1051
|
Fletcher K, Gil J, Bertier LD, Kenefick A, Wood KJ, Zhang L, Reyes-Chin-Wo S, Cavanaugh K, Tsuchida C, Wong J, Michelmore R. Genomic signatures of heterokaryosis in the oomycete pathogen Bremia lactucae. Nat Commun 2019; 10:2645. [PMID: 31201315 PMCID: PMC6570648 DOI: 10.1038/s41467-019-10550-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/14/2019] [Indexed: 12/26/2022] Open
Abstract
Lettuce downy mildew caused by Bremia lactucae is the most important disease of lettuce globally. This oomycete is highly variable and rapidly overcomes resistance genes and fungicides. The use of multiple read types results in a high-quality, near-chromosome-scale, consensus assembly. Flow cytometry plus resequencing of 30 field isolates, 37 sexual offspring, and 19 asexual derivatives from single multinucleate sporangia demonstrates a high incidence of heterokaryosis in B. lactucae. Heterokaryosis has phenotypic consequences on fitness that may include an increased sporulation rate and qualitative differences in virulence. Therefore, selection should be considered as acting on a population of nuclei within coenocytic mycelia. This provides evolutionary flexibility to the pathogen enabling rapid adaptation to different repertoires of host resistance genes and other challenges. The advantages of asexual persistence of heterokaryons may have been one of the drivers of selection that resulted in the loss of uninucleate zoospores in multiple downy mildews.
Collapse
Affiliation(s)
- Kyle Fletcher
- Genome Center, University of California, Davis, CA, 95616, USA
| | - Juliana Gil
- Genome Center, University of California, Davis, CA, 95616, USA
- Plant Pathology Graduate Group, University of California, Davis, CA, 95616, USA
| | - Lien D Bertier
- Genome Center, University of California, Davis, CA, 95616, USA
| | - Aubrey Kenefick
- Genome Center, University of California, Davis, CA, 95616, USA
| | - Kelsey J Wood
- Genome Center, University of California, Davis, CA, 95616, USA
- Integrated Genetics and Genomics Graduate Group, University of California, Davis, CA, 95616, USA
| | - Lin Zhang
- Genome Center, University of California, Davis, CA, 95616, USA
| | - Sebastian Reyes-Chin-Wo
- Genome Center, University of California, Davis, CA, 95616, USA
- Integrated Genetics and Genomics Graduate Group, University of California, Davis, CA, 95616, USA
- Bayer Crop Science, 37437 CA-16, Woodland, CA, 95695, USA
| | - Keri Cavanaugh
- Genome Center, University of California, Davis, CA, 95616, USA
| | - Cayla Tsuchida
- Genome Center, University of California, Davis, CA, 95616, USA
- Plant Pathology Graduate Group, University of California, Davis, CA, 95616, USA
- Arcadia Biosciences, Davis, CA, 95616, USA
| | - Joan Wong
- Genome Center, University of California, Davis, CA, 95616, USA
- Plant Biology Graduate Group, University of California, Davis, CA, 95616, USA
- Pacific Biosciences of California, Inc., Menlo Park, CA, 94025, USA
| | - Richard Michelmore
- Genome Center, University of California, Davis, CA, 95616, USA.
- Departments of Plant Sciences, Molecular and Cellular Biology, Medical Microbiology and Immunology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
1052
|
Orb-weaving spider Araneus ventricosus genome elucidates the spidroin gene catalogue. Sci Rep 2019; 9:8380. [PMID: 31182776 PMCID: PMC6557832 DOI: 10.1038/s41598-019-44775-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/22/2019] [Indexed: 02/02/2023] Open
Abstract
Members of the family Araneidae are common orb-weaving spiders, and they produce several types of silks throughout their behaviors and lives, from reproduction to foraging. Egg sac, prey capture thread, or dragline silk possesses characteristic mechanical properties, and its variability makes it a highly attractive material for ecological, evolutional, and industrial fields. However, the complete set of constituents of silks produced by a single species is still unclear, and novel spidroin genes as well as other proteins are still being found. Here, we present the first genome in genus Araneus together with the full set of spidroin genes with unamplified long reads and confirmed with transcriptome of the silk glands and proteome analysis of the dragline silk. The catalogue includes the first full length sequence of a paralog of major ampullate spidroin MaSp3, and several spider silk-constituting elements designated SpiCE. Family-wide phylogenomic analysis of Araneidae suggests the relatively recent acquisition of these genes, and multiple-omics analyses demonstrate that these proteins are critical components in the abdominal spidroin gland and dragline silk, contributing to the outstanding mechanical properties of silk in this group of species.
Collapse
|
1053
|
Blommaert J, Riss S, Hecox-Lea B, Mark Welch DB, Stelzer CP. Small, but surprisingly repetitive genomes: transposon expansion and not polyploidy has driven a doubling in genome size in a metazoan species complex. BMC Genomics 2019; 20:466. [PMID: 31174483 PMCID: PMC6555955 DOI: 10.1186/s12864-019-5859-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/29/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The causes and consequences of genome size variation across Eukaryotes, which spans five orders of magnitude, have been hotly debated since before the advent of genome sequencing. Previous studies have mostly examined variation among larger taxonomic units (e.g., orders, or genera), while comparisons among closely related species are rare. Rotifers of the Brachionus plicatilis species complex exhibit a seven-fold variation in genome size and thus represent a unique opportunity to study such changes on a relatively short evolutionary timescale. Here, we sequenced and analysed the genomes of four species of this complex with nuclear DNA contents spanning 110-422 Mbp. To establish the likely mechanisms of genome size change, we analysed both sequencing read libraries and assemblies for signatures of polyploidy and repetitive element content. We also compared these genomes to that of B. calyciflorus, the closest relative with a sequenced genome (293 Mbp nuclear DNA content). RESULTS Despite the very large differences in genome size, we saw no evidence of ploidy level changes across the B. plicatilis complex. However, repetitive element content explained a large portion of genome size variation (at least 54%). The species with the largest genome, B. asplanchnoidis, has a strikingly high 44% repetitive element content, while the smaller B. plicatilis genomes contain between 14 and 25% repetitive elements. According to our analyses, the B. calyciflorus genome contains 39% repetitive elements, which is substantially higher than previously reported (21%), and suggests that high repetitive element load could be widespread in monogonont rotifers. CONCLUSIONS Even though the genome sizes of these species are at the low end of the metazoan spectrum, their genomes contain substantial amounts of repetitive elements. Polyploidy does not appear to play a role in genome size variations in these species, and these variations can be mostly explained by changes in repetitive element content. This contradicts the naïve expectation that small genomes are streamlined, or less complex, and that large variations in nuclear DNA content between closely related species are due to polyploidy.
Collapse
Affiliation(s)
- J. Blommaert
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | - S. Riss
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | - B. Hecox-Lea
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA USA
| | - D. B. Mark Welch
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA USA
| | - C. P. Stelzer
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| |
Collapse
|
1054
|
Liang Q, Li H, Li S, Yuan F, Sun J, Duan Q, Li Q, Zhang R, Sang YL, Wang N, Hou X, Yang KQ, Liu JN, Yang L. The genome assembly and annotation of yellowhorn (Xanthoceras sorbifolium Bunge). Gigascience 2019; 8:giz071. [PMID: 31241155 PMCID: PMC6593362 DOI: 10.1093/gigascience/giz071] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/06/2019] [Accepted: 05/22/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Yellowhorn (Xanthoceras sorbifolium Bunge), a deciduous shrub or small tree native to north China, is of great economic value. Seeds of yellowhorn are rich in oil containing unsaturated long-chain fatty acids that have been used for producing edible oil and nervonic acid capsules. However, the lack of a high-quality genome sequence hampers the understanding of its evolution and gene functions. FINDINGS In this study, a whole genome of yellowhorn was sequenced and assembled by integration of Illumina sequencing, Pacific Biosciences single-molecule real-time sequencing, 10X Genomics linked reads, Bionano optical maps, and Hi-C. The yellowhorn genome assembly was 439.97 Mb, which comprised 15 pseudo-chromosomes covering 95.42% (419.84 Mb) of the assembled genome. The repetitive fractions accounted for 56.39% of the yellowhorn genome. The genome contained 21,059 protein-coding genes. Of them, 18,503 (87.86%) genes were found to be functionally annotated with ≥1 "annotation" term by searching against other databases. Transcriptomic analysis showed that 341, 135, 125, 113, and 100 genes were specifically expressed in hermaphrodite flower, staminate flower, young fruit, leaf, and shoot, respectively. Phylogenetic analysis suggested that yellowhorn and Dimocarpus longan diverged from their most recent common ancestor ∼46 million years ago. CONCLUSIONS The availability and subsequent annotation of the yellowhorn genome, as well as the identification of tissue-specific functional genes, provides a valuable reference for plant comparative genomics, evolutionary studies, and molecular design breeding.
Collapse
Affiliation(s)
- Qiang Liang
- College of Forestry, Shandong Agricultural University, Daizong Road No.61,Tai'an 271018, China
| | - Huayang Li
- College of Plant Protection, Shandong Agricultural University, Daizong Road No.61, Tai'an 271018, China
| | - Shouke Li
- Worth Agricultural Development Co. Ltd.,Taishanxi Road No. 17, Anqiu city, Weifang 262100, China
| | - Fuling Yuan
- College of Forestry, Shandong Agricultural University, Daizong Road No.61,Tai'an 271018, China
| | - Jingfeng Sun
- College of Forestry, Shandong Agricultural University, Daizong Road No.61,Tai'an 271018, China
| | - Qicheng Duan
- College of Forestry, Shandong Agricultural University, Daizong Road No.61,Tai'an 271018, China
| | - Qingyun Li
- College of Plant Protection, Shandong Agricultural University, Daizong Road No.61, Tai'an 271018, China
| | - Rui Zhang
- College of Plant Protection, Shandong Agricultural University, Daizong Road No.61, Tai'an 271018, China
| | - Ya Lin Sang
- College of Forestry, Shandong Agricultural University, Daizong Road No.61,Tai'an 271018, China
| | - Nian Wang
- College of Forestry, Shandong Agricultural University, Daizong Road No.61,Tai'an 271018, China
| | - Xiangwen Hou
- KeGene Science & Technology Co. Ltd., Nantianmen Middle Road, Tai'an 271018, China
| | - Ke Qiang Yang
- College of Forestry, Shandong Agricultural University, Daizong Road No.61,Tai'an 271018, China
| | - Jian Ning Liu
- KeGene Science & Technology Co. Ltd., Nantianmen Middle Road, Tai'an 271018, China
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Daizong Road No.61, Tai'an 271018, China
| |
Collapse
|
1055
|
Hill J, Rastas P, Hornett EA, Neethiraj R, Clark N, Morehouse N, de la Paz Celorio-Mancera M, Cols JC, Dircksen H, Meslin C, Keehnen N, Pruisscher P, Sikkink K, Vives M, Vogel H, Wiklund C, Woronik A, Boggs CL, Nylin S, Wheat CW. Unprecedented reorganization of holocentric chromosomes provides insights into the enigma of lepidopteran chromosome evolution. SCIENCE ADVANCES 2019; 5:eaau3648. [PMID: 31206013 PMCID: PMC6561736 DOI: 10.1126/sciadv.aau3648] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 05/03/2019] [Indexed: 05/04/2023]
Abstract
Chromosome evolution presents an enigma in the mega-diverse Lepidoptera. Most species exhibit constrained chromosome evolution with nearly identical haploid chromosome counts and chromosome-level gene collinearity among species more than 140 million years divergent. However, a few species possess radically inflated chromosomal counts due to extensive fission and fusion events. To address this enigma of constraint in the face of an exceptional ability to change, we investigated an unprecedented reorganization of the standard lepidopteran chromosome structure in the green-veined white butterfly (Pieris napi). We find that gene content in P. napi has been extensively rearranged in large collinear blocks, which until now have been masked by a haploid chromosome number close to the lepidopteran average. We observe that ancient chromosome ends have been maintained and collinear blocks are enriched for functionally related genes suggesting both a mechanism and a possible role for selection in determining the boundaries of these genome-wide rearrangements.
Collapse
Affiliation(s)
- Jason Hill
- Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Corresponding author. (J.H.); (C.W.W.)
| | - Pasi Rastas
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Emily A. Hornett
- Department of Zoology, University of Cambridge, Cambridge, UK
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Ramprasad Neethiraj
- Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Nathan Clark
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Nathan Morehouse
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | | | - Jofre Carnicer Cols
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, 08028 Barcelona, Spain
- CREAF, Global Ecology Unit, Autonomous University of Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Heinrich Dircksen
- Functional Morphology, Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Camille Meslin
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- INRA, Department of Sensory Ecology, Institute of Ecology and Environmental Sciences of Paris, Route de Saint-Cyr, 78026 Versailles Cedex, France
| | - Naomi Keehnen
- Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Peter Pruisscher
- Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Kristin Sikkink
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN 55108, USA
- Department of Biology, University of Mississippi, University, MS 38677, USA
| | - Maria Vives
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, 08028 Barcelona, Spain
- CREAF, Global Ecology Unit, Autonomous University of Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Christer Wiklund
- Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Alyssa Woronik
- Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden
- Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Carol L. Boggs
- Department of Biological Sciences University of South Carolina, Columbia, SC 29208, USA
| | - Sören Nylin
- Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Christopher W. Wheat
- Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden
- Corresponding author. (J.H.); (C.W.W.)
| |
Collapse
|
1056
|
Lee BY, Choi BS, Kim MS, Park JC, Jeong CB, Han J, Lee JS. The genome of the freshwater water flea Daphnia magna: A potential use for freshwater molecular ecotoxicology. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 210:69-84. [PMID: 30826642 DOI: 10.1016/j.aquatox.2019.02.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
The water flea Daphnia magna is a small planktonic cladoceran. D. magna has been used as a model species for ecotoxicology, as it is sensitive to environmental stressors and environmental changes. Since Daphnia is affected by culture environment and each population/strain has its own ecological and genetic characteristics, its population/strain-based genome information is useful for environmental genomic studies. In this study, we assembled and characterized the genome of D. magna. Using a high-density genetic map of D. magna xinb3, the draft genome was integrated to 10 linkage groups (LGs). The total length of the integrated genome was about 123 Mb with N50 = 10.1 Mb, and the number of scaffolds was 4193 including 10 LGs. A total of 15,721 genes were annotated after manual curation. Orthologous genes were characterized in the genome and compared with other genomes of Daphnia. In addition, we identified defense related genes such as cytochrome P450 (CYP) genes, glutathione S-transferase (GST) genes, and ATP-binding cassette (ABC) genes from the assembled D. magna genome for its potential use in molecular ecotoxicological studies in the freshwater environment. This genomic resource will be helpful to study for a better understanding on molecular mechanism in response to various pollutants.
Collapse
Affiliation(s)
- Bo-Young Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | | | - Min-Sub Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
1057
|
Platanus-allee is a de novo haplotype assembler enabling a comprehensive access to divergent heterozygous regions. Nat Commun 2019; 10:1702. [PMID: 30979905 PMCID: PMC6461651 DOI: 10.1038/s41467-019-09575-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/19/2019] [Indexed: 12/14/2022] Open
Abstract
The ultimate goal for diploid genome determination is to completely decode homologous chromosomes independently, and several phasing programs from consensus sequences have been developed. These methods work well for lowly heterozygous genomes, but the manifold species have high heterozygosity. Additionally, there are highly divergent regions (HDRs), where the haplotype sequences differ considerably. Because HDRs are likely to direct various interesting biological phenomena, many genomic analysis targets fall within these regions. However, they cannot be accessed by existing phasing methods, and we have to adopt costly traditional methods. Here, we develop a de novo haplotype assembler, Platanus-allee ( http://platanus.bio.titech.ac.jp/platanus2 ), which initially constructs each haplotype sequence and then untangles the assembly graphs utilizing sequence links and synteny information. A comprehensive benchmark analysis reveals that Platanus-allee exhibits high recall and precision, particularly for HDRs. Using this approach, previously unknown HDRs are detected in the human genome, which may uncover novel aspects of genome variability.
Collapse
|
1058
|
Genomic Resources for Goniozus legneri, Aleochara bilineata and Paykullia maculata, Representing Three Independent Origins of the Parasitoid Lifestyle in Insects. G3-GENES GENOMES GENETICS 2019; 9:987-991. [PMID: 30705120 PMCID: PMC6469416 DOI: 10.1534/g3.119.300584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Parasitoid insects are important model systems for a multitude of biological research topics and widely used as biological control agents against insect pests. While the parasitoid lifestyle has evolved numerous times in different insect groups, research has focused almost exclusively on Hymenoptera from the Parasitica clade. The genomes of several members of this group have been sequenced, but no genomic resources are available from any of the other, independent evolutionary origins of the parasitoid lifestyle. Our aim here was to develop genomic resources for three parasitoid insects outside the Parasitica. We present draft genome assemblies for Goniozus legneri, a parasitoid Hymenopteran more closely related to the non-parasitoid wasps and bees than to the Parasitica wasps, the Coleopteran parasitoid Aleochara bilineata and the Dipteran parasitoid Paykullia maculata. The genome assemblies are fragmented, but complete in terms of gene content. We also provide preliminary structural annotations. We anticipate that these genomic resources will be valuable for testing the generality of findings obtained from Parasitica wasps in future comparative studies.
Collapse
|
1059
|
Brukhin V, Osadtchiy JV, Florez-Rueda AM, Smetanin D, Bakin E, Nobre MS, Grossniklaus U. The Boechera Genus as a Resource for Apomixis Research. FRONTIERS IN PLANT SCIENCE 2019; 10:392. [PMID: 31001306 PMCID: PMC6454215 DOI: 10.3389/fpls.2019.00392] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/14/2019] [Indexed: 05/03/2023]
Abstract
The genera Boechera (A. Löve et D. Löve) and Arabidopsis, the latter containing the model plant Arabidopsis thaliana, belong to the same clade within the Brassicaceae family. Boechera is the only among the more than 370 genera in the Brassicaceae where apomixis is well documented. Apomixis refers to the asexual reproduction through seed, and a better understanding of the underlying mechanisms has great potential for applications in agriculture. The Boechera genus currently includes 110 species (of which 38 are reported to be triploid and thus apomictic), which are distributed mostly in the North America. The apomictic lineages of Boechera occur at both the diploid and triploid level and show signs of a hybridogenic origin, resulting in a modification of their chromosome structure, as reflected by alloploidy, aneuploidy, substitutions of homeologous chromosomes, and the presence of aberrant chromosomes. In this review, we discuss the advantages of the Boechera genus to study apomixis, consider its modes of reproduction as well as the inheritance and possible mechanisms controlling apomixis. We also consider population genetic aspects and a possible role of hybridization at the origin of apomixis in Boechera. The molecular tools available to study Boechera, such as transformation techniques, laser capture microdissection, analysis of transcriptomes etc. are also discussed. We survey available genome assemblies of Boechera spp. and point out the challenges to assemble the highly heterozygous genomes of apomictic species. Due to these challenges, we argue for the application of an alternative reference-free method for the comparative analysis of such genomes, provide an overview of genomic sequencing data in the genus Boechera suitable for such analysis, and provide examples of its application.
Collapse
Affiliation(s)
- Vladimir Brukhin
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, Saint Petersburg, Russia
- Department of Plant Embryology and Reproductive Biology, Komarov Botanical Institute RAS, Saint Petersburg, Russia
| | - Jaroslaw V. Osadtchiy
- Department of Plant Embryology and Reproductive Biology, Komarov Botanical Institute RAS, Saint Petersburg, Russia
| | - Ana Marcela Florez-Rueda
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Dmitry Smetanin
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Evgeny Bakin
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, Saint Petersburg, Russia
- Bioinformatics Institute, Saint Petersburg, Russia
| | - Margarida Sofia Nobre
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| |
Collapse
|
1060
|
Tang W, Sun X, Yue J, Tang X, Jiao C, Yang Y, Niu X, Miao M, Zhang D, Huang S, Shi W, Li M, Fang C, Fei Z, Liu Y. Chromosome-scale genome assembly of kiwifruit Actinidia eriantha with single-molecule sequencing and chromatin interaction mapping. Gigascience 2019; 8:giz027. [PMID: 30942870 PMCID: PMC6446220 DOI: 10.1093/gigascience/giz027] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/12/2018] [Accepted: 03/01/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Kiwifruit (Actinidia spp.) is a dioecious plant with fruits containing abundant vitamin C and minerals. A handful of kiwifruit species have been domesticated, among which Actinidiaeriantha is increasingly favored in breeding owing to its superior commercial traits. Recently, elite cultivars from A. eriantha have been successfully selected and further studies on their biology and breeding potential require genomic information, which is currently unavailable. FINDINGS We assembled a chromosome-scale genome sequence of A. eriantha cultivar White using single-molecular sequencing and chromatin interaction map-based scaffolding. The assembly has a total size of 690.6 megabases and an N50 of 21.7 megabases. Approximately 99% of the assembly were in 29 pseudomolecules corresponding to the 29 kiwifruit chromosomes. Forty-three percent of the A. eriantha genome are repetitive sequences, and the non-repetitive part encodes 42,988 protein-coding genes, of which 39,075 have homologues from other plant species or protein domains. The divergence time between A. eriantha and its close relative Actinidia chinensis is estimated to be 3.3 million years, and after diversification, 1,727 and 1,506 gene families are expanded and contracted in A. eriantha, respectively. CONCLUSIONS We provide a high-quality reference genome for kiwifruit A. eriantha. This chromosome-scale genome assembly is substantially better than 2 published kiwifruit assemblies from A. chinensis in terms of genome contiguity and completeness. The availability of the A. eriantha genome provides a valuable resource for facilitating kiwifruit breeding and studies of kiwifruit biology.
Collapse
Affiliation(s)
- Wei Tang
- School of Horticulture, Anhui Agricultural University, 130 Chang Jiang Xi Lu, Hefei, Anhui 230036, China
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, 29 Wang Jiang Lu, Sichuan University, Chengdu, Sichuan 610064, China
- School of Food Science and Engineering, Hefei University of Technology, 193 Tun Xi Lu, Hefei, Anhui 230009, China
| | - Xuepeng Sun
- Boyce Thompson Institute, Cornell University, 533 Tower Road, Ithaca, NY 14853, USA
| | - Junyang Yue
- School of Horticulture, Anhui Agricultural University, 130 Chang Jiang Xi Lu, Hefei, Anhui 230036, China
- School of Food Science and Engineering, Hefei University of Technology, 193 Tun Xi Lu, Hefei, Anhui 230009, China
| | - Xiaofeng Tang
- School of Horticulture, Anhui Agricultural University, 130 Chang Jiang Xi Lu, Hefei, Anhui 230036, China
- School of Food Science and Engineering, Hefei University of Technology, 193 Tun Xi Lu, Hefei, Anhui 230009, China
| | - Chen Jiao
- Boyce Thompson Institute, Cornell University, 533 Tower Road, Ithaca, NY 14853, USA
| | - Ying Yang
- School of Horticulture, Anhui Agricultural University, 130 Chang Jiang Xi Lu, Hefei, Anhui 230036, China
| | - Xiangli Niu
- School of Horticulture, Anhui Agricultural University, 130 Chang Jiang Xi Lu, Hefei, Anhui 230036, China
- School of Food Science and Engineering, Hefei University of Technology, 193 Tun Xi Lu, Hefei, Anhui 230009, China
| | - Min Miao
- School of Horticulture, Anhui Agricultural University, 130 Chang Jiang Xi Lu, Hefei, Anhui 230036, China
- School of Food Science and Engineering, Hefei University of Technology, 193 Tun Xi Lu, Hefei, Anhui 230009, China
| | - Danfeng Zhang
- School of Food Science and Engineering, Hefei University of Technology, 193 Tun Xi Lu, Hefei, Anhui 230009, China
| | - Shengxiong Huang
- School of Food Science and Engineering, Hefei University of Technology, 193 Tun Xi Lu, Hefei, Anhui 230009, China
| | - Wei Shi
- School of Food Science and Engineering, Hefei University of Technology, 193 Tun Xi Lu, Hefei, Anhui 230009, China
| | - Mingzhang Li
- Sichuan Academy of Natural Resource Sciences, 24 Yi Huan Lu Nan Er Duan, Chengdu, Sichuan 610015, China
| | - Congbing Fang
- School of Horticulture, Anhui Agricultural University, 130 Chang Jiang Xi Lu, Hefei, Anhui 230036, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, 533 Tower Road, Ithaca, NY 14853, USA
- U.S. Department of Agriculture–Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, 538 Tower Road, Ithaca, NY 14853, USA
| | - Yongsheng Liu
- School of Horticulture, Anhui Agricultural University, 130 Chang Jiang Xi Lu, Hefei, Anhui 230036, China
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, 29 Wang Jiang Lu, Sichuan University, Chengdu, Sichuan 610064, China
- School of Food Science and Engineering, Hefei University of Technology, 193 Tun Xi Lu, Hefei, Anhui 230009, China
| |
Collapse
|
1061
|
Stevens L, Félix M, Beltran T, Braendle C, Caurcel C, Fausett S, Fitch D, Frézal L, Gosse C, Kaur T, Kiontke K, Newton MD, Noble LM, Richaud A, Rockman MV, Sudhaus W, Blaxter M. Comparative genomics of 10 new Caenorhabditis species. Evol Lett 2019; 3:217-236. [PMID: 31007946 PMCID: PMC6457397 DOI: 10.1002/evl3.110] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 02/08/2019] [Accepted: 02/25/2019] [Indexed: 01/29/2023] Open
Abstract
The nematode Caenorhabditis elegans has been central to the understanding of metazoan biology. However, C. elegans is but one species among millions and the significance of this important model organism will only be fully revealed if it is placed in a rich evolutionary context. Global sampling efforts have led to the discovery of over 50 putative species from the genus Caenorhabditis, many of which await formal species description. Here, we present species descriptions for 10 new Caenorhabditis species. We also present draft genome sequences for nine of these new species, along with a transcriptome assembly for one. We exploit these whole-genome data to reconstruct the Caenorhabditis phylogeny and use this phylogenetic tree to dissect the evolution of morphology in the genus. We reveal extensive variation in genome size and investigate the molecular processes that underlie this variation. We show unexpected complexity in the evolutionary history of key developmental pathway genes. These new species and the associated genomic resources will be essential in our attempts to understand the evolutionary origins of the C. elegans model.
Collapse
Affiliation(s)
- Lewis Stevens
- Institute of Evolutionary Biology, Ashworth Laboratories, School of Biological SciencesUniversity of EdinburghEdinburghEH9 3JTUnited Kingdom
| | - Marie‐Anne Félix
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, École Normale SupérieureParis Sciences et Lettres75005ParisFrance
| | - Toni Beltran
- MRC London Institute of Medical SciencesLondonW12 0NNUnited Kingdom
| | - Christian Braendle
- Université Côte d'Azur, Centre National de la Recherche Scientifique, InsermInstitute of Biology Valrose06108NiceFrance
| | - Carlos Caurcel
- Institute of Evolutionary Biology, Ashworth Laboratories, School of Biological SciencesUniversity of EdinburghEdinburghEH9 3JTUnited Kingdom
| | - Sarah Fausett
- Université Côte d'Azur, Centre National de la Recherche Scientifique, InsermInstitute of Biology Valrose06108NiceFrance
| | - David Fitch
- Department of BiologyNew York UniversityNew YorkNew York10003
| | - Lise Frézal
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, École Normale SupérieureParis Sciences et Lettres75005ParisFrance
| | - Charlie Gosse
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, École Normale SupérieureParis Sciences et Lettres75005ParisFrance
| | - Taniya Kaur
- Center for Genomics and Systems Biology, Department of BiologyNew York UniversityNew YorkNew York10003
| | - Karin Kiontke
- Department of BiologyNew York UniversityNew YorkNew York10003
| | - Matthew D. Newton
- MRC London Institute of Medical SciencesLondonW12 0NNUnited Kingdom
- Molecular Virology, Department of MedicineImperial College LondonDu Cane RoadLondonW12 0NNUnited Kingdom
| | - Luke M. Noble
- Center for Genomics and Systems Biology, Department of BiologyNew York UniversityNew YorkNew York10003
| | - Aurélien Richaud
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, École Normale SupérieureParis Sciences et Lettres75005ParisFrance
| | - Matthew V. Rockman
- Center for Genomics and Systems Biology, Department of BiologyNew York UniversityNew YorkNew York10003
| | - Walter Sudhaus
- Institut für Biologie/ZoologieFreie Universität BerlinBerlinD‐14195Germany
| | - Mark Blaxter
- Institute of Evolutionary Biology, Ashworth Laboratories, School of Biological SciencesUniversity of EdinburghEdinburghEH9 3JTUnited Kingdom
| |
Collapse
|
1062
|
Shin SC, Kim H, Lee JH, Kim HW, Park J, Choi BS, Lee SC, Kim JH, Lee H, Kim S. Nanopore sequencing reads improve assembly and gene annotation of the Parochlus steinenii genome. Sci Rep 2019; 9:5095. [PMID: 30911035 PMCID: PMC6434015 DOI: 10.1038/s41598-019-41549-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/08/2019] [Indexed: 02/07/2023] Open
Abstract
Parochlus steinenii is a winged midge from King George Island. It is cold-tolerant and endures the harsh Antarctic winter. Previously, we reported the genome of this midge, but the genome assembly with short reads had limited contig contiguity, which reduced the completeness of the genome assembly and the annotated gene sets. Recently, assembly contiguity has been increased using nanopore technology. A number of methods for enhancing the low base quality of the assembly have been reported, including long-read (e.g. Nanopolish) or short-read (e.g. Pilon) based methods. Based on these advances, we used nanopore technologies to upgrade the draft genome sequence of P. steinenii. The final assembled genome was 145,366,448 bases in length. The contig number decreased from 9,132 to 162, and the N50 contig size increased from 36,946 to 1,989,550 bases. The BUSCO completeness of the assembly increased from 87.8 to 98.7%. Improved assembly statistics helped predict more genes from the draft genome of P. steinenii. The completeness of the predicted gene model increased from 79.5 to 92.1%, but the numbers and types of the predicted repeats were similar to those observed in the short read assembly, with the exception of long interspersed nuclear elements. In the present study, we markedly improved the P. steinenii genome assembly statistics using nanopore sequencing, but found that genome polishing with high-quality reads was essential for improving genome annotation. The number of genes predicted and the lengths of the genes were greater than before, and nanopore technology readily improved genome information.
Collapse
Affiliation(s)
- Seung Chul Shin
- Unit of Polar Genomics, Korea Polar Research Institute (KOPRI), Incheon, 21990, Republic of Korea.
| | - Hyun Kim
- Unit of Polar Genomics, Korea Polar Research Institute (KOPRI), Incheon, 21990, Republic of Korea
| | - Jun Hyuck Lee
- Unit of Polar Genomics, Korea Polar Research Institute (KOPRI), Incheon, 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea
| | - Han-Woo Kim
- Unit of Polar Genomics, Korea Polar Research Institute (KOPRI), Incheon, 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea
| | - Joonho Park
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | | | | | - Ji Hee Kim
- Division of Life Sciences, Korea Polar Research Institute (KOPRI), Incheon, 21990, Republic of Korea
| | - Hyoungseok Lee
- Unit of Polar Genomics, Korea Polar Research Institute (KOPRI), Incheon, 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea
| | - Sanghee Kim
- Division of Life Sciences, Korea Polar Research Institute (KOPRI), Incheon, 21990, Republic of Korea.
| |
Collapse
|
1063
|
Mollah MBR, Khan MGQ, Islam MS, Alam MS. First draft genome assembly and identification of SNPs from hilsa shad ( Tenualosa ilisha) of the Bay of Bengal. F1000Res 2019; 8:320. [PMID: 31602298 PMCID: PMC6774053 DOI: 10.12688/f1000research.18325.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/14/2019] [Indexed: 12/25/2022] Open
Abstract
Background: Hilsa shad (
Tenualosa ilisha), a widely distributed migratory fish, contributes substantially to the economy of Bangladesh. The harvest of hilsa from inland waters has been fluctuating due to anthropological and climate change-induced degradation of the riverine habitats. The whole genome sequence of this valuable fish could provide genomic tools for sustainable harvest, conservation and productivity cycle maintenance. Here, we report the first draft genome of
T. ilisha from the Bay of Bengal, the largest reservoir of the migratory fish. Methods: A live specimen of
T. ilisha was collected from the Bay of Bengal. The whole genome sequencing was performed by the Illumina HiSeqX platform (2 × 150 paired end configuration). We assembled the short reads using SOAPdenovo2 genome assembler and predicted protein coding genes by AUGUSTUS. The completeness of the
T. ilisha genome assembly was evaluated by BUSCO (Benchmarking Universal Single Copy Orthologs). We identified single nucleotide polymorphisms (SNPs) by calling them directly from unassembled sequence reads using discoSnp++. Results: We assembled the draft genome of 710.28 Mb having an N50 scaffold length of 64157 bp and GC content of 42.95%. A total of 37,450 protein coding genes were predicted of which 29,339 (78.34%) were annotated with other vertebrate genomes. We also identified 792,939 isolated SNPs with transversion:transition ratio of 1:1.8. The BUSCO evaluation showed 78.1% completeness of this genome. Conclusions: The genomic data generated in this study could be used as a reference to identify genes associated with physiological and ecological adaptations, population connectivity, and migration behaviour of this biologically and economically important anadromous fish species of the Clupeidae family.
Collapse
Affiliation(s)
- Md Bazlur Rahman Mollah
- Poultry Biotechnology and Genomics Laboratory, Department of Poultry Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Mohd Golam Quader Khan
- Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Shahidul Islam
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Samsul Alam
- Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| |
Collapse
|
1064
|
Zhang F, Ding Y, Zhou QS, Wu J, Luo A, Zhu CD. A High-quality Draft Genome Assembly of Sinella curviseta: A Soil Model Organism (Collembola). Genome Biol Evol 2019; 11:521-530. [PMID: 30668671 PMCID: PMC6389355 DOI: 10.1093/gbe/evz013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2019] [Indexed: 12/25/2022] Open
Abstract
Sinella curviseta, among the most widespread springtails (Collembola) in Northern Hemisphere, has often been treated as a model organism in soil ecology and environmental toxicology. However, little information on its genetic knowledge severely hinders our understanding of its adaptations to the soil habitat. We present the largest genome assembly within Collembola using ∼44.86 Gb (118X) of single-molecule real-time Pacific Bioscience Sequel sequencing. The final assembly of 599 scaffolds was ∼381.46 Mb with a N50 length of 3.28 Mb, which captured 95.3% complete and 1.5% partial arthropod Benchmarking Universal Single-Copy Orthologs (n = 1066). Transcripts and circularized mitochondrial genome were also assembled. We predicted 23,943 protein-coding genes, of which 83.88% were supported by transcriptome-based evidence and 82.49% matched protein records in UniProt. In addition, we also identified 222,501 repeats and 881 noncoding RNAs. Phylogenetic reconstructions for Collembola support Tomoceridae sistered to the remaining Entomobryomorpha with the position of Symphypleona not fully resolved. Gene family evolution analyses identified 9,898 gene families, of which 156 experienced significant expansions or contractions. Our high-quality reference genome of S. curviseta provides the genetic basis for future investigations in evolutionary biology, soil ecology, and ecotoxicology.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University.,Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yinhuan Ding
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University
| | - Qing-Song Zhou
- Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jun Wu
- Nanjing Institute of Environmental Sciences under Ministry of Environmental Protection, Nanjing, China
| | - Arong Luo
- Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chao-Dong Zhu
- Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
1065
|
A novel transcriptome-derived SNPs array for tench (Tinca tinca L.). PLoS One 2019; 14:e0213992. [PMID: 30889192 PMCID: PMC6424483 DOI: 10.1371/journal.pone.0213992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/05/2019] [Indexed: 11/19/2022] Open
Abstract
Tench (Tinca tinca L.) has great economic potential due to its high rate of fecundity and long-life span. Population genetic studies based on allozymes, microsatellites, PCR-RFLP and sequence analysis of genes and DNA fragments have revealed the presence of Eastern and Western phylogroups. However, the lack of genomic resources for this species has complicated the development of genetic markers. In this study, the tench transcriptome and genome were sequenced by high-throughput sequencing. A total of 60,414 putative SNPs were identified in the tench transcriptome using a computational pipeline. A set of 96 SNPs was selected for validation and a total of 92 SNPs was validated, resulting in the highest conversion and validation rate for a non-model species obtained to date (95.83%). The validated SNPs were used to genotype 140 individuals belonging to two tench breeds (Tabor and Hungarian), showing low (FST = 0.0450) but significant (<0.0001) genetic differentiation between the two tench breeds. This implies that set of validated SNPs array can be used to distinguish the tench breeds and that it might be useful for studying a range of associations between DNA sequence and traits of importance. These genomic resources created for the tench will provide insight into population genetics, conservation fish stock management, and aquaculture.
Collapse
|
1066
|
Karageorgiou C, Gámez-Visairas V, Tarrío R, Rodríguez-Trelles F. Long-read based assembly and synteny analysis of a reference Drosophila subobscura genome reveals signatures of structural evolution driven by inversions recombination-suppression effects. BMC Genomics 2019; 20:223. [PMID: 30885123 PMCID: PMC6423853 DOI: 10.1186/s12864-019-5590-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/06/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Drosophila subobscura has long been a central model in evolutionary genetics. Presently, its use is hindered by the lack of a reference genome. To bridge this gap, here we used PacBio long-read technology, together with the available wealth of genetic marker information, to assemble and annotate a high-quality nuclear and complete mitochondrial genome for the species. With the obtained assembly, we performed the first synteny analysis of genome structure evolution in the subobscura subgroup. RESULTS We generated a highly-contiguous ~ 129 Mb-long nuclear genome, consisting of six pseudochromosomes corresponding to the six chromosomes of a female haploid set, and a complete 15,764 bp-long mitogenome, and provide an account of their numbers and distributions of codifying and repetitive content. All 12 identified paracentric inversion differences in the subobscura subgroup would have originated by chromosomal breakage and repair, with some associated duplications, but no evidence of direct gene disruptions by the breakpoints. Between lineages, inversion fixation rates were 10 times higher in continental D. subobscura than in the two small oceanic-island endemics D. guanche and D. madeirensis. Within D. subobscura, we found contrasting ratios of chromosomal divergence to polymorphism between the A sex chromosome and the autosomes. CONCLUSIONS We present the first high-quality, long-read sequencing of a D. subobscura genome. Our findings generally support genome structure evolution in this species being driven indirectly, through the inversions' recombination-suppression effects in maintaining sets of adaptive alleles together in the face of gene flow. The resources developed will serve to further establish the subobscura subgroup as model for comparative genomics and evolutionary indicator of global change.
Collapse
Affiliation(s)
- Charikleia Karageorgiou
- Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE), Departament de Genètica i de Microbiologia, Universitat Autonòma de Barcelona, Bellaterra, Barcelona, Spain
| | - Víctor Gámez-Visairas
- Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE), Departament de Genètica i de Microbiologia, Universitat Autonòma de Barcelona, Bellaterra, Barcelona, Spain
| | - Rosa Tarrío
- Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE), Departament de Genètica i de Microbiologia, Universitat Autonòma de Barcelona, Bellaterra, Barcelona, Spain
| | - Francisco Rodríguez-Trelles
- Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE), Departament de Genètica i de Microbiologia, Universitat Autonòma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
1067
|
Nishitsuji K, Arimoto A, Higa Y, Mekaru M, Kawamitsu M, Satoh N, Shoguchi E. Draft genome of the brown alga, Nemacystus decipiens, Onna-1 strain: Fusion of genes involved in the sulfated fucan biosynthesis pathway. Sci Rep 2019; 9:4607. [PMID: 30872679 PMCID: PMC6418280 DOI: 10.1038/s41598-019-40955-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 02/22/2019] [Indexed: 01/21/2023] Open
Abstract
The brown alga, Nemacystus decipiens ("ito-mozuku" in Japanese), is one of the major edible seaweeds, cultivated principally in Okinawa, Japan. N. decipiens is also a significant source of fucoidan, which has various physiological activities. To facilitate brown algal studies, we decoded the ~154 Mbp draft genome of N. decipiens Onna-1 strain. The genome is estimated to contain 15,156 protein-coding genes, ~78% of which are substantiated by corresponding mRNAs. Mitochondrial genes analysis showed a close relationship between N. decipiens and Cladosiphon okamuranus. Comparisons with the C. okamuranus and Ectocarpus siliculosus genomes identified a set of N. decipiens-specific genes. Gene ontology annotation showed more than half of these are classified as molecular function, enzymatic activity, and/or biological process. Extracellular matrix analysis revealed domains shared among three brown algae. Characterization of genes that encode enzymes involved in the biosynthetic pathway for sulfated fucan showed two sets of genes fused in the genome. One is a fusion of L-fucokinase and GDP-fucose pyrophosphorylase genes, a feature shared with C. okamuranus. Another fusion is between an ST-domain-containing gene and an alpha/beta hydrolase gene. Although the function of fused genes should be examined in future, these results suggest that N. decipiens is another promising source of fucoidan.
Collapse
Affiliation(s)
- Koki Nishitsuji
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan.
| | - Asuka Arimoto
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Yoshimi Higa
- Onna Fisheries Cooperative, Onna, Okinawa, 904-0414, Japan
| | | | - Mayumi Kawamitsu
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| |
Collapse
|
1068
|
Featherston J, Arakaki Y, Hanschen ER, Ferris PJ, Michod RE, Olson BJSC, Nozaki H, Durand PM. The 4-Celled Tetrabaena socialis Nuclear Genome Reveals the Essential Components for Genetic Control of Cell Number at the Origin of Multicellularity in the Volvocine Lineage. Mol Biol Evol 2019; 35:855-870. [PMID: 29294063 DOI: 10.1093/molbev/msx332] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Multicellularity is the premier example of a major evolutionary transition in individuality and was a foundational event in the evolution of macroscopic biodiversity. The volvocine chlorophyte lineage is well suited for studying this process. Extant members span unicellular, simple colonial, and obligate multicellular taxa with germ-soma differentiation. Here, we report the nuclear genome sequence of one of the most morphologically simple organisms in this lineage-the 4-celled colonial Tetrabaena socialis and compare this to the three other complete volvocine nuclear genomes. Using conservative estimates of gene family expansions a minimal set of expanded gene families was identified that associate with the origin of multicellularity. These families are rich in genes related to developmental processes. A subset of these families is lineage specific, which suggests that at a genomic level the evolution of multicellularity also includes lineage-specific molecular developments. Multiple points of evidence associate modifications to the ubiquitin proteasomal pathway (UPP) with the beginning of coloniality. Genes undergoing positive or accelerating selection in the multicellular volvocines were found to be enriched in components of the UPP and gene families gained at the origin of multicellularity include components of the UPP. A defining feature of colonial/multicellular life cycles is the genetic control of cell number. The genomic data presented here, which includes diversification of cell cycle genes and modifications to the UPP, align the genetic components with the evolution of this trait.
Collapse
Affiliation(s)
- Jonathan Featherston
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa.,Agricultural Research Council, Biotechnology Platform, Pretoria, South Africa
| | - Yoko Arakaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Hongo, Japan
| | - Erik R Hanschen
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ
| | - Patrick J Ferris
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ
| | - Richard E Michod
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ
| | | | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Hongo, Japan
| | - Pierre M Durand
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
1069
|
Leonard G, Labarre A, Milner DS, Monier A, Soanes D, Wideman JG, Maguire F, Stevens S, Sain D, Grau-Bové X, Sebé-Pedrós A, Stajich JE, Paszkiewicz K, Brown MW, Hall N, Wickstead B, Richards TA. Comparative genomic analysis of the 'pseudofungus' Hyphochytrium catenoides. Open Biol 2019; 8:rsob.170184. [PMID: 29321239 PMCID: PMC5795050 DOI: 10.1098/rsob.170184] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/01/2017] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic microbes have three primary mechanisms for obtaining nutrients and energy: phagotrophy, photosynthesis and osmotrophy. Traits associated with the latter two functions arose independently multiple times in the eukaryotes. The Fungi successfully coupled osmotrophy with filamentous growth, and similar traits are also manifested in the Pseudofungi (oomycetes and hyphochytriomycetes). Both the Fungi and the Pseudofungi encompass a diversity of plant and animal parasites. Genome-sequencing efforts have focused on host-associated microbes (mutualistic symbionts or parasites), providing limited comparisons with free-living relatives. Here we report the first draft genome sequence of a hyphochytriomycete ‘pseudofungus’; Hyphochytrium catenoides. Using phylogenomic approaches, we identify genes of recent viral ancestry, with related viral derived genes also present on the genomes of oomycetes, suggesting a complex history of viral coevolution and integration across the Pseudofungi. H. catenoides has a complex life cycle involving diverse filamentous structures and a flagellated zoospore with a single anterior tinselate flagellum. We use genome comparisons, drug sensitivity analysis and high-throughput culture arrays to investigate the ancestry of oomycete/pseudofungal characteristics, demonstrating that many of the genetic features associated with parasitic traits evolved specifically within the oomycete radiation. Comparative genomics also identified differences in the repertoire of genes associated with filamentous growth between the Fungi and the Pseudofungi, including differences in vesicle trafficking systems, cell-wall synthesis pathways and motor protein repertoire, demonstrating that unique cellular systems underpinned the convergent evolution of filamentous osmotrophic growth in these two eukaryotic groups.
Collapse
Affiliation(s)
- Guy Leonard
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Aurélie Labarre
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - David S Milner
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Adam Monier
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Darren Soanes
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Jeremy G Wideman
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Finlay Maguire
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Sam Stevens
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Divya Sain
- Department of Plant Pathology and Microbiology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92506, USA
| | - Xavier Grau-Bové
- Institute of Evolutionary Biology, CSIC-UPF, Barcelona, Catalonia, Spain
| | | | - Jason E Stajich
- Department of Plant Pathology and Microbiology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92506, USA
| | - Konrad Paszkiewicz
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA.,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Neil Hall
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Bill Wickstead
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Thomas A Richards
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
1070
|
Hu Y, Resende MFR, Bombarely A, Brym M, Bassil E, Chambers AH. Genomics-based diversity analysis of Vanilla species using a Vanilla planifolia draft genome and Genotyping-By-Sequencing. Sci Rep 2019; 9:3416. [PMID: 30833623 PMCID: PMC6399343 DOI: 10.1038/s41598-019-40144-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/11/2019] [Indexed: 11/09/2022] Open
Abstract
Demand for all-natural vanilla flavor is increasing, but its botanical source, Vanilla planifolia, faces critical challenges arising from a narrow germplasm base and supply limitations. Genomics tools are the key to overcoming these limitations by enabling advanced genetics and plant breeding for new cultivars with improved yield and quality. The objective of this work was to establish the genomic resources needed to facilitate analysis of diversity among Vanilla accessions and to provide a resource to analyze other Vanilla collections. A V. planifolia draft genome was assembled and used to identify 521,732 single nucleotide polymorphism (SNP) markers using Genotyping-By-Sequencing (GBS). The draft genome had a size of 2.20 Gb representing 97% of the estimated genome size. A filtered set of 5,082 SNPs was used to genotype a living collection of 112 Vanilla accessions from 23 species including native Florida species. Principal component analysis of the genetic distances, population structure, and the maternally inherited rbcL gene identified putative hybrids, misidentified accessions, significant diversity within V. planifolia, and evidence for 12 clusters that separate accessions by species. These results validate the efficiency of genomics-based tools to characterize and identify genetic diversity in Vanilla and provide a significant tool for genomics-assisted plant breeding.
Collapse
Affiliation(s)
- Ying Hu
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Marcio F R Resende
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Aureliano Bombarely
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.,Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Maria Brym
- Tropical Research and Education Center, Horticultural Sciences Department, Homestead, FL, USA
| | - Elias Bassil
- Tropical Research and Education Center, Horticultural Sciences Department, Homestead, FL, USA.
| | - Alan H Chambers
- Tropical Research and Education Center, Horticultural Sciences Department, Homestead, FL, USA.
| |
Collapse
|
1071
|
Liao YY, Xu PW, Kwan KY, Ma ZY, Fang HY, Xu JY, Wang PL, Yang SY, Xie SB, Xu SQ, Qian D, Li WF, Bai LR, Zhou DJ, Zhang YQ, Lei J, Liu K, Li F, Li J, Zhu P, Wang YJ, Wu HP, Xu YH, Huang H, Zhang C, Liu JX, Han JF. Draft genomic and transcriptome resources for marine chelicerate Tachypleus tridentatus. Sci Data 2019; 6:190029. [PMID: 30806641 PMCID: PMC6390705 DOI: 10.1038/sdata.2019.29] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/03/2019] [Indexed: 01/17/2023] Open
Abstract
Chinese horseshoe crabs (Tachypleus tridentatus), ancient marine arthropods dating back to the mid-Palaeozoic Era, have provided valuable resources for the detection of bacterial or fungal contamination. However, excessive exploitation for the amoebocyte lysate of Tachypleus has dramatically decreased the population of the Chinese horseshoe crabs. Thus, we present sequencing, assembly and annotation of T. tridentatus, with the hope of understanding the genomic feature of the living fossil and assisting scientists with the protection of this endangered species. The final genome contained a total size of 1.943 Gb, covering 90.23% of the estimated genome size. The transcriptome of three larval stages was constructed to investigate the candidate gene involved in the larval development and validate annotation. The completeness of the genome and gene models was estimated by BUSCO, reaching 96.2% and 95.4%, respectively. The synonymous substitution distribution of paralogues revealed that T. tridentatus had undergone two rounds of whole-genome duplication. All genomic and transcriptome data have been deposited in public databases, ready to be used by researchers working on horseshoe crabs.
Collapse
Affiliation(s)
- Yong Yan Liao
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Qinzhou, 53501 Guangxi, China
- Ocean College, Beibu Gluf University, Qinzhou, 535011, Guangxi, China
| | - Peng Wei Xu
- BGI Genomics, BGI-Shenzhen, 518083, Shenzhen, China
| | - Kit Yue Kwan
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Qinzhou, 53501 Guangxi, China
- Ocean College, Beibu Gluf University, Qinzhou, 535011, Guangxi, China
| | - Zhi Yun Ma
- BGI Genomics, BGI-Shenzhen, 518083, Shenzhen, China
| | - Huai Yi Fang
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Qinzhou, 53501 Guangxi, China
- Ocean College, Beibu Gluf University, Qinzhou, 535011, Guangxi, China
| | - Jun Yang Xu
- BGI Genomics, BGI-Shenzhen, 518083, Shenzhen, China
| | - Peng Liang Wang
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Qinzhou, 53501 Guangxi, China
- Ocean College, Beibu Gluf University, Qinzhou, 535011, Guangxi, China
| | - Shao Yu Yang
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Qinzhou, 53501 Guangxi, China
- Ocean College, Beibu Gluf University, Qinzhou, 535011, Guangxi, China
| | - Shang Bo Xie
- BGI Genomics, BGI-Shenzhen, 518083, Shenzhen, China
| | - Shu Qing Xu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Qinzhou, 53501 Guangxi, China
- Ocean College, Beibu Gluf University, Qinzhou, 535011, Guangxi, China
| | - Dan Qian
- BGI Genomics, BGI-Shenzhen, 518083, Shenzhen, China
| | - Wei Feng Li
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Qinzhou, 53501 Guangxi, China
- Ocean College, Beibu Gluf University, Qinzhou, 535011, Guangxi, China
| | - Li Rong Bai
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Qinzhou, 53501 Guangxi, China
- Ocean College, Beibu Gluf University, Qinzhou, 535011, Guangxi, China
| | - Da Jie Zhou
- BGI Genomics, BGI-Shenzhen, 518083, Shenzhen, China
| | - Yan Qiu Zhang
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Qinzhou, 53501 Guangxi, China
- Ocean College, Beibu Gluf University, Qinzhou, 535011, Guangxi, China
| | - Juan Lei
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Qinzhou, 53501 Guangxi, China
- Ocean College, Beibu Gluf University, Qinzhou, 535011, Guangxi, China
| | - Ke Liu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Qinzhou, 53501 Guangxi, China
- Ocean College, Beibu Gluf University, Qinzhou, 535011, Guangxi, China
| | - Fan Li
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Qinzhou, 53501 Guangxi, China
- Ocean College, Beibu Gluf University, Qinzhou, 535011, Guangxi, China
| | - Jian Li
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Qinzhou, 53501 Guangxi, China
- Ocean College, Beibu Gluf University, Qinzhou, 535011, Guangxi, China
| | - Peng Zhu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Qinzhou, 53501 Guangxi, China
- Ocean College, Beibu Gluf University, Qinzhou, 535011, Guangxi, China
| | - Yu Jun Wang
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Qinzhou, 53501 Guangxi, China
- Ocean College, Beibu Gluf University, Qinzhou, 535011, Guangxi, China
| | - Hai Ping Wu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Qinzhou, 53501 Guangxi, China
- Ocean College, Beibu Gluf University, Qinzhou, 535011, Guangxi, China
| | - You Hou Xu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Qinzhou, 53501 Guangxi, China
- Ocean College, Beibu Gluf University, Qinzhou, 535011, Guangxi, China
| | - Hu Huang
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Qinzhou, 53501 Guangxi, China
- Ocean College, Beibu Gluf University, Qinzhou, 535011, Guangxi, China
| | - Chi Zhang
- BGI Genomics, BGI-Shenzhen, 518083, Shenzhen, China
| | - Jin Xia Liu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Qinzhou, 53501 Guangxi, China
- Ocean College, Beibu Gluf University, Qinzhou, 535011, Guangxi, China
| | - Jun Feng Han
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Qinzhou, 53501 Guangxi, China
- Ocean College, Beibu Gluf University, Qinzhou, 535011, Guangxi, China
| |
Collapse
|
1072
|
Siozios S, Pilgrim J, Darby AC, Baylis M, Hurst GD. The draft genome of strain cCpun from biting midges confirms insect Cardinium are not a monophyletic group and reveals a novel gene family expansion in a symbiont. PeerJ 2019; 7:e6448. [PMID: 30809447 PMCID: PMC6387759 DOI: 10.7717/peerj.6448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/15/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND It is estimated that 13% of arthropod species carry the heritable symbiont Cardinium hertigii. 16S rRNA and gyrB sequence divides this species into at least four groups (A-D), with the A group infecting a range of arthropods, the B group infecting nematode worms, the C group infecting Culicoides biting midges, and the D group associated with the marine copepod Nitocra spinipes. To date, genome sequence has only been available for strains from groups A and B, impeding general understanding of the evolutionary history of the radiation. We present a draft genome sequence for a C group Cardinium, motivated both by the paucity of genomic information outside of the A and B group, and the importance of Culicoides biting midge hosts as arbovirus vectors. METHODS We reconstructed the genome of cCpun, a Cardinium strain from group C that naturally infects Culicoides punctatus, through Illumina sequencing of infected host specimens. RESULTS The draft genome presented has high completeness, with BUSCO scores comparable to closed group A Cardinium genomes. Phylogenomic analysis based on concatenated single copy core proteins do not support Cardinium from arthropod hosts as a monophyletic group, with nematode Cardinium strains nested within the two groups infecting arthropod hosts. Analysis of the genome of cCpun revealed expansion of a variety of gene families classically considered important in symbiosis (e.g., ankyrin domain containing genes), and one set-characterized by DUF1703 domains-not previously associated with symbiotic lifestyle. This protein group encodes putative secreted nucleases, and the cCpun genome carried at least 25 widely divergent paralogs, 24 of which shared a common ancestor in the C group. The genome revealed no evidence in support of B vitamin provisioning to its haematophagous host, and indeed suggests Cardinium may be a net importer of biotin. DISCUSSION These data indicate strains of Cardinium within nematodes cluster within Cardinium strains found in insects. The draft genome of cCpun further produces new hypotheses as to the interaction of the symbiont with the midge host, in particular the biological role of DUF1703 nuclease proteins that are predicted as being secreted by cCpun. In contrast, the coding content of this genome provides no support for a role for the symbiont in provisioning the host with B vitamins.
Collapse
Affiliation(s)
- Stefanos Siozios
- Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Jack Pilgrim
- Institute of Infection and Global Health, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Alistair C. Darby
- Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Matthew Baylis
- Institute of Infection and Global Health, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections (HPRU-EZI), University of Liverpool, Liverpool, UK
| | - Gregory D.D. Hurst
- Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
1073
|
Cai H, Li Q, Fang X, Li J, Curtis NE, Altenburger A, Shibata T, Feng M, Maeda T, Schwartz JA, Shigenobu S, Lundholm N, Nishiyama T, Yang H, Hasebe M, Li S, Pierce SK, Wang J. A draft genome assembly of the solar-powered sea slug Elysia chlorotica. Sci Data 2019; 6:190022. [PMID: 30778257 PMCID: PMC6380222 DOI: 10.1038/sdata.2019.22] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/10/2019] [Indexed: 11/09/2022] Open
Abstract
Elysia chlorotica, a sacoglossan sea slug found off the East Coast of the United States, is well-known for its ability to sequester chloroplasts from its algal prey and survive by photosynthesis for up to 12 months in the absence of food supply. Here we present a draft genome assembly of E. chlorotica that was generated using a hybrid assembly strategy with Illumina short reads and PacBio long reads. The genome assembly comprised 9,989 scaffolds, with a total length of 557 Mb and a scaffold N50 of 442 kb. BUSCO assessment indicated that 93.3% of the expected metazoan genes were completely present in the genome assembly. Annotation of the E. chlorotica genome assembly identified 176 Mb (32.6%) of repetitive sequences and a total of 24,980 protein-coding genes. We anticipate that the annotated draft genome assembly of the E. chlorotica sea slug will promote the investigation of sacoglossan genetics, evolution, and particularly, the genetic signatures accounting for the long-term functioning of algal chloroplasts in an animal.
Collapse
Affiliation(s)
- Huimin Cai
- Department of Computer Science, City University of Hong Kong, Hong Kong 999077, China
| | - Qiye Li
- BGI-Shenzhen, Shenzhen 518083, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China
| | | | - Ji Li
- BGI-Shenzhen, Shenzhen 518083, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China
| | - Nicholas E Curtis
- Department of Biology, Ave Maria University, Ave Maria, Florida 34142, USA
| | - Andreas Altenburger
- Section for Evolutionary Genomics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen 1350, Denmark
| | - Tomoko Shibata
- National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Mingji Feng
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Taro Maeda
- National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Julie A Schwartz
- Department of Integrative Biology, University of South Florida, Tampa, Florida 33620, USA
| | - Shuji Shigenobu
- National Institute for Basic Biology, Okazaki 444-8585, Japan.,Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Nina Lundholm
- Section for Evolutionary Genomics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen 1350, Denmark
| | - Tomoaki Nishiyama
- Advanced Science Research Center, Kanazawa University, Kanazawa 920-0934, Japan
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China.,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Mitsuyasu Hasebe
- National Institute for Basic Biology, Okazaki 444-8585, Japan.,Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Shuaicheng Li
- Department of Computer Science, City University of Hong Kong, Hong Kong 999077, China
| | - Sidney K Pierce
- Department of Integrative Biology, University of South Florida, Tampa, Florida 33620, USA.,Department of Biology, University of Maryland, College Park, Maryland 20742, USA
| | - Jian Wang
- BGI-Shenzhen, Shenzhen 518083, China.,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| |
Collapse
|
1074
|
Sternberger AL, Bowman MJ, Kruse CPS, Childs KL, Ballard HE, Wyatt SE. Transcriptomics Identifies Modules of Differentially Expressed Genes and Novel Cyclotides in Viola pubescens. FRONTIERS IN PLANT SCIENCE 2019; 10:156. [PMID: 30828342 PMCID: PMC6384259 DOI: 10.3389/fpls.2019.00156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/29/2019] [Indexed: 05/24/2023]
Abstract
Viola is a large genus with worldwide distribution and many traits not currently exemplified in model plants including unique breeding systems and the production of cyclotides. Here we report de novo genome assembly and transcriptomic analyses of the non-model species Viola pubescens using short-read DNA sequencing data and RNA-Seq from eight diverse tissues. First, V. pubescens genome size was estimated through flow cytometry, resulting in an approximate haploid genome of 455 Mbp. Next, the draft V. pubescens genome was sequenced and assembled resulting in 264,035,065 read pairs and 161,038 contigs with an N50 length of 3,455 base pairs (bp). RNA-Seq data were then assembled into tissue-specific transcripts. Together, the DNA and transcript data generated 38,081 ab initio gene models which were functionally annotated based on homology to Arabidopsis thaliana genes and Pfam domains. Gene expression was visualized for each tissue via principal component analysis and hierarchical clustering, and gene co-expression analysis identified 20 modules of tissue-specific transcriptional networks. Some of these modules highlight genetic differences between chasmogamous and cleistogamous flowers and may provide insight into V. pubescens' mixed breeding system. Orthologous clustering with the proteomes of A. thaliana and Populus trichocarpa revealed 8,531 sequences unique to V. pubescens, including 81 novel cyclotide precursor sequences. Cyclotides are plant peptides characterized by a stable, cyclic cystine knot motif, making them strong candidates for drug scaffolding and protein engineering. Analysis of the RNA-Seq data for these cyclotide transcripts revealed diverse expression patterns both between transcripts and tissues. The diversity of these cyclotides was also highlighted in a maximum likelihood protein cladogram containing V. pubescens cyclotides and published cyclotide sequences from other Violaceae and Rubiaceae species. Collectively, this work provides the most comprehensive sequence resource for Viola, offers valuable transcriptomic insight into V. pubescens, and will facilitate future functional genomics research in Viola and other diverse plant groups.
Collapse
Affiliation(s)
- Anne L. Sternberger
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, United States
| | - Megan J. Bowman
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - Colin P. S. Kruse
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, United States
- Interdisciplinary Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
| | - Kevin L. Childs
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - Harvey E. Ballard
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, United States
| | - Sarah E. Wyatt
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, United States
- Interdisciplinary Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
| |
Collapse
|
1075
|
Ebenezer TE, Zoltner M, Burrell A, Nenarokova A, Novák Vanclová AMG, Prasad B, Soukal P, Santana-Molina C, O'Neill E, Nankissoor NN, Vadakedath N, Daiker V, Obado S, Silva-Pereira S, Jackson AP, Devos DP, Lukeš J, Lebert M, Vaughan S, Hampl V, Carrington M, Ginger ML, Dacks JB, Kelly S, Field MC. Transcriptome, proteome and draft genome of Euglena gracilis. BMC Biol 2019; 17:11. [PMID: 30732613 PMCID: PMC6366073 DOI: 10.1186/s12915-019-0626-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 01/08/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Photosynthetic euglenids are major contributors to fresh water ecosystems. Euglena gracilis in particular has noted metabolic flexibility, reflected by an ability to thrive in a range of harsh environments. E. gracilis has been a popular model organism and of considerable biotechnological interest, but the absence of a gene catalogue has hampered both basic research and translational efforts. RESULTS We report a detailed transcriptome and partial genome for E. gracilis Z1. The nuclear genome is estimated to be around 500 Mb in size, and the transcriptome encodes over 36,000 proteins and the genome possesses less than 1% coding sequence. Annotation of coding sequences indicates a highly sophisticated endomembrane system, RNA processing mechanisms and nuclear genome contributions from several photosynthetic lineages. Multiple gene families, including likely signal transduction components, have been massively expanded. Alterations in protein abundance are controlled post-transcriptionally between light and dark conditions, surprisingly similar to trypanosomatids. CONCLUSIONS Our data provide evidence that a range of photosynthetic eukaryotes contributed to the Euglena nuclear genome, evidence in support of the 'shopping bag' hypothesis for plastid acquisition. We also suggest that euglenids possess unique regulatory mechanisms for achieving extreme adaptability, through mechanisms of paralog expansion and gene acquisition.
Collapse
Affiliation(s)
- ThankGod E Ebenezer
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.,Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Martin Zoltner
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Alana Burrell
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Anna Nenarokova
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, 37005, České Budějovice, Czech Republic
| | - Anna M G Novák Vanclová
- Department of Parasitology, Faculty of Science,, Charles University, BIOCEV, 252 50, Vestec, Czech Republic
| | - Binod Prasad
- Cell Biology Division, Department of Biology, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Petr Soukal
- Department of Parasitology, Faculty of Science,, Charles University, BIOCEV, 252 50, Vestec, Czech Republic
| | - Carlos Santana-Molina
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Pablo de Olavide University, Seville, Spain
| | - Ellis O'Neill
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Nerissa N Nankissoor
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Alberta, T6G, Canada
| | - Nithya Vadakedath
- Cell Biology Division, Department of Biology, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Viktor Daiker
- Cell Biology Division, Department of Biology, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Samson Obado
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, 10065, USA
| | - Sara Silva-Pereira
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Andrew P Jackson
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Pablo de Olavide University, Seville, Spain
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, 37005, České Budějovice, Czech Republic
| | - Michael Lebert
- Cell Biology Division, Department of Biology, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Vladimίr Hampl
- Department of Parasitology, Faculty of Science,, Charles University, BIOCEV, 252 50, Vestec, Czech Republic
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Michael L Ginger
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Joel B Dacks
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Alberta, T6G, Canada. .,Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK.
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK. .,Biology Centre, Institute of Parasitology, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, 37005, České Budějovice, Czech Republic.
| |
Collapse
|
1076
|
Study of the whole genome, methylome and transcriptome of Cordyceps militaris. Sci Rep 2019; 9:898. [PMID: 30696919 PMCID: PMC6351555 DOI: 10.1038/s41598-018-38021-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 12/19/2018] [Indexed: 12/21/2022] Open
Abstract
The complete genome of Cordyceps militaris was sequenced using single-molecule real-time (SMRT) sequencing technology at a coverage over 300×. The genome size was 32.57 Mb, and 14 contigs ranging from 0.35 to 4.58 Mb with an N50 of 2.86 Mb were assembled, including 4 contigs with telomeric sequences on both ends and an additional 8 contigs with telomeric sequences on either the 5′ or 3′ end. A methylome database of the genome was constructed using SMRT and m4C and m6A methylated nucleotides, and many unknown modification types were identified. The major m6A methylation motif is GA and GGAG, and the major m4C methylation motif is GC or CG/GC. In the C. militaris genome DNA, there were four types of methylated nucleotides that we confirmed using high-resolution LCMS-IT-TOF. Using PacBio Iso-Seq, a total of 31,133 complete cDNA sequences were obtained in the fruiting body. The conserved domains of the nontranscribed regions of the genome include TATA boxes, which are the initial regions of genome replication. There were 406 structural variants between the HN and CM01 strains, and there were 1,114 structural variants between the HN and ATCC strains.
Collapse
|
1077
|
Chromosome conformation capture resolved near complete genome assembly of broomcorn millet. Nat Commun 2019; 10:464. [PMID: 30683940 PMCID: PMC6347627 DOI: 10.1038/s41467-018-07876-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/04/2018] [Indexed: 01/27/2023] Open
Abstract
Broomcorn millet (Panicum miliaceum L.) has strong tolerance to abiotic stresses, and is probably one of the oldest crops, with its earliest cultivation that dated back to ca. ~10,000 years. We report here its genome assembly through a combination of PacBio sequencing, BioNano, and Hi-C (in vivo) mapping. The 18 super scaffolds cover ~95.6% of the estimated genome (~887.8 Mb). There are 63,671 protein-coding genes annotated in this tetraploid genome. About ~86.2% of the syntenic genes in foxtail millet have two homologous copies in broomcorn millet, indicating rare gene loss after tetraploidization in broomcorn millet. Phylogenetic analysis reveals that broomcorn millet and foxtail millet diverged around ~13.1 Million years ago (Mya), while the lineage specific tetraploidization of broomcorn millet may be happened within ~5.91 million years. The genome is not only beneficial for the genome assisted breeding of broomcorn millet, but also an important resource for other Panicum species. Broomcorn millet is one of the oldest crops cultivated by human that has strong abiotic stress tolerance. To facilitate genome assisted breeding of this and related species, the authors report its genome assembly and conduct comparative genome structure and evolution analyses with foxtail millet.
Collapse
|
1078
|
Oey H, Zakrzewski M, Gravermann K, Young ND, Korhonen PK, Gobert GN, Nawaratna S, Hasan S, Martínez DM, You H, Lavin M, Jones MK, Ragan MA, Stoye J, Oleaga A, Emery AM, Webster BL, Rollinson D, Gasser RB, McManus DP, Krause L. Whole-genome sequence of the bovine blood fluke Schistosoma bovis supports interspecific hybridization with S. haematobium. PLoS Pathog 2019; 15:e1007513. [PMID: 30673782 PMCID: PMC6361461 DOI: 10.1371/journal.ppat.1007513] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 02/04/2019] [Accepted: 12/07/2018] [Indexed: 11/18/2022] Open
Abstract
Mesenteric infection by the parasitic blood fluke Schistosoma bovis is a common veterinary problem in Africa and the Middle East and occasionally in the Mediterranean Region. The species also has the ability to form interspecific hybrids with the human parasite S. haematobium with natural hybridisation observed in West Africa, presenting possible zoonotic transmission. Additionally, this exchange of alleles between species may dramatically influence disease dynamics and parasite evolution. We have generated a 374 Mb assembly of the S. bovis genome using Illumina and PacBio-based technologies. Despite infecting different hosts and organs, the genome sequences of S. bovis and S. haematobium appeared strikingly similar with 97% sequence identity. The two species share 98% of protein-coding genes, with an average sequence identity of 97.3% at the amino acid level. Genome comparison identified large continuous parts of the genome (up to several 100 kb) showing almost 100% sequence identity between S. bovis and S. haematobium. It is unlikely that this is a result of genome conservation and provides further evidence of natural interspecific hybridization between S. bovis and S. haematobium. Our results suggest that foreign DNA obtained by interspecific hybridization was maintained in the population through multiple meiosis cycles and that hybrids were sexually reproductive, producing viable offspring. The S. bovis genome assembly forms a highly valuable resource for studying schistosome evolution and exploring genetic regions that are associated with species-specific phenotypic traits. In this article we detail the assembly and functional annotation of the Schistosoma bovis genome. S. bovis is a parasitic flatworm that primarily infects bovines, with important economic consequences in affected countries. However, it is also a close relative of the human carcinogenic parasite Schistosoma haematobium which is a serious health issue in many endemic countries in Sub-Saharan Africa. The close relationship and overlapping geographical distribution of S. bovis and S. haematobium allows these to hybridise in the wild increasing their genetic diversity and presenting the risk of zoonotic transmission, i.e. the transmission from animals to humans. The hybridization between human and ruminant schistosomes is of particular interest as interspecific hybridization may have dramatic impacts on transmission rates, disease dynamics, control interventions and parasite evolution. By whole-genome sequencing and comparative genomics we present evidence that fertile hybrids are indeed present in the wild, presenting the potential risk of transmission from animal reservoirs to humans.
Collapse
Affiliation(s)
- Harald Oey
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Martha Zakrzewski
- Genetics & Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Kerstin Gravermann
- Faculty of Technology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Neil D. Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Pasi K. Korhonen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Geoffrey N. Gobert
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biological Sciences, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Sujeevi Nawaratna
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Shihab Hasan
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
- Genetics & Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - David M. Martínez
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Hong You
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Martin Lavin
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - Malcolm K. Jones
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Veterinary Science, University of Queensland, Gatton, QLD, Australia
| | - Mark A. Ragan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Jens Stoye
- Faculty of Technology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Ana Oleaga
- Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Cordel de Merinas, Salamanca, Spain
| | - Aidan M. Emery
- Natural History Museum, Life Sciences Department, Parasites and Vectors Division, Cromwell Road, London, United Kingdom
| | - Bonnie L. Webster
- Natural History Museum, Life Sciences Department, Parasites and Vectors Division, Cromwell Road, London, United Kingdom
| | - David Rollinson
- Natural History Museum, Life Sciences Department, Parasites and Vectors Division, Cromwell Road, London, United Kingdom
| | - Robin B. Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Donald P. McManus
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Lutz Krause
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
- Genetics & Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- * E-mail:
| |
Collapse
|
1079
|
Genome Survey Sequencing of Acer truncatum Bunge to Identify Genomic Information, Simple Sequence Repeat (SSR) Markers and Complete Chloroplast Genome. FORESTS 2019. [DOI: 10.3390/f10020087] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Acer truncatum Bunge is a particular forest tree species found in the north of China. Due to the recent discovery that its seeds contain a considerable amount of nervonic acid, this species has received more and more attention. However, there have been no reports of the genome in this species. In this study, we report on the Acer truncatum genome sequence produced by genome survey sequencing. In total, we obtained 61.90 Gbp of high-quality data, representing approximately 116x coverage of the Acer truncatum genome. The genomic characteristics of Acer truncatum include a genome size of 529.88 Mbp, a heterozygosis rate of 1.06% and a repeat rate of 48.8%. A total of 392,961 high-quality genomic SSR markers were developed and a graphical map of the annotated circular chloroplast genome was generated. Thus far, this is the first report of de novo whole genome sequencing and assembly of Acer truncatum. We believe that this genome sequence dataset may provide a new resource for future genomic analysis and molecular breeding studies of Acer truncatum.
Collapse
|
1080
|
Talsania K, Mehta M, Raley C, Kriga Y, Gowda S, Grose C, Drew M, Roberts V, Cheng KT, Burkett S, Oeser S, Stephens R, Soppet D, Chen X, Kumar P, German O, Smirnova T, Hautman C, Shetty J, Tran B, Zhao Y, Esposito D. Genome Assembly and Annotation of the Trichoplusia ni Tni-FNL Insect Cell Line Enabled by Long-Read Technologies. Genes (Basel) 2019; 10:genes10020079. [PMID: 30678108 PMCID: PMC6409714 DOI: 10.3390/genes10020079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/09/2019] [Accepted: 01/14/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Trichoplusia ni derived cell lines are commonly used to enable recombinant protein expression via baculovirus infection to generate materials approved for clinical use and in clinical trials. In order to develop systems biology and genome engineering tools to improve protein expression in this host, we performed de novo genome assembly of the Trichoplusia ni-derived cell line Tni-FNL. Methods: By integration of PacBio single-molecule sequencing, Bionano optical mapping, and 10X Genomics linked-reads data, we have produced a draft genome assembly of Tni-FNL. Results: Our assembly contains 280 scaffolds, with a N50 scaffold size of 2.3 Mb and a total length of 359 Mb. Annotation of the Tni-FNL genome resulted in 14,101 predicted genes and 93.2% of the predicted proteome contained recognizable protein domains. Ortholog searches within the superorder Holometabola provided further evidence of high accuracy and completeness of the Tni-FNL genome assembly. Conclusions: This first draft Tni-FNL genome assembly was enabled by complementary long-read technologies and represents a high-quality, well-annotated genome that provides novel insight into the complexity of this insect cell line and can serve as a reference for future large-scale genome engineering work in this and other similar recombinant protein production hosts.
Collapse
Affiliation(s)
- Keyur Talsania
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Monika Mehta
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Castle Raley
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Yuliya Kriga
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Sujatha Gowda
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Carissa Grose
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Matthew Drew
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Veronica Roberts
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Kwong Tai Cheng
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Sandra Burkett
- Comparative Molecular Cytogenetics Core Facility, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | | | - Robert Stephens
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Daniel Soppet
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Xiongfeng Chen
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Parimal Kumar
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Oksana German
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Tatyana Smirnova
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Christopher Hautman
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Jyoti Shetty
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Bao Tran
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Yongmei Zhao
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Dominic Esposito
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| |
Collapse
|
1081
|
Chebbi MA, Becking T, Moumen B, Giraud I, Gilbert C, Peccoud J, Cordaux R. The Genome ofArmadillidium vulgare(Crustacea, Isopoda) Provides Insights into Sex Chromosome Evolution in the Context of Cytoplasmic Sex Determination. Mol Biol Evol 2019; 36:727-741. [DOI: 10.1093/molbev/msz010] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Mohamed Amine Chebbi
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Poitiers, France
| | - Thomas Becking
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Poitiers, France
| | - Bouziane Moumen
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Poitiers, France
| | - Isabelle Giraud
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Poitiers, France
| | - Clément Gilbert
- Laboratoire Evolution, Génomes, Comportement, Ecologie, CNRS Université Paris-Sud UMR 9191, IRD UMR 247, Gif sur Yvette, France
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Poitiers, France
| | - Jean Peccoud
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Poitiers, France
| | - Richard Cordaux
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Poitiers, France
| |
Collapse
|
1082
|
Han Z, Li W, Zhu W, Sun S, Ye K, Xie Y, Wang Z. Near-complete genome assembly and annotation of the yellow drum ( Nibea albiflora) provide insights into population and evolutionary characteristics of this species. Ecol Evol 2019; 9:568-575. [PMID: 30680137 PMCID: PMC6342179 DOI: 10.1002/ece3.4778] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/02/2018] [Accepted: 11/19/2018] [Indexed: 01/03/2023] Open
Abstract
Yellow drum (Nibea albiflora) is an important fish species in capture fishery and aquaculture in East Asia. We herein report the first and near-complete genome assembly of an ultra-homologous gynogenic female yellow drum using Illumina short sequencing reads. In summary, a total of 154.2 Gb of raw reads were generated via whole-genome sequencing and were assembled to 565.3 Mb genome with a contig N50 size of 50.3 kb and scaffold N50 size of 2.2 Mb (BUSCO completeness of 97.7%), accounting for 97.3%-98.6% of the estimated genome size of this fish. We further identified 22,448 genes using combined methods of ab initio prediction, RNAseq annotation, and protein homology searching, of which 21,614 (96.3%) were functionally annotated in NCBI nr, trEMBL, SwissProt, and KOG databases. We also investigated the nucleotide diversity (around 1/390) of aquacultured individuals and found the genetic diversity of the aquacultured population decreased due to inbreeding. Evolutionary analyses illustrated significantly expanded and extracted gene families, such as myosin and sodium: neurotransmitter symporter (SNF), could help explain swimming motility of yellow drum. The presented genome will be an important resource for future studies on population genetics, conservation, understanding of evolutionary history and genetic breeding of the yellow drum and other Nibea species.
Collapse
Affiliation(s)
- Zhaofang Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries CollegeJimei UniversityXiamenChina
| | - Wanbo Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries CollegeJimei UniversityXiamenChina
| | - Wen Zhu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries CollegeJimei UniversityXiamenChina
| | - Sha Sun
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries CollegeJimei UniversityXiamenChina
| | - Kun Ye
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries CollegeJimei UniversityXiamenChina
| | - Yangjie Xie
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries CollegeJimei UniversityXiamenChina
| | - Zhiyong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries CollegeJimei UniversityXiamenChina
- Laboratory for Marine Fisheries Science and Food Production ProcessesQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| |
Collapse
|
1083
|
Rivero R, Sessa EB, Zenil‐Ferguson R. EyeChrom and CCDBcurator: Visualizing chromosome count data from plants. APPLICATIONS IN PLANT SCIENCES 2019; 7:e01207. [PMID: 30693153 PMCID: PMC6342174 DOI: 10.1002/aps3.1207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/05/2018] [Indexed: 05/13/2023]
Abstract
PREMISE OF THE STUDY Chromosome count data are available for hundreds of plant species and can be explored in text-only format at the Chromosome Counts Database (http://ccdb.tau.ac.il). CCDBcurator and EyeChrom are an R package and a web application, respectively, that first curate and then visualize these data graphically, so that intra- and interspecific variation of chromosome numbers can be easily summarized and displayed for a given genus. METHODS AND RESULTS We developed R code to clean, summarize, and display in several formats the chromosome count data for a selected genus or set of species present in the Chromosome Counts Database. These data and figures can be exported for use in analyses, publications, or teaching. CONCLUSIONS Chromosome count data are critical for a number of evolutionary studies in plant biology, and their importance is underscored by the increasing appreciation of the prevalence of polyploidy in land plants. CCDBcurator and EyeChrom provide a fast, easy, and reproducible means of cleaning, curating, and then visualizing the chromosome count data currently available for plants.
Collapse
Affiliation(s)
- Rodrigo Rivero
- Department of BiologyUniversity of FloridaBox 118525GainesvilleFlorida32611USA
- Department of Natural Resources and Environmental ManagementUniversity of Hawaii1910 East‐West RoadManoaHawaii96822USA
| | - Emily B. Sessa
- Department of BiologyUniversity of FloridaBox 118525GainesvilleFlorida32611USA
| | - Rosana Zenil‐Ferguson
- Department of Ecology, Evolution, and BehaviorUniversity of Minnesota1479 Gortner AvenueSt. PaulMinnesota55108USA
| |
Collapse
|
1084
|
Chaw SM, Liu YC, Wu YW, Wang HY, Lin CYI, Wu CS, Ke HM, Chang LY, Hsu CY, Yang HT, Sudianto E, Hsu MH, Wu KP, Wang LN, Leebens-Mack JH, Tsai IJ. Stout camphor tree genome fills gaps in understanding of flowering plant genome evolution. NATURE PLANTS 2019; 5:63-73. [PMID: 30626928 PMCID: PMC6784883 DOI: 10.1038/s41477-018-0337-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/26/2018] [Indexed: 05/19/2023]
Abstract
We present reference-quality genome assembly and annotation for the stout camphor tree (Cinnamomum kanehirae (Laurales, Lauraceae)), the first sequenced member of the Magnoliidae comprising four orders (Laurales, Magnoliales, Canellales and Piperales) and over 9,000 species. Phylogenomic analysis of 13 representative seed plant genomes indicates that magnoliid and eudicot lineages share more recent common ancestry than monocots. Two whole-genome duplication events were inferred within the magnoliid lineage: one before divergence of Laurales and Magnoliales and the other within the Lauraceae. Small-scale segmental duplications and tandem duplications also contributed to innovation in the evolutionary history of Cinnamomum. For example, expansion of the terpenoid synthase gene subfamilies within the Laurales spawned the diversity of Cinnamomum monoterpenes and sesquiterpenes.
Collapse
Affiliation(s)
- Shu-Miaw Chaw
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
| | - Yu-Ching Liu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Wei Wu
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Han-Yu Wang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chan-Yi Ivy Lin
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chung-Shien Wu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Huei-Mien Ke
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Lo-Yu Chang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- School of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Yao Hsu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Hui-Ting Yang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Edi Sudianto
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Min-Hung Hsu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Kun-Pin Wu
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Ling-Ni Wang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Isheng J Tsai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
1085
|
Abstract
Genomics drives the current progress in molecular biology, generating unprecedented volumes of data. The scientific value of these sequences depends on the ability to evaluate their completeness using a biologically meaningful approach. Here, we describe the use of the BUSCO tool suite to assess the completeness of genomes, gene sets, and transcriptomes, using their gene content as a complementary method to common technical metrics. The chapter introduces the concept of universal single-copy genes, which underlies the BUSCO methodology, covers the basic requirements to set up the tool, and provides guidelines to properly design the analyses, run the assessments, and interpret and utilize the results.
Collapse
Affiliation(s)
- Mathieu Seppey
- Department of Genetic Medicine and Development, Swiss Institute of Bioinformatics, University of Geneva Medical School, Geneva, Switzerland
| | - Mosè Manni
- Department of Genetic Medicine and Development, Swiss Institute of Bioinformatics, University of Geneva Medical School, Geneva, Switzerland
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, Swiss Institute of Bioinformatics, University of Geneva Medical School, Geneva, Switzerland.
| |
Collapse
|
1086
|
Highly Continuous Genome Assembly of Eurasian Perch ( Perca fluviatilis) Using Linked-Read Sequencing. G3-GENES GENOMES GENETICS 2018; 8:3737-3743. [PMID: 30355765 PMCID: PMC6288837 DOI: 10.1534/g3.118.200768] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Eurasian perch (Perca fluviatilis) is the most common fish of the Percidae family and is widely distributed across Eurasia. Perch is a popular target for professional and recreational fisheries, and a promising freshwater aquaculture species in Europe. However, despite its high ecological, economical and societal importance, the available genomic resources for P. fluviatilis are rather limited. In this work, we report de novo assembly and annotation of the whole genome sequence of perch. The linked-read based technology with 10X Genomics Chromium chemistry and Supernova assembler produced a draft perch genome ∼1.0 Gbp assembly (scaffold N50 = 6.3 Mb; the longest individual scaffold of 29.3 Mb; BUSCO completeness of 88.0%), which included 281.6 Mb of putative repeated sequences. The perch genome assembly presented here, generated from small amount of starting material (0.75 ng) and a single linked-read library, is highly continuous and considerably more complete than the currently available draft of P. fluviatilis genome. A total of 23,397 protein-coding genes were predicted, 23,171 (99%) of which were annotated functionally from either sequence homology or protein signature searches. Linked-read technology enables fast, accurate and cost-effective de novo assembly of large non-model eukaryote genomes. The highly continuous assembly of the Eurasian perch genome presented in this study will be an invaluable resource for a range of genetic, ecological, physiological, ecotoxicological, functional and comparative genomic studies in perch and other fish species of the Percidae family.
Collapse
|
1087
|
Wu N, Zhang S, Li X, Cao Y, Liu X, Wang Q, Liu Q, Liu H, Hu X, Zhou XJ, James AA, Zhang Z, Huang Y, Zhan S. Fall webworm genomes yield insights into rapid adaptation of invasive species. Nat Ecol Evol 2018; 3:105-115. [DOI: 10.1038/s41559-018-0746-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 11/06/2018] [Indexed: 11/09/2022]
|
1088
|
Dong X, Chaisiri K, Xia D, Armstrong SD, Fang Y, Donnelly MJ, Kadowaki T, McGarry JW, Darby AC, Makepeace BL. Genomes of trombidid mites reveal novel predicted allergens and laterally transferred genes associated with secondary metabolism. Gigascience 2018; 7:5160133. [PMID: 30445460 PMCID: PMC6275457 DOI: 10.1093/gigascience/giy127] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/18/2018] [Indexed: 12/21/2022] Open
Abstract
Background Trombidid mites have a unique life cycle in which only the larval stage is ectoparasitic. In the superfamily Trombiculoidea ("chiggers"), the larvae feed preferentially on vertebrates, including humans. Species in the genus Leptotrombidium are vectors of a potentially fatal bacterial infection, scrub typhus, that affects 1 million people annually. Moreover, chiggers can cause pruritic dermatitis (trombiculiasis) in humans and domesticated animals. In the Trombidioidea (velvet mites), the larvae feed on other arthropods and are potential biological control agents for agricultural pests. Here, we present the first trombidid mites genomes, obtained both for a chigger, Leptotrombidium deliense, and for a velvet mite, Dinothrombium tinctorium. Results Sequencing was performed using Illumina technology. A 180 Mb draft assembly for D. tinctorium was generated from two paired-end and one mate-pair library using a single adult specimen. For L. deliense, a lower-coverage draft assembly (117 Mb) was obtained using pooled, engorged larvae with a single paired-end library. Remarkably, both genomes exhibited evidence of ancient lateral gene transfer from soil-derived bacteria or fungi. The transferred genes confer functions that are rare in animals, including terpene and carotenoid synthesis. Thirty-seven allergenic protein families were predicted in the L. deliense genome, of which nine were unique. Preliminary proteomic analyses identified several of these putative allergens in larvae. Conclusions Trombidid mite genomes appear to be more dynamic than those of other acariform mites. A priority for future research is to determine the biological function of terpene synthesis in this taxon and its potential for exploitation in disease control.
Collapse
Affiliation(s)
- Xiaofeng Dong
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom.,Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.,School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China.,Institute of Infection & Global Health, University of Liverpool, L3 5RF, United Kingdom
| | - Kittipong Chaisiri
- Institute of Infection & Global Health, University of Liverpool, L3 5RF, United Kingdom.,Faculty of Tropical Medicine, Mahidol University, Ratchathewi Bangkok 10400, Thailand
| | - Dong Xia
- Institute of Infection & Global Health, University of Liverpool, L3 5RF, United Kingdom.,The Royal Veterinary College, London NW1 0TU, United Kingdom
| | - Stuart D Armstrong
- Institute of Infection & Global Health, University of Liverpool, L3 5RF, United Kingdom
| | - Yongxiang Fang
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Tatsuhiko Kadowaki
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - John W McGarry
- Institute of Veterinary Science, University of Liverpool, Liverpool L3 5RP, United Kingdom
| | - Alistair C Darby
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Benjamin L Makepeace
- Institute of Infection & Global Health, University of Liverpool, L3 5RF, United Kingdom
| |
Collapse
|
1089
|
Luo S, Tang M, Frandsen PB, Stewart RJ, Zhou X. The genome of an underwater architect, the caddisfly Stenopsyche tienmushanensis Hwang (Insecta: Trichoptera). Gigascience 2018; 7:5202446. [PMID: 30476205 PMCID: PMC6302954 DOI: 10.1093/gigascience/giy143] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/15/2018] [Indexed: 12/18/2022] Open
Abstract
Background Caddisflies (Insecta: Trichoptera) are a highly adapted freshwater group of insects split from a common ancestor with Lepidoptera. They are the most diverse (>16,000 species) of the strictly aquatic insect orders and are widely employed as bio-indicators in water quality assessment and monitoring. Among the numerous adaptations to aquatic habitats, caddisfly larvae use silk and materials from the environment (e.g., stones, sticks, leaf matter) to build composite structures such as fixed retreats and portable cases. Understanding how caddisflies have adapted to aquatic habitats will help explain the evolution and subsequent diversification of the group. Findings We sequenced a retreat-builder caddisfly Stenopsyche tienmushanensis Hwang and assembled a high-quality genome from both Illumina and Pacific Biosciences (PacBio) sequencing. In total, 601.2 M Illumina reads (90.2 Gb) and 16.9 M PacBio subreads (89.0 Gb) were generated. The 451.5 Mb assembled genome has a contig N50 of 1.29 M, has a longest contig of 4.76 Mb, and covers 97.65% of the 1,658 insect single-copy genes as assessed by Benchmarking Universal Single-Copy Orthologs. The genome comprises 36.76% repetitive elements. A total of 14,672 predicted protein-coding genes were identified. The genome revealed gene expansions in specific groups of the cytochrome P450 family and olfactory binding proteins, suggesting potential genomic features associated with pollutant tolerance and mate finding. In addition, the complete gene complex of the highly repetitive H-fibroin, the major protein component of caddisfly larval silk, was assembled. Conclusions We report the draft genome of Stenopsyche tienmushanensis, the highest-quality caddisfly genome so far. The genome information will be an important resource for the study of caddisflies and may shed light on the evolution of aquatic insects.
Collapse
Affiliation(s)
- Shiqi Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Min Tang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Paul B Frandsen
- Department of Plant and Wildlife Sciences, Brigham Young University, 701 E University Parkway Drive, Provo, UT 84602, USA.,Data Science Lab, Smithsonian Institution, 600 Maryland Ave SW, Washington, DC 20002, USA
| | - Russell J Stewart
- Department of Biomedical Engineering, University of Utah, 20 South 2030 East, Salt Lake City, UT 84112, USA
| | - Xin Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| |
Collapse
|
1090
|
Roscito JG, Sameith K, Pippel M, Francoijs KJ, Winkler S, Dahl A, Papoutsoglou G, Myers G, Hiller M. The genome of the tegu lizard Salvator merianae: combining Illumina, PacBio, and optical mapping data to generate a highly contiguous assembly. Gigascience 2018; 7:5202467. [PMID: 30481296 PMCID: PMC6304105 DOI: 10.1093/gigascience/giy141] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 11/13/2018] [Indexed: 01/28/2023] Open
Abstract
Background Reptiles are a species-rich group with great phenotypic and life history diversity but are highly underrepresented among the vertebrate species with sequenced genomes. Results Here, we report a high-quality genome assembly of the tegu lizard, Salvator merianae, the first lacertoid with a sequenced genome. We combined 74X Illumina short-read, 29.8X Pacific Biosciences long-read, and optical mapping data to generate a high-quality assembly with a scaffold N50 value of 55.4 Mb. The contig N50 value of this assembly is 521 Kb, making it the most contiguous reptile assembly so far. We show that the tegu assembly has the highest completeness of coding genes and conserved non-exonic elements (CNEs) compared to other reptiles. Furthermore, the tegu assembly has the highest number of evolutionarily conserved CNE pairs, corroborating a high assembly contiguity in intergenic regions. As in other reptiles, long interspersed nuclear elements comprise the most abundant transposon class. We used transcriptomic data, homology- and de novo gene predictions to annotate 22,413 coding genes, of which 16,995 (76%) likely have human orthologs as inferred by CESAR-derived gene mappings. Finally, we generated a multiple genome alignment comprising 10 squamates and 7 other amniote species and identified conserved regions that are under evolutionary constraint. CNEs cover 38 Mb (1.8%) of the tegu genome, with 3.3 Mb in these elements being squamate specific. In contrast to placental mammal-specific CNEs, very few of these squamate-specific CNEs (<20 Kb) overlap transposons, highlighting a difference in how lineage-specific CNEs originated in these two clades. Conclusions The tegu lizard genome together with the multiple genome alignment and comprehensive conserved element datasets provide a valuable resource for comparative genomic studies of reptiles and other amniotes.
Collapse
Affiliation(s)
- Juliana G Roscito
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Nöthnitzerstr. 38, 01187, Dresden, Germany.,Center for Systems Biology Dresden, Pfotenhauerstr. 108, 01307, Dresden, Germany
| | - Katrin Sameith
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Nöthnitzerstr. 38, 01187, Dresden, Germany.,Center for Systems Biology Dresden, Pfotenhauerstr. 108, 01307, Dresden, Germany
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany.,Center for Systems Biology Dresden, Pfotenhauerstr. 108, 01307, Dresden, Germany
| | - Kees-Jan Francoijs
- BioNano Genomics, Towne Centre Drive Suite, 100, 92121, San Diego, CA, USA
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany
| | - Andreas Dahl
- Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Fetscherstr. 105, 01307, Dresden, Germany
| | - Georg Papoutsoglou
- BioNano Genomics, Towne Centre Drive Suite, 100, 92121, San Diego, CA, USA
| | - Gene Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany.,Center for Systems Biology Dresden, Pfotenhauerstr. 108, 01307, Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Nöthnitzerstr. 38, 01187, Dresden, Germany.,Center for Systems Biology Dresden, Pfotenhauerstr. 108, 01307, Dresden, Germany
| |
Collapse
|
1091
|
Tan MH, Austin CM, Hammer MP, Lee YP, Croft LJ, Gan HM. Finding Nemo: hybrid assembly with Oxford Nanopore and Illumina reads greatly improves the clownfish (Amphiprion ocellaris) genome assembly. Gigascience 2018; 7:1-6. [PMID: 29342277 PMCID: PMC5848817 DOI: 10.1093/gigascience/gix137] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 12/27/2017] [Indexed: 12/15/2022] Open
Abstract
Background Some of the most widely recognized coral reef fishes are clownfish or anemonefish, members of the family Pomacentridae (subfamily: Amphiprioninae). They are popular aquarium species due to their bright colours, adaptability to captivity, and fascinating behavior. Their breeding biology (sequential hermaphrodites) and symbiotic mutualism with sea anemones have attracted much scientific interest. Moreover, there are some curious geographic-based phenotypes that warrant investigation. Leveraging on the advancement in Nanopore long read technology, we report the first hybrid assembly of the clown anemonefish (Amphiprion ocellaris) genome utilizing Illumina and Nanopore reads, further demonstrating the substantial impact of modest long read sequencing data sets on improving genome assembly statistics. Results We generated 43 Gb of short Illumina reads and 9 Gb of long Nanopore reads, representing approximate genome coverage of 54× and 11×, respectively, based on the range of estimated k-mer-predicted genome sizes of between 791 and 967 Mbp. The final assembled genome is contained in 6404 scaffolds with an accumulated length of 880 Mb (96.3% BUSCO-calculated genome completeness). Compared with the Illumina-only assembly, the hybrid approach generated 94% fewer scaffolds with an 18-fold increase in N50 length (401 kb) and increased the genome completeness by an additional 16%. A total of 27 240 high-quality protein-coding genes were predicted from the clown anemonefish, 26 211 (96%) of which were annotated functionally with information from either sequence homology or protein signature searches. Conclusions We present the first genome of any anemonefish and demonstrate the value of low coverage (∼11×) long Nanopore read sequencing in improving both genome assembly contiguity and completeness. The near-complete assembly of the A. ocellaris genome will be an invaluable molecular resource for supporting a range of genetic, genomic, and phylogenetic studies specifically for clownfish and more generally for other related fish species of the family Pomacentridae.
Collapse
Affiliation(s)
- Mun Hua Tan
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia.,Genomics Facility, Tropical Medicine and Biology Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia.,School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
| | - Christopher M Austin
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia.,Genomics Facility, Tropical Medicine and Biology Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia.,School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
| | - Michael P Hammer
- Museum and Art Gallery of the Northern Territory, Darwin 0801, Australia
| | - Yin Peng Lee
- Genomics Facility, Tropical Medicine and Biology Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia.,School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
| | - Laurence J Croft
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia.,Malaysian Genomics Resource Centre Berhad, Mid Valley City 59200, Kuala Lumpur, Malaysia
| | - Han Ming Gan
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia.,Genomics Facility, Tropical Medicine and Biology Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia.,School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
1092
|
Miller JR, Koren S, Dilley KA, Puri V, Brown DM, Harkins DM, Thibaud-Nissen F, Rosen B, Chen XG, Tu Z, Sharakhov IV, Sharakhova MV, Sebra R, Stockwell TB, Bergman NH, Sutton GG, Phillippy AM, Piermarini PM, Shabman RS. Analysis of the Aedes albopictus C6/36 genome provides insight into cell line utility for viral propagation. Gigascience 2018; 7:1-13. [PMID: 29329394 PMCID: PMC5869287 DOI: 10.1093/gigascience/gix135] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/23/2017] [Indexed: 12/25/2022] Open
Abstract
Background The 50-year-old Aedes albopictus C6/36 cell line is a resource for the detection, amplification, and analysis of mosquito-borne viruses including Zika, dengue, and chikungunya. The cell line is derived from an unknown number of larvae from an unspecified strain of Aedes albopictus mosquitoes. Toward improved utility of the cell line for research in virus transmission, we present an annotated assembly of the C6/36 genome. Results The C6/36 genome assembly has the largest contig N50 (3.3 Mbp) of any mosquito assembly, presents the sequences of both haplotypes for most of the diploid genome, reveals independent null mutations in both alleles of the Dicer locus, and indicates a male-specific genome. Gene annotation was computed with publicly available mosquito transcript sequences. Gene expression data from cell line RNA sequence identified enrichment of growth-related pathways and conspicuous deficiency in aquaporins and inward rectifier K+ channels. As a test of utility, RNA sequence data from Zika-infected cells were mapped to the C6/36 genome and transcriptome assemblies. Host subtraction reduced the data set by 89%, enabling faster characterization of nonhost reads. Conclusions The C6/36 genome sequence and annotation should enable additional uses of the cell line to study arbovirus vector interactions and interventions aimed at restricting the spread of human disease.
Collapse
Affiliation(s)
- Jason R Miller
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850, USA.,College of Natural Sciences and Mathematics, Shepherd University, Shepherdstown, WV 25443, USA
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Kari A Dilley
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850, USA
| | - Vinita Puri
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850, USA
| | - David M Brown
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850, USA
| | - Derek M Harkins
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850, USA
| | | | - Benjamin Rosen
- USDA 10300 Baltimore Ave., Bldg 306 Barc-East, Beltsville, MD 20705-2350, USA
| | - Xiao-Guang Chen
- Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhijian Tu
- Department of Biochemistry and the Fralin Life Science Institute, Virginia Tech, Blacksburg, VA, USA
| | - Igor V Sharakhov
- Department of Entomology and the Fralin Life Science Institute, Virginia Tech, Blacksburg, VA, USA.,Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia
| | - Maria V Sharakhova
- Department of Entomology and the Fralin Life Science Institute, Virginia Tech, Blacksburg, VA, USA.,Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia
| | - Robert Sebra
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | | - Granger G Sutton
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850, USA
| | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Peter M Piermarini
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850, USA.,Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Reed S Shabman
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850, USA.,ATCC, 217 Perry Parkway, Gaithersburg, MD 20877, USA
| |
Collapse
|
1093
|
Celis JS, Wibberg D, Ramírez-Portilla C, Rupp O, Sczyrba A, Winkler A, Kalinowski J, Wilke T. Binning enables efficient host genome reconstruction in cnidarian holobionts. Gigascience 2018; 7:5039706. [PMID: 29917104 PMCID: PMC6049006 DOI: 10.1093/gigascience/giy075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/14/2018] [Indexed: 12/19/2022] Open
Abstract
Background Many cnidarians, including stony corals, engage in complex symbiotic associations, comprising the eukaryotic host, photosynthetic algae, and highly diverse microbial communities—together referred to as holobiont. This taxonomic complexity makes sequencing and assembling coral host genomes extremely challenging. Therefore, previous cnidarian genomic projects were based on symbiont-free tissue samples. However, this approach may not be applicable to the majority of cnidarian species for ecological reasons. We therefore evaluated the performance of an alternative method based on sequence binning for reconstructing the genome of the stony coral Porites rus from a hologenomic sample and compared it to traditional approaches. Results Our results demonstrate that binning performs well for hologenomic data, producing sufficient reads for assembling the draft genome of P. rus. An assembly evaluation based on operational criteria showed results that were comparable to symbiont-free approaches in terms of completeness and usefulness, despite a high degree of fragmentation in our assembly. In addition, we found that binning provides sufficient data for exploratory k-mer estimation of genomic features, such as genome size and heterozygosity. Conclusions Binning constitutes a powerful approach for disentangling taxonomically complex coral hologenomes. Considering the recent decline of coral reefs on the one hand and previous limitations to coral genome sequencing on the other hand, binning may facilitate rapid and reliable genome assembly. This study also provides an important milestone in advancing binning from the metagenomic to the hologenomic and from the prokaryotic to the eukaryotic level.
Collapse
Affiliation(s)
- Juan Sebastián Celis
- Animal Ecology and Systematics, Justus Liebig University Giessen. Heinrich-Buff-Ring 26-32 (IFZ), 35392 Giessen, Germany.,Corporation Center of Excellence in Marine Sciences, Cra 54 No 106-18, Bogotá, Colombia
| | - Daniel Wibberg
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Catalina Ramírez-Portilla
- Animal Ecology and Systematics, Justus Liebig University Giessen. Heinrich-Buff-Ring 26-32 (IFZ), 35392 Giessen, Germany.,Evolutionary Biology and Ecology, Université libre de Bruxelles, Av. Franklin D. Roosevelt 50, CP 160/12, B-1050 Brussels, Belgium
| | - Oliver Rupp
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany
| | - Alexander Sczyrba
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Anika Winkler
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Thomas Wilke
- Animal Ecology and Systematics, Justus Liebig University Giessen. Heinrich-Buff-Ring 26-32 (IFZ), 35392 Giessen, Germany.,Corporation Center of Excellence in Marine Sciences, Cra 54 No 106-18, Bogotá, Colombia
| |
Collapse
|
1094
|
Kusy D, Motyka M, Bocek M, Vogler AP, Bocak L. Genome sequences identify three families of Coleoptera as morphologically derived click beetles (Elateridae). Sci Rep 2018; 8:17084. [PMID: 30459416 PMCID: PMC6244081 DOI: 10.1038/s41598-018-35328-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/30/2018] [Indexed: 11/22/2022] Open
Abstract
Plastoceridae Crowson, 1972, Drilidae Blanchard, 1845 and Omalisidae Lacordaire, 1857 (Elateroidea) are families of the Coleoptera with obscure phylogenetic relationships and modified morphology showing neotenic traits such as soft bodies, reduced wing cases and larviform females. We shotgun sequenced genomes of Plastocerus, Drilus and Omalisus and incorporated them into data matrices of 66 and 4202 single-copy nuclear genes representing Elateroidea. Phylogenetic analyses indicate their terminal positions within the broadly defined well-sclerotized and fully metamorphosed Elateridae and thus Omalisidae should now be considered as Omalisinae stat. nov. in Elateridae Leach, 1815. The results support multiple independent origins of incomplete metamorphosis in Elateridae and indicate the parallel evolution of morphological and ecological traits. Unlike other neotenic elateroids derived from the supposedly pre-adapted aposematically coloured and unpalatable soft-bodied elateroids, such as fireflies (Lampyridae) and net-winged beetles (Lycidae), omalisids and drilids evolved from well-sclerotized click beetles. These findings suggest sudden morphological shifts through incomplete metamorphosis, with important implications for macroevolution, including reduced speciation rate and high extinction risk in unstable habitats. Precise phylogenetic placement is necessary for studies of the molecular mechanisms of ontogenetic shifts leading to profoundly changed morphology.
Collapse
Affiliation(s)
- Dominik Kusy
- Laboratory of Molecular Systematics, Department of Zoology, Faculty of Science, Palacky University, 17. listopadu 50, 771 46, Olomouc, Czech Republic
| | - Michal Motyka
- Laboratory of Molecular Systematics, Department of Zoology, Faculty of Science, Palacky University, 17. listopadu 50, 771 46, Olomouc, Czech Republic
| | - Matej Bocek
- Laboratory of Molecular Systematics, Department of Zoology, Faculty of Science, Palacky University, 17. listopadu 50, 771 46, Olomouc, Czech Republic
| | - Alfried P Vogler
- Department of Life Science, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
- Department of Life Science, Silwood Park Campus, Imperial College London Ascot, London, SL5 7BD, UK
| | - Ladislav Bocak
- Laboratory of Molecular Systematics, Department of Zoology, Faculty of Science, Palacky University, 17. listopadu 50, 771 46, Olomouc, Czech Republic.
| |
Collapse
|
1095
|
Silva-Junior OB, Grattapaglia D, Novaes E, Collevatti RG. Genome assembly of the Pink Ipê (Handroanthus impetiginosus, Bignoniaceae), a highly valued, ecologically keystone Neotropical timber forest tree. Gigascience 2018; 7:1-16. [PMID: 29253216 PMCID: PMC5905499 DOI: 10.1093/gigascience/gix125] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/30/2017] [Indexed: 12/30/2022] Open
Abstract
Background Handroanthus impetiginosus (Mart. ex DC.) Mattos is a keystone Neotropical hardwood tree widely distributed in seasonally dry tropical forests of South and Mesoamerica. Regarded as the “new mahogany,” it is the second most expensive timber, the most logged species in Brazil, and currently under significant illegal trading pressure. The plant produces large amounts of quinoids, specialized metabolites with documented antitumorous and antibiotic effects. The development of genomic resources is needed to better understand and conserve the diversity of the species, to empower forensic identification of the origin of timber, and to identify genes for important metabolic compounds. Findings The genome assembly covers 503.7 Mb (N50 = 81 316 bp), 90.4% of the 557-Mbp genome, with 13 206 scaffolds. A repeat database with 1508 sequences was developed, allowing masking of ∼31% of the assembly. Depth of coverage indicated that consensus determination adequately removed haplotypes assembled separately due to the extensive heterozygosity of the species. Automatic gene prediction provided 31 688 structures and 35 479 messenger RNA transcripts, while external evidence supported a well-curated set of 28 603 high-confidence models (90% of total). Finally, we used the genomic sequence and the comprehensive gene content annotation to identify genes related to the production of specialized metabolites. Conclusions This genome assembly is the first well-curated resource for a Neotropical forest tree and the first one for a member of the Bignoniaceae family, opening exceptional opportunities to empower molecular, phytochemical, and breeding studies. This work should inspire the development of similar genomic resources for the largely neglected forest trees of the mega-diverse tropical biomes.
Collapse
Affiliation(s)
- Orzenil Bonfim Silva-Junior
- EMBRAPA Recursos Genéticos e Biotecnologia, EPqB, Brasília, DF. 70770-910, Brazil.,Programa de Ciências Genômicas e Biotecnologia - Universidade Católica de Brasília, SGAN 916 Modulo B, Brasilia, DF 70790-160, Brazil
| | - Dario Grattapaglia
- EMBRAPA Recursos Genéticos e Biotecnologia, EPqB, Brasília, DF. 70770-910, Brazil.,Programa de Ciências Genômicas e Biotecnologia - Universidade Católica de Brasília, SGAN 916 Modulo B, Brasilia, DF 70790-160, Brazil
| | - Evandro Novaes
- Escola de Agronomia, Universidade Federal de Goiás, CP 131. Goiânia, GO. 74001-970, Brazil
| | - Rosane G Collevatti
- Laboratório de Genética and Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás. Goiânia, GO. 74001-970, Brazil
| |
Collapse
|
1096
|
Mu Y, Huo J, Guan Y, Fan D, Xiao X, Wei J, Li Q, Mu P, Ao J, Chen X. An improved genome assembly for Larimichthys crocea reveals hepcidin gene expansion with diversified regulation and function. Commun Biol 2018; 1:195. [PMID: 30480097 PMCID: PMC6240063 DOI: 10.1038/s42003-018-0207-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/25/2018] [Indexed: 12/11/2022] Open
Abstract
Larimichthys crocea (large yellow croaker) is a type of perciform fish well known for its peculiar physiological properties and economic value. Here, we constructed an improved version of the L. crocea genome assembly, which contained 26,100 protein-coding genes. Twenty-four pseudo-chromosomes of L. crocea were also reconstructed, comprising 90% of the genome assembly. This improved assembly revealed several expansions in gene families associated with olfactory detection, detoxification, and innate immunity. Specifically, six hepcidin genes (LcHamps) were identified in L. crocea, possibly resulting from lineage-specific gene duplication. All LcHamps possessed similar genomic structures and functional domains, but varied substantially with respect to expression pattern, transcriptional regulation, and biological function. LcHamp1 was associated specifically with iron metabolism, while LcHamp2s were functionally diverse, involving in antibacterial activity, antiviral activity, and regulation of intracellular iron metabolism. This functional diversity among gene copies may have allowed L. crocea to adapt to diverse environmental conditions.
Collapse
Affiliation(s)
- Yinnan Mu
- Institute of Oceanology, College of Animal Sciences, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, 361005, Xiamen, China
| | - Jieying Huo
- Institute of Oceanology, College of Animal Sciences, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Yanyun Guan
- Institute of Oceanology, College of Animal Sciences, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | | | - Xiaoqiang Xiao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, 361005, Xiamen, China
| | - Jingguang Wei
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Qiuhua Li
- Institute of Oceanology, College of Animal Sciences, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Pengfei Mu
- Institute of Oceanology, College of Animal Sciences, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Jingqun Ao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, 361005, Xiamen, China
| | - Xinhua Chen
- Institute of Oceanology, College of Animal Sciences, Fujian Agriculture and Forestry University, 350002, Fuzhou, China.
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, 361005, Xiamen, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
1097
|
Sarropoulou E, Sundaram AYM, Kaitetzidou E, Kotoulas G, Gilfillan GD, Papandroulakis N, Mylonas CC, Magoulas A. Full genome survey and dynamics of gene expression in the greater amberjack Seriola dumerili. Gigascience 2018; 6:1-13. [PMID: 29126158 PMCID: PMC5751066 DOI: 10.1093/gigascience/gix108] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/02/2017] [Indexed: 02/05/2023] Open
Abstract
Background Teleosts of the genus Seriola, commonly known as amberjacks, are of high commercial value in international markets due to their flesh quality and worldwide distribution. The Seriola species of interest to Mediterranean aquaculture is the greater amberjack (Seriola dumerili). This species holds great potential for the aquaculture industry, but in captivity, reproduction has proved to be challenging, and observed growth dysfunction hinders their domestication. Insights into molecular mechanisms may contribute to a better understanding of traits like growth and sex, but investigations to unravel the molecular background of amberjacks have begun only recently. Findings Illumina HiSeq sequencing generated a high-coverage greater amberjack genome sequence comprising 45 909 scaffolds. Comparative mapping to the Japanese yellowtail (Seriola quinqueriadiata) and to the model species medaka (Oryzias latipes) allowed the generation of in silico groups. Additional gonad transcriptome sequencing identified sex-biased transcripts, including known sex-determining and differentiation genes. Investigation of the muscle transcriptome of slow-growing individuals showed that transcripts involved in oxygen and gas transport were differentially expressed compared with fast/normal-growing individuals. On the other hand, transcripts involved in muscle functions were found to be enriched in fast/normal-growing individuals. Conclusion The present study provides the first insights into the molecular background of male and female amberjacks and of fast- and slow-growing fish. Therefore, valuable molecular resources have been generated in the form of a first draft genome and a reference transcriptome. Sex-biased genes, which may also have roles in sex determination or differentiation, and genes that may be responsible for slow growth are suggested.
Collapse
Affiliation(s)
- Elena Sarropoulou
- Institute of Marine Biology, Biotechnology and Aquaculture Hellenic Centre for Marine Research Crete, Thalassocosmos, Gournes Pediados, P.O.Box 2214, 71003 Heraklion Crete, Greece
| | - Arvind Y M Sundaram
- Norwegian High Throughput Sequencing Centre, Department of Medical Genetics, Oslo University Hospital (Ullevål), Kirkeveien 166 0450, Oslo, Norway
| | - Elisavet Kaitetzidou
- Institute of Marine Biology, Biotechnology and Aquaculture Hellenic Centre for Marine Research Crete, Thalassocosmos, Gournes Pediados, P.O.Box 2214, 71003 Heraklion Crete, Greece
| | - Georgios Kotoulas
- Institute of Marine Biology, Biotechnology and Aquaculture Hellenic Centre for Marine Research Crete, Thalassocosmos, Gournes Pediados, P.O.Box 2214, 71003 Heraklion Crete, Greece
| | - Gregor D Gilfillan
- Norwegian High Throughput Sequencing Centre, Department of Medical Genetics, Oslo University Hospital (Ullevål), Kirkeveien 166 0450, Oslo, Norway
| | - Nikos Papandroulakis
- Institute of Marine Biology, Biotechnology and Aquaculture Hellenic Centre for Marine Research Crete, Thalassocosmos, Gournes Pediados, P.O.Box 2214, 71003 Heraklion Crete, Greece
| | - Constantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture Hellenic Centre for Marine Research Crete, Thalassocosmos, Gournes Pediados, P.O.Box 2214, 71003 Heraklion Crete, Greece
| | - Antonios Magoulas
- Institute of Marine Biology, Biotechnology and Aquaculture Hellenic Centre for Marine Research Crete, Thalassocosmos, Gournes Pediados, P.O.Box 2214, 71003 Heraklion Crete, Greece
| |
Collapse
|
1098
|
Renaut S, Guerra D, Hoeh WR, Stewart DT, Bogan AE, Ghiselli F, Milani L, Passamonti M, Breton S. Genome Survey of the Freshwater Mussel Venustaconcha ellipsiformis (Bivalvia: Unionida) Using a Hybrid De Novo Assembly Approach. Genome Biol Evol 2018; 10:1637-1646. [PMID: 29878181 PMCID: PMC6054159 DOI: 10.1093/gbe/evy117] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2018] [Indexed: 02/03/2023] Open
Abstract
Freshwater mussels (Bivalvia: Unionida) serve an important role as aquatic ecosystem engineers but are one of the most critically imperilled groups of animals. Here, we used a combination of sequencing strategies to assemble and annotate a draft genome of Venustaconcha ellipsiformis, which will serve as a valuable genomic resource given the ecological value and unique “doubly uniparental inheritance” mode of mitochondrial DNA transmission of freshwater mussels. The genome described here was obtained by combining high-coverage short reads (65× genome coverage of Illumina paired-end and 11× genome coverage of mate-pairs sequences) with low-coverage Pacific Biosciences long reads (0.3× genome coverage). Briefly, the final scaffold assembly accounted for a total size of 1.54 Gb (366,926 scaffolds, N50 = 6.5 kb, with 2.3% of “N” nucleotides), representing 86% of the predicted genome size of 1.80 Gb, while over one third of the genome (37.5%) consisted of repeated elements and >85% of the core eukaryotic genes were recovered. Given the repeated genetic bottlenecks of V. ellipsiformis populations as a result of glaciations events, heterozygosity was also found to be remarkably low (0.6%), in contrast to most other sequenced bivalve species. Finally, we reassembled the full mitochondrial genome and found six polymorphic sites with respect to the previously published reference. This resource opens the way to comparative genomics studies to identify genes related to the unique adaptations of freshwater mussels and their distinctive mitochondrial inheritance mechanism.
Collapse
Affiliation(s)
- Sébastien Renaut
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Canada.,Quebec Centre for Biodiversity Science, Montréal, Québec, Canada
| | - Davide Guerra
- Département de Sciences Biologiques, Université de Montréal, Canada
| | - Walter R Hoeh
- Department of Biological Sciences, Kent State University
| | - Donald T Stewart
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| | - Arthur E Bogan
- North Carolina Museum of Natural Sciences, Raleigh, North Carolina
| | - Fabrizio Ghiselli
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Italy
| | - Liliana Milani
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Italy
| | - Marco Passamonti
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Italy
| | - Sophie Breton
- Quebec Centre for Biodiversity Science, Montréal, Québec, Canada.,Département de Sciences Biologiques, Université de Montréal, Canada
| |
Collapse
|
1099
|
A continuous genome assembly of the corkwing wrasse (Symphodus melops). Genomics 2018; 110:399-403. [DOI: 10.1016/j.ygeno.2018.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/06/2018] [Accepted: 04/10/2018] [Indexed: 12/20/2022]
|
1100
|
Genomic signatures of local adaptation to the degree of environmental predictability in rotifers. Sci Rep 2018; 8:16051. [PMID: 30375419 PMCID: PMC6207753 DOI: 10.1038/s41598-018-34188-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/27/2018] [Indexed: 11/09/2022] Open
Abstract
Environmental fluctuations are ubiquitous and thus essential for the study of adaptation. Despite this, genome evolution in response to environmental fluctuations —and more specifically to the degree of environmental predictability– is still unknown. Saline lakes in the Mediterranean region are remarkably diverse in their ecological conditions, which can lead to divergent local adaptation patterns in the inhabiting aquatic organisms. The facultatively sexual rotifer Brachionus plicatilis shows diverging local adaptation in its life-history traits in relation to estimated environmental predictability in its habitats. Here, we used an integrative approach —combining environmental, phenotypic and genomic data for the same populations– to understand the genomic basis of this diverging adaptation. Firstly, a novel draft genome for B. plicatilis was assembled. Then, genome-wide polymorphisms were studied using genotyping by sequencing on 270 clones from nine populations in eastern Spain. As a result, 4,543 high-quality SNPs were identified and genotyped. More than 90 SNPs were found to be putatively under selection with signatures of diversifying and balancing selection. Over 140 SNPs were correlated with environmental or phenotypic variables revealing signatures of local adaptation, including environmental predictability. Putative functions were associated to most of these SNPs, since they were located within annotated genes. Our results reveal associations between genomic variation and the degree of environmental predictability, providing genomic evidence of adaptation to local conditions in natural rotifer populations.
Collapse
|