1051
|
Lin JS, Lin CC, Li YC, Wu MT, Tsai MH, Hsing YIC, Jeng ST. Interaction of small RNA-8105 and the intron of IbMYB1 RNA regulates IbMYB1 family genes through secondary siRNAs and DNA methylation after wounding. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:781-794. [PMID: 23663233 DOI: 10.1111/tpj.12238] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 05/06/2013] [Accepted: 05/08/2013] [Indexed: 06/02/2023]
Abstract
Small RNAs (sRNAs) play important roles in plants under stress conditions. However, limited research has been performed on the sRNAs involved in plant wound responses. In the present study, a novel wounding-induced sRNA, sRNA8105, was identified in sweet potato (Ipomoea batatas cv. Tainung 57) using microarray analysis. It was found that expression of sRNA8105 increased after mechanical wounding. Furthermore, Dicer-like 1 (DCL1) is required for the sRNA8105 precursor (pre-sRNA8105) to generate 22 and 24 nt mature sRNA8105. sRNA8105 targeted the first intron of IbMYB1 (MYB domain protein 1) before RNA splicing, and mediated RNA cleavage and DNA methylation of IbMYB1. The interaction between sRNA8105 and IbMYB1 was confirmed by cleavage site mapping, agro-infiltration analyses, and use of a transgenic sweet potato over-expressing pre-sRNA8105 gene. Induction of IbMYB1-siRNA was observed in the wild-type upon wounding and in transgenic sweet potato over-expressing pre-sRNA8105 gene without wounding, resulting in decreased expression of the whole IbMYB1 gene family, i.e. IbMYB1 and the IbMYB2 genes, and thus directing metabolic flux toward biosynthesis of lignin in the phenylpropanoid pathway. In conclusion, sRNA8105 induced by wounding binds to the first intron of IbMYB1 RNA to methylate IbMYB1, cleave IbMYB1 RNA, and trigger production of secondary siRNAs, further repressing the expression of the IbMYB1 family genes and regulating the phenylpropanoid pathway.
Collapse
Affiliation(s)
- Jeng-Shane Lin
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Roosevelt Road, Taipei, 106, Taiwan
| | | | | | | | | | | | | |
Collapse
|
1052
|
Baucher M, Moussawi J, Vandeputte OM, Monteyne D, Mol A, Pérez-Morga D, El Jaziri M. A role for the miR396/GRF network in specification of organ type during flower development, as supported by ectopic expression of Populus trichocarpa miR396c in transgenic tobacco. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:892-8. [PMID: 23173976 DOI: 10.1111/j.1438-8677.2012.00696.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 09/26/2012] [Indexed: 05/18/2023]
Abstract
The MIR396 family, composed of ath-miR396a and ath-miR396b in Arabidopsis, is conserved among plant species and is known to target the Growth-Regulating Factor (GRF) gene family. ath-miR396 overexpressors or grf mutants are characterised by small and narrow leaves and show embryogenic defects such as cotyledon fusion. Heterologous expression of ath-miR396a has been reported in tobacco and resulted in reduction of the expression of three NtGRF genes. In this study, the precursor of the Populus trichocarpa ptc-miR396c, with a mature sequence identical to ath-miR396b, was expressed under control of the CaMV35S promoter in tobacco. Typical phenotypes of GRF down-regulation were observed, including cotyledon fusion and lack of shoot apical meristem (SAM). At later stage of growth, transgenic plants had delayed development and altered specification of organ type during flower development. The third and fourth whorls of floral organs were modified into stigmatoid anthers and fasciated carpels, respectively. Several NtGRF genes containing a miR396 binding site were found to be down-regulated, and the cleavage of their corresponding mRNA at the miR396 binding site was confirmed for two of them using RACE-PCR analysis. The data obtained agree with the functional conservation of the miR396 family in plants and suggest a role for the miR396/GRF network in determination of floral organ specification.
Collapse
Affiliation(s)
- M Baucher
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, Gosselies, Belgium.
| | | | | | | | | | | | | |
Collapse
|
1053
|
Zhang J, Mao Z, Chong K. A global profiling of uncapped mRNAs under cold stress reveals specific decay patterns and endonucleolytic cleavages in Brachypodium distachyon. Genome Biol 2013; 14:R92. [PMID: 24000894 PMCID: PMC4054888 DOI: 10.1186/gb-2013-14-8-r92] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 08/30/2013] [Indexed: 01/15/2023] Open
Abstract
Background mRNA degradation is a critical factor in determining mRNA abundance and enables rapid adjustment of gene expression in response to environmental stress. The involvement of processing bodies in stress response suggests a role for decapping-mediated mRNA degradation. However, little is known about the role of mRNA degradation under stressful environmental conditions. Results Here, we perform a global study of uncapped mRNAs, via parallel analysis of RNA ends (PARE), under cold stress in Brachypodium distachyon. Enrichment analysis indicates that degradation products detected by PARE are mainly generated by the decapping pathway. Endonucleolytic cleavages are detected, uncovering another way of modulating gene expression. PARE and RNA-Seq analyses identify four types of mRNA decay patterns. Type II genes, for which light-harvesting processes are over-represented in gene ontology analyses, show unchanged transcript abundance and altered uncapped transcript abundance. Uncapping-mediated transcript stability of light harvesting-related genes changes significantly in response to cold stress, which may allow rapid adjustments in photosynthetic activity in response to cold stress. Transcript abundance and uncapped transcript abundance for type III genes changes in opposite directions in response to cold stress, indicating that uncapping-mediated mRNA degradation plays a role in regulating gene expression. Conclusion To our knowledge, this is the first global analysis of mRNA degradation under environmental stress conditions in Brachypodium distachyon. We uncover specific degradation and endonucleolytic cleavage patterns under cold stress, which will deepen our understanding of mRNA degradation under stressful environmental conditions, as well as the cold stress response mechanism in monocots.
Collapse
|
1054
|
Bologna NG, Schapire AL, Zhai J, Chorostecki U, Boisbouvier J, Meyers BC, Palatnik JF. Multiple RNA recognition patterns during microRNA biogenesis in plants. Genome Res 2013; 23:1675-89. [PMID: 23990609 PMCID: PMC3787264 DOI: 10.1101/gr.153387.112] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
MicroRNAs (miRNAs) derive from longer precursors with fold-back structures. While animal miRNA precursors have homogenous structures, plant precursors comprise a collection of fold-backs with variable size and shape. Here, we design an approach to systematically analyze miRNA processing intermediates and characterize the biogenesis of most of the evolutionarily conserved miRNAs present in Arabidopsis thaliana. We found that plant miRNAs are processed by four mechanisms, depending on the sequential direction of the processing machinery and the number of cuts required to release the miRNA. Classification of the precursors according to their processing mechanism revealed specific structural determinants for each group. We found that the complexity of the miRNA processing pathways occurs in both ancient and evolutionarily young sequences and that members of the same family can be processed in different ways. We observed that different structural determinants compete for the processing machinery and that alternative miRNAs can be generated from a single precursor. The results provide an explanation for the structural diversity of miRNA precursors in plants and new insights toward the understanding of the biogenesis of small RNAs.
Collapse
Affiliation(s)
- Nicolás G Bologna
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000 Rosario, Argentina
| | | | | | | | | | | | | |
Collapse
|
1055
|
Yang L, Jue D, Li W, Zhang R, Chen M, Yang Q. Identification of MiRNA from eggplant (Solanum melongena L.) by small RNA deep sequencing and their response to Verticillium dahliae infection. PLoS One 2013; 8:e72840. [PMID: 24015279 PMCID: PMC3754920 DOI: 10.1371/journal.pone.0072840] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 07/16/2013] [Indexed: 12/19/2022] Open
Abstract
MiRNAs are a class of non-coding small RNAs that play important roles in the regulation of gene expression. Although plant miRNAs have been extensively studied in model systems, less is known in other plants with limited genome sequence data, including eggplant (Solanum melongena L.). To identify miRNAs in eggplant and their response to Verticillium dahliae infection, a fungal pathogen for which clear understanding of infection mechanisms and effective cure methods are currently lacking, we deep-sequenced two small RNA (sRNA) libraries prepared from mock-infected and infected seedlings of eggplants. Specifically, 30,830,792 reads produced 7,716,328 unique miRNAs representing 99 known miRNA families that have been identified in other plant species. Two novel putative miRNAs were predicted with eggplant ESTs. The potential targets of the identified known and novel miRNAs were also predicted based on sequence homology search. It was observed that the length distribution of obtained sRNAs and the expression of 6 miRNA families were obviously different between the two libraries. These results provide a framework for further analysis of miRNAs and their role in regulating plant response to fungal infection and Verticillium wilt in particular.
Collapse
Affiliation(s)
- Liu Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, P.R. China
| | - Dengwei Jue
- College of Life Sciences, Nanjing Agricultural University, Nanjing, P.R. China
| | - Wang Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, P.R. China
| | - Ruijie Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, P.R. China
| | - Min Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, P.R. China
| | - Qing Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, P.R. China
- * E-mail:
| |
Collapse
|
1056
|
Lau SKP, Chow WN, Wong AYP, Yeung JMY, Bao J, Zhang N, Lok S, Woo PCY, Yuen KY. Identification of microRNA-like RNAs in mycelial and yeast phases of the thermal dimorphic fungus Penicillium marneffei. PLoS Negl Trop Dis 2013; 7:e2398. [PMID: 23991243 PMCID: PMC3749987 DOI: 10.1371/journal.pntd.0002398] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 07/19/2013] [Indexed: 01/16/2023] Open
Abstract
Background Penicillium marneffei is the most important thermal dimorphic fungus causing systemic mycosis in China and Southeast Asia. While miRNAs are increasingly recognized for their roles in post-transcriptional regulation of gene expression in animals and plants, miRNAs in fungi were less well studied and their potential roles in fungal dimorphism were largely unknown. Based on P. marneffei genome sequence, we hypothesize that miRNA-like RNAs (milRNAs) may be expressed in the dimorphic fungus. Methodology/Principal Findings We attempted to identify milRNAs in P. marneffei in both mycelial and yeast phase using high-throughput sequencing technology. Small RNAs were more abundantly expressed in mycelial than yeast phase. Sequence analysis revealed 24 potential milRNA candidates, including 17 candidates in mycelial and seven in yeast phase. Two genes, dcl-1 and dcl-2, encoding putative Dicer-like proteins and the gene, qde-2, encoding Argonaute-like protein, were identified in P. marneffei. Phylogenetic analysis showed that dcl-2 of P. marneffei was more closely related to the homologues in other thermal dimorphic pathogenic fungi than to Penicillium chrysogenum and Aspergillus spp., suggesting the co-evolution of dcl-2 among the thermal dimorphic fungi. Moreover, dcl-2 demonstrated higher mRNA expression levels in mycelial than yeast phase by 7 folds (P<0.001). Northern blot analysis confirmed the expression of two milRNAs, PM-milR-M1 and PM-milR-M2, only in mycelial phase. Using dcl-1KO, dcl-2KO, dclDKO and qde-2KO deletion mutants, we showed that the biogenesis of both milRNAs were dependent on dcl-2 but not dcl-1 or qde-2. The mRNA expression levels of three predicted targets of PM-milR-M1 were upregulated in knockdown strain PM-milR-M1KD, supporting regulatory function of milRNAs. Conclusions/Significance Our findings provided the first evidence for differential expression of milRNAs in different growth phases of thermal dimorphic fungi and shed light on the evolution of fungal proteins involved in milRNA biogenesis and possible role of post-transcriptional control in governing thermal dimorphism. Penicillium marneffei is the most important thermal dimorphic pathogenic fungus in Southeast Asia. Despite findings on diverse genes and mechanisms involved in dimorphic switching, the key to signally pathways governing the switch is still unknown. Since miRNAs are important regulatory molecules in eukaryotes, we attempt to define if miRNAs are expressed in different growth phases of P. marneffei. Using high-throughput sequencing, we identified 24 potential milRNA candidates in P. marneffei, which were more abundantly expressed in mycelial than yeast phase. Two genes, dcl-1 and dcl-2, encoding Dicer-like proteins and the gene, qde-2, encoding Argonaute-like protein, were also identified. Phylogenetic analysis showed that dcl-2 of P. marneffei was more closely related to the homologues in other thermal dimorphic pathogenic fungi than to Penicillium chrysogenum and Aspergillus spp.. dcl-2 demonstrated higher mRNA levels in mycelial than yeast phase. Northern blot analysis confirmed expression of two milRNAs, PM-milR-M1 and PM-milR-M2, only in mycelial phase, whose expression was dependent on dcl-2 but not dcl-1 or qde-2. The mRNA levels of three predicted targets of PM-milR-M1 were upregulated in knockdown strain PM-milR-M1KD, supporting its regulatory function. This study represents the first discovery of milRNAs in thermal dimorphic fungi, with differential expression in different growth phases.
Collapse
Affiliation(s)
- Susanna K. P. Lau
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Wang-Ngai Chow
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Annette Y. P. Wong
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Julian M. Y. Yeung
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Jessie Bao
- Genome Research Centre, The University of Hong Kong, Hong Kong, China
| | - Na Zhang
- Genome Research Centre, The University of Hong Kong, Hong Kong, China
| | - Si Lok
- Genome Research Centre, The University of Hong Kong, Hong Kong, China
| | - Patrick C. Y. Woo
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
- * E-mail: (PCYW); (KYY)
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
- * E-mail: (PCYW); (KYY)
| |
Collapse
|
1057
|
Li XM, Sang YL, Zhao XY, Zhang XS. High-throughput sequencing of small RNAs from pollen and silk and characterization of miRNAs as candidate factors involved in pollen-silk interactions in maize. PLoS One 2013; 8:e72852. [PMID: 23991159 PMCID: PMC3749131 DOI: 10.1371/journal.pone.0072852] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 07/13/2013] [Indexed: 11/18/2022] Open
Abstract
In angiosperms, successful pollen-pistil interactions are the prerequisite and guarantee of subsequent fertilization and seed production. Recent profile analyses have helped elucidate molecular mechanisms underlying these processes at both transcriptomic and proteomic levels, but the involvement of miRNAs in pollen-pistil interactions is still speculative. In this study, we sequenced four small RNA libraries derived from mature pollen, in vitro germinated pollen, mature silks, and pollinated silks of maize (Zea mays L.). We identified 161 known miRNAs belonging to 27 families and 82 novel miRNAs. Of these, 40 conserved and 16 novel miRNAs showed different expression levels between mature and germinated pollen, and 30 conserved and eight novel miRNAs were differentially expressed between mature and pollinated silks. As candidates for factors associated with pollen-silk (pistil) interactions, expression patterns of the two sets of differentially expressed miRNAs were confirmed by stem-loop real-time RT-PCR. Transcript levels of 22 predicted target genes were also validated using real-time RT-PCR; most of these exhibited expression patterns contrasting with those of their corresponding miRNAs. In addition, GO analysis of target genes of differentially expressed miRNAs revealed that functional categories related to auxin signal transduction and gene expression regulation were overrepresented. These results suggest that miRNA-mediated auxin signal transduction and transcriptional regulation have roles in pollen-silk interactions. The results of our study provide novel information for understanding miRNA regulatory roles in pollen-pistil interactions.
Collapse
Affiliation(s)
- Xiao Ming Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| | - Ya Lin Sang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
- College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China
| | - Xiang Yu Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| |
Collapse
|
1058
|
Noorbakhsh J, Lang AH, Mehta P. Intrinsic noise of microRNA-regulated genes and the ceRNA hypothesis. PLoS One 2013; 8:e72676. [PMID: 23991139 PMCID: PMC3749174 DOI: 10.1371/journal.pone.0072676] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 07/16/2013] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs are small noncoding RNAs that regulate genes post-transciptionally by binding and degrading target eukaryotic mRNAs. We use a quantitative model to study gene regulation by inhibitory microRNAs and compare it to gene regulation by prokaryotic small non-coding RNAs (sRNAs). Our model uses a combination of analytic techniques as well as computational simulations to calculate the mean-expression and noise profiles of genes regulated by both microRNAs and sRNAs. We find that despite very different molecular machinery and modes of action (catalytic vs stoichiometric), the mean expression levels and noise profiles of microRNA-regulated genes are almost identical to genes regulated by prokaryotic sRNAs. This behavior is extremely robust and persists across a wide range of biologically relevant parameters. We extend our model to study crosstalk between multiple mRNAs that are regulated by a single microRNA and show that noise is a sensitive measure of microRNA-mediated interaction between mRNAs. We conclude by discussing possible experimental strategies for uncovering the microRNA-mRNA interactions and testing the competing endogenous RNA (ceRNA) hypothesis.
Collapse
Affiliation(s)
- Javad Noorbakhsh
- Physics Department, Boston University, Boston, Massachusetts, United States of America
| | - Alex H. Lang
- Physics Department, Boston University, Boston, Massachusetts, United States of America
| | - Pankaj Mehta
- Physics Department, Boston University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
1059
|
Klironomos FD, Berg J. Quantitative analysis of competition in posttranscriptional regulation reveals a novel signature in target expression variation. Biophys J 2013; 104:951-8. [PMID: 23442974 DOI: 10.1016/j.bpj.2013.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 01/04/2023] Open
Abstract
When small RNAs are loaded onto Argonaute proteins they can form the RNA-induced silencing complexes (RISCs), which mediate RNA interference (RNAi). RISC-formation is dependent on a shared pool of Argonaute proteins and RISC-loading factors, and is susceptible to competition among small RNAs. We present a mathematical model that aims to understand how small RNA competition for RISC-formation affects target gene repression. We discuss that small RNA activity is limited by RISC-formation, RISC-degradation, and the availability of Argonautes. We show that different competition conditions for RISC-loading result in different signatures of RNAi determined also by the amount of RISC-recycling taking place. In particular, we find that the small RNAs, although less efficient at RISC-formation, can perform in the low RISC-recycling range as well as their more effective counterparts. Additionally, we predict that under conditions of low RISC-loading efficiency and high RISC-recycling, the variation in target levels increases linearly with the target transcription rate. Furthermore, we show that RISC-recycling determines the effect that Argonaute scarcity conditions have on target expression variation. Our observations, taken together, offer a framework of predictions that can be used to infer from data the particular characteristics of underlying RNAi activity.
Collapse
|
1060
|
Lu X, Guan Q, Zhu J. Downregulation of CSD2 by a heat-inducible miR398 is required for thermotolerance in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2013; 8:24952. [PMID: 23733060 PMCID: PMC3999080 DOI: 10.4161/psb.24952] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
MicroRNAs (miRNAs) play important roles in plant growth and development and abiotic stress responses. We report here that heat stress rapidly induces miR398 and reduces transcript of its target gene CSD2. Transgenic plants overexpressing the miR398-resistant form of CSD2 are more sensitive to heat stress than transgenic plants overexpressing normal coding sequence of CSD2. Expression of heat stress transcription factors (HSFs) and heat shock proteins (HSPs) is reduced in the heat-sensitive transgenic plants overexpressing miR398-resistant form of CSD2. Our results suggest that downregulation of CSD2 by the heat-inducible miR398 is required for thermotolerance in Arabidopsis.
Collapse
Affiliation(s)
- Xiaoyan Lu
- Agricultural College; Shi He Zi University; Xinjiang, PR China
| | - Qingmei Guan
- Department of Plant Science and Landscape Architecture; University of Maryland; College Park, MD USA
| | - Jianhua Zhu
- Department of Plant Science and Landscape Architecture; University of Maryland; College Park, MD USA
- Correspondence to: Jianhua Zhu,
| |
Collapse
|
1061
|
Sangwan RS, Tripathi S, Singh J, Narnoliya LK, Sangwan NS. De novo sequencing and assembly of Centella asiatica leaf transcriptome for mapping of structural, functional and regulatory genes with special reference to secondary metabolism. Gene 2013; 525:58-76. [DOI: 10.1016/j.gene.2013.04.057] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 04/10/2013] [Accepted: 04/16/2013] [Indexed: 11/15/2022]
|
1062
|
Liu Y, Wang Y, Zhu QH, Fan L. Identification of phasiRNAs in wild rice (Oryza rufipogon). PLANT SIGNALING & BEHAVIOR 2013; 8:25079. [PMID: 23733069 PMCID: PMC4005798 DOI: 10.4161/psb.25079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plant miRNAs can trigger the production of phased, secondary siRNAs from either non-coding or protein-coding genes. In this study, at least 864 and 3,961 loci generating 21-nt and 24-nt phased siRNAs (phasiRNAs),respectively, were identified in three tissues from wild rice. Of these phasiRNA-producing loci, or PHAS genes, biogenesis of phasiRNAs in at least 160 of 21-nt and 254 of 24-nt loci could be triggered by interaction with miRNA(s). Developing seeds had more PHAS genes than leaves and roots. Genetic constrain on miRNA-triggered PHAS genes suggests that phasiRNAs might be one of the driving forces contributed to rice domestication.
Collapse
Affiliation(s)
- Yang Liu
- Department of Agronomy & James D. Watson Institute of Genome Sciences; Zhejiang University; Hangzhou, PR China
| | - Yu Wang
- Department of Agronomy & James D. Watson Institute of Genome Sciences; Zhejiang University; Hangzhou, PR China
| | | | - Longjiang Fan
- Department of Agronomy & James D. Watson Institute of Genome Sciences; Zhejiang University; Hangzhou, PR China
- Correspondence to: Longjiang Fan,
| |
Collapse
|
1063
|
Fang R, Li L, Li J. Spatial and temporal expression modes of MicroRNAs in an elite rice hybrid and its parental lines. PLANTA 2013; 238:259-69. [PMID: 23640684 DOI: 10.1007/s00425-013-1881-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 03/31/2013] [Indexed: 05/22/2023]
Abstract
Heterosis is a commonly observed phenomenon in nature and refers to the superior performance of hybrids relative to both parents. The molecular mechanisms of heterosis are mostly unknown. Quantitative trait locus (QTL) mapping has been used to explain the genetic basis of heterosis, and large amounts of QTLs have been mapped for various agronomic traits, but the nature of QTL contributing to heterosis is still enigmatic. MicroRNAs (miRNAs) are master regulators in the processes of plant development and trait performance, and many miRNAs are predicted to reside in QTL intervals. We analyzed the expression modes of miRNAs, which were picked up from miRNA databases and chosen from those predicted from QTL intervals by bioinformatic approaches, in different organs at developmental stages of an elite rice hybrid and its parents. All possible modes of action for miRNA expression were detected, but most miRNAs showed nonadditive mode, and different stages and distinct organs displayed different patterns of miRNA expression. A large proportion of miRNAs were not detected for expression in leaves but expressed in the culms and roots of the hybrid at tillering stage. MiRNAs from grain-weight QTL intervals have multiple effects on grain development. Together, our results reveal that miRNAs, especially those from QTL intervals, play roles in heterotic performance in this elite rice hybrid, our results also shade new light on understanding the molecular mechanisms of heterosis.
Collapse
Affiliation(s)
- Ruiqiu Fang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | | | | |
Collapse
|
1064
|
Ma X, Shao C, Wang H, Jin Y, Meng Y. Construction of small RNA-mediated gene regulatory networks in the roots of rice (Oryza sativa). BMC Genomics 2013; 14:510. [PMID: 23889819 PMCID: PMC3734165 DOI: 10.1186/1471-2164-14-510] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/26/2013] [Indexed: 11/10/2022] Open
Abstract
Background The root systems play essential roles for plants to anchorage to the soil, and to exploit the mineral and water resources. The molecular mechanisms underlying root development have been extensively studied to improve root system architecture, especially for the crops. Several microRNA (miRNA) families have been demonstrated to be involved in plant root development. However, whether the other small RNA (sRNA) species, which occupy a dominant portion of the plant endogenous sRNA population, possess potential roles in root development remains unclear. Results In this study, by using sRNA high-throughput sequencing data, we made a comparison of the sRNA accumulation levels between the rice root tips and the whole roots. The sRNAs highly accumulated in the root tips and in the whole roots were extracted respectively. After Argonaute 1 (AGO1) enrichment analysis, the sRNAs with great potential of performing target cleavages were included for target prediction and degradome sequencing data-based validation. As a result, lists of the targets regulated by the AGO1-enriched sRNAs were obtained for both the root tips and the whole roots. Further evidences were identified from microarray data of the target genes to support some of the sRNA—target interactions. Specifically, the expression patterns of certain target genes in the root tips and the whole roots were contrary to those of the regulating sRNAs. Besides, several targets were indicated to play important roles in root development based on literature mining. Conclusions Taken together, the regulatory networks mediated by the sRNAs highly accumulated in the root tips or in the whole roots could advance our current understanding of the sRNA-involved molecular mechanisms underlying rice root development. And, the sRNA—target lists could serve as the basis for further functional investigations.
Collapse
Affiliation(s)
- Xiaoxia Ma
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Street 16#, Xiasha, Hangzhou 310036, PR China
| | | | | | | | | |
Collapse
|
1065
|
Xu W, Cui Q, Li F, Liu A. Transcriptome-wide identification and characterization of microRNAs from castor bean (Ricinus communis L.). PLoS One 2013; 8:e69995. [PMID: 23894571 PMCID: PMC3722108 DOI: 10.1371/journal.pone.0069995] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/14/2013] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are endogenously encoded small RNAs that post-transcriptionally regulate gene expression and play essential roles in numerous developmental and physiological processes. Currently, little information on the transcriptome and tissue-specific expression of miRNAs is available in the model non-edible oilseed crop castor bean (Ricinus communis L.), one of the most important non-edible oilseed crops cultivated worldwide. Recent advances in sequencing technologies have allowed the identification of conserved and novel miRNAs in many plant species. Here, we used high-throughput sequencing technologies to identify and characterize the miRNAs in castor bean. RESULTS Five small RNA libraries were constructed for deep sequencing from root tips, leaves, developing seeds (at the initial stage, seed1; and at the fast oil accumulation stage, seed2) and endosperms in castor bean. High-throughput sequencing generated a large number of sequence reads of small RNAs in this study. In total, 86 conserved miRNAs were identified, including 63 known and 23 newly identified. Sixteen miRNA isoform variants in length were found from the conserved miRNAs of castor bean. MiRNAs displayed diverse organ-specific expression levels among five libraries. Combined with criteria for miRNA annotation and a RT-PCR approach, 72 novel miRNAs and their potential precursors were annotated and 20 miRNAs newly identified were validated. In addition, new target candidates for miRNAs newly identified in this study were proposed. CONCLUSIONS The current study presents the first high-throughput small RNA sequencing study performed in castor bean to identify its miRNA population. It characterizes and increases the number of miRNAs and their isoforms identified in castor bean. The miRNA expression analysis provides a foundation for understanding castor bean miRNA organ-specific expression patterns. The present study offers an expanded picture of miRNAs for castor bean and other members in the family Euphorbiaceae.
Collapse
Affiliation(s)
- Wei Xu
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Qinghua Cui
- College of Life Sciences, Yunnan University, Kunming, China
| | - Fei Li
- Key Laboratory of Tropical Plant Resource Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Aizhong Liu
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Key Laboratory of Tropical Plant Resource Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
1066
|
Kurtoglu KY, Kantar M, Lucas SJ, Budak H. Unique and conserved microRNAs in wheat chromosome 5D revealed by next-generation sequencing. PLoS One 2013; 8:e69801. [PMID: 23936103 PMCID: PMC3720673 DOI: 10.1371/journal.pone.0069801] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 06/12/2013] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs are a class of short, non-coding, single-stranded RNAs that act as post-transcriptional regulators in gene expression. miRNA analysis of Triticum aestivum chromosome 5D was performed on 454 GS FLX Titanium sequences of flow-sorted chromosome 5D with a total of 3,208,630 good quality reads representing 1.34x and 1.61x coverage of the short (5DS) and long (5DL) arms of the chromosome respectively. In silico and structural analyses revealed a total of 55 miRNAs; 48 and 42 miRNAs were found to be present on 5DL and 5DS respectively, of which 35 were common to both chromosome arms, while 13 miRNAs were specific to 5DL and 7 miRNAs were specific to 5DS. In total, 14 of the predicted miRNAs were identified in wheat for the first time. Representation (the copy number of each miRNA) was also found to be higher in 5DL (1,949) compared to 5DS (1,191). Targets were predicted for each miRNA, while expression analysis gave evidence of expression for 6 out of 55 miRNAs. Occurrences of the same miRNAs were also found in Brachypodium distachyon and Oryza sativa genome sequences to identify syntenic miRNA coding sequences. Based on this analysis, two other miRNAs: miR1133 and miR167 were detected in B. distachyon syntenic region of wheat 5DS. Five of the predicted miRNA coding regions (miR6220, miR5070, miR169, miR5085, miR2118) were experimentally verified to be located to the 5D chromosome and three of them : miR2118, miR169 and miR5085, were shown to be 5D specific. Furthermore miR2118 was shown to be expressed in Chinese Spring adult leaves. miRNA genes identified in this study will expand our understanding of gene regulation in bread wheat.
Collapse
Affiliation(s)
| | - Melda Kantar
- Faculty of Engineering and Natural Sciences, Sabanci University, Orhanlı, Tuzla, Istanbul, Turkey
| | - Stuart J. Lucas
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Sabanci University, Tuzla, Istanbul, Turkey
| | - Hikmet Budak
- Faculty of Engineering and Natural Sciences, Sabanci University, Orhanlı, Tuzla, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Sabanci University, Tuzla, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
1067
|
Wang Y, Yang L, Zheng Z, Grumet R, Loescher W, Zhu JK, Yang P, Hu Y, Chan Z. Transcriptomic and physiological variations of three Arabidopsis ecotypes in response to salt stress. PLoS One 2013; 8:e69036. [PMID: 23894403 PMCID: PMC3720874 DOI: 10.1371/journal.pone.0069036] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/05/2013] [Indexed: 12/22/2022] Open
Abstract
Salt stress is one of the major abiotic stresses in agriculture worldwide. Analysis of natural genetic variation in Arabidopsis is an effective approach to characterize candidate salt responsive genes. Differences in salt tolerance of three Arabidopsis ecotypes were compared in this study based on their responses to salt treatments at two developmental stages: seed germination and later growth. The Sha ecotype had higher germination rates, longer roots and less accumulation of superoxide radical and hydrogen peroxide than the Ler and Col ecotypes after short term salt treatment. With long term salt treatment, Sha exhibited higher survival rates and lower electrolyte leakage. Transcriptome analysis revealed that many genes involved in cell wall, photosynthesis, and redox were mainly down-regulated by salinity effects, while transposable element genes, microRNA and biotic stress related genes were significantly changed in comparisons of Sha vs. Ler and Sha vs. Col. Several pathways involved in tricarboxylic acid cycle, hormone metabolism and development, and the Gene Ontology terms involved in response to stress and defense response were enriched after salt treatment, and between Sha and other two ecotypes. Collectively, these results suggest that the Sha ecotype is preconditioned to withstand abiotic stress. Further studies about detailed gene function are needed. These comparative transcriptomic and analytical results also provide insight into the complexity of salt stress tolerance mechanisms.
Collapse
Affiliation(s)
- Yanping Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Li Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhimin Zheng
- Shanghai Center for Plant Stress Biology and Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Rebecca Grumet
- Department of Horticulture, Michigan State University, East Lansing, Michigan, United States of America
| | - Wayne Loescher
- Department of Horticulture, Michigan State University, East Lansing, Michigan, United States of America
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Yuanlei Hu
- College of Life Sciences, Peking University, Beijing, China
- * E-mail: (ZC); (YH)
| | - Zhulong Chan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei Province, China
- * E-mail: (ZC); (YH)
| |
Collapse
|
1068
|
Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nat Biotechnol 2013; 31:848-52. [DOI: 10.1038/nbt.2646] [Citation(s) in RCA: 291] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/26/2013] [Indexed: 11/08/2022]
|
1069
|
Identification of tissue-preferential expression patterns of rice miRNAs. J Cell Biochem 2013; 114:2071-81. [DOI: 10.1002/jcb.24552] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 03/14/2013] [Indexed: 11/07/2022]
|
1070
|
Higashi Y, Takechi K, Takano H, Takio S. Involvement of MicroRNA in Copper Deficiency-Induced Repression of Chloroplastic CuZn-Superoxide Dismutase Genes in the Moss Physcomitrella patens. ACTA ACUST UNITED AC 2013; 54:1345-55. [DOI: 10.1093/pcp/pct084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
1071
|
Lin LL, Wu CC, Huang HC, Chen HJ, Hsieh HL, Juan HF. Identification of microRNA 395a in 24-epibrassinolide-regulated root growth of Arabidopsis thaliana using microRNA arrays. Int J Mol Sci 2013; 14:14270-86. [PMID: 23839095 PMCID: PMC3742243 DOI: 10.3390/ijms140714270] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/18/2013] [Accepted: 06/28/2013] [Indexed: 12/29/2022] Open
Abstract
Brassinosteroids (BRs) are endogenous plant hormones and are essential for normal plant growth and development. MicroRNAs (miRNAs) of Arabidopsis thaliana are involved in mediating cell proliferation in leaves, stress tolerance, and root development. The specifics of BR mechanisms involving miRNAs are unknown. Using customized miRNA array analysis, we identified miRNAs from A. thaliana ecotype Columbia (Col-0) regulated by 24-epibrassinolide (EBR, a highly active BR). We found that miR395a was significantly up-regulated by EBR treatment and validated its expression under these conditions. miR395a was over expressed in leaf veins and root tissues in EBR-treated miR395a promoter::GUS plants. We integrated bioinformatics methods and publicly available DNA microarray data to predict potential targets of miR395a. GUN5—a multifunctional protein involved in plant metabolic functions such as chlorophyll synthesis and the abscisic acid (ABA) pathway—was identified as a possible target. ABI4 and ABI5, both genes positively regulated by ABA, were down-regulated by EBR treatment. In summary, our results suggest that EBR regulates seedling development and root growth of A. thaliana through miR395a by suppressing GUN5 expression and its downstream signal transduction.
Collapse
Affiliation(s)
- Li-Ling Lin
- Department of Life Science, National Taiwan University, Taipei 106, Taiwan; E-Mail:
| | - Chia-Chi Wu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan; E-Mail:
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei 112, Taiwan
- Authors to whom correspondence should be addressed; E-Mails: (H.-C.H.); (H.-L.H.); (H.-F.J.); Tel.: +886-2-2826-7357 (H.-C.H.); +886-2-3366-2540 (H.-L.H.); +886-2-3366-4536 (H.-F.J.); Fax: +886-2-2367-3374 (H.-F.J.)
| | - Huai-Ju Chen
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan; E-Mail:
| | - Hsu-Liang Hsieh
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (H.-C.H.); (H.-L.H.); (H.-F.J.); Tel.: +886-2-2826-7357 (H.-C.H.); +886-2-3366-2540 (H.-L.H.); +886-2-3366-4536 (H.-F.J.); Fax: +886-2-2367-3374 (H.-F.J.)
| | - Hsueh-Fen Juan
- Department of Life Science, National Taiwan University, Taipei 106, Taiwan; E-Mail:
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan; E-Mail:
- Graduate Institute of Biomedical Electronic and Bioinformatics, National Taiwan University, Taipei 106, Taiwan
- Authors to whom correspondence should be addressed; E-Mails: (H.-C.H.); (H.-L.H.); (H.-F.J.); Tel.: +886-2-2826-7357 (H.-C.H.); +886-2-3366-2540 (H.-L.H.); +886-2-3366-4536 (H.-F.J.); Fax: +886-2-2367-3374 (H.-F.J.)
| |
Collapse
|
1072
|
Wang Y, Zhang C, Hao Q, Sha A, Zhou R, Zhou X, Yuan L. Elucidation of miRNAs-mediated responses to low nitrogen stress by deep sequencing of two soybean genotypes. PLoS One 2013; 8:e67423. [PMID: 23861762 PMCID: PMC3704600 DOI: 10.1371/journal.pone.0067423] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 05/18/2013] [Indexed: 11/21/2022] Open
Abstract
Nitrogen (N) is a major limiting factor in crop production, and plant adaptive responses to low N are involved in many post-transcriptional regulation. Recent studies indicate that miRNAs play important roles in adaptive responses. However, miRNAs in soybean adaptive responses to N limitation have been not reported. We constructed sixteen libraries to identify low N-responsive miRNAs on a genome-wide scale using samples from 2 different genotypes (low N sensitive and low N tolerant) subjected to various periods of low nitrogen stress. Using high-throughput sequencing technology (Illumina-Solexa), we identified 362 known miRNAs variants belonging to 158 families and 90 new miRNAs belonging to 55 families. Among these known miRNAs variants, almost 50% were not different from annotated miRNAs in miRBase. Analyses of their expression patterns showed 150 known miRNAs variants as well as 2 novel miRNAs with differential expressions. These differentially expressed miRNAs between the two soybean genotypes were compared and classified into three groups based on their expression patterns. Predicted targets of these miRNAs were involved in various metabolic and regulatory pathways such as protein degradation, carbohydrate metabolism, hormone signaling pathway, and cellular transport. These findings suggest that miRNAs play important roles in soybean response to low N and contribute to the understanding of the genetic basis of differences in adaptive responses to N limitation between the two soybean genotypes. Our study provides basis for expounding the complex gene regulatory network of these miRNAs.
Collapse
Affiliation(s)
- Yejian Wang
- Long Ping Branch, Graduate School of Central South University, Changsha, China
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Institute of Crops Research, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Chanjuan Zhang
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qinnan Hao
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Aihua Sha
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Rong Zhou
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xinan Zhou
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Longping Yuan
- Long Ping Branch, Graduate School of Central South University, Changsha, China
- National Hybrid Rice R&D Center, Changsha, China
| |
Collapse
|
1073
|
Li MJ, Yang YH, Chen XJ, Wang FQ, Lin WX, Yi YJ, Zeng L, Yang SY, Zhang ZY. Transcriptome/degradome-wide identification of R. glutinosa miRNAs and their targets: the role of miRNA activity in the replanting disease. PLoS One 2013; 8:e68531. [PMID: 23861915 PMCID: PMC3702588 DOI: 10.1371/journal.pone.0068531] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 05/30/2013] [Indexed: 11/26/2022] Open
Abstract
Rehmannia glutinosa, a traditional Chinese medicine herb, is unable to grow normally in a soil where the same species has recently been cultivated. The biological basis of this so called "replanting disease" is unknown, but it may involve the action of microRNAs (miRNAs), which are known to be important regulators of plant growth and development. High throughput Solexa/Illumina sequencing was used to generate a transcript library of the R. glutinosa transcriptome and degradome in order to identify possible miRNAs and their targets implicated in the replanting disease. A total of 87,665 unigenes and 589 miRNA families (17 of which have not been identified in plants to date) was identified from the libraries made from a first year (FP) and a second year (SP) crop. A comparison between the FP and SP miRNAs showed that the abundance of eight of the novel and 295 of the known miRNA families differed between the FP and SP plants. Sequencing of the degradome sampled from FP and SP plants led to the identification of 165 transcript targets of 85 of the differentially abundant miRNA families. The interaction of some of these miRNAs with their target(s) is likely to form an important part of the molecular basis of the replanting disease of R. glutinosa.
Collapse
Affiliation(s)
- Ming Jie Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yan Hui Yang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- College of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Xin Jian Chen
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Feng Qing Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wen Xiong Lin
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Jie Yi
- College of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Lei Zeng
- College of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Shuo Ye Yang
- College of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Zhong Yi Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
1074
|
Ge A, Shangguan L, Zhang X, Dong Q, Han J, Liu H, Wang X, Fang J. Deep sequencing discovery of novel and conserved microRNAs in strawberry (Fragaria×ananassa). PHYSIOLOGIA PLANTARUM 2013; 148:387-96. [PMID: 23061771 DOI: 10.1111/j.1399-3054.2012.01713.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 03/30/2012] [Accepted: 09/27/2012] [Indexed: 05/18/2023]
Abstract
In plants, microRNAs (miRNAs) play a critical role in post-transcriptional gene regulation and have been shown to control many genes involved in various biological and metabolic processes. There have been extensive studies to discover miRNAs and analyze their functions in model plant species, such as Arabidopsis and rice. Deep sequencing technologies have facilitated identification of species-specific or lowly expressed as well as conserved or highly expressed miRNAs in plants. In this research, we used Solexa sequencing to discover new miRNAs in cultivated strawberry (Fragaria×ananassa). A total of 23,282 ,309 reads representing 22,500 ,402 distinct sequences were obtained from a short RNA library generated from small RNAs extracted from strawberry fruit tissues. On the basis of sequence similarity and hairpin structure prediction, we found that 156,639 reads representing 153 sequences have good matches to known miRNAs. We also identified 37 novel miRNA candidates. These sequences had not been previously described in other plant species. Potential target genes were predicted for the majority of and novel miRNAs. These results show that regulatory miRNAs exist in the agriculturally important cultivated strawberry and may play an important role in its growth, development and response to disease.
Collapse
Affiliation(s)
- Anjing Ge
- Beijing Key Laboratory of New Technology in Agricultural Application, Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | | | | | | | | | | | | | | |
Collapse
|
1075
|
Campo S, Peris-Peris C, Siré C, Moreno AB, Donaire L, Zytnicki M, Notredame C, Llave C, San Segundo B. Identification of a novel microRNA (miRNA) from rice that targets an alternatively spliced transcript of the Nramp6 (Natural resistance-associated macrophage protein 6) gene involved in pathogen resistance. THE NEW PHYTOLOGIST 2013; 199:212-227. [PMID: 23627500 DOI: 10.1111/nph.12292] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 02/26/2013] [Indexed: 05/18/2023]
Abstract
Plants have evolved efficient defence mechanisms to defend themselves from pathogen attack. Although many studies have focused on the transcriptional regulation of defence responses, less is known about the involvement of microRNAs (miRNAs) as post-transcriptional regulators of gene expression in plant immunity. This work investigates miRNAs that are regulated by elicitors from the blast fungus Magnaporthe oryzae in rice (Oryza sativa). Small RNA libraries were constructed from rice tissues and subjected to high-throughput sequencing for the identification of elicitor-responsive miRNAs. Target gene expression was examined by microarray analysis. Transgenic lines were used for the analysis of miRNA functioning in disease resistance. Elicitor treatment is accompanied by dynamic alterations in the expression of a significant number of miRNAs, including new members of annotated miRNAs. Novel miRNAs from rice are proposed. We report a new rice miRNA, osa-miR7695, which negatively regulates an alternatively spliced transcript of OsNramp6 (Natural resistance-associated macrophage protein 6). This novel miRNA experienced natural and domestication selection events during evolution, and its overexpression in rice confers pathogen resistance. This study highlights an miRNA-mediated regulation of OsNramp6 in disease resistance, whilst illustrating the existence of a novel regulatory network that integrates miRNA function and mRNA processing in plant immunity.
Collapse
Affiliation(s)
- Sonia Campo
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), Barcelona, 08193, Spain
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Cristina Peris-Peris
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), Barcelona, 08193, Spain
| | - Christelle Siré
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), Barcelona, 08193, Spain
| | - Ana Beatriz Moreno
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), Barcelona, 08193, Spain
| | - Livia Donaire
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Matthias Zytnicki
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), UPF, 08003, Barcelona, Spain
| | - Cedric Notredame
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), UPF, 08003, Barcelona, Spain
| | - César Llave
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), Barcelona, 08193, Spain
| |
Collapse
|
1076
|
Wang C, Han J, Korir NK, Wang X, Liu H, Li X, Leng X, Fang J. Characterization of target mRNAs for grapevine microRNAs with an integrated strategy of modified RLM-RACE, newly developed PPM-RACE and qPCRs. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:943-57. [PMID: 23582890 DOI: 10.1016/j.jplph.2013.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 02/07/2013] [Accepted: 02/08/2013] [Indexed: 05/10/2023]
Abstract
MicroRNAs (miRNAs) regulate target gene expression by mediating target gene cleavage or inhibition of translation at transcriptional and post-transcriptional levels in higher plants. Until now, many grapevine microRNAs (Vv-miRNAs) have been identified and quite a number of miRNA target genes were also verified by various analysis. However, global interaction of miRNAs with their target genes still remained to perform more research. We reported experimental validation of a number of miRNA target genes in table grapevine that had been previously identified by bioinformatics in our earlier studies. To verify more predicted target genes of Vv-miRNAs and elucidate the modes by which these Vv-miRNAs work on their target genes, 31 unverified potential target genes for 18 Vv-miRNAs were experimentally verified by a new integrated strategy employing a modified 5'-RLM-RACE (RNA ligase-mediated 5' rapid amplification of cDNA ends), 3'-PPM-RACE (poly(A) polymerase-mediated 3' rapid amplification of cDNA ends) and qRT-PCRs of cleavage products. The results showed that these Vv-miRNAs negatively regulated expression of their target messenger RNAs (mRNAs) through guiding corresponding target mRNA cleavage, of which about 94.4% Vv-miRNAs cleaved their target mRNAs mainly at the tenth nucleotide of 5'-end of miRNAs. Expression levels of both miRNAs and their target mRNAs in eight tissues exhibited inverse relationships, and expressions both of cleaved targets and miRNAs indicated a cleavage mode of Vv-miRNAs on their target genes. Our results confirm the importance of Vv-miRNAs in grapevine growth and development, and suggest more study on Vv-miRNAs and targets can enrich the knowledge of miRNA mediated-regulation in grapevine.
Collapse
Affiliation(s)
- Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | |
Collapse
|
1077
|
Huang QB, Ma X, Zhang X, Liu SW, Ai Q, Shi TP, Zhang Y, Gao Y, Fan Y, Ni D, Wang BJ, Li HZ, Zheng T. Down-Regulated miR-30a in Clear Cell Renal Cell Carcinoma Correlated with Tumor Hematogenous Metastasis by Targeting Angiogenesis-Specific DLL4. PLoS One 2013; 8:e67294. [PMID: 23826258 PMCID: PMC3694928 DOI: 10.1371/journal.pone.0067294] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 05/16/2013] [Indexed: 01/20/2023] Open
Abstract
Background Endothelial DLL4 plays an important role in controlling of tumor angiogenesis, which is required for tumor invasive growth and metastasis. However, the regulation of DLL4 in clear cell renal cell carcinoma (ccRCC) has not yet been systematically elucidated. Methodology We performed bioinformatical analysis to explore miRNAs targeting DLL4. miR-30a was selected as a representative to validate its functional association in endothelial cell. Then, the expressions of DLL4 and mature miR-30a from 90 cases of ccRCC and 28 cases of nonmatched adjacent non-tumor tissues were measured by quantitative real-time PCR. Finally, the expression of miR-30a was correlated with DLL4 expression, tumor features (metastatic condition and microvessel density), and patient metastasis-free survival. The univariate and multivariate analyses were performed to select the risk factors associated with hematogenous metastasis, respectively. Principal Findings miR-30a negatively regulated DLL4 and inhibited the proliferation and migration of endothelial cells. DLL4 was up-regulated in ccRCC and further increased in hematogenous metastatic cases, while miR-30a was down-regulated in tumor tissues and further decreased in hematogenous metastatic ccRCC (student t test, all p<0.05). Additionally, expression of miR-30a was inversely correlated with expression of DLL4 and microvessel density (linear correlation analysis, both p<0.05). Low-level miR-30a also indicated a higher probability of developing metastasis (log-rank test, p = 0.010). Most importantly, miR-30a expression was an independent predictor of ccRCC hematogenous metastasis by the univariate analysis and binary logistic regression model (both p<0.05). Conclusions Down-regulated miR-30a in ccRCC was associated with tumor hematogenous metastasis through increasing microvessel density by targeting angiogenesis-specific DLL4.
Collapse
Affiliation(s)
- Qing Bo Huang
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1078
|
Abstract
MicroRNAs (miRNAs) regulate the expression of most genes in animals, but we are only now beginning to understand how they are generated, assembled into functional complexes and destroyed. Various mechanisms have now been identified that regulate miRNA stability and that diversify miRNA sequences to create distinct isoforms. The production of different isoforms of individual miRNAs in specific cells and tissues may have broader implications for miRNA-mediated gene expression control. Rigorously testing the many discrepant models for how miRNAs function using quantitative biochemical measurements made in vivo and in vitro remains a major challenge for the future.
Collapse
|
1079
|
Li S, Liu L, Zhuang X, Yu Y, Liu X, Cui X, Ji L, Pan Z, Cao X, Mo B, Zhang F, Raikhel N, Jiang L, Chen X. MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis. Cell 2013; 153:562-74. [PMID: 23622241 DOI: 10.1016/j.cell.2013.04.005] [Citation(s) in RCA: 361] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 01/13/2013] [Accepted: 03/22/2013] [Indexed: 01/23/2023]
Abstract
Translation inhibition is a major but poorly understood mode of action of microRNAs (miRNAs) in plants and animals. In particular, the subcellular location where this process takes place is unknown. Here, we show that the translation inhibition, but not the mRNA cleavage activity, of Arabidopsis miRNAs requires ALTERED MERISTEM PROGRAM1 (AMP1). AMP1 encodes an integral membrane protein associated with endoplasmic reticulum (ER) and ARGONAUTE1, the miRNA effector and a peripheral ER membrane protein. Large differences in polysome association of miRNA target RNAs are found between wild-type and the amp1 mutant for membrane-bound, but not total, polysomes. This, together with AMP1-independent recruitment of miRNA target transcripts to membrane fractions, shows that miRNAs inhibit the translation of target RNAs on the ER. This study demonstrates that translation inhibition is an important activity of plant miRNAs, reveals the subcellular location of this activity, and uncovers a previously unknown function of the ER.
Collapse
Affiliation(s)
- Shengben Li
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1080
|
Pontes O, Vitins A, Ream TS, Hong E, Pikaard CS, Costa-Nunes P. Intersection of small RNA pathways in Arabidopsis thaliana sub-nuclear domains. PLoS One 2013; 8:e65652. [PMID: 23776518 PMCID: PMC3680462 DOI: 10.1371/journal.pone.0065652] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 04/25/2013] [Indexed: 12/22/2022] Open
Abstract
In Arabidopsis thaliana, functionally diverse small RNA (smRNA) pathways bring about decreased RNA accumulation of target genes via several different mechanisms. Cytological experiments have suggested that the processing of microRNAs (miRNAs) and heterochromatic small interfering RNAs (hc-siRNAs) occurs within a specific nuclear domain that can present Cajal Body (CB) characteristics. It is unclear whether single or multiple smRNA-related domains are found within the same CB and how specialization of the smRNA pathways is determined within this specific sub-compartment. To ascertain whether nuclear smRNA centers are spatially related, we localized key proteins required for siRNA or miRNA biogenesis by immunofluorescence analysis. The intranuclear distribution of the proteins revealed that hc-siRNA, miRNA and trans-acting siRNA (ta-siRNA) pathway proteins accumulate and colocalize within a sub-nuclear structure in the nucleolar periphery. Furthermore, colocalization of miRNA- and siRNA-pathway members with CB markers, and reduced wild-type localization patterns in CB mutants indicates that proper nuclear localization of these proteins requires CB integrity. We hypothesize that these nuclear domains could be important for RNA silencing and may partially explain the functional redundancies and interactions among components of the same protein family. The CB may be the place in the nucleus where Dicer-generated smRNA precursors are processed and assigned to a specific pathway, and where storage, recycling or assembly of RNA interference components takes place.
Collapse
Affiliation(s)
- Olga Pontes
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America.
| | | | | | | | | | | |
Collapse
|
1081
|
Kothandan R, Biswas S. Search for signatures in miRNAs associated with cancer. Bioinformation 2013; 9:524-7. [PMID: 23861569 PMCID: PMC3705628 DOI: 10.6026/97320630009524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 05/17/2013] [Indexed: 01/29/2023] Open
Abstract
Since the first discovery in the early 1990's, the predicted and validated population of microRNAs (miRNAs or miRs) has grown significantly. These small (~22 nucleotides long) regulators of gene expression have been implicated and associated with several genes in the cancer pathway as well. Globally, the identification and verification of microRNAs as biomarkers for cancer cell types has been the area of thrust for most miRNA biologists. However, there has been a noticeable vacuum when it comes to identifying a common signature or trademark that could be used to demarcate a miR to be associated with the development or suppression of cancer. To answer these queries, we report an in silico study involving the identification of global signatures in experimentally validated microRNAs which have been associated with cancer. This study has thrown light on the presence of significant common signatures, viz., - sequential and hybridization, which may distinguish a miR to be associated with cancer. Based on our analysis, we suggest the utility of such signatures in the design and development of algorithms for prediction of miRs involved in the cancer pathway.
Collapse
Affiliation(s)
- Ram Kothandan
- Department of Biological Sciences, BITS, Pilani – K K Birla Goa Campus, Zuarinagar, Goa- 403726
| | - Sumit Biswas
- Department of Biological Sciences, BITS, Pilani – K K Birla Goa Campus, Zuarinagar, Goa- 403726
| |
Collapse
|
1082
|
Guan Q, Lu X, Zeng H, Zhang Y, Zhu J. Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:840-51. [PMID: 23480361 DOI: 10.1111/tpj.12169] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/24/2013] [Accepted: 03/04/2013] [Indexed: 05/19/2023]
Abstract
microRNAs (miRNAs) play important roles in plant growth and development. Previous studies have shown that down-regulation of miR398 in response to oxidative stress permits up-regulation of one of its target genes, CSD2 (copper/zinc superoxide dismutase), and thereby helps plants to cope with oxidative stress. We report here that heat stress rapidly induces miR398 and reduces transcripts of its target genes CSD1, CSD2 and CCS (a gene encoding a copper chaperone for both CSD1 and CSD2). Transgenic plants expressing miR398-resistant forms of CSD1, CSD2 and CCS under the control of their native promoters are more sensitive to heat stress (as indicated by increased damage at the whole-plant level and to flowers) than transgenic plants expressing normal coding sequences of CSD1, CSD2 or CCS under the control of their native promoters. In contrast, csd1, csd2 and ccs mutant plants are more heat-tolerant (as indicated by less damage to flowers) than the wild-type. Expression of genes encoding heat stress transcription factors (HSF genes) and heat shock proteins (HSP genes) is reduced in heat-sensitive transgenic plants expressing miR398-resistant forms of CSD1, CSD2 or CCS but is enhanced in the heat-tolerant csd1, csd2 and ccs plants. Chromatin immunoprecipitation assays revealed that HSFA1b and HSFA7b are the two HSFs responsible for heat induction of miR398. Together, our results suggest that plants use a previously unrecognized strategy to achieve thermotolerance, especially for the protection of reproductive tissues. This strategy involves the down-regulation of CSD genes and their copper chaperone CCS through heat-inducible miR398.
Collapse
Affiliation(s)
- Qingmei Guan
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | |
Collapse
|
1083
|
Mathiyalagan R, Subramaniyam S, Natarajan S, Kim YJ, Sun MS, Kim SY, Kim YJ, Yang DC. Insilico profiling of microRNAs in Korean ginseng (Panax ginseng Meyer). J Ginseng Res 2013; 37:227-47. [PMID: 23717176 PMCID: PMC3659641 DOI: 10.5142/jgr.2013.37.227] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/20/2012] [Accepted: 12/10/2012] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of recently discovered non-coding small RNA molecules, on average approximately 21 nucleotides in length, which underlie numerous important biological roles in gene regulation in various organisms. The miRNA database (release 18) has 18,226 miRNAs, which have been deposited from different species. Although miRNAs have been identified and validated in many plant species, no studies have been reported on discovering miRNAs in Panax ginseng Meyer, which is a traditionally known medicinal plant in oriental medicine, also known as Korean ginseng. It has triterpene ginseng saponins called ginsenosides, which are responsible for its various pharmacological activities. Predicting conserved miRNAs by homology-based analysis with available expressed sequence tag (EST) sequences can be powerful, if the species lacks whole genome sequence information. In this study by using the EST based computational approach, 69 conserved miRNAs belonging to 44 miRNA families were identified in Korean ginseng. The digital gene expression patterns of predicted conserved miRNAs were analyzed by deep sequencing using small RNA sequences of flower buds, leaves, and lateral roots. We have found that many of the identified miRNAs showed tissue specific expressions. Using the insilico method, 346 potential targets were identified for the predicted 69 conserved miRNAs by searching the ginseng EST database, and the predicted targets were mainly involved in secondary metabolic processes, responses to biotic and abiotic stress, and transcription regulator activities, as well as a variety of other metabolic processes.
Collapse
Affiliation(s)
- Ramya Mathiyalagan
- Korean Ginseng Center and Ginseng Resource Bank, Kyung Hee University, Yongin 449-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
1084
|
Hwang DG, Park JH, Lim JY, Kim D, Choi Y, Kim S, Reeves G, Yeom SI, Lee JS, Park M, Kim S, Choi IY, Choi D, Shin C. The hot pepper (Capsicum annuum) microRNA transcriptome reveals novel and conserved targets: a foundation for understanding MicroRNA functional roles in hot pepper. PLoS One 2013; 8:e64238. [PMID: 23737975 PMCID: PMC3667847 DOI: 10.1371/journal.pone.0064238] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 04/10/2013] [Indexed: 01/26/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs approximately 21 nt in length which play important roles in regulating gene expression in plants. Although many miRNA studies have focused on a few model plants, miRNAs and their target genes remain largely unknown in hot pepper (Capsicum annuum), one of the most important crops cultivated worldwide. Here, we employed high-throughput sequencing technology to identify miRNAs in pepper extensively from 10 different libraries, including leaf, stem, root, flower, and six developmental stage fruits. Based on a bioinformatics pipeline, we successfully identified 29 and 35 families of conserved and novel miRNAs, respectively. Northern blot analysis was used to validate further the expression of representative miRNAs and to analyze their tissue-specific or developmental stage-specific expression patterns. Moreover, we computationally predicted miRNA targets, many of which were experimentally confirmed using 5′ rapid amplification of cDNA ends analysis. One of the validated novel targets of miR-396 was a domain rearranged methyltransferase, the major de novo methylation enzyme, involved in RNA-directed DNA methylation in plants. This work provides the first reliable draft of the pepper miRNA transcriptome. It offers an expanded picture of pepper miRNAs in relation to other plants, providing a basis for understanding the functional roles of miRNAs in pepper.
Collapse
Affiliation(s)
- Dong-Gyu Hwang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1085
|
Evolutionary conservation of microRNA regulatory programs in plant flower development. Dev Biol 2013; 380:133-44. [PMID: 23707900 DOI: 10.1016/j.ydbio.2013.05.009] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 05/05/2013] [Accepted: 05/09/2013] [Indexed: 11/20/2022]
Abstract
MicroRNAs (miRNAs) are post-transcriptional regulators of growth and development in both plants and animals. Flowering is critical for the reproduction of angiosperms. Flower development entails the transition from vegetative growth to reproductive growth, floral organ initiation, and the development of floral organs. These developmental processes are genetically regulated by miRNAs, which participate in complex genetic networks of flower development. A survey of the literature shows that miRNAs, their specific targets, and the regulatory programs in which they participate are conserved throughout the plant kingdom. This review summarizes the role of miRNAs and their targets in the regulation of gene expression during the floral developmental phase, which includes the floral transition stage, followed by floral patterning, and then the development of floral organs. The conservation patterns observed in each component of the miRNA regulatory system suggest that these miRNAs play important roles in the evolution of flower development.
Collapse
|
1086
|
Yang J, Zhang N, Ma C, Qu Y, Si H, Wang D. Prediction and verification of microRNAs related to proline accumulation under drought stress in potato. Comput Biol Chem 2013; 46:48-54. [PMID: 23764530 DOI: 10.1016/j.compbiolchem.2013.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/10/2013] [Accepted: 04/30/2013] [Indexed: 01/09/2023]
Abstract
Proline is an important osmotic adjusting material greatly accumulated under drought stress and can help plant to adapt to osmotic stress. MicroRNAs (miRNAs) are small, endogenous RNAs that play important regulatory roles in plant development and stress response by negatively affecting gene expression at post-transcriptional level. Three genes of pyrroline-5-carboxylate synthetase (P5CS), pyrroline-5-carboxylate reductase (P5CR) and proline dehydrogenase (ProDH) are regulating proline metabolism. Until now, little is known about miRNAs regulating proline accumulation. In this work, in order to understand whether miRNAs related to mRNAs of enzymes to regulate proline enrichment under drought stress, we used mRNAs of related enzymes as the targets of miRNAs to search miRBase using BLAST and find many query miRNA sequences. After a range of filtering criteria, 11 known miRNAs classified into 6 miRNA families were predicted. The result from qRT-PCR assay showed that 10 out of 11 predicted miRNAs were successfully detected including 9 down-regulated miRNAs and one up-regulated miRNA. Based on expression and functional analysis, we identified miR172, miR396a, miR396c and miR4233 may regulate P5CS gene, and miR2673 and miR6461 may regulate P5CR and ProDH gene, respectively. The findings can help us make a good understanding of the roles of miRNAs in regulation of proline accumulation and provide molecular evidence for involvement process of drought tolerance in potato.
Collapse
Affiliation(s)
- Jiangwei Yang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | | | | | | | | | | |
Collapse
|
1087
|
Song Y, Ma K, Ci D, Zhang Z, Zhang D. Sexual dimorphism floral microRNA profiling and target gene expression in andromonoecious poplar (Populus tomentosa). PLoS One 2013; 8:e62681. [PMID: 23667507 PMCID: PMC3646847 DOI: 10.1371/journal.pone.0062681] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 03/22/2013] [Indexed: 11/19/2022] Open
Abstract
Although the molecular basis of poplar sex-specific flower development remains largely unknown, increasing evidence indicates an essential role for microRNAs (miRNAs). The specific miRNA types and precise miRNA expression patterns in dioecious plant flower development remain unclear. Here, we used andromonoecious poplar, an exceptional model system, to eliminate the confounding effects of genetic background of dioecious plants. This system, combined with high-throughput sequencing and computational analysis, allowed us to characterize sex-specific miRNAomes from female and male flowers. Comparative miRNAome analysis combined with quantitative real-time PCR revealed the expression patterns of 27 miRNAs in poplar flower and showed that the targets of these miRNAs are involved in flower organogenesis, Ca(2+) transport, phytohormone synthesis and metabolism, and DNA methylation. This paper describes a complex regulatory network consisting of these miRNAs expressed in sex-specific flower development in a dioecious plant. The conserved and novel miRNA locations were annotated in the Populus trichocarpa genome. Among these, miRNA Pto-F70 and 4 targets are located in the sex-determination regions of chromosome XIX. Furthermore, two novel miRNAs, Pto-F47 and Pto-F68, were shown for the first time to be regulatory factors in phytohormone interactions. To our knowledge, this report is the first systematic investigation of sex-specific flower-related miRNAs and their targets in poplar, and it deepens our understanding of the important regulatory functions of miRNAs in female and male flower development in this dioecious plant.
Collapse
Affiliation(s)
- Yuepeng Song
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Kaifeng Ma
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Dong Ci
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Zhiyi Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- * E-mail:
| |
Collapse
|
1088
|
Yin X, Wang J, Cheng H, Wang X, Yu D. Detection and evolutionary analysis of soybean miRNAs responsive to soybean mosaic virus. PLANTA 2013; 237:1213-25. [PMID: 23328897 DOI: 10.1007/s00425-012-1835-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 12/26/2012] [Indexed: 05/22/2023]
Abstract
MicroRNAs (miRNA) are a class of non-coding RNAs that have important gene regulatory roles in various organisms. However, the miRNAs involved in soybean's response to soybean mosaic virus (SMV) are unknown. To identify novel miRNAs and biotic-stress regulated small RNAs that are involved in soybean's response to SMV, two small RNA libraries were constructed from mock-inoculated and SMV-infected soybean leaves and sequenced. This led to the discovery of 179 miRNAs, representing 52 families, among which five miRNAs belonging to three families were novel miRNAs in soybean. A large proportion (71.5 %) of miRNAs arose from segmental duplication, similar to the process that drives the evolution of protein-coding genes. In addition, we predicted 346 potential targets of these identified miRNAs, and verified 12 targets by modified 5'-RACE analysis. Finally, three miRNAs (miR160, miR393 and miR1510) that are involved in plant resistance were observed to respond to SMV infection. The interaction between miRNAs and resistance-related genes provides a novel mechanism for pathogens to evade host recognition.
Collapse
Affiliation(s)
- Xianchao Yin
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | |
Collapse
|
1089
|
Zhang X, Lii Y, Wu Z, Polishko A, Zhang H, Chinnusamy V, Lonardi S, Zhu JK, Liu R, Jin H. Mechanisms of small RNA generation from cis-NATs in response to environmental and developmental cues. MOLECULAR PLANT 2013; 6:704-15. [PMID: 23505223 PMCID: PMC3660955 DOI: 10.1093/mp/sst051] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/28/2013] [Indexed: 05/18/2023]
Abstract
A large proportion of eukaryotic genomes is transcribed from both positive and negative strands of DNA and thus may generate overlapping sense and antisense transcripts. Some of these so-called natural antisense transcripts (NATs) are possibly co-regulated. When the overlapping sense and antisense transcripts are expressed at the same time in the same cell in response to various developmental and environmental cues; they may form double-stranded RNAs, which could be recognized by the small RNA biogenesis machinery and processed into small interfering RNAs (siRNAs). cis-NAT-derived siRNAs (nat-siRNAs) are present in plants, animals, and fungi. In plants, the presence of nat-siRNAs is supported not only by Northern blot and genetic analyses, but also by the fact that there is an overall sixfold enrichment of siRNAs in the overlapping regions of cis-NATs and 19%-29% of the siRNA-generating cis-NATs in plants give rise to siRNAs only in their overlapping regions. Silencing mediated by nat-siRNAs is one of the mechanisms for regulating the expression of the cis-NATs. This review focuses on challenging issues related to the biogenesis mechanisms as well as regulation and detection of nat-siRNAs. The advantages and limitations of new technologies for detecting cis-NATs, including direct RNA sequencing and strand-specific RNA sequencing, are also discussed.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Yifan Lii
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Zhigang Wu
- Department of Botany and Plant Sciences and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Anton Polishko
- Computer Science and Engineering, Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Huiming Zhang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Stefano Lonardi
- Computer Science and Engineering, Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Jian-Kang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
- Shanghai Center for Plant Stress Biology and Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- To whom correspondence should be addressed. H.J. E-mail , tel. +1-951-827-7995. R.L. E-mail . J.-k.Z. E-mail
| | - Renyi Liu
- Department of Botany and Plant Sciences and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
- To whom correspondence should be addressed. H.J. E-mail , tel. +1-951-827-7995. R.L. E-mail . J.-k.Z. E-mail
| | - Hailing Jin
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
- To whom correspondence should be addressed. H.J. E-mail , tel. +1-951-827-7995. R.L. E-mail . J.-k.Z. E-mail
| |
Collapse
|
1090
|
Pandey B, Gupta OP, Pandey DM, Sharma I, Sharma P. Identification of new stress-induced microRNA and their targets in wheat using computational approach. PLANT SIGNALING & BEHAVIOR 2013; 8:e23932. [PMID: 23511197 PMCID: PMC3906146 DOI: 10.4161/psb.23932] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
MicroRNAs (miRNAs) are a class of short endogenous non-coding small RNA molecules of about 18-22 nucleotides in length. Their main function is to downregulate gene expression in different manners like translational repression, mRNA cleavage and epigenetic modification. Computational predictions have raised the number of miRNAs in wheat significantly using an EST based approach. Hence, a combinatorial approach which is amalgamation of bioinformatics software and perl script was used to identify new miRNA to add to the growing database of wheat miRNA. Identification of miRNAs was initiated by mining the EST (Expressed Sequence Tags) database available at National Center for Biotechnology Information. In this investigation, 4677 mature microRNA sequences belonging to 50 miRNA families from different plant species were used to predict miRNA in wheat. A total of five abiotic stress-responsive new miRNAs were predicted and named Ta-miR5653, Ta-miR855, Ta-miR819k, Ta-miR3708 and Ta-miR5156. In addition, four previously identified miRNA, i.e., Ta-miR1122, miR1117, Ta-miR1134 and Ta-miR1133 were predicted in newly identified EST sequence and 14 potential target genes were subsequently predicted, most of which seems to encode ubiquitin carrier protein, serine/threonine protein kinase, 40S ribosomal protein, F-box/kelch-repeat protein, BTB/POZ domain-containing protein, transcription factors which are involved in growth, development, metabolism and stress response. Our result has increased the number of miRNAs in wheat, which should be useful for further investigation into the biological functions and evolution of miRNAs in wheat and other plant species.
Collapse
Affiliation(s)
- Bharati Pandey
- Plant Biotechnology; Directorate of Wheat Research; Karnal, India
- Department of Biotechnology; Birla Institute of Technology; Mesra, India
| | - Om Prakash Gupta
- Quality and Basic Science; Directorate of Wheat Research; Karnal, India
| | - Dev Mani Pandey
- Department of Biotechnology; Birla Institute of Technology; Mesra, India
| | - Indu Sharma
- Plant Biotechnology; Directorate of Wheat Research; Karnal, India
| | - Pradeep Sharma
- Plant Biotechnology; Directorate of Wheat Research; Karnal, India
- Correspondence to: Pradeep Sharma,
| |
Collapse
|
1091
|
Xia R, Meyers BC, Liu Z, Beers EP, Ye S, Liu Z. MicroRNA superfamilies descended from miR390 and their roles in secondary small interfering RNA Biogenesis in Eudicots. THE PLANT CELL 2013; 25:1555-72. [PMID: 23695981 PMCID: PMC3694692 DOI: 10.1105/tpc.113.110957] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/23/2013] [Accepted: 05/02/2013] [Indexed: 05/18/2023]
Abstract
Trans-acting small interfering RNAs (tasiRNAs) are a major class of small RNAs performing essential biological functions in plants. The first reported tasiRNA pathway, that of miR173-TAS1/2, produces tasiRNAs regulating a set of pentatricopeptide repeat (PPR) genes and has been characterized only in Arabidopsis thaliana to date. Here, we demonstrate that the microRNA (miRNA)-trans-acting small interfering RNA gene (TAS)-pentatricopeptide repeat-containing gene (PPR)-small interfering RNA pathway is a highly dynamic and widespread feature of eudicots. Nine eudicot plants, representing six different plant families, have evolved similar tasiRNA pathways to initiate phased small interfering RNA (phasiRNA) production from PPR genes. The PPR phasiRNA production is triggered by different 22-nucleotide miRNAs, including miR7122, miR1509, and fve-PPRtri1/2, and through distinct mechanistic strategies exploiting miRNA direct targeting or indirect targeting through TAS-like genes (TASL), one-hit or two-hit, or even two layers of tasiRNA-TASL interactions. Intriguingly, although those miRNA triggers display high sequence divergence caused by the occurrence of frequent point mutations and splicing shifts, their corresponding MIRNA genes show pronounced identity to the Arabidopsis MIR173, implying a common origin of this group of miRNAs (super-miR7122). Further analyses reveal that super-miR7122 may have evolved from a newly defined miR4376 superfamily, which probably originated from the widely conserved miR390. The elucidation of this evolutionary path expands our understanding of the course of miRNA evolution, especially for relatively conserved miRNA families.
Collapse
Affiliation(s)
- Rui Xia
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
- Appalachian Fruit Research Station, Agricultural Research Service, U.S. Department of Agriculture, Kearneysville, West Virginia 25430
- Alson H. Smith Agricultural Research and Extension Center, Department of Horticulture, Virginia Polytechnic Institute and State University, Winchester, Virginia 22602
| | - Blake C. Meyers
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19717
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Eric P. Beers
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Songqing Ye
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Zongrang Liu
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
- Appalachian Fruit Research Station, Agricultural Research Service, U.S. Department of Agriculture, Kearneysville, West Virginia 25430
| |
Collapse
|
1092
|
Liu Q, Wang H, Zhu L, Hu H, Sun Y. Genome-wide identification and analysis of miRNA-related single nucleotide polymorphisms (SNPs) in rice. RICE (NEW YORK, N.Y.) 2013; 6:10. [PMID: 24280131 PMCID: PMC4883715 DOI: 10.1186/1939-8433-6-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 04/17/2013] [Indexed: 05/23/2023]
Abstract
BACKGROUND MiRNAs are key regulators in the miRNA-mediated regulatory networks. Single nucleotide polymorphisms (SNPs) that occur at miRNA-related regions may cause serious phenotype changes. To gain new insights into the evolution of miRNAs after SNP variation, we performed a genome-wide scan of miRNA-related SNPs, and analyzed their effects on the stability of miRNAs structure and the alteration of target spectrum in rice. RESULTS We find that the SNP density in pre-miRNAs is significantly higher than that in the flanking regions, owing to the rapid evolution of a large number of species-specific miRNAs in rice. In contrast, it is obvious that deeply conserved miRNAs are under strong purifying selection during evolution. In most cases, the SNPs in stem regions may result in the miRNA hairpin structures changing from stable to unstable status; And SNPs in mature miRNAs have great potential to have either newly created or disrupted the miRNA-target interactions. However, the total number of gained targets is over 2.5 times greater than that are lost after mutation. Notably, 12 putative domestication-related miRNAs have been identified, where the SNP density is significantly lower. CONCLUSIONS The present study provides the first outline of SNP variations occurred in rice pre-miRNAs at the whole genome-wide level. These analyses may deepen our understanding on the effects of SNPs on the evolution of miRNAs in the rice genome.
Collapse
Affiliation(s)
- Qingpo Liu
- />College of Agriculture and Food Science, Zhejiang A & F University, Lin’an Hangzhou, 311300 China
| | - Hong Wang
- />College of Agriculture and Food Science, Zhejiang A & F University, Lin’an Hangzhou, 311300 China
| | - Leyi Zhu
- />College of Agriculture and Food Science, Zhejiang A & F University, Lin’an Hangzhou, 311300 China
| | - Haichao Hu
- />College of Agriculture and Food Science, Zhejiang A & F University, Lin’an Hangzhou, 311300 China
| | - Yuqiang Sun
- />College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036 China
| |
Collapse
|
1093
|
Ramírez M, Flores-Pacheco G, Reyes JL, Álvarez AL, Drevon JJ, Girard L, Hernández G. Two common bean genotypes with contrasting response to phosphorus deficiency show variations in the microRNA 399-mediated PvPHO2 regulation within the PvPHR1 signaling pathway. Int J Mol Sci 2013; 14:8328-44. [PMID: 23591845 PMCID: PMC3645745 DOI: 10.3390/ijms14048328] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/02/2013] [Accepted: 04/02/2013] [Indexed: 11/17/2022] Open
Abstract
Crop production of the important legume, the common bean (Phaseolus vulgaris), is often limited by low phosphorus (P) in the soil. The genotypes, BAT477 and DOR364, of the common bean have contrasting responses to P starvation. Plants from the BAT477 P deficiency tolerant genotype showed higher phosphate content and root biomass as compared to the DOR364 plants under P starvation. The PvPHR1 transcription factor-signaling pathway plays an essential role in the response to P starvation. PvPHO2, a negative regulator of this pathway, encodes an ubiquitin E2 conjugase that promotes degradation of P-responsive proteins and is the target gene of PvmiR399. PvPHO2 is downregulated in BAT477 plants under P deficiency, while such a response is not observed in P-starved DOR364 plants. Five putative PvmiR399 binding sites were identified in the 5' UTR region in both genotypes. While four sites showed an identical DNA sequence, the fifth (binding site of PvPHO2 one) showed three base changes and higher complementarity scores in DOR364 as compared to BAT477. Modified 5'RACE experiments indicated that PvmiR399 binding and/or processing was affected in DOR364 P-starved plants. We propose that a less efficient cleavage of the PvPHO2 mRNA directed by PvmiR399 would result in a higher PvPHO2-mediated degradation of P-responsive proteins in the DOR364 genotype with decreased P deficiency tolerance.
Collapse
Affiliation(s)
- Mario Ramírez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 1001, Cuernavaca 62210, Morelos, Mexico; E-Mails: (G.F.-P.); (A.L.A.); (L.G.); (G.H.)
| | - Gerardo Flores-Pacheco
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 1001, Cuernavaca 62210, Morelos, Mexico; E-Mails: (G.F.-P.); (A.L.A.); (L.G.); (G.H.)
| | - José Luis Reyes
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Cuernavaca 62210, Morelos, Mexico; E-Mail:
| | - Ana Luz Álvarez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 1001, Cuernavaca 62210, Morelos, Mexico; E-Mails: (G.F.-P.); (A.L.A.); (L.G.); (G.H.)
| | - Jean Jacques Drevon
- Institut National de la Recherche Agronomique, UMR Eco&Sols-Ecologie Fonctionnelle & Biogéochimie des Sols & Agroécosystèmes, 2 Place Viala, Montpellier F34060, France; E-Mail:
| | - Lourdes Girard
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 1001, Cuernavaca 62210, Morelos, Mexico; E-Mails: (G.F.-P.); (A.L.A.); (L.G.); (G.H.)
| | - Georgina Hernández
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 1001, Cuernavaca 62210, Morelos, Mexico; E-Mails: (G.F.-P.); (A.L.A.); (L.G.); (G.H.)
| |
Collapse
|
1094
|
Meng Y, Shao C, Ma X, Wang H. Introns targeted by plant microRNAs: a possible novel mechanism of gene regulation. RICE (NEW YORK, N.Y.) 2013; 6:8. [PMID: 24280590 PMCID: PMC4883735 DOI: 10.1186/1939-8433-6-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 03/25/2013] [Indexed: 05/09/2023]
Abstract
BACKGROUND In plant cells, most microRNAs (miRNAs) perform cleavages of target mature mRNAs in the cytoplasm. A recent report of a miRNA pathway involved in DNA methylation in the rice nucleus raises the possibility that plant miRNAs could cleave intron-containing pre-mRNAs (the precursor of messenger RNAs) located in the nucleus. RESULTS In this study, we searched for the miRNA binding sites present within the introns of Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) genes. All miRNA-intron interactions predicted to result in cleavages were validated by using the public degradome sequencing data. As a result, 40 miRNA-intron pairs involving 25 miRNAs in Arabidopsis and 1912 pairs involving 91 miRNAs in rice were identified. For several rice genes, not all transcription forms (alternative splicing variants) were under similar regulation by specific miRNAs. Certain transcripts could escape cleavages due to the absence of intronic miRNA binding sites within these sequences. In some instances, specific cleaved intron remnants could be converted to double-stranded RNAs (dsRNAs) by RNA-dependent RNA polymerase 2. These dsRNAs could then be processed into 21- and 24-nt phased sRNAs by the activity of Dicer-like 1 and 3, respectively. The resultant siRNAs have the potential to be incorporated into Argonaute (AGO)-associated silencing complexes and result in cleavages of target pre-mRNA sequences. CONCLUSIONS A regulatory model, miRNA-targeting of intron-containing pre-mRNAs-phased sRNAs-targeting of mature mRNAs is proposed, which further expands the potential modes of action of plant miRNAs.
Collapse
Affiliation(s)
- Yijun Meng
- />College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Street 16#, Xiasha, Hangzhou, 310036 P. R. China
| | - Chaogang Shao
- />College of Life Sciences, Huzhou Teachers College, Huzhou, 313000 P. R. China
| | - Xiaoxia Ma
- />College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Street 16#, Xiasha, Hangzhou, 310036 P. R. China
| | - Huizhong Wang
- />College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Street 16#, Xiasha, Hangzhou, 310036 P. R. China
| |
Collapse
|
1095
|
Lin Y, Lai Z. Comparative analysis reveals dynamic changes in miRNAs and their targets and expression during somatic embryogenesis in longan (Dimocarpus longan Lour.). PLoS One 2013; 8:e60337. [PMID: 23593197 PMCID: PMC3623967 DOI: 10.1371/journal.pone.0060337] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 02/25/2013] [Indexed: 01/27/2023] Open
Abstract
Somatic embryogenesis (SE), which resembles zygotic embryogenesis, is an essential component of the process of plant cell differentiation and embryo development. Although microRNAs (miRNAs) are important regulators of many plant develop- mental processes, their roles in SE have not been thoroughly investigated. In this study, we used deep-sequencing, computational, and qPCR methods to identify, profile, and describe conserved and novel miRNAs involved in longan (Dimocarpus longan) SE. A total of 643 conserved and 29 novel miRNAs (including star strands) from more than 169 miRNA families were identified in longan embryogenic tissue using Solexa sequencing. By combining computational and degradome sequencing approaches, we were able to predict 2063 targets of 272 miRNAs and verify 862 targets of 181 miRNAs. Target annotation revealed that the putative targets were involved in a broad variety of biological processes, including plant metabolism, signal transduction, and stimulus response. Analysis of stage- and tissue-specific expressions of 20 conserved and 4 novel miRNAs indicated their possible roles in longan SE. These miRNAs were dlo-miR156 family members and dlo-miR166c* associated with early embryonic culture developmental stages; dlo-miR26, dlo-miR160a, and families dlo-miR159, dlo-miR390, and dlo-miR398b related to heart-shaped and torpedo- shaped embryo formation; dlo-miR4a, dlo-miR24, dlo-miR167a, dlo-miR168a*, dlo-miR397a, dlo-miR398b.1, dlo-miR398b.2, dlo-miR808 and dlo-miR5077 involved in cotyledonary embryonic development; and dlo-miR17 and dlo-miR2089*-1 that have regulatory roles during longan SE. In addition, dlo-miR167a, dlo-miR808, and dlo-miR5077 may be required for mature embryo formation. This study is the first reported investigation of longan SE involving large-scale cloning, characterization, and expression profiling of miRNAs and their targets. The reported results contribute to our knowledge of somatic embryo miRNAs and provide insights into miRNA biogenesis and expression in plant somatic embryo development.
Collapse
Affiliation(s)
- Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry, Fuzhou, Fujian, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry, Fuzhou, Fujian, China
- * E-mail:
| |
Collapse
|
1096
|
Khraiwesh B, Pugalenthi G, Fedoroff NV. Identification and analysis of red sea mangrove (Avicennia marina) microRNAs by high-throughput sequencing and their association with stress responses. PLoS One 2013; 8:e60774. [PMID: 23593307 PMCID: PMC3620391 DOI: 10.1371/journal.pone.0060774] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/02/2013] [Indexed: 11/18/2022] Open
Abstract
Although RNA silencing has been studied primarily in model plants, advances in high-throughput sequencing technologies have enabled profiling of the small RNA components of many more plant species, providing insights into the ubiquity and conservatism of some miRNA-based regulatory mechanisms. Small RNAs of 20 to 24 nucleotides (nt) are important regulators of gene transcript levels by either transcriptional or by posttranscriptional gene silencing, contributing to genome maintenance and controlling a variety of developmental and physiological processes. Here, we used deep sequencing and molecular methods to create an inventory of the small RNAs in the mangrove species, Avicennia marina. We identified 26 novel mangrove miRNAs and 193 conserved miRNAs belonging to 36 families. We determined that 2 of the novel miRNAs were produced from known miRNA precursors and 4 were likely to be species-specific by the criterion that we found no homologs in other plant species. We used qRT-PCR to analyze the expression of miRNAs and their target genes in different tissue sets and some demonstrated tissue-specific expression. Furthermore, we predicted potential targets of these putative miRNAs based on a sequence homology and experimentally validated through endonucleolytic cleavage assays. Our results suggested that expression profiles of miRNAs and their predicted targets could be useful in exploring the significance of the conservation patterns of plants, particularly in response to abiotic stress. Because of their well-developed abilities in this regard, mangroves and other extremophiles are excellent models for such exploration.
Collapse
Affiliation(s)
- Basel Khraiwesh
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| | | | | |
Collapse
|
1097
|
Zhao J, Chen P, Gregersen H. Morpho-mechanical intestinal remodeling in type 2 diabetic GK rats--is it related to advanced glycation end product formation? J Biomech 2013; 46:1128-1134. [PMID: 23403079 DOI: 10.1016/j] [Citation(s) in RCA: 522] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/07/2013] [Accepted: 01/13/2013] [Indexed: 02/06/2023]
Abstract
Little is known about the mechanisms for the biomechanical remodeling in diabetes. The histomorphology, passive biomechanical properties and expression of advanced glycation end product (N epsilon-(carboxymethyl) lysine, AGE) and its receptor (RAGE) were studied in jejunal segments from 8 GK diabetic rats (GK group) and 10 age-matched normal rats (Normal group). The mechanical test was done by using a ramp distension of fluid into the jejunal segments in vitro. Circumferential stress and strain were computed from the length, diameter and pressure data and from the zero-stress state geometry. AGE and RAGE were detected by immunohistochemistry staining. Linear regression analysis was done to study association between the glucose level and AGE/RAGE expression with the histomorphometric and biomechanical parameters. The blood glucose level, the jejunal weight per length, wall thickness, wall area and layer thickness significantly increased in the GK group compared with the Normal group (P<0.05, P<0.01 and P<0.001). The opening angle and absolute values of residual strain decreased whereas the circumferential stiffness of the jejunal wall increased in the GK group (P<0.05 and P<0.01). Furthermore, stronger AGE expression in the villi and crypt and RAGE expression in the villi were found in the GK group (P<0.05 and P<0.01). Most histomorphometric and biomechanical changes were associated with blood glucose level and AGE/RAGE expression. In conclusion, histomorphometric and biomechanical remodeling occurred in type 2 diabetic GK rats. The increasing blood glucose level and the increased AGE/RAGE expression were associated with the remodeling, indicating a causal relationship.
Collapse
Affiliation(s)
- Jingbo Zhao
- Mech-Sense, Department of Gastroenterology and Surgery, Aalborg University Hospital, Soendre Skovvej 15, DK 9000 Aalborg, Denmark.
| | | | | |
Collapse
|
1098
|
Petrick JS, Brower-Toland B, Jackson AL, Kier LD. Safety assessment of food and feed from biotechnology-derived crops employing RNA-mediated gene regulation to achieve desired traits: a scientific review. Regul Toxicol Pharmacol 2013; 66:167-76. [PMID: 23557984 DOI: 10.1016/j.yrtph.2013.03.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 03/19/2013] [Accepted: 03/22/2013] [Indexed: 01/09/2023]
Abstract
Gene expression can be modulated in plants to produce desired traits through agricultural biotechnology. Currently, biotechnology-derived crops are compared to their conventional counterparts, with safety assessments conducted on the genetic modification and the intended and unintended differences. This review proposes that this comparative safety assessment paradigm is appropriate for plants modified to express mediators of RNA-mediated gene regulation, including RNA interference (RNAi), a gene suppression mechanism that naturally occurs in plants and animals. The molecular mediators of RNAi, including long double-stranded RNAs (dsRNA), small interfering RNAs (siRNA), and microRNAs (miRNA), occur naturally in foods; therefore, there is an extensive history of safe consumption. Systemic exposure following consumption of plants containing dsRNAs that mediate RNAi is limited in higher organisms by extensive degradation of ingested nucleic acids and by biological barriers to uptake and efficacy of exogenous nucleic acids. A number of mammalian RNAi studies support the concept that a large margin of safety will exist for any small fraction of RNAs that might be absorbed following consumption of foods from biotechnology-derived plants that employ RNA-mediated gene regulation. Food and feed derived from these crops utilizing RNA-based mechanisms is therefore expected to be as safe as food and feed derived through conventional plant breeding.
Collapse
Affiliation(s)
- Jay S Petrick
- Monsanto Company, 800 N. Lindbergh Blvd, St. Louis, MO 63167, USA.
| | | | | | | |
Collapse
|
1099
|
Karlova R, van Haarst JC, Maliepaard C, van de Geest H, Bovy AG, Lammers M, Angenent GC, de Maagd RA. Identification of microRNA targets in tomato fruit development using high-throughput sequencing and degradome analysis. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1863-78. [PMID: 23487304 PMCID: PMC3638818 DOI: 10.1093/jxb/ert049] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) play important roles in plant development through regulation of gene expression by mRNA degradation or translational inhibition. Despite the fact that tomato (Solanum lycopersicum) is the model system for studying fleshy fruit development and ripening, only a few experimentally proven miRNA targets are known, and the role of miRNA action in these processes remains largely unknown. Here, by using parallel analysis of RNA ends (PARE) for global identification of miRNA targets and comparing four different stages of tomato fruit development, a total of 119 target genes of miRNAs were identified. Of these, 106 appeared to be new targets. A large part of the identified targets (56) coded for transcription factors. Auxin response factors, as well as two known ripening regulators, colorless non-ripening (CNR) and APETALA2a (SlAP2a), with developmentally regulated degradation patterns were identified. The levels of the intact messenger of both CNR and AP2a are actively modulated during ripening, by miR156/157 and miR172, respectively. Additionally, two TAS3-mRNA loci were identified as targets of miR390. Other targets such as Argonaute 1 (AGO1), shown to be involved in miRNA biogenesis in other plant species, were identified, which suggests a feedback loop regulation of this process. In this study, it is shown that miRNA-guided cleavage of mRNAs is likely to play an important role in tomato fruit development and ripening.
Collapse
Affiliation(s)
- Rumyana Karlova
- Laboratory of Molecular Biology, Wageningen University, 6700 ET Wageningen, The Netherlands
- Business Unit Bioscience, Plant Research International, 6700 AP Wageningen, The Netherlands
- *Present address: Department of Molecular Plant Physiology, University of Utrecht, 3584 CH Utrecht, The Netherlands
| | - Jan C. van Haarst
- Business Unit Bioscience, Plant Research International, 6700 AP Wageningen, The Netherlands
- Centre for BioSystems Genomics (CBSG), 6700 AB Wageningen, The Netherlands
| | - Chris Maliepaard
- Business Unit Biodiversity and Breeding, Plant Research International, 6700 AP Wageningen, The Netherlands
| | - Henri van de Geest
- Business Unit Bioscience, Plant Research International, 6700 AP Wageningen, The Netherlands
- Centre for BioSystems Genomics (CBSG), 6700 AB Wageningen, The Netherlands
| | - Arnaud G. Bovy
- Business Unit Biodiversity and Breeding, Plant Research International, 6700 AP Wageningen, The Netherlands
- Centre for BioSystems Genomics (CBSG), 6700 AB Wageningen, The Netherlands
| | - Michiel Lammers
- Business Unit Bioscience, Plant Research International, 6700 AP Wageningen, The Netherlands
- Centre for BioSystems Genomics (CBSG), 6700 AB Wageningen, The Netherlands
| | - Gerco C. Angenent
- Business Unit Bioscience, Plant Research International, 6700 AP Wageningen, The Netherlands
- Centre for BioSystems Genomics (CBSG), 6700 AB Wageningen, The Netherlands
| | - Ruud A. de Maagd
- Business Unit Bioscience, Plant Research International, 6700 AP Wageningen, The Netherlands
- Centre for BioSystems Genomics (CBSG), 6700 AB Wageningen, The Netherlands
- †To whom correspondence should be addressed. E-mail:
| |
Collapse
|
1100
|
Wu HJ, Wang ZM, Wang M, Wang XJ. Widespread long noncoding RNAs as endogenous target mimics for microRNAs in plants. PLANT PHYSIOLOGY 2013; 161:1875-84. [PMID: 23429259 PMCID: PMC3613462 DOI: 10.1104/pp.113.215962] [Citation(s) in RCA: 300] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 02/19/2013] [Indexed: 05/18/2023]
Abstract
Target mimicry is a recently identified regulatory mechanism for microRNA (miRNA) functions in plants in which the decoy RNAs bind to miRNAs via complementary sequences and therefore block the interaction between miRNAs and their authentic targets. Both endogenous decoy RNAs (miRNA target mimics) and engineered artificial RNAs can induce target mimicry effects. Yet until now, only the Induced by Phosphate Starvation1 RNA has been proven to be a functional endogenous microRNA target mimic (eTM). In this work, we developed a computational method and systematically identified intergenic or noncoding gene-originated eTMs for 20 conserved miRNAs in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). The predicted miRNA binding sites were well conserved among eTMs of the same miRNA, whereas sequences outside of the binding sites varied a lot. We proved that the eTMs of miR160 and miR166 are functional target mimics and identified their roles in the regulation of plant development. The effectiveness of eTMs for three other miRNAs was also confirmed by transient agroinfiltration assay.
Collapse
|