glia in the brain has been systematically studied. However, the fate of NG2 glia in the spinal cord during development and after injury is still unclear. Here, we took advantage of faithful expression of Cre in NG2-CreERT2 knock-in mice to demonstrate that spinal NG2 glia remain committed to the oligodendrocyte (OL) lineage and generate OLs, but not astrocytes or neurons, during development. However, we found significant age- and region dependent differences in differentiation into OLs. Embryonic or neonatal NG2 glia generated more than 90% of the white matter OLs, but only 50% (embryonic) or 75% (neonatal) of gray matter OLs. Such differences disappeared after myelin completion coinciding with a decrease in the differentiation rate. While we never detected the generation of astrocytes from NG2 glia during spinal cord development, we found a small portion of NG2 glia could generate astrocytes in adult spinal cord upon acute traumatic injury.
Collapse
Affiliation(s)
- Wenhui Huang
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421 Homburg, Germany.
| | - Xianshu Bai
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421 Homburg, Germany
| | - Laura Stopper
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421 Homburg, Germany
| | - Bogdan Catalin
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421 Homburg, Germany; Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Luciana Politti Cartarozzi
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421 Homburg, Germany; Laboratory of Nerve Regeneration, State University of Campinas - UNICAMP, Cidade Universitária "Zeferino Vaz", 13083-862 Campinas, SP, Brazil
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421 Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421 Homburg, Germany.
| |
Collapse
|
1066
|
Khan IU, Yoon Y, Kim A, Jo KR, Choi KU, Jung T, Kim N, Son Y, Kim WH, Kweon OK. Improved Healing after the Co-Transplantation of HO-1 and BDNF Overexpressed Mesenchymal Stem Cells in the Subacute Spinal Cord Injury of Dogs. Cell Transplant 2018; 27:1140-1153. [PMID: 29909686 PMCID: PMC6158544 DOI: 10.1177/0963689718779766] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abundant expression of proinflammatory cytokines after a spinal cord injury (SCI) creates an inhibitory microenvironment for neuroregeneration. The mesenchymal stem cells help to mitigate the inflammation and improve neural growth and survival. For this purpose, we potentiated the function of adipose-derived mesenchymal stem cells (Ad-MSCs) by transfecting them with brain-derived neurotrophic factor (BDNF) and heme oxygenase-1 (HO-1), through a lentivirus, to produce BDNF overexpressed Ad-MSCs (BDNF-MSCs), and HO-1 overexpressed Ad-MSCs (HO-1-MSCs). Sixteen SCI beagle dogs were randomly assigned into four treatment groups. We injected both HO-1 and BDNF-overexpressed MSCs as a combination group, to selectively control inflammation and induce neuroregeneration in SCI dogs, and compared this with BDNF-MSCs, HO-1-MSCs, and GFP-MSCs injected dogs. The groups were compared in terms of improvement in canine Basso, Beattie, and Bresnahan (cBBB) score during 8 weeks of experimentation. After 8 weeks, spinal cords were harvested and subjected to western blot analysis, immunofluorescent staining, and hematoxylin and eosin (H&E) staining. The combination group showed a significant improvement in hindlimb functions, with a higher BBB score, and a robust increase in neuroregeneration, depicted by a higher expression of Tuj-1, NF-M, and GAP-43 due to a decreased expression of the inflammatory markers interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), and an increased expression of interleukin-10 (IL-10) (P ≤ 0.05). H&E staining showed more reduced intraparenchymal fibrosis in the combination group than in other groups (P ≤ 0.05). It was thus suggested that the cotransplantation of HO-1 and BDNF-MSCs is more effective in promoting the healing of SCI. HO-1-MSCs reduce inflammation, which favors BDNF-induced neuroregeneration in SCI of dogs.
Collapse
Affiliation(s)
- Imdad Ullah Khan
- 1 Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Yongseok Yoon
- 1 Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Ahyoung Kim
- 1 Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Kwang Rae Jo
- 1 Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Kyeung Uk Choi
- 1 Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Taeseong Jung
- 1 Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Namyul Kim
- 1 Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| | - YeonSung Son
- 1 Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Wan Hee Kim
- 1 Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Oh-Kyeong Kweon
- 1 Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| |
Collapse
|
1067
|
History of Glial Cell Line-Derived Neurotrophic Factor (GDNF) and Its Use for Spinal Cord Injury Repair. Brain Sci 2018; 8:brainsci8060109. [PMID: 29899247 PMCID: PMC6025482 DOI: 10.3390/brainsci8060109] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 01/01/2023] Open
Abstract
Following an initial mechanical insult, traumatic spinal cord injury (SCI) induces a secondary wave of injury, resulting in a toxic lesion environment inhibitory to axonal regeneration. This review focuses on the glial cell line-derived neurotrophic factor (GDNF) and its application, in combination with other factors and cell transplantations, for repairing the injured spinal cord. As studies of recent decades strongly suggest that combinational treatment approaches hold the greatest therapeutic potential for the central nervous system (CNS) trauma, future directions of combinational therapies will also be discussed.
Collapse
|
1068
|
Priego N, Zhu L, Monteiro C, Mulders M, Wasilewski D, Bindeman W, Doglio L, Martínez L, Martínez-Saez E, Ramón Y Cajal S, Megías D, Hernández-Encinas E, Blanco-Aparicio C, Martínez L, Zarzuela E, Muñoz J, Fustero-Torre C, Piñeiro-Yáñez E, Hernández-Laín A, Bertero L, Poli V, Sanchez-Martinez M, Menendez JA, Soffietti R, Bosch-Barrera J, Valiente M. STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis. Nat Med 2018; 24:1024-1035. [PMID: 29892069 DOI: 10.1038/s41591-018-0044-4] [Citation(s) in RCA: 287] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 03/28/2018] [Indexed: 12/26/2022]
Abstract
The brain microenvironment imposes a particularly intense selective pressure on metastasis-initiating cells, but successful metastases bypass this control through mechanisms that are poorly understood. Reactive astrocytes are key components of this microenvironment that confine brain metastasis without infiltrating the lesion. Here, we describe that brain metastatic cells induce and maintain the co-option of a pro-metastatic program driven by signal transducer and activator of transcription 3 (STAT3) in a subpopulation of reactive astrocytes surrounding metastatic lesions. These reactive astrocytes benefit metastatic cells by their modulatory effect on the innate and acquired immune system. In patients, active STAT3 in reactive astrocytes correlates with reduced survival from diagnosis of intracranial metastases. Blocking STAT3 signaling in reactive astrocytes reduces experimental brain metastasis from different primary tumor sources, even at advanced stages of colonization. We also show that a safe and orally bioavailable treatment that inhibits STAT3 exhibits significant antitumor effects in patients with advanced systemic disease that included brain metastasis. Responses to this therapy were notable in the central nervous system, where several complete responses were achieved. Given that brain metastasis causes substantial morbidity and mortality, our results identify a novel treatment for increasing survival in patients with secondary brain tumors.
Collapse
Affiliation(s)
- Neibla Priego
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Lucía Zhu
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Cátia Monteiro
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Manon Mulders
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - David Wasilewski
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wendy Bindeman
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Laura Doglio
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Centre for Developmental Neurobiology, King's College London, London, UK
| | - Liliana Martínez
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Elena Martínez-Saez
- Pathology Department, Vall d'Hebron Hospital, Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| | - Santiago Ramón Y Cajal
- Pathology Department, Vall d'Hebron Hospital, Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| | - Diego Megías
- Confocal Microscopy Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | - Lola Martínez
- Flow Cytometry Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Eduardo Zarzuela
- ProteoRed-ISCIII. Proteomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Javier Muñoz
- ProteoRed-ISCIII. Proteomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Coral Fustero-Torre
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Elena Piñeiro-Yáñez
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Aurelio Hernández-Laín
- Neuropathology Unit, Hospital Universitario 12 de Octubre Research Institute, Madrid, Spain
| | - Luca Bertero
- Medical Sciences Department, Division of Pathology, University and City of Health and Science University Hospital of Turin, Turin, Italy
| | - Valeria Poli
- Molecular Biotechnology Centre, University of Turin, Turin, Italy
| | | | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Riccardo Soffietti
- Neuro-Oncology Department, University and City of Health and Science University Hospital of Turin, Turin, Italy
| | - Joaquim Bosch-Barrera
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain.,Department of Medical Sciences, Medical School, University of Girona, Girona, Spain.,Catalan Institute of Oncology (ICO), Dr. Josep Trueta University Hospital, Girona, Spain
| | - Manuel Valiente
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
1069
|
Lindsey BW, Hall ZJ, Heuzé A, Joly JS, Tropepe V, Kaslin J. The role of neuro-epithelial-like and radial-glial stem and progenitor cells in development, plasticity, and repair. Prog Neurobiol 2018; 170:99-114. [PMID: 29902500 DOI: 10.1016/j.pneurobio.2018.06.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/20/2018] [Accepted: 06/07/2018] [Indexed: 12/14/2022]
Abstract
Neural stem and progenitor cells (NSPCs) are the primary source of new neurons in the brain and serve critical roles in tissue homeostasis and plasticity throughout life. Within the vertebrate brain, NSPCs are located within distinct neurogenic niches differing in their location, cellular composition, and proliferative behaviour. Heterogeneity in the NSPC population is hypothesized to reflect varying capacities for neurogenesis, plasticity and repair between different neurogenic zones. Since the discovery of adult neurogenesis, studies have predominantly focused on the behaviour and biological significance of adult NSPCs (aNSPCs) in rodents. However, compared to rodents, who show lifelong neurogenesis in only two restricted neurogenic niches, zebrafish exhibit constitutive neurogenesis across multiple stem cell niches that provide new neurons to every major brain division. Accordingly, zebrafish are a powerful model to probe the unique cellular and molecular profiles of NSPCs and investigate how these profiles govern tissue homeostasis and regenerative plasticity within distinct stem cell populations over time. Amongst the NSPC populations residing in the zebrafish central nervous system (CNS), proliferating radial-glia, quiescent radial-glia and neuro-epithelial-like cells comprise the majority. Here, we provide insight into the extent to which these distinct NSPC populations function and mature during development, respond to experience, and contribute to successful CNS regeneration in teleost fish. Together, our review brings to light the dynamic biological roles of these individual NSPC populations and showcases their diverse regenerative modes to achieve vertebrate brain repair later in life.
Collapse
Affiliation(s)
- Benjamin W Lindsey
- Department of Biology, Brain and Mind Research Institute, University of Ottawa, Ontario, Canada; Australian Regenerative Medicine Institute, Monash University Clayton Campus, Clayton, VIC, Australia.
| | - Zachary J Hall
- Department of Cell and Systems Biology, University of Toronto, Ontario, M5S 3G5, Canada.
| | - Aurélie Heuzé
- CASBAH INRA group, UMR9197 Neuro-PSI, CNRS, 91 198, Gif-sur-Yvette, France.
| | - Jean-Stéphane Joly
- CASBAH INRA group, UMR9197 Neuro-PSI, CNRS, 91 198, Gif-sur-Yvette, France.
| | - Vincent Tropepe
- Department of Cell and Systems Biology, University of Toronto, Ontario, M5S 3G5, Canada.
| | - Jan Kaslin
- Australian Regenerative Medicine Institute, Monash University Clayton Campus, Clayton, VIC, Australia.
| |
Collapse
|
1070
|
Wang W, Tang S, Li H, Liu R, Su Y, Shen L, Sun M, Ning B. MicroRNA-21a-5p promotes fibrosis in spinal fibroblasts after mechanical trauma. Exp Cell Res 2018; 370:24-30. [PMID: 29883711 DOI: 10.1016/j.yexcr.2018.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 02/06/2023]
Abstract
Traumatic spinal cord injury (SCI) causes permanent disability to at least 180,000 people per year worldwide. Early regulation of spinal fibroblast proliferation may inhibit fibrotic scar formation, allowing the creation of a favorable environment for neuronal regeneration and thereby enhancing recovery from traumatic SCIs. In this study, we aimed to identify the role of microRNA-21a-5p (miR-21a-5p) in regulating spinal fibroblasts after mechanical trauma and to investigate the dysregulation of miR-21a-5p in the pathological process of spinal SCI. We investigated the differential expression of microRNAs in primary spinal fibroblasts after mechanical trauma and found that the expression of miR-21a-5p was higher in spinal fibroblasts after scratch damage (SD). In addition, mouse spinal fibroblasts were transfected with miR-21a-5p mimics/inhibitor, and the role of miR-21a-5p in spinal fibrogenic activation was analyzed. These experiments demonstrated that miR-21a-5p overexpression promoted fibrogenic activity in spinal fibroblasts after mechanical trauma, as well as enhancing proliferation and attenuating apoptosis in spinal fibroblasts. Finally, the potential role of miR-21a-5p in regulating the Smad signaling pathway was examined. MiR-21a-5p activated the Smad signaling pathway by enhancing Smad2/3 phosphorylation. These results suggest that miR-21a-5p promotes spinal fibrosis after mechanical trauma. Based on these findings, we propose a close relationship between miR-21a-5p and spinal fibrosis, providing a new potential therapeutic target for SCI.
Collapse
Affiliation(s)
- Wenzhao Wang
- Department of Spinal Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Shi Tang
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Hongfei Li
- Department of Spinal Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Ronghan Liu
- Department of Spinal Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yanlin Su
- Department of Spinal Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Lin Shen
- Department of Spinal Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Mingjie Sun
- Department of Spinal Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Bin Ning
- Department of Spinal Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China.
| |
Collapse
|
1071
|
Fan B, Wei Z, Yao X, Shi G, Cheng X, Zhou X, Zhou H, Ning G, Kong X, Feng S. Microenvironment Imbalance of Spinal Cord Injury. Cell Transplant 2018; 27:853-866. [PMID: 29871522 PMCID: PMC6050904 DOI: 10.1177/0963689718755778] [Citation(s) in RCA: 338] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Spinal cord injury (SCI), for which there currently is no cure, is a heavy burden on
patient physiology and psychology. The microenvironment of the injured spinal cord is
complicated. According to our previous work and the advancements in SCI research,
‘microenvironment imbalance’ is the main cause of the poor regeneration and recovery of
SCI. Microenvironment imbalance is defined as an increase in inhibitory factors and
decrease in promoting factors for tissues, cells and molecules at different times and
spaces. There are imbalance of hemorrhage and ischemia, glial scar formation,
demyelination and re-myelination at the tissue’s level. The cellular level imbalance
involves an imbalance in the differentiation of endogenous stem cells and the
transformation phenotypes of microglia and macrophages. The molecular level includes an
imbalance of neurotrophic factors and their pro-peptides, cytokines, and chemokines. The
imbalanced microenvironment of the spinal cord impairs regeneration and functional
recovery. This review will aid in the understanding of the pathological processes involved
in and the development of comprehensive treatments for SCI.
Collapse
Affiliation(s)
- Baoyou Fan
- 1 National Spinal Cord Injury International Cooperation Base, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhijian Wei
- 1 National Spinal Cord Injury International Cooperation Base, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xue Yao
- 1 National Spinal Cord Injury International Cooperation Base, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Guidong Shi
- 1 National Spinal Cord Injury International Cooperation Base, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Cheng
- 1 National Spinal Cord Injury International Cooperation Base, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xianhu Zhou
- 1 National Spinal Cord Injury International Cooperation Base, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Hengxing Zhou
- 1 National Spinal Cord Injury International Cooperation Base, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Guangzhi Ning
- 1 National Spinal Cord Injury International Cooperation Base, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaohong Kong
- 2 Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, China
| | - Shiqing Feng
- 1 National Spinal Cord Injury International Cooperation Base, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
1072
|
Johnson CD, D'Amato AR, Puhl DL, Wich DM, Vesperman A, Gilbert RJ. Electrospun fiber surface nanotopography influences astrocyte-mediated neurite outgrowth. ACTA ACUST UNITED AC 2018; 13:054101. [PMID: 29762127 DOI: 10.1088/1748-605x/aac4de] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Aligned, electrospun fiber scaffolds provide topographical guidance for regenerating neurons and glia after central nervous system injury. To date, no study has explored how fiber surface nanotopography affects astrocyte response to fibrous scaffolds. Astrocytes play important roles in the glial scar, the blood brain barrier, and in maintaining homeostasis in the central nervous system. In this study, electrospun poly L-lactic acid fibers were engineered with smooth, pitted, or divoted surface nanotopography. Cortical or spinal cord primary rat astrocytes were cultured on the surfaces for either 1 or 3 d to examine the astrocyte response over time. The results showed that cortical astrocytes were significantly shorter and broader on the pitted and divoted fibers compared to those on smooth fibers. However, spinal cord astrocyte morphology was not significantly altered by the surface features. These findings indicate that astrocytes from unique anatomical locations respond differently to the presence of nanotopography. Western blot results show that the differences in morphology were not associated with significant changes in glial fibrillary acidicprotein (GFAP) or vinculin in either astrocyte population, suggesting that surface pits and divots do not induce a reactive phenotype in either cortical or spinal cord astrocytes. Finally, astrocytes were co-cultured with dorsal root ganglia to determine how the surfaces affected astrocyte-mediated neurite outgrowth. Astrocytes cultured on the fibers for shorter periods of time (1 d) generally supported longer neurite outgrowth. Pitted and divoted fibers restricted spinal cord astrocyte-mediated neurite outgrowth, while smooth fibers increased 3 d spinal cord astrocyte-mediated neurite outgrowth. In total, fiber surface nanotopography can influence astrocyte elongation and influence the capability of astrocytes to direct neurites. Therefore, fiber surface characteristics should be carefully controlled to optimize astrocyte-mediated axonal regeneration.
Collapse
Affiliation(s)
- Christopher D Johnson
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180-3590, United States of America. Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180-3590, United States of America
| | | | | | | | | | | |
Collapse
|
1073
|
Rothhammer V, Borucki DM, Tjon EC, Takenaka MC, Chao CC, Ardura-Fabregat A, de Lima KA, Gutiérrez-Vázquez C, Hewson P, Staszewski O, Blain M, Healy L, Neziraj T, Borio M, Wheeler M, Dragin LL, Laplaud DA, Antel J, Alvarez JI, Prinz M, Quintana FJ. Microglial control of astrocytes in response to microbial metabolites. Nature 2018; 557:724-728. [PMID: 29769726 DOI: 10.1038/s41586-018-0119-x] [Citation(s) in RCA: 717] [Impact Index Per Article: 102.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 04/11/2018] [Indexed: 12/14/2022]
Abstract
Microglia and astrocytes modulate inflammation and neurodegeneration in the central nervous system (CNS)1-3. Microglia modulate pro-inflammatory and neurotoxic activities in astrocytes, but the mechanisms involved are not completely understood4,5. Here we report that TGFα and VEGF-B produced by microglia regulate the pathogenic activities of astrocytes in the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis. Microglia-derived TGFα acts via the ErbB1 receptor in astrocytes to limit their pathogenic activities and EAE development. Conversely, microglial VEGF-B triggers FLT-1 signalling in astrocytes and worsens EAE. VEGF-B and TGFα also participate in the microglial control of human astrocytes. Furthermore, expression of TGFα and VEGF-B in CD14+ cells correlates with the multiple sclerosis lesion stage. Finally, metabolites of dietary tryptophan produced by the commensal flora control microglial activation and TGFα and VEGF-B production, modulating the transcriptional program of astrocytes and CNS inflammation through a mechanism mediated by the aryl hydrocarbon receptor. In summary, we identified positive and negative regulators that mediate the microglial control of astrocytes. Moreover, these findings define a pathway through which microbial metabolites limit pathogenic activities of microglia and astrocytes, and suppress CNS inflammation. This pathway may guide new therapies for multiple sclerosis and other neurological disorders.
Collapse
Affiliation(s)
- Veit Rothhammer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Davis M Borucki
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Emily C Tjon
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maisa C Takenaka
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chun-Cheih Chao
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Kalil Alves de Lima
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristina Gutiérrez-Vázquez
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Patrick Hewson
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ori Staszewski
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Manon Blain
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Luke Healy
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Tradite Neziraj
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Matilde Borio
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Loic Lionel Dragin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jack Antel
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Jorge Ivan Alvarez
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
1074
|
Li X, Yang B, Xiao Z, Zhao Y, Han S, Yin Y, Chen B, Dai J. Comparison of subacute and chronic scar tissues after complete spinal cord transection. Exp Neurol 2018; 306:132-137. [PMID: 29753649 DOI: 10.1016/j.expneurol.2018.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 05/02/2018] [Accepted: 05/09/2018] [Indexed: 11/27/2022]
Abstract
Traditional views consider scar tissue formed in the lesion epicenter after severe spinal cord injury (SCI) as both a physical barrier and chemical impediment for axonal regeneration. Recently, a controversial opinion suggested that astrocyte scar formation aids rather than prevents axonal regeneration in the CNS. Here, following complete transection of the thoracic spinal cord (T8) in rats, we found that scar tissue showed greater growth factor expression at 2 weeks than 8 weeks post-SCI. Further, tandem mass tag (TMT)-based quantitative proteomic analysis revealed that the components of scar tissue formed in the subacute phase are quite different from that formed in the chronic phase. We also found significantly increased axonal regrowth of sensory axons into the lesion center after chronically formed scar tissue was removed. This indicates that scar tissue formed at the chronic phase actually inhibits axonal regeneration, and that chronic removal of scar tissue may have clinical significance and benefit for SCI repair. Taken together, our study suggests that the features and roles of subacute and chronic scar tissues formed post-SCI is different and scar tissue-targeted strategies for spinal cord regeneration cannot be generalized.
Collapse
Affiliation(s)
- Xing Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sufang Han
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanyun Yin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
1075
|
Pearson CS, Mencio CP, Barber AC, Martin KR, Geller HM. Identification of a critical sulfation in chondroitin that inhibits axonal regeneration. eLife 2018; 7:37139. [PMID: 29762123 PMCID: PMC5976435 DOI: 10.7554/elife.37139] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/14/2018] [Indexed: 01/02/2023] Open
Abstract
The failure of mammalian CNS neurons to regenerate their axons derives from a combination of intrinsic deficits and extrinsic factors. Following injury, chondroitin sulfate proteoglycans (CSPGs) within the glial scar inhibit axonal regeneration, an action mediated by the sulfated glycosaminoglycan (GAG) chains of CSPGs, especially those with 4-sulfated (4S) sugars. Arylsulfatase B (ARSB) selectively cleaves 4S groups from the non-reducing ends of GAG chains without disrupting other, growth-permissive motifs. We demonstrate that ARSB is effective in reducing the inhibitory actions of CSPGs both in in vitro models of the glial scar and after optic nerve crush (ONC) in adult mice. ARSB is clinically approved for replacement therapy in patients with mucopolysaccharidosis VI and therefore represents an attractive candidate for translation to the human CNS.
Collapse
Affiliation(s)
- Craig S Pearson
- Laboratory of Developmental Neurobiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Caitlin P Mencio
- Laboratory of Developmental Neurobiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Amanda C Barber
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Keith R Martin
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
1076
|
Magaki SD, Williams CK, Vinters HV. Glial function (and dysfunction) in the normal & ischemic brain. Neuropharmacology 2018; 134:218-225. [PMID: 29122627 PMCID: PMC6132239 DOI: 10.1016/j.neuropharm.2017.11.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/01/2017] [Accepted: 11/04/2017] [Indexed: 12/20/2022]
Abstract
Astrocytes are the most abundant cell type in the central nervous system (CNS). Once considered to be of fairly homogeneous phenotype throughout the brain and spinal cord, they are now understood to be heterogeneous in both structure and function. They are important in brain functions as diverse as ion and fluid balance in the interstitial space, contributing to integrity of the neurovascular unit (blood-brain barrier), neurotransmitter regulation, metabolism of energy substrates and possibly even axonal regeneration. After ischemic or hemorrhagic brain/spinal cord injury, formation of an astrocytic scar adjacent to the 'lesion' is a characteristic histopathologic feature, and this astrogliosis can be demonstrated by immunohistochemistry, usually using primary antibodies to glial fibrillary acidic protein (GFAP). Astrocytes interact with microglia and oligodendroglia in novel ways that will be discussed in this review. This article is part of the Special Issue entitled 'Cerebral Ischemia'.
Collapse
Affiliation(s)
- Shino D Magaki
- Department of Pathology, Loma Linda University Medical Center, Loma Linda, CA, USA; Department of Pathology & Laboratory Medicine (Neuropathology), David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1732, USA.
| | - Christopher K Williams
- Department of Pathology & Laboratory Medicine (Neuropathology), David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1732, USA
| | - Harry V Vinters
- Department of Pathology & Laboratory Medicine (Neuropathology), David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1732, USA; Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1732, USA.
| |
Collapse
|
1077
|
Tissue and cellular rigidity and mechanosensitive signaling activation in Alexander disease. Nat Commun 2018; 9:1899. [PMID: 29765022 PMCID: PMC5954157 DOI: 10.1038/s41467-018-04269-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 04/12/2018] [Indexed: 12/22/2022] Open
Abstract
Glial cells have increasingly been implicated as active participants in the pathogenesis of neurological diseases, but critical pathways and mechanisms controlling glial function and secondary non-cell autonomous neuronal injury remain incompletely defined. Here we use models of Alexander disease, a severe brain disorder caused by gain-of-function mutations in GFAP, to demonstrate that misregulation of GFAP leads to activation of a mechanosensitive signaling cascade characterized by activation of the Hippo pathway and consequent increased expression of A-type lamin. Importantly, we use genetics to verify a functional role for dysregulated mechanotransduction signaling in promoting behavioral abnormalities and non-cell autonomous neurodegeneration. Further, we take cell biological and biophysical approaches to suggest that brain tissue stiffness is increased in Alexander disease. Our findings implicate altered mechanotransduction signaling as a key pathological cascade driving neuronal dysfunction and neurodegeneration in Alexander disease, and possibly also in other brain disorders characterized by gliosis. Alexander disease is a rare neurodegeneration caused by mutations in a glial gene GFAP. Here, Wang and colleagues show in animal models of Alexander disease that GFAP mutant brain and cells have greater tissue and cellular stiffness and greater activation of mechanosensitive signaling cascade.
Collapse
|
1078
|
Wechsler LR, Bates D, Stroemer P, Andrews-Zwilling YS, Aizman I. Cell Therapy for Chronic Stroke. Stroke 2018; 49:1066-1074. [DOI: 10.1161/strokeaha.117.018290] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/26/2017] [Accepted: 11/01/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Lawrence R. Wechsler
- From the Department of Neurology, University of Pittsburgh School of Medicine and UPMC, PA (L.R.W.)
| | - Damien Bates
- SanBio, Inc, Mountain View, CA (D.B., Y.S.A.-Z., I.A.)
| | - Paul Stroemer
- Advanced Therapies Consultancy, Cardiff, Wales, UK (P.S.)
| | | | - Irina Aizman
- SanBio, Inc, Mountain View, CA (D.B., Y.S.A.-Z., I.A.)
| |
Collapse
|
1079
|
Abstract
The inability to recover functions lost after severe spinal cord injury has been recognized for millennia and was first attributed to a failure of spinal cord neural regeneration over 100 years ago. The last forty years have seen intense research into achieving such regeneration, but in spite of conceptual advances and many reports announcing successful interventions, progress has been slow and often controversial. Here, I examine consequential advances and setbacks, and critically consider assumptions underlying certain approaches. I argue that expanding mechanistic knowledge about multiple forms of neural regeneration, why they fail and how they can restore function will resolve conceptual contentions and push the field forward.
Collapse
|
1080
|
Heimann G, Canhos LL, Frik J, Jäger G, Lepko T, Ninkovic J, Götz M, Sirko S. Changes in the Proliferative Program Limit Astrocyte Homeostasis in the Aged Post-Traumatic Murine Cerebral Cortex. Cereb Cortex 2018; 27:4213-4228. [PMID: 28472290 DOI: 10.1093/cercor/bhx112] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Indexed: 12/18/2022] Open
Abstract
Aging leads to adverse outcomes after traumatic brain injury. The mechanisms underlying these defects, however, are not yet clear. In this study, we found that astrocytes in the aged post-traumatic cerebral cortex develop a significantly reduced proliferative response, resulting in reduced astrocyte numbers in the penumbra. Moreover, experiments of reactive astrocytes in vitro reveal that their diminished proliferation is due to an age-related switch in the division mode with reduced cell-cycle re-entry rather than changes in cell-cycle length. Notably, reactive astrocytes in vivo and in vitro become refractory to stimuli increasing their proliferation during aging, such as Sonic hedgehog signaling. These data demonstrate for the first time that age-dependent, most likely intrinsic changes in the proliferative program of reactive astrocytes result in their severely hampered proliferative response to traumatic injury thereby affecting astrocyte homeostasis.
Collapse
Affiliation(s)
- Gábor Heimann
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany
| | - Luisa L Canhos
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany
| | - Jesica Frik
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.,Institute of Biotechnology and Molecular Biology (IBBM), Department of Biological Sciences, 1900 La Plata, Argentina
| | - Gabriele Jäger
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany
| | - Tjasa Lepko
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany
| | - Jovica Ninkovic
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.,Synergy, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany
| | - Swetlana Sirko
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| |
Collapse
|
1081
|
Joe EH, Choi DJ, An J, Eun JH, Jou I, Park S. Astrocytes, Microglia, and Parkinson's Disease. Exp Neurobiol 2018; 27:77-87. [PMID: 29731673 PMCID: PMC5934545 DOI: 10.5607/en.2018.27.2.77] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/14/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022] Open
Abstract
Astrocytes and microglia support well-being and well-function of the brain through diverse functions in both intact and injured brain. For example, astrocytes maintain homeostasis of microenvironment of the brain through up-taking ions and neurotransmitters, and provide growth factors and metabolites for neurons, etc. Microglia keep surveying surroundings, and remove abnormal synapses or respond to injury by isolating injury sites and expressing inflammatory cytokines. Therefore, their loss and/or functional alteration may be directly linked to brain diseases. Since Parkinson's disease (PD)-related genes are expressed in astrocytes and microglia, mutations of these genes may alter the functions of these cells, thereby contributing to disease onset and progression. Here, we review the roles of astrocytes and microglia in intact and injured brain, and discuss how PD genes regulate their functions.
Collapse
Affiliation(s)
- Eun-Hye Joe
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16944, Korea.,Department of Biomedical Sciences, Neuroscience Graduate Program, Ajou University School of Medicine, Suwon 16944, Korea.,Department of Brain Science, Ajou University School of Medicine, Suwon 16944, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16944, Korea
| | - Dong-Joo Choi
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16944, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16944, Korea
| | - Jiawei An
- Department of Biomedical Sciences, Neuroscience Graduate Program, Ajou University School of Medicine, Suwon 16944, Korea
| | - Jin-Hwa Eun
- Department of Biomedical Sciences, Neuroscience Graduate Program, Ajou University School of Medicine, Suwon 16944, Korea
| | - Ilo Jou
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16944, Korea.,Department of Biomedical Sciences, Neuroscience Graduate Program, Ajou University School of Medicine, Suwon 16944, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16944, Korea
| | - Sangmyun Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16944, Korea.,Department of Biomedical Sciences, Neuroscience Graduate Program, Ajou University School of Medicine, Suwon 16944, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16944, Korea
| |
Collapse
|
1082
|
Shin JE, Jung K, Kim M, Hwang K, Lee H, Kim IS, Lee BH, Lee IS, Park KI. Brain and spinal cord injury repair by implantation of human neural progenitor cells seeded onto polymer scaffolds. Exp Mol Med 2018; 50:1-18. [PMID: 29674624 PMCID: PMC5938022 DOI: 10.1038/s12276-018-0054-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 12/22/2022] Open
Abstract
Hypoxic-ischemic (HI) brain injury and spinal cord injury (SCI) lead to extensive tissue loss and axonal degeneration. The combined application of the polymer scaffold and neural progenitor cells (NPCs) has been reported to enhance neural repair, protection and regeneration through multiple modes of action following neural injury. This study investigated the reparative ability and therapeutic potentials of biological bridges composed of human fetal brain-derived NPCs seeded upon poly(glycolic acid)-based scaffold implanted into the infarction cavity of a neonatal HI brain injury or the hemisection cavity in an adult SCI. Implantation of human NPC (hNPC)–scaffold complex reduced the lesion volume, induced survival, engraftment, and differentiation of grafted cells, increased neovascularization, inhibited glial scar formation, altered the microglial/macrophage response, promoted neurite outgrowth and axonal extension within the lesion site, and facilitated the connection of damaged neural circuits. Tract tracing demonstrated that hNPC–scaffold grafts appear to reform the connections between neurons and their targets in both cerebral hemispheres in HI brain injury and protect some injured corticospinal fibers in SCI. Finally, the hNPC–scaffold complex grafts significantly improved motosensory function and attenuated neuropathic pain over that of the controls. These findings suggest that, with further investigation, this optimized multidisciplinary approach of combining hNPCs with biomaterial scaffolds provides a more versatile treatment for brain injury and SCI. Biodegradable scaffolds seeded with human fetal brain cells can help repair neurological injuries in rodents. A team led by Kook In Park and Il-Shin Lee from the Yonsei University College of Medicine in Seoul, South Korea, created a mesh of plastic fibers that they bathed in neural progenitor cells. Over the course of several days, these cells differentiated into different types of brain cells, including neurons and glia. The researchers implanted these cell-scaffold complexes into the sites of injury in two rodent models: newborn mice with oxygen deprivation to the brain, and adult rats with severed spinal cords. In both cases, the treatment helped the injured tissues heal and improved the neurological or motor function of the animals. The authors suggest these tissue-engineered structures could also help people with brain or spine injuries.
Collapse
Affiliation(s)
- Jeong Eun Shin
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Kwangsoo Jung
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Miri Kim
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Kyujin Hwang
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Haejin Lee
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Il-Sun Kim
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Bae Hwan Lee
- Department of Physiology, Brain Research Institute, Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Il-Shin Lee
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Korea.
| | - Kook In Park
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, 03722, Korea. .,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Korea. .,Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Korea.
| |
Collapse
|
1083
|
Du J, Zhang C, Na X, Li A, Zhang Q, Li K, Ding Y. Andrographolide protects mouse astrocytes against hypoxia injury by promoting autophagy and S100B expression. ACTA ACUST UNITED AC 2018; 51:e7061. [PMID: 29694508 PMCID: PMC5937729 DOI: 10.1590/1414-431x20177061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 12/21/2017] [Indexed: 11/21/2022]
Abstract
Andrographolide (ANDRO) has been studied for its immunomodulation, anti-inflammatory, and neuroprotection effects. Because brain hypoxia is the most common factor of secondary brain injury after traumatic brain injury, we studied the role and possible mechanism of ANDRO in this process using hypoxia-injured astrocytes. Mouse cortical astrocytes C8-D1A (astrocyte type I clone from C57/BL6 strains) were subjected to 3 and 21% of O2 for various times (0–12 h) to establish an astrocyte hypoxia injury model in vitro. After hypoxia and ANDRO administration, the changes in cell viability and apoptosis were assessed using CCK-8 and flow cytometry. Expression changes in apoptosis-related proteins, autophagy-related proteins, main factors of JNK pathway, ATG5, and S100B were determined by western blot. Hypoxia remarkably damaged C8-D1A cells evidenced by reduction of cell viability and induction of apoptosis. Hypoxia also induced autophagy and overproduction of S100B. ANDRO reduced cell apoptosis and promoted cell autophagy and S100B expression. After ANDRO administration, autophagy-related proteins, S-100B, JNK pathway proteins, and ATG5 were all upregulated, while autophagy-related proteins and s100b were downregulated when the jnk pathway was inhibited or ATG5 was knocked down. ANDRO conferred a survival advantage to hypoxia-injured astrocytes by reducing cell apoptosis and promoting autophagy and s100b expression. Furthermore, the promotion of autophagy and s100b expression by ANDRO was via activation of jnk pathway and regulation of ATG5.
Collapse
Affiliation(s)
- Juan Du
- Department of Anesthesiology, Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Chunyan Zhang
- Department of Anesthesiology, Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Xueqing Na
- Department of Anesthesiology, Hospital of Kunming Medical University, Kunming, China
| | - Aizhi Li
- Department of Anesthesiology, Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Qingfeng Zhang
- Department of Anesthesiology, Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Kezhong Li
- Department of Anesthesiology, Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yongbo Ding
- Department of Anesthesiology, Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
1084
|
The Extracellular Environment of the CNS: Influence on Plasticity, Sprouting, and Axonal Regeneration after Spinal Cord Injury. Neural Plast 2018; 2018:2952386. [PMID: 29849554 PMCID: PMC5932463 DOI: 10.1155/2018/2952386] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/22/2018] [Accepted: 02/06/2018] [Indexed: 11/17/2022] Open
Abstract
The extracellular environment of the central nervous system (CNS) becomes highly structured and organized as the nervous system matures. The extracellular space of the CNS along with its subdomains plays a crucial role in the function and stability of the CNS. In this review, we have focused on two components of the neuronal extracellular environment, which are important in regulating CNS plasticity including the extracellular matrix (ECM) and myelin. The ECM consists of chondroitin sulfate proteoglycans (CSPGs) and tenascins, which are organized into unique structures called perineuronal nets (PNNs). PNNs associate with the neuronal cell body and proximal dendrites of predominantly parvalbumin-positive interneurons, forming a robust lattice-like structure. These developmentally regulated structures are maintained in the adult CNS and enhance synaptic stability. After injury, however, CSPGs and tenascins contribute to the structure of the inhibitory glial scar, which actively prevents axonal regeneration. Myelin sheaths and mature adult oligodendrocytes, despite their important role in signal conduction in mature CNS axons, contribute to the inhibitory environment existing after injury. As such, unlike the peripheral nervous system, the CNS is unable to revert to a “developmental state” to aid neuronal repair. Modulation of these external factors, however, has been shown to promote growth, regeneration, and functional plasticity after injury. This review will highlight some of the factors that contribute to or prevent plasticity, sprouting, and axonal regeneration after spinal cord injury.
Collapse
|
1085
|
Fu Q, Zou MM, Zhu JW, Zhang Y, Chen WJ, Cheng M, Liu CF, Ma QH, Xu RX. TRIM32 affects the recovery of motor function following spinal cord injury through regulating proliferation of glia. Oncotarget 2018; 8:45380-45390. [PMID: 28514764 PMCID: PMC5542194 DOI: 10.18632/oncotarget.17492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/15/2017] [Indexed: 02/02/2023] Open
Abstract
Both the extrinsic environmental factors and intrinsic neuronal mechanisms limit the axonal regeneration after spinal cord injury (SCI). However, the underlying molecular mechanisms remain unclear. In the present study, we identify tripartite motif protein 32 (TRIM32), an E3 ubiquitin ligase, which is barely detected in glial cells in the normal uninjured spinal cord, exhibits strong expression in both astrocytes and microglia following SCI. We further observe that deficiency of TRIM32 results in increased numbers of astrocytes and microglia, which is accompanied by enhanced proliferation of both cells and increased secretion of interleukin (IL)-1 and IL-10. The axonal regeneration is impaired in the spinal cord of TRIM32-/- mice following SCI, which is indicated by increased distances of the corticospinal tracts (CST) fiber to the lesion site and less axonal sprouting. We further show that deficiency of TRIM32 results in delay motor recovery following SCI. Therefore, TRIM32 is a novel essential positive factor modulating axonal regeneration and the recovery of motor function following SCI, possibly through suppressing proliferation of glial cells.
Collapse
Affiliation(s)
- Qiang Fu
- Affiliated Bayi Brain Hospital, P.L.A. Army General Hospital, Beijing 100700, China.,Department of Neurosurgery, The 251st Hospital of P.L.A., Zhangjiakou 075000, China
| | - Ming-Ming Zou
- Affiliated Bayi Brain Hospital, P.L.A. Army General Hospital, Beijing 100700, China.,Third Military Medical University, Chongqing 400038, China
| | - Jian-Wei Zhu
- Affiliated Bayi Brain Hospital, P.L.A. Army General Hospital, Beijing 100700, China.,Southern Medical University, Guangzhou 510515, China
| | - Yan Zhang
- Affiliated Bayi Brain Hospital, P.L.A. Army General Hospital, Beijing 100700, China
| | - Wen-Jin Chen
- Affiliated Bayi Brain Hospital, P.L.A. Army General Hospital, Beijing 100700, China.,Southern Medical University, Guangzhou 510515, China
| | - Mei Cheng
- School of Nursing, Binzhou Medical University, Yantai 264000, China
| | - Chun-Feng Liu
- Institute of Neuroscience and Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou 215021, China.,Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Quan-Hong Ma
- Affiliated Bayi Brain Hospital, P.L.A. Army General Hospital, Beijing 100700, China.,Institute of Neuroscience and Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou 215021, China.,Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Ru-Xiang Xu
- Affiliated Bayi Brain Hospital, P.L.A. Army General Hospital, Beijing 100700, China.,Third Military Medical University, Chongqing 400038, China.,Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
1086
|
Frik J, Merl-Pham J, Plesnila N, Mattugini N, Kjell J, Kraska J, Gómez RM, Hauck SM, Sirko S, Götz M. Cross-talk between monocyte invasion and astrocyte proliferation regulates scarring in brain injury. EMBO Rep 2018; 19:embr.201745294. [PMID: 29632244 PMCID: PMC5934774 DOI: 10.15252/embr.201745294] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/02/2018] [Accepted: 03/09/2018] [Indexed: 01/02/2023] Open
Abstract
Scar formation after brain injury is still poorly understood. To further elucidate such processes, here, we examine the interplay between astrocyte proliferation taking place predominantly at the vascular interface and monocyte invasion. Using genetic mouse models that decrease or increase reactive astrocyte proliferation, we demonstrate inverse effects on monocyte numbers in the injury site. Conversely, reducing monocyte invasion using CCR2-/- mice causes a strong increase in astrocyte proliferation, demonstrating an intriguing negative cross-regulation between these cell types at the vascular interface. CCR2-/- mice show reduced scar formation with less extracellular matrix deposition, smaller lesion site and increased neuronal coverage. Surprisingly, the GFAP+ scar area in these mice is also significantly decreased despite increased astrocyte proliferation. Proteomic analysis at the peak of increased astrocyte proliferation reveals a decrease in extracellular matrix synthesizing enzymes in the injury sites of CCR2-/- mice, highlighting how early key aspects of scar formation are initiated. Taken together, we provide novel insights into the cross-regulation of juxtavascular proliferating astrocytes and invading monocytes as a crucial mechanism of scar formation upon brain injury.
Collapse
Affiliation(s)
- Jesica Frik
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany.,Institute for Stem Cell Research, Helmholtz Center Munich, Munich, Germany.,Instituto de Biotecnología y Biología Molecular, UNLP-CONICET, La Plata, Argentina
| | - Juliane Merl-Pham
- Research Unit for Protein Science, Helmholtz Center Munich, Munich, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research, Experimental Stroke Research, University of Munich Medical School, Munich, Germany.,SYNERGY, Excellence Cluster Systems Neurology, University of Munich, Munich, Germany
| | - Nicola Mattugini
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany.,Institute for Stem Cell Research, Helmholtz Center Munich, Munich, Germany.,Graduate School of Systemic Neurosciences, Biocenter, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Jacob Kjell
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany.,Institute for Stem Cell Research, Helmholtz Center Munich, Munich, Germany
| | - Jonas Kraska
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ricardo M Gómez
- Instituto de Biotecnología y Biología Molecular, UNLP-CONICET, La Plata, Argentina
| | - Stefanie M Hauck
- Research Unit for Protein Science, Helmholtz Center Munich, Munich, Germany
| | - Swetlana Sirko
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany .,Institute for Stem Cell Research, Helmholtz Center Munich, Munich, Germany
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany .,Institute for Stem Cell Research, Helmholtz Center Munich, Munich, Germany.,SYNERGY, Excellence Cluster Systems Neurology, University of Munich, Munich, Germany
| |
Collapse
|
1087
|
Sekiya T, Holley MC. 'Surface Transplantation' for Nerve Injury and Repair: The Quest for Minimally Invasive Cell Delivery. Trends Neurosci 2018; 41:429-441. [PMID: 29625774 DOI: 10.1016/j.tins.2018.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 02/22/2018] [Accepted: 03/07/2018] [Indexed: 12/15/2022]
Abstract
Cell transplantation is an ambitious, but arguably realistic, therapy for repair of the nervous system. Cell delivery is a major challenge for clinical translation, especially given the apparently inhibitory astrogliotic environment in degenerated tissue. However, astrogliotic tissue also contains endogenous structural and biochemical cues that can be harnessed for functional repair. Minimizing damage to these cues during cell delivery could enhance cell integration. This theory is supported by studies with an auditory astrocyte scar model, in which cells delivered onto the surface of the damaged nerve were more successfully integrated in the host than those injected into the tissue. We consider the application of this less invasive approach for nerve injury and its potential application to some neurodegenerative disorders.
Collapse
Affiliation(s)
- Tetsuji Sekiya
- Department of Otolaryngology, Head and Neck Surgery, Kyoto University Graduate School of Medicine, Sakyou-ku, Kyoto, 606-8507, Japan; Hikone Chuo Hospital, Department of Neurological Surgery, Hikone Chuo Hospital, 421 Nishiima-cho, Hikone, 522-0054, Japan.
| | - Matthew C Holley
- Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| |
Collapse
|
1088
|
A Single Dose of Atorvastatin Applied Acutely after Spinal Cord Injury Suppresses Inflammation, Apoptosis, and Promotes Axon Outgrowth, Which Might Be Essential for Favorable Functional Outcome. Int J Mol Sci 2018; 19:ijms19041106. [PMID: 29642434 PMCID: PMC5979414 DOI: 10.3390/ijms19041106] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/12/2018] [Accepted: 04/05/2018] [Indexed: 02/06/2023] Open
Abstract
The aim of our study was to limit the inflammatory response after a spinal cord injury (SCI) using Atorvastatin (ATR), a potent inhibitor of cholesterol biosynthesis. Adult Wistar rats were divided into five experimental groups: one control group, two Th9 compression (40 g/15 min) groups, and two Th9 compression + ATR (5 mg/kg, i.p.) groups. The animals survived one day and six weeks. ATR applied in a single dose immediately post-SCI strongly reduced IL-1β release at 4 and 24 h and considerably reduced the activation of resident cells at one day post-injury. Acute ATR treatment effectively prevented the excessive infiltration of destructive M1 macrophages cranially, at the lesion site, and caudally (by 66%, 62%, and 52%, respectively) one day post-injury, whereas the infiltration of beneficial M2 macrophages was less affected (by 27%, 41%, and 16%). In addition, at the same time point, ATR visibly decreased caspase-3 cleavage in neurons, astrocytes, and oligodendrocytes. Six weeks post-SCI, ATR increased the expression of neurofilaments in the dorsolateral columns and Gap43-positive fibers in the lateral columns around the epicenter, and from day 30 to 42, significantly improved the motor activity of the hindlimbs. We suggest that early modulation of the inflammatory response via effects on the M1/M2 macrophages and the inhibition of caspase-3 expression could be crucial for the functional outcome.
Collapse
|
1089
|
Manogaran P, Walker-Egger C, Samardzija M, Waschkies C, Grimm C, Rudin M, Schippling S. Exploring experimental autoimmune optic neuritis using multimodal imaging. Neuroimage 2018; 175:327-339. [PMID: 29627590 DOI: 10.1016/j.neuroimage.2018.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/13/2018] [Accepted: 04/02/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Neuro-axonal injury is a key contributor to non-reversible long-term disability in multiple sclerosis (MS). However, the underlying mechanisms are not yet fully understood. Visual impairment is common among MS patients, in which episodes of optic neuritis (ON) are often followed by structural retinal damage and sustained functional impairment. Alterations in the optic nerve and retina have also been described in experimental autoimmune encephalomyelitis (EAE), a rodent model of MS. Thus, investigating structural anterior visual pathway damage may constitute a unique model for assessing mechanisms and temporal sequence of neurodegeneration in MS. We used a multimodal imaging approach utilizing optical coherence tomography (OCT) and diffusion tensor imaging (DTI) to explore the mechanisms and temporal dynamics of visual pathway damage in the animal model of MS. METHODS 7 EAE-MOG35-55 and 5 healthy female C57BL/6J mice were used in this study. Ganglion cell complex (GCC) thickness was derived from an OCT volume scan centred over the optic nerve head, while the structure of the optic nerve and tracts was assessed from DTI and co-registered T2-weighted sequences performed on a 7T MRI scanner. Data was acquired at baseline, disease onset, peak of disease and recovery. Linear mixed effect models were used to account for intra-subject, inter-eye dependencies, group and time point. Correlation analyses assessed the relationship between GCC thickness and DTI parameters. Immunofluorescence staining of retina and optic nerve sections was used to assess distribution of marker proteins for microglia and neurodegeneration (nerve filaments). RESULTS In EAE mice, a significant increase in GCC thickness was observed at disease onset (p < 0.001) followed by a decrease at recovery (p < 0.001) compared to controls. The EAE group had significant GCC thinning at recovery compared to all other time points (p < 0.001 for each). Signal increase on T2-weighted images around the optic nerves indicative of inflammation was seen in most of the EAE mice but in none of the controls. A significant decrease in axial diffusivity (AD) and increase in radial diffusivity (RD) values in EAE optic nerves (AD: p = 0.02, RD: p = 0.01) and tract (AD: p = 0.02, RD: p = 0.006) was observed compared to controls. GCC at recovery was positively correlated with AD (optic nerve: rho = 0.74, p = 0.04, optic tract: rho = 0.74, p = 0.04) and negatively correlated with RD (optic nerve: rho = -0.80, p = 0.02, optic tract: rho = -0.75, p = 0.04). Immunofluorescence analysis indicated the presence of activated microglia in the retina and optic nerves in addition to astrocytosis and axonal degeneration in the optic nerve of EAE mice. CONCLUSION OCT detected GCC changes in EAE may resemble what is observed in MS-related acute ON: an initial phase of swelling (indicative of inflammatory edema) followed by a decrease in thickness over time (representative of neuro-axonal degeneration). In line with OCT findings, DTI of the visual pathway identifies EAE induced pathology (decreased AD, and increased RD). Immunofluorescence analysis provides support for inflammatory pathology and axonal degeneration. OCT together with DTI can detect retinal and optic nerve damage and elucidate to the temporal sequence of neurodegeneration in this rodent model of MS in vivo.
Collapse
Affiliation(s)
- Praveena Manogaran
- Neuroimmunology and Multiple Sclerosis Research, Clinic for Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland; Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology, Zurich, Switzerland.
| | - Christine Walker-Egger
- Neuroimmunology and Multiple Sclerosis Research, Clinic for Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Marijana Samardzija
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Zurich, Switzerland
| | - Conny Waschkies
- Institue for Biomedical Engineering, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland; Visceral and Transplant Surgery Research, University Hospital Zurich, Zurich, Switzerland
| | - Christian Grimm
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Zurich, Switzerland
| | - Markus Rudin
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology, Zurich, Switzerland; Institue for Biomedical Engineering, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland; Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Sven Schippling
- Neuroimmunology and Multiple Sclerosis Research, Clinic for Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
1090
|
Thompson RE, Pardieck J, Smith L, Kenny P, Crawford L, Shoichet M, Sakiyama-Elbert S. Effect of hyaluronic acid hydrogels containing astrocyte-derived extracellular matrix and/or V2a interneurons on histologic outcomes following spinal cord injury. Biomaterials 2018; 162:208-223. [PMID: 29459311 PMCID: PMC5851469 DOI: 10.1016/j.biomaterials.2018.02.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/09/2018] [Accepted: 02/04/2018] [Indexed: 12/14/2022]
Abstract
One reason for the lack of regeneration, and poor clinical outcomes, following central nervous system (CNS) injury is the formation of a glial scar that inhibits new axon growth. In addition to forming the glial scar, astrocytes have been shown to be important for spontaneous SCI recovery in rodents, suggesting some astrocyte populations are pro-regenerative, while others are inhibitory following injury. In this work, the effect of implanting hyaluronic acid (HA) hydrogels containing extracellular matrix (ECM) harvested from mouse embryonic stem cell (mESC)-derived astrocytes on histologic outcomes following SCI in rats was explored. In addition, the ability of HA hydrogels with and without ECM to support the transplantation of mESC-derived V2a interneurons was tested. The incorporation of ECM harvested from protoplasmic (grey matter) astrocytes, but not ECM harvested from fibrous (white matter) astrocytes, into hydrogels was found to reduce the size of the glial scar, increase axon penetration into the lesion, and reduce macrophage/microglia staining two weeks after implantation. HA hydrogels were also found to support transplantation of V2a interneurons and the presence of these cells caused an increase in neuronal processes both within the lesion and in the 500 μm surrounding the lesion. Overall, protoplasmic mESC-derived astrocyte ECM showed potential to treat CNS injury. In addition, ECM:HA hydrogels represent a novel scaffold with beneficial effects on histologic outcomes after SCI both with and without cells.
Collapse
Affiliation(s)
- Russell E Thompson
- Department of Biomedical Engineering, University of Texas at Austin, 107 W Dean Keeton, Austin, TX 78712, USA; Department of Biomedical Engineering, Washington University in St Louis, 1 Brookings Drive, St Louis, MO 63130, USA
| | - Jennifer Pardieck
- Department of Biomedical Engineering, University of Texas at Austin, 107 W Dean Keeton, Austin, TX 78712, USA; Department of Biomedical Engineering, Washington University in St Louis, 1 Brookings Drive, St Louis, MO 63130, USA
| | - Laura Smith
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
| | - Peter Kenny
- Department of Biomedical Engineering, University of Texas at Austin, 107 W Dean Keeton, Austin, TX 78712, USA
| | - Lindsay Crawford
- Department of Biomedical Engineering, Washington University in St Louis, 1 Brookings Drive, St Louis, MO 63130, USA
| | - Molly Shoichet
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
| | - Shelly Sakiyama-Elbert
- Department of Biomedical Engineering, University of Texas at Austin, 107 W Dean Keeton, Austin, TX 78712, USA.
| |
Collapse
|
1091
|
Kaplani K, Koutsi S, Armenis V, Skondra FG, Karantzelis N, Champeris Tsaniras S, Taraviras S. Wound healing related agents: Ongoing research and perspectives. Adv Drug Deliv Rev 2018; 129:242-253. [PMID: 29501699 DOI: 10.1016/j.addr.2018.02.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 01/28/2018] [Accepted: 02/26/2018] [Indexed: 02/07/2023]
Abstract
Wound healing response plays a central part in chronic inflammation, affecting millions of people worldwide. It is a dynamic process that can lead to fibrosis, if tissue damage is irreversible and wound resolution is not attained. It is clear that there is a tight interconnection among wound healing, fibrosis and a variety of chronic disease conditions, demonstrating the heterogeneity of this pathology. Based on our further understanding of the cellular and molecular mechanisms underpinning tissue repair, new therapeutic approaches have recently been developed that target different aspects of the wound healing process and fibrosis. Nevertheless, several issues still need to be taken into consideration when designing modern wound healing drug delivery formulations. In this review, we highlight novel pharmacological agents that hold promise for targeting wound repair and fibrosis. We also focus on drug-delivery systems that may enhance current and future therapies.
Collapse
Affiliation(s)
- Konstantina Kaplani
- Division of Stem Cells and Regenerative Medicine, Biomedical Postgraduate Programme, School of Medicine, University of Patras, Patras 26504, Greece; Department of Physiology, School of Medicine, University of Patras, Patras 26504, Greece
| | - Stamatina Koutsi
- Division of Stem Cells and Regenerative Medicine, Biomedical Postgraduate Programme, School of Medicine, University of Patras, Patras 26504, Greece; Department of Physiology, School of Medicine, University of Patras, Patras 26504, Greece
| | - Vasileios Armenis
- Division of Stem Cells and Regenerative Medicine, Biomedical Postgraduate Programme, School of Medicine, University of Patras, Patras 26504, Greece
| | - Foteini G Skondra
- Division of Stem Cells and Regenerative Medicine, Biomedical Postgraduate Programme, School of Medicine, University of Patras, Patras 26504, Greece
| | - Nickolas Karantzelis
- Department of Physiology, School of Medicine, University of Patras, Patras 26504, Greece
| | | | - Stavros Taraviras
- Division of Stem Cells and Regenerative Medicine, Biomedical Postgraduate Programme, School of Medicine, University of Patras, Patras 26504, Greece; Department of Physiology, School of Medicine, University of Patras, Patras 26504, Greece.
| |
Collapse
|
1092
|
Bylicky MA, Mueller GP, Day RM. Mechanisms of Endogenous Neuroprotective Effects of Astrocytes in Brain Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6501031. [PMID: 29805731 PMCID: PMC5901819 DOI: 10.1155/2018/6501031] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/19/2018] [Indexed: 12/11/2022]
Abstract
Astrocytes, once believed to serve only as "glue" for the structural support of neurons, have been demonstrated to serve critical functions for the maintenance and protection of neurons, especially under conditions of acute or chronic injury. There are at least seven distinct mechanisms by which astrocytes protect neurons from damage; these are (1) protection against glutamate toxicity, (2) protection against redox stress, (3) mediation of mitochondrial repair mechanisms, (4) protection against glucose-induced metabolic stress, (5) protection against iron toxicity, (6) modulation of the immune response in the brain, and (7) maintenance of tissue homeostasis in the presence of DNA damage. Astrocytes support these critical functions through specialized responses to stress or toxic conditions. The detoxifying activities of astrocytes are essential for maintenance of the microenvironment surrounding neurons and in whole tissue homeostasis. Improved understanding of the mechanisms by which astrocytes protect the brain could lead to the development of novel targets for the development of neuroprotective strategies.
Collapse
Affiliation(s)
- Michelle A. Bylicky
- Department of Anatomy, Physiology, and Genetics, The Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Gregory P. Mueller
- Department of Anatomy, Physiology, and Genetics, The Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Regina M. Day
- Department of Pharmacology and Molecular Therapeutics, The Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| |
Collapse
|
1093
|
Lapuente-Chala C, Céspedes-Rubio A. Biochemical events related to glial response in spinal cord injury. REVISTA DE LA FACULTAD DE MEDICINA 2018. [DOI: 10.15446/revfacmed.v66n2.61701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Introducción. La lesión de la médula espinal (LME) es un evento devastador con implicaciones físicas, psicológicas y socioeconómicas. En el tejido cercano a la lesión se instauran cambios morfofisiológicos que determinan la recuperación funcional del segmento medular y de los órganos efectores dependientes de los tractos axonales lesionados.Objetivo. Describir los eventos bioquímicos secuenciales más relevantes de la respuesta de las células gliales posterior a la LME.Materiales y métodos. Se realizó una búsqueda de publicaciones científicas de los últimos 18 años en las bases de datos PubMed y ScienceDirect, bajo los términos en inglés spinal cord injury (SCI), SCI pathophysiology, SCI inflammation, microglia in SCI, glial scar y chondroitin sulfate proteoglycans (CSPG).Resultados. Los procesos fisiopatológicos que se producen después de la LME determinan la recuperación neurológica de los pacientes. La activación de las células gliales juega un papel importante, ya que promueve la producción de moléculas bioactivas y la formación de barreras físicas que inhiben la regeneración neural.Conclusión. El conocimiento de los cambios neurobiológicos ocurridos tras la LME permite una mayor comprensión de la fisiopatología y favorece la búsqueda de nuevas alternativas terapéuticas que limiten la progresión de la lesión primaria y que minimicen el daño secundario responsable de la disfunción neurológica.
Collapse
|
1094
|
Falcone JD, Carroll SL, Saxena T, Mandavia D, Clark A, Yarabarla V, Bellamkonda RV. Correlation of mRNA Expression and Signal Variability in Chronic Intracortical Electrodes. Front Bioeng Biotechnol 2018; 6:26. [PMID: 29637071 PMCID: PMC5880884 DOI: 10.3389/fbioe.2018.00026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/06/2018] [Indexed: 01/08/2023] Open
Abstract
Objective The goal for this research was to identify molecular mechanisms that explain animal-to-animal variability in chronic intracortical recordings. Approach Microwire electrodes were implanted into Sprague Dawley rats at an acute (1 week) and a chronic (14 weeks) time point. Weekly recordings were conducted, and action potentials were evoked in the barrel cortex by deflecting the rat’s whiskers. At 1 and 14 weeks, tissue was collected, and mRNA was extracted. mRNA expression was compared between 1 and 14 weeks using a high throughput multiplexed qRT-PCR. Pearson correlation coefficients were calculated between mRNA expression and signal-to-noise ratios at 14 weeks. Main results At 14 weeks, a positive correlation between signal-to-noise ratio (SNR) and NeuN and GFAP mRNA expression was observed, indicating a relationship between recording strength and neuronal population, as well as reactive astrocyte activity. The inflammatory state around the electrode interface was evaluated using M1-like and M2-like markers. Expression for both M1-like and M2-like mRNA markers remained steady from 1 to 14 weeks. Anti-inflammatory markers, CD206 and CD163, however, demonstrated a significant positive correlation with SNR quality at 14 weeks. VE-cadherin, a marker for adherens junctions, and PDGFR-β, a marker for pericytes, both partial representatives of blood–brain barrier health, had a positive correlation with SNR at 14 weeks. Endothelial adhesion markers revealed a significant increase in expression at 14 weeks, while CD45, a pan-leukocyte marker, significantly decreased at 14 weeks. No significant correlation was found for either the endothelial adhesion or pan-leukocyte markers. Significance A positive correlation between anti-inflammatory and blood–brain barrier health mRNA markers with electrophysiological efficacy of implanted intracortical electrodes has been demonstrated. These data reveal potential mechanisms for further evaluation to determine potential target mechanisms to improve consistency of intracortical electrodes recordings and reduce animal-to-animal/implant-to-implant variability.
Collapse
Affiliation(s)
- Jessica D Falcone
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Sheridan L Carroll
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Tarun Saxena
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Dev Mandavia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States
| | - Alexus Clark
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States
| | - Varun Yarabarla
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States
| | - Ravi V Bellamkonda
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
1095
|
Eraso-Pichot A, Brasó-Vives M, Golbano A, Menacho C, Claro E, Galea E, Masgrau R. GSEA of mouse and human mitochondriomes reveals fatty acid oxidation in astrocytes. Glia 2018; 66:1724-1735. [PMID: 29575211 DOI: 10.1002/glia.23330] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/27/2018] [Accepted: 03/05/2018] [Indexed: 12/18/2022]
Abstract
The prevalent view in neuroenergetics is that glucose is the main brain fuel, with neurons being mostly oxidative and astrocytes glycolytic. Evidence supporting that astrocyte mitochondria are functional has been overlooked. Here we sought to determine what is unique about astrocyte mitochondria by performing unbiased statistical comparisons of the mitochondriome in astrocytes and neurons. Using MitoCarta, a compendium of mitochondrial proteins, together with transcriptomes of mouse neurons and astrocytes, we generated cell-specific databases of nuclear genes encoding for mitochondrion proteins, ranked according to relative expression. Standard and in-house Gene Set Enrichment Analyses (GSEA) of five mouse transcriptomes revealed that genes encoding for enzymes involved in fatty acid oxidation (FAO) and amino acid catabolism are consistently more expressed in astrocytes than in neurons. FAO and oxidative-metabolism-related genes are also up-regulated in human cortical astrocytes versus the whole cortex, and in adult astrocytes versus fetal astrocytes. We thus present the first evidence of FAO in human astrocytes. Further, as shown in vitro, FAO coexists with glycolysis in astrocytes and is inhibited by glutamate. Altogether, these analyses provide arguments against the glucose-centered view of energy metabolism in astrocytes and reveal mitochondria as specialized organelles in these cells.
Collapse
Affiliation(s)
- Abel Eraso-Pichot
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, i Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, 08193, Spain
| | - Marina Brasó-Vives
- Institute of Evolutionary Biology (Universitat Pompeu Fabra - CSIC), PRBB, Barcelona, 08003, Spain
| | - Arantxa Golbano
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, i Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, 08193, Spain
| | - Carmen Menacho
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, i Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, 08193, Spain
| | - Enrique Claro
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, i Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, 08193, Spain
| | - Elena Galea
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, i Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, 08193, Spain.,ICREA, Passeig Lluís Companys 23, Barcelona, 08010, Spain
| | - Roser Masgrau
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, i Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, 08193, Spain
| |
Collapse
|
1096
|
Mattugini N, Merl-Pham J, Petrozziello E, Schindler L, Bernhagen J, Hauck SM, Götz M. Influence of white matter injury on gray matter reactive gliosis upon stab wound in the adult murine cerebral cortex. Glia 2018; 66:1644-1662. [PMID: 29573353 DOI: 10.1002/glia.23329] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 02/13/2018] [Accepted: 03/02/2018] [Indexed: 01/01/2023]
Abstract
Traumatic brain injury frequently affects the cerebral cortex, yet little is known about the differential effects that occur if only the gray matter (GM) is damaged or if the injury also involves the white matter (WM). To tackle this important question and directly compare similarities and differences in reactive gliosis, we performed stab wound injury affecting GM and WM (GM+) and one restricted to the GM (GM-) in the adult murine cerebral cortex. First, we examined glial reactivity in the regions affected (WM and GM) and determined the influence of WM injury on reactive gliosis in the GM comparing the same area in the two injury paradigms. In the GM+ injury microglia proliferation is increased in the WM compared with GM, while proliferating astrocytes are more abundant in the GM than in the WM. Interestingly, WM lesion exerted a strong influence on the proliferation of the GM glial cells that was most pronounced at early stages, 3 days post lesion. While astrocyte proliferation was increased, NG2 glia proliferation was decreased in the GM+ compared with GM- lesion condition. Importantly, these differences were not observed when a lesion of the same size affected only the GM. Unbiased proteomic analyses further corroborate our findings in support of a profound difference in GM reactivity when WM is also injured and revealed MIF as a key regulator of NG2 glia proliferation.
Collapse
Affiliation(s)
- Nicola Mattugini
- Physiological Genomics, Biomedical center (BMC), Ludwig-Maximilians-University (LMU), Großhaderner Str. 9, Planegg/Martinsried, 82152, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, Biomedical Center (BMC), Department of Physiological Genomics, Ludwig-Maximilians-University (LMU), Großhaderner Str. 9, Planegg/Martinsried, 82152, Germany.,Graduate School of Systemic Neurosciences Ludwig-Maximilians University (LMU), Großhaderner Str. 2, Planegg/Martinsried, 82152, Germany
| | - Juliane Merl-Pham
- Research Unit Protein Science, Helmholtz Center Munich, Ingolstädter Landstrasse 1, Neuherberg, 85764, Germany
| | - Elisabetta Petrozziello
- Institute for Immunology, Biomedical Center (BMC), Ludwig-Maximilians-University (LMU), Großhadernerstr. 9, Planegg/Martinsried, 82152, Germany
| | - Lisa Schindler
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-University (LMU) Munich, Munich, 81377, Germany
| | - Jürgen Bernhagen
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-University (LMU) Munich, Munich, 81377, Germany.,SyNergy Excellence Cluster, Munich, 81377, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, Ingolstädter Landstrasse 1, Neuherberg, 85764, Germany
| | - Magdalena Götz
- Physiological Genomics, Biomedical center (BMC), Ludwig-Maximilians-University (LMU), Großhaderner Str. 9, Planegg/Martinsried, 82152, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, Biomedical Center (BMC), Department of Physiological Genomics, Ludwig-Maximilians-University (LMU), Großhaderner Str. 9, Planegg/Martinsried, 82152, Germany.,SyNergy Excellence Cluster, Munich, 81377, Germany
| |
Collapse
|
1097
|
Connexin 43 Controls the Astrocyte Immunoregulatory Phenotype. Brain Sci 2018; 8:brainsci8040050. [PMID: 29565275 PMCID: PMC5924386 DOI: 10.3390/brainsci8040050] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 01/03/2023] Open
Abstract
Astrocytes are the most abundant glial cells of the central nervous system and have recently been recognized as crucial in the regulation of brain immunity. In most neuropathological conditions, astrocytes are prone to a radical phenotypical change called reactivity, which plays a key role in astrocyte contribution to neuroinflammation. However, how astrocytes regulate brain immunity in healthy conditions is an understudied question. One of the astroglial molecule involved in these regulations might be Connexin 43 (Cx43), a gap junction protein highly enriched in astrocyte perivascular endfeet-terminated processes forming the glia limitans. Indeed, Cx43 deletion in astrocytes (Cx43KO) promotes a continuous immune recruitment and an autoimmune response against an astrocyte protein, without inducing any brain lesion. To investigate the molecular basis of this unique immune response, we characterized the polysomal transcriptome of hippocampal astrocytes deleted for Cx43. Our results demonstrate that, in the absence of Cx43, astrocytes adopt an atypical reactive status with no change in most canonical astrogliosis markers, but with an upregulation of molecules promoting immune recruitment, complement activation as well as anti-inflammatory processes. Intriguingly, while several of these upregulated transcriptional events suggested an activation of the γ-interferon pathway, no increase in this cytokine or activation of related signaling pathways were found in Cx43KO. Finally, deletion of astroglial Cx43 was associated with the upregulation of several angiogenic factors, consistent with an increase in microvascular density in Cx43KO brains. Collectively, these results strongly suggest that Cx43 controls immunoregulatory and angiogenic properties of astrocytes.
Collapse
|
1098
|
Goetzl EJ, Schwartz JB, Abner EL, Jicha GA, Kapogiannis D. High complement levels in astrocyte-derived exosomes of Alzheimer disease. Ann Neurol 2018; 83:544-552. [PMID: 29406582 DOI: 10.1002/ana.25172] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/05/2018] [Accepted: 01/31/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Astrocytes fulfill neuronal trophic roles normally, but are transformed in Alzheimer disease (AD) into A1-type reactive astrocytes that may destroy neurons through unknown mechanisms. METHODS To investigate astrocyte inflammatory mechanisms, astrocyte-derived exosomes (ADEs) were isolated immunochemically from plasma samples of AD patients and matched controls for enzyme-linked immunosorbent assay quantification of complement proteins. RESULTS ADE levels of C1q, C4b, C3d, factor B, factor D, Bb, C3b, and C5b-C9 terminal complement complex, but not mannose-binding lectin, normalized by the CD81 exosome marker were significantly higher for AD patients (n = 28) than age- and gender-matched controls (all p < 0.0001). ADE normalized levels of interleukin (IL)-6, tumor necrosis factor-α, and IL-1β were significantly higher for AD patients than controls, but there was greater overlap between the two groups than for complement proteins. Mean ADE levels of complement proteins for AD patients in a longitudinal study were significantly higher (n = 16, p < 0.0001) at the AD2 stage of moderate dementia than at the AD1 preclinical stage 5 to 12 years earlier, which were the same as for controls. ADE levels of complement regulatory proteins CD59, CD46, decay-accelerating factor (DAF), and complement receptor type 1, but not factor I, were significantly lower for AD patients than controls (p < 0.0001 for CD59 and DAF), were diminished by the AD1 stage, and were further decreased at the AD2 stage. INTERPRETATION ADE complement effector proteins in AD are produced by dysregulated systems, attain higher levels than in controls, and may potentially damage neurons in the late inflammatory phase of AD. Ann Neurol 2018;83:544-552.
Collapse
Affiliation(s)
- Edward J Goetzl
- Department of Medicine, University of California, San Francisco, San Francisco, CA.,Jewish Home of San Francisco, San Francisco, CA
| | - Janice B Schwartz
- Department of Medicine, University of California, San Francisco, San Francisco, CA.,Jewish Home of San Francisco, San Francisco, CA.,Department of Bioengineering, University of California, San Francisco, San Francisco, CA
| | - Erin L Abner
- Sanders-Brown Center for Aging Research, University of Kentucky, Lexington, KY
| | - Gregory A Jicha
- Sanders-Brown Center for Aging Research, University of Kentucky, Lexington, KY
| | | |
Collapse
|
1099
|
Astrocytic JWA deletion exacerbates dopaminergic neurodegeneration by decreasing glutamate transporters in mice. Cell Death Dis 2018; 9:352. [PMID: 29500411 PMCID: PMC5834463 DOI: 10.1038/s41419-018-0381-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 12/29/2022]
Abstract
Astrocytic JWA exerts neuroprotective roles by alleviating oxidative stress and inhibiting inflammation. However, the molecular mechanisms of how astrocytic JWA is involved in dopaminergic neurodegeneration in Parkinson's disease (PD) remain largely unknown. In this study, we found that astrocyte-specific JWA knockout mice (JWA CKO) exacerbated dopamine (DA) neuronal loss and motor dysfunction, and reduced the levels of DA and its metabolites in a 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine/probenecid (MPTP/p)-induced PD model. Astrocytic JWA deficiency repressed expression of excitatory amino-acid transporter 2 (GLT-1) and glutamate uptake both in vivo and in vitro. Further, the regulation of GLT-1 expression was involved in JWA-triggered activation of the MAPK and PI3K signaling pathways. JWA-increased GLT-1 expression was abolished by inhibitors of MEK and PI3K. Silencing CREB also abrogated JWA-increased GLT-1 expression and glutamate uptake. Additionally, JWA deficiency activated glial fibrillary acidic protein (GFAP), and increased the expression of STAT3. Similarly to the MPTP model, paraquat (PQ) exposure produced PD-like phenotypes in JWA CKO mice. Taken together, our findings provide novel insights into astrocytic JWA function in the pathogenesis of neurotoxin mouse models of PD.
Collapse
|
1100
|
Reduced post-stroke glial scarring in the infant primate brain reflects age-related differences in the regulation of astrogliosis. Neurobiol Dis 2018; 111:1-11. [DOI: 10.1016/j.nbd.2017.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 01/19/2023] Open
|